LT8580HDD#TRPBF [Linear]

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: DFN; Pins: 8; Temperature Range: -40°C to 125°C;
LT8580HDD#TRPBF
型号: LT8580HDD#TRPBF
厂家: Linear    Linear
描述:

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: DFN; Pins: 8; Temperature Range: -40°C to 125°C

文件: 总32页 (文件大小:1393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8580  
Boost/SEPIC/Inverting  
DC/DC Converter with 1A, 65V  
Switch, Soft-Start and Synchronization  
FEATURES  
DESCRIPTION  
The LT®8580 is a PWM DC/DC converter containing an  
internal 1A, 65V switch. The LT8580 can be configured  
n
1A, 65V Power Switch  
n
Adjustable Switching Frequency  
n
Single Feedback Resistor Sets V  
as either a boost, SEPIC or inverting converter.  
OUT  
n
Synchronizable to External Clock  
High Gain SHDN Pin Accepts Slowly Varying  
Input Signals  
The LT8580 has an adjustable oscillator, set by a resistor  
fromtheRTpintoground. Additionally, theLT8580canbe  
synchronizedtoanexternalclock.Theswitchingfrequency  
of the part may be free running or synchronized, and can  
be set between 200kHz and 1.5MHz.  
n
n
n
n
n
Wide Input Voltage Range: 2.55V to 40V  
Low V  
Switch: 400mV at 0.75A (Typical)  
CESAT  
Integrated Soft-Start Function  
The LT8580 also features innovative SHDN pin circuitry  
that allows for slowly varying input signals and an adjust-  
able undervoltage lockout function.  
Easily Configurable as a Boost, SEPIC, or Inverting  
Converter  
User Configurable Undervoltage Lockout (UVLO)  
Pin Compatible with LT3580  
Tiny Thermally Enhanced 8-Lead 3mm × 3mm DFN  
and 8-Lead MSOP Packages  
n
n
n
Additional features such as frequency foldback and  
soft-start are integrated. The LT8580 is available in tiny  
thermally enhanced 3mm × 3mm 8-lead DFN and 8-lead  
MSOP packages.  
n
AEC-Q100 Qualification in Progress  
All registered trademarks and trademarks are the property of their respective owners.  
APPLICATIONS  
n
VFD Bias Supplies  
n
TFT-LCD Bias Supplies  
n
GPS Receivers  
n
DSL Modems  
n
Local Power Supply  
TYPICAL APPLICATION  
1.5MHz, 5V to 12V Boost Converter  
Efficiency and Power Loss  
ꢘꢌꢌ  
ꢝꢌ  
ꢙꢌ  
ꢜꢌ  
ꢗꢌ  
ꢖꢌ  
ꢕꢌ  
ꢛꢌ  
ꢍꢌ  
ꢕꢙꢌ  
ꢕꢍꢌ  
ꢛꢗꢌ  
ꢛꢌꢌ  
ꢍꢕꢌ  
ꢘꢙꢌ  
ꢘꢍꢌ  
ꢗꢌ  
ꢈꢍꢂꢎ  
ꢅꢆꢇ  
ꢑꢒ  
ꢈꢉꢄ  
ꢍꢄ  
ꢉꢊꢊꢋꢌ  
ꢈꢊꢐ  
ꢑꢒ  
ꢓꢔ  
ꢃBꢛ  
ꢄꢜ  
ꢈꢏꢊꢐ  
SHDN  
ꢀ.ꢁꢂꢃ  
ꢕꢍꢕꢊ  
ꢉ.ꢉꢂꢃ  
ꢓꢝꢒꢜ  
Rꢇ  
ꢘ.ꢊꢀꢐ  
ꢏ.ꢏꢞꢃ  
ꢙꢒꢚ ꢓꢓ  
ꢀꢁꢟꢃ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢍꢘ.ꢉꢐ  
ꢊ.ꢉꢉꢂꢃ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢕꢍꢕꢊ ꢇꢌꢊꢈꢖ  
ꢍꢌꢌ  
ꢖꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢘꢌꢌ  
ꢘꢖꢌ  
ꢙꢖꢙꢌ ꢈꢂꢌꢘꢚ  
Rev. B  
1
Document Feedback  
For more information www.analog.com  
LT8580  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V Voltage.................................................0.3V to 40V  
SHDN Voltage ............................................0.3V to 40V  
SYNC Voltage............................................0.3V to 5.5V  
Operating Junction Temperature Range  
IN  
SW Voltage ................................................0.4V to 65V  
RT Voltage ...................................................0.3V to 5V  
SS Voltage ................................................0.3V to 2.5V  
FBX Voltage.................................................................5V  
FBX Current............................................................1mA  
VC Voltage ...................................................0.3V to 2V  
LT8580E (Notes 2, 5).........................40°C to 125°C  
LT8580I (Notes 2, 5)..........................40°C to 125°C  
LT8580H (Notes 2, 5) ........................ –40°C to 150°C  
Storage Temperature Range ..................–65°C to 150°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢑꢒꢓ ꢆꢈꢔꢋ  
ꢔBꢝ  
ꢃꢉ  
ꢓꢞꢕꢉ  
ꢓꢓ  
ꢄBꢅ  
ꢆꢇ  
ꢌ ꢊꢐꢉꢇ  
ꢍ ꢊꢊ  
ꢖꢉꢗ  
ꢋꢕꢇ  
ꢈꢉ  
Rꢑ  
SHDN  
ꢄꢕ  
Rꢀ  
ꢊꢋ  
ꢓꢆ  
SHDN  
ꢘꢊꢌꢔ ꢓꢙꢇꢚꢙꢖꢔ  
ꢌꢛꢜꢔꢙꢗ ꢓꢜꢙꢊꢑꢈꢇ ꢘꢊꢒꢓ  
ꢇꢇ ꢂꢈꢉꢊꢈꢋꢅ  
ꢌꢍꢎꢅꢈꢇ ꢏꢐꢑꢑ × ꢐꢑꢑꢒ ꢂꢎꢈꢓꢀꢄꢉ ꢇꢔꢕ  
θ
= 35°C/W TO 40°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
θ
= 43°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LGKH  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8580EDD#PBF  
LT8580EDD#TRPBF  
LT8580IDD#TRPBF  
LT8580HDD#TRPBF  
LT8580EMS8E#TRPBF  
LT8580IMS8E#TRPBF  
LT8580HMS8E#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
40°C to 125°C  
40°C to 125°C  
40°C to 150°C  
40°C to 125°C  
40°C to 125°C  
40°C to 150°C  
LT8580IDD#PBF  
LGKH  
LT8580HDD#PBF  
LGKH  
LT8580EMS8E#PBF  
LT8580IMS8E#PBF  
LT8580HMS8E#PBF  
AUTOMOTIVE PRODUCTS**  
LT8580EMS8E#WPBF  
LT8580IMS8E#WPBF  
LT8580HMS8E#WPBF  
LTGKJ  
LTGKJ  
8-Lead Plastic MSOP  
LTGKJ  
8-Lead Plastic MSOP  
LT8580EMS8E#WTRPBF LTGKJ  
LT8580IMS8E#WTRPBF LTGKJ  
LT8580HMS8E#WTRPBF LTGKJ  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
40°C to 125°C  
40°C to 125°C  
40°C to 150°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. B  
2
For more information www.analog.com  
LT8580  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Operating Voltage Range  
LT8580E, LT8580I  
LT8580H  
2.55  
2.9  
40  
40  
V
V
l
l
l
l
Positive Feedback Voltage  
Negative Feedback Voltage  
Positive FBX Pin Bias Current  
Negative FBX Pin Bias Current  
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
Quiescent Current  
1.185  
–3  
81  
1.204  
3
83.3  
83.3  
200  
60  
1.2  
0
0.01  
1.220  
12  
85  
V
mV  
µA  
V
V
= Positive Feedback Voltage, Current Into Pin  
= Negative Feedback Voltage, Current Out of Pin  
FBX  
81  
86  
µA  
FBX  
µmhos  
V/V  
mA  
µA  
%/V  
V
V
= 2.5V, Not Switching  
= 0V  
1.7  
1
0.05  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
SHDN  
2.5V ≤ V ≤ 40V  
IN  
l
l
Switching Frequency, f  
R = 56.2k  
T
1.23  
165  
1.5  
200  
1.77  
235  
MHz  
kHz  
OSC  
T
R = 422k  
Switching Frequency in Foldback  
Switching Frequency Set Range  
SYNC High Level for Synchronization  
SYNC Low Level for Synchronization  
SYNC Clock Pulse Duty Cycle  
Recommended Minimum SYNC Ratio f  
Minimum Off-Time  
Compared to Normal f  
SYNCing or Free Running  
1/6  
Ratio  
kHz  
V
OSC  
l
l
l
200  
1.3  
1500  
0.4  
65  
V
%
V
= 0V to 2V  
35  
SYNC  
/f  
3/4  
100  
120  
SYNC OSC  
ns  
ns  
Minimum On-Time  
l
l
l
Switch Current Limit  
Minimum Duty Cycle (Note 3)  
Maximum Duty Cycle (Notes 3, 4), f  
Maximum Duty Cycle (Notes 3, 4), f  
1.2  
0.6  
0.4  
1.5  
1
0.8  
1.8  
1.5  
1.4  
A
A
A
= 1.5MHz  
= 200kHz  
OSC  
OSC  
Switch V  
Switch Leakage Current  
Soft-Start Charging Current  
I
V
V
= 0.75A  
400  
0.01  
6
mV  
µA  
µA  
CESAT  
SW  
= 5V  
1
8
SW  
l
= 0.5V  
4
SS  
l
l
SHDN Minimum Input  
Voltage High  
Active Mode, SHDN Rising  
Active Mode, SHDN Falling  
1.23  
1.21  
1.31  
1.27  
1.4  
1.33  
V
V
l
SHDN Input Voltage Low  
SHDN Pin Bias Current  
Shutdown Mode  
0.3  
V
V
SHDN  
V
SHDN  
V
SHDN  
= 3V  
= 1.3V  
= 0V  
44  
12  
0
56  
15  
0.1  
µA  
µA  
µA  
9
SHDN Hysteresis  
40  
mV  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT8580E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8580I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. The LT8580H is guaranteed over the full –40°C to  
150°C operating junction temperature range. Operating lifetime is derated  
at junction temperatures greater than 125°C.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
Note 4: Current limit measured at equivalent of listed switching frequency.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Rev. B  
3
For more information www.analog.com  
LT8580  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise specified  
Commanded Switch Current vs SS  
Switch Current Limit vs Duty Cycle  
Switch Saturation Voltage  
ꢕ.ꢋꢋ  
ꢊ.ꢔꢓ  
ꢊ.ꢓꢋ  
ꢊ.ꢕꢓ  
ꢊ.ꢋꢋ  
ꢋ.ꢔꢓ  
ꢋ.ꢓꢋ  
ꢋ.ꢕꢓ  
ꢓ.ꢊ  
ꢒ.ꢑ  
ꢒ.ꢊ  
ꢊ.ꢑ  
ꢙꢌꢌ  
ꢔꢌꢌ  
ꢓꢌꢌ  
ꢒꢌꢌ  
ꢘꢌꢌ  
ꢗꢌꢌ  
ꢕꢌꢌ  
ꢊ.ꢔ  
ꢊ.ꢕ  
ꢊ.ꢖ  
ꢒ.ꢓ  
ꢛꢋ ꢔꢋ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢊ.ꢓ  
ꢊꢋ ꢕꢋ ꢖꢋ ꢚꢋ ꢓꢋ  
ꢘꢋ ꢗꢋ  
ꢌ.ꢗꢓ  
ꢌ.ꢓ  
ꢌ.ꢙꢓ  
ꢕ.ꢗꢓ  
ꢕ.ꢓ  
ꢀꢀ ꢁꢂꢆꢇ ꢈꢁꢉ  
ꢀꢁꢂꢃꢄꢅ ꢄꢆRRꢇꢈꢃ ꢉꢊꢋ  
ꢖꢑꢖꢊ ꢆꢊꢗ  
ꢘꢓꢘꢋ ꢙꢋꢊ  
ꢖꢓꢖꢌ ꢐꢌꢗ  
Switch Current Limit  
vs Temperature  
Positive and Negative Output  
Voltage Regulation  
ꢍ.ꢌ  
ꢔ.ꢋ  
ꢔ.ꢌ  
ꢌ.ꢋ  
ꢎ.ꢍꢍꢌ  
ꢎ.ꢍꢎꢋ  
ꢎ.ꢍꢎꢌ  
ꢎ.ꢍꢌꢋ  
ꢎ.ꢍꢌꢌ  
ꢎ.ꢎꢛꢋ  
ꢎ.ꢎꢛꢌ  
ꢎ.ꢎꢚꢋ  
ꢎ.ꢎꢚꢌ  
ꢎ.ꢎꢏꢋ  
ꢎ.ꢎꢏꢌ  
ꢜꢌ  
ꢍꢋ  
ꢍꢌ  
ꢎꢋ  
ꢎꢌ  
ꢊꢋ  
ꢊꢎꢌ  
ꢊꢎꢋ  
ꢊꢍꢌ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢕꢋ ꢔꢌꢌ ꢔꢍꢋ ꢔꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢖꢋꢖꢌ ꢗꢌꢘ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢏꢋ ꢎꢌꢌ ꢎꢍꢋ ꢎꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢚꢋꢚꢌ ꢗꢌꢋ  
Positive and Negative FBX Current  
at Output Voltage Regulation  
Oscillator Frequency  
ꢎꢘ  
ꢎꢋ  
ꢎꢜ  
ꢎꢛ  
ꢎꢍ  
ꢎꢚ  
ꢎꢌ  
ꢎꢘ  
ꢕ.ꢔ  
ꢕ.ꢙ  
ꢕ.ꢖ  
ꢕ.ꢍ  
ꢕ.ꢌ  
ꢌ.ꢔ  
ꢌ.ꢙ  
ꢌ.ꢖ  
ꢌ.ꢍ  
R
ꢚ ꢋꢙ.ꢍꢛ  
ꢎꢋ  
ꢎꢜ  
ꢎꢛ  
ꢎꢍ  
ꢎꢚ  
ꢎꢌ  
R
ꢚ ꢖꢍꢍꢛ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢙꢋ ꢚꢌꢌ ꢚꢍꢋ ꢚꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢘꢋ  
ꢕꢍꢋ  
ꢕꢌꢌ ꢕꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢎꢋꢎꢌ ꢗꢌꢘ  
ꢔꢋꢔꢌ ꢗꢌꢘ  
Rev. B  
4
For more information www.analog.com  
LT8580  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise specified  
Oscillator Frequency During  
Soft-Start  
Internal UVLO  
SHDN Pin Current  
ꢍ.ꢕ  
ꢍ.ꢚ  
ꢍ.ꢋ  
ꢍ.ꢖ  
ꢍ.ꢗ  
ꢍ.ꢍ  
ꢍ.ꢎ  
ꢓꢉ  
ꢒꢐ  
ꢑꢒꢐꢖꢍ  
ꢒꢐꢖꢍ  
ꢗꢘꢉꢖꢍ  
ꢒꢉ  
ꢑꢐ  
ꢗꢖꢙ  
ꢗꢖꢚ  
ꢗꢖꢘ  
ꢗꢖꢜ  
ꢗꢖꢛ  
ꢑꢉ  
ꢎꢌꢂꢈRꢅꢎꢌꢇ  
ꢌꢃꢌꢎꢌꢂꢈRꢅꢎꢌꢇ  
ꢒꢃꢌꢀꢎꢇꢔRꢆꢅꢎꢃꢌꢑ ꢒꢃꢌꢀꢎꢇꢔRꢆꢅꢎꢃꢌꢑ  
ꢋ.ꢙ ꢋ.ꢘ ꢋ.ꢛ ꢋ.ꢝ  
ꢀBꢁ ꢂꢃꢄꢅꢆꢇꢈ ꢉꢂꢊ  
ꢗ.ꢙ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢕꢋ ꢎꢌꢌ ꢎꢍꢋ ꢎꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢉ.ꢒꢐ ꢉ.ꢐ ꢉ.ꢔꢐ  
ꢑ.ꢒꢐ ꢑ.ꢐ ꢑ.ꢔꢐ  
SHDN ꢀꢁꢂꢃꢄꢅꢆ ꢇꢀꢈ  
ꢝꢜꢝꢋ ꢇꢋꢝ  
ꢘꢋꢘꢌ ꢔꢌꢙ  
ꢕꢐꢕꢉ ꢅꢑꢉ  
Minimum On Time  
vs Temperature  
SHDN Pin Current  
Active/Lockout Threshold  
ꢎ.ꢖꢌ  
ꢎ.ꢕꢔ  
ꢎ.ꢕꢓ  
ꢎ.ꢕꢖ  
ꢎ.ꢕꢍ  
ꢎ.ꢕꢌ  
ꢎ.ꢍꢔ  
ꢎ.ꢍꢓ  
ꢎ.ꢍꢖ  
ꢎ.ꢍꢍ  
ꢎ.ꢍꢌ  
ꢓꢉꢉ  
ꢒꢑꢉ  
ꢒꢉꢉ  
ꢐꢑꢉ  
ꢐꢉꢉ  
ꢔꢑꢉ  
ꢔꢉꢉ  
ꢑꢉ  
ꢓꢌꢌ  
ꢗꢋꢌ  
ꢗꢌꢌ  
ꢍꢋꢌ  
ꢍꢌꢌ  
ꢒꢋꢌ  
ꢒꢌꢌ  
ꢋꢌ  
ꢔꢐꢑꢖꢍ  
ꢐꢑꢖꢍ  
ꢗꢓꢉꢖꢍ  
Rꢁꢈꢐꢂꢂꢁꢏꢘꢁꢘ ꢂꢎꢏꢎꢂꢅꢂ ꢐꢏ ꢀꢎꢂꢁ  
SHDN Rꢘꢙꢘꢚꢒ  
SHDN ꢛꢄꢑꢑꢘꢚꢒ  
ꢂꢁꢄꢑꢅRꢁꢘ ꢂꢎꢏꢎꢂꢅꢂ ꢐꢏ ꢀꢎꢂꢁ  
ꢔꢉ ꢔꢑ ꢐꢉ ꢐꢑ ꢒꢉ ꢒꢑ ꢓꢉ  
SHDN ꢀꢁꢂꢃꢄꢅꢆ ꢇꢀꢈ  
ꢕꢑꢕꢉ ꢅꢔꢔ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢗꢋ ꢎꢌꢌ ꢎꢍꢋ ꢎꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ ꢋꢌ ꢔꢋ ꢒꢌꢌ ꢒꢍꢋ ꢒꢋꢌ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢔꢋꢔꢌ ꢒꢎꢍ  
ꢕꢋꢕꢌ ꢖꢒꢗ  
Rev. B  
5
For more information www.analog.com  
LT8580  
PIN FUNCTIONS  
FBX (Pin 1): Positive and Negative Feedback Pin. For a  
sequence. Drive below 1.21V to disable the chip. Drive  
above 1.40V to activate the chip and restart the soft-start  
sequence. Do not float this pin.  
noninverting or inverting converter, tie a resistor from the  
FBX pin to V  
according to the following equations:  
OUT  
RT (Pin 6): Timing Resistor Pin. Adjusts the switching  
frequency. Place a resistor from this pin to ground to set  
the frequency to a fixed free running level. Do not float  
this pin.  
V
1.204V  
(
)
OUT  
R
R
=
=
; Noninverting Converter  
FBX  
FBX  
83.3µA  
+ 3mV  
V
(
)
OUT  
; Inverting Converter  
83.3µA  
SS(Pin7):Soft-StartPin.Placeasoft-startcapacitorhere.  
Upon start-up, the SS pin will be charged by a (nominally)  
280k resistor to about 2.1V.  
VC (Pin 2): Error Amplifier Output Pin. Tie external com-  
pensation network to this pin.  
SYNC (Pin 8): To synchronize the switching frequency to  
an outside clock, simply drive this pin with a clock. The  
high voltage level of the clock needs to exceed 1.3V, and  
the low level should be less 0.4V. Drive this pin to less  
than 0.4V to revert to the internal free-running clock. See  
theApplicationsInformationsectionformoreinformation.  
V (Pin 3): Input Supply Pin. Must be locally bypassed.  
IN  
SW (Pin 4): Switch Pin. This is the collector of the internal  
NPN Power switch. Minimize the metal trace area connec-  
ted to this pin to minimize EMI.  
SHDN (Pin 5): Shutdown Pin. In conjunction with the  
UVLO (undervoltage lockout) circuit, this pin is used  
to enable/disable the chip and restart the soft-start  
GND (Exposed Pad Pin 9): Ground. Exposed pad must  
be soldered directly to local ground plane.  
BLOCK DIAGRAM  
R
C
V
IN  
C
C
C
IN  
SS  
C
7
2
50k  
SS  
VC  
SHDN  
5
+
DISCHARGE  
DETECT  
L1  
1.3V  
280k  
D1  
SW  
UVLO  
VC  
I
SR2  
R
SOFT-  
START  
4
V
OUT  
COMPARATOR  
LIMIT  
SR1  
S
Q2  
Q
S
+
DRIVER  
C1  
V
IN  
A3  
R
Q
Q1  
1.204V  
REFERENCE  
3
+
+
R
FBX  
14.5k  
A4  
0.02Ω  
GND  
A1  
A2  
SLOPE  
COMPENSATION  
FBX  
9
1
+
÷N  
FREQUENCY  
FOLDBACK  
ADJUSTABLE  
OSCILLATOR  
14.5k  
SYNC  
BLOCK  
SYNC  
RT  
8
6
R
T
8580 BD  
Rev. B  
6
For more information www.analog.com  
LT8580  
OPERATION  
TheLT8580usesaconstant-frequency,currentmodecon-  
trol scheme to provide excellent line and load regulation.  
Refer to the Block Diagram for the following description  
of the part’s operation. At the start of each oscillator cycle,  
theSRlatch(SR1)isset, whichturnsonthepowerswitch,  
Q1. The switch current flows through the internal current  
sense resistor, generating a voltage proportional to the  
switch current. This voltage (amplified by A4) is added  
to a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A3. When this  
voltage exceeds the level at the negative input of A3, the  
SR latch is reset, turning off the power switch. The level  
at the negative input of A3 (VC pin) is set by the error  
amplifier A1 (or A2) and is simply an amplified version of  
the difference between the feedback voltage (FBX pin) and  
the reference voltage (1.204V or 3mV, depending on the  
configuration). In this manner, the error amplifier sets the  
correct peak current level to keep the output in regulation.  
an inverting configuration, the FBX pin is pulled down to  
3mV by the R  
resistor connected from V  
to FBX.  
FBX  
OUT  
Amplifier A1 becomes inactive and amplifier A2 performs  
the noninverting amplification from FBX to VC.  
SEPIC Topology  
As shown in Figure 1, the LT8580 can be configured as  
a SEPIC (single-ended primary inductance converter).  
This topology allows for the input to be higher, equal, or  
lower than the desired output voltage. Output disconnect  
is inherently built into the SEPIC topology, meaning no DC  
path exists between the input and output. This is useful  
for applications requiring the output to be disconnected  
from the input source when the circuit is in shutdown.  
Inverting Topology  
The LT8580 can also work in a dual inductor inverting  
topology,asshowninFigure2.Thepart’suniquefeedback  
pin allows for the inverting topology to be built by simply  
changing the connection of external components. This  
solution results in very low output voltage ripple due to  
the inductor L2 in series with the output. Abrupt changes  
in output capacitor current are eliminated because the  
output inductor delivers current to the output during both  
the off-time and the on-time of the LT8580 switch.  
The LT8580 has an FBX pin architecture that can be used  
for either noninverting or inverting configurations. When  
configured as a noninverting converter, the FBX pin is  
pulled up to the internal bias voltage of 1.204V by the  
R
FBX  
resistor connected from V  
to FBX. Amplifier A2  
OUT  
becomes inactive and amplifier A1 performs the invert-  
ing amplification from FBX to VC. When the LT8580 is in  
ꢋꢊ  
ꢉꢒ  
ꢉꢁ  
ꢀꢁ  
ꢋꢁ  
ꢋꢒ  
ꢏ ꢍ  
ꢐ ꢍ  
ꢑ ꢍ  
ꢎꢈ  
ꢆꢄꢅ  
ꢆR  
ꢆꢄꢅ  
ꢆR  
ꢍꢈ  
ꢆꢄꢅ  
ꢆꢄꢅ  
ꢎꢈ  
ꢎꢈ  
ꢂꢇ  
ꢂꢇ  
ꢎꢈ  
ꢍꢈ  
ꢉꢊ  
ꢀꢁ  
ꢆꢄꢅ  
ꢋꢁ  
ꢒꢓꢒꢔ  
ꢉꢁ  
ꢎꢏꢎꢐ  
Rꢁ  
Rꢁ  
SHDN  
ꢑBꢔ  
ꢂꢃꢄꢅꢀꢆꢇꢈ  
SHDN  
ꢕBꢗ  
ꢂꢃꢄꢅꢀꢆꢇꢈ  
Rꢅ  
Rꢅ  
ꢓꢈꢀ  
ꢌꢉ  
ꢂꢂ  
ꢖꢈꢀ  
ꢍꢋ  
ꢂꢂ  
ꢋꢌ  
ꢉꢊ  
ꢂꢘꢈꢋ  
ꢂꢕꢈꢉ  
R
R
R
R
ꢂꢂ  
ꢂꢂ  
ꢒꢓꢒꢔ ꢕꢔꢁ  
ꢎꢏꢎꢐ ꢑꢐꢒ  
Figure 1. SEPIC Topology Allows for the Input to Span  
the Output Voltage. Coupled or Uncoupled Inductors  
Can Be Used. Follow Noted Phasing if Coupled  
Figure 2. Dual Inductor Inverting Topology Results in  
Low Output Ripple. Coupled or Uncoupled Inductors  
Can Be Used. Follow Noted Phasing if Coupled  
Rev. B  
7
For more information www.analog.com  
LT8580  
OPERATION  
Start-Up Operation  
of 300mV to 920mV. This feature reduces the minimum  
duty cycle that the part can achieve thus allowing better  
control of the switch current during start-up. When the  
FBXvoltageispulledoutsideofthisrange,theswitching  
frequency returns to normal.  
Several functions are provided to enable a very clean  
start-up for the LT8580.  
• First, the SHDN pin voltage is monitored by an internal  
voltage reference to give a precise turn-on voltage level.  
Anexternalresistor(orresistordivider)canbeconnected  
from the input power supply to the SHDN pin to provide  
a user-programmable undervoltage lockout function.  
Current Limit and Thermal Shutdown Operation  
The LT8580 has a current limit circuit not shown in the  
BlockDiagram.Theswitchcurrentisconstantlymonitored  
and not allowed to exceed the maximum switch current at  
agivendutycycle(seetheElectricalCharacteristicstable).  
If the switch current reaches this value, the SR latch (SR1)  
is reset regardless of the state of the comparator (A1/  
A2). Also, not shown in the Block Diagram is the thermal  
shutdown circuit. If the temperature of the part exceeds  
approximately165°C,theSR2latchissetregardlessofthe  
state of the amplifier (A1/A2). When the part temperature  
falls below approximately 160°C, a full soft-start cycle will  
then be initiated. The current limit and thermal shutdown  
circuits protect the power switch as well as the external  
components connected to the LT8580.  
• Second, the soft-start circuitry provides for a gradual  
ramp-up of the switch current. When the part is brought  
out of shutdown, the external SS capacitor is first  
discharged (providing protection against SHDN pin  
glitches and slow ramping), then an integrated 280k  
resistor pulls the SS pin up to ~2.1V. By connecting an  
external capacitor to the SS pin, the voltage ramp rate  
on the pin can be set. Typical values for the soft-start  
capacitor range from 100nF to 1µF.  
• Finally,thefrequencyfoldbackcircuitreducestheswitch-  
ing frequency when the FBX pin is in a nominal range  
Rev. B  
8
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Setting Output Voltage  
For the SEPIC or dual inductor inverting topology (see  
Figure 1 and Figure 2):  
The output voltage is set by connecting a resistor (R  
)
FBX  
V + |V  
|
from V  
to the FBX pin. R  
is determined from the  
D
OUT  
OUT  
FBX  
DC ≅  
following equation:  
V + |V | + V V  
IN  
D
OUT  
CESAT  
|V V  
|
FBX  
OUT  
The LT8580 can be used in configurations where the duty  
cycle is higher than DC , but it must be operated in the  
R
=
FBX  
83.3µA  
MAX  
discontinuous conduction mode so that the effective duty  
where V is 1.204V (typical) for noninverting topologies  
FBX  
cycle is reduced.  
(i.e., boost and SEPIC regulators) and 3mV (typical) for  
inverting topologies (see the Electrical Characteristics).  
Inductor Selection  
Power Switch Duty Cycle  
General Guidelines: The high frequency operation of the  
LT8580allowsfortheuseofsmallsurfacemountinductors.  
For high efficiency, choose inductors with high frequency  
core material, such as ferrite, to reduce core losses. To  
improve efficiency, choose inductors with more volume  
for a given inductance. The inductor should have low  
In order to maintain loop stability and deliver adequate  
current to the load, the power NPN (Q1 in the Block Dia-  
gram) cannot remain “on” for 100% of each clock cycle.  
The maximum allowable duty cycle is given by:  
2
DCR (copper wire resistance) to reduce I R losses, and  
(T Min Off Time)  
P
DC  
=
• 100%  
MAX  
must be able to handle the peak inductor current without  
saturating. Note that in some applications, the current  
handling requirements of the inductor can be lower, such  
as in the SEPIC topology, where each inductor only carries  
a fraction of the total switch current. Multilayer or chip  
inductors usually do not have enough core area to sup-  
port peak inductor currents in the 1A to 2A range. To  
minimize radiated noise, use a toroidal or shielded induc-  
tor. Note that the inductance of shielded types will drop  
more as current increases, and will saturate more easily.  
See Table 1 for a list of inductor manufacturers. Thorough  
lab evaluation is recommended to verify that the following  
guidelines properly suit the final application.  
T
P
where T is the clock period and Min Off Time (found in  
P
the Electrical Characteristics) is typically 100ns.  
The application should be designed so that the operating  
duty cycle does not exceed DC  
.
MAX  
The minimum allowable duty cycle is given by:  
Min On Time  
DC  
=
• 100%  
MIN  
T
P
where T is the clock period and Minimum On Time is as  
P
shown in the Typical Performance Characteristics.  
Table 1. Inductor Manufacturers  
The application should be designed so that the operating  
Coilcraft  
XAL5050, MSD7342, MSS7341 and www.coilcraft.com  
LPS4018 Series  
duty cycle is at least DC  
.
MIN  
Duty cycle equations for several common topologies are  
Coiltronics DR, DRQ, LD and CD Series  
www.coiltronics.com  
www.sumida.com  
given below, where V is the diode forward voltage drop  
Sumida  
CDRH8D58/LD, CDRH64B, and  
CDRH70D430MN Series  
D
and V  
is typically 400mV at 0.75A.  
CESAT  
Würth  
WE-PD, WE-DD, WE-TPC,  
WE-LHMI and WE-LQS Series  
www.we-online.com  
For the boost topology:  
V + V  
V
IN  
D
OUT  
DC ≅  
Minimum Inductance: Although there can be a trade-off  
with efficiency, it is often desirable to minimize board  
space by choosing smaller inductors. When choosing  
V
+ V V  
D
CESAT  
OUT  
Rev. B  
9
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
an inductor, there are two conditions that limit the mini-  
mum inductance: (1) providing adequate load current,  
and (2) avoiding subharmonic oscillation. Choose an  
inductance that is high enough to meet both of these  
requirements.  
AvoidingSubharmonicOscillations:TheLT8580’sinternal  
slopecompensationcircuitcanpreventsubharmonicoscil-  
lations that can occur when the duty cycle is greater than  
50%, provided that the inductance exceeds a minimum  
value. In applications that operate with duty cycles greater  
than 50%, the inductance must be at least:  
Adequate Load Current : Small value inductors result in  
increased ripple currents and thus, due to the limited peak  
switch current, decrease the average current that can be  
V
2 DC 1  
1DC  
IN  
L
>
MIN  
1.25 • (DC 300ns • f) • f  
provided to a load (I ). In order to provide adequate  
OUT  
for boost topologies (see Figure 15)  
load current, L should be at least:  
L
L
= L1  
MIN  
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
DC • V  
MIN  
IN  
L
>
BOOST  
|V | • I  
OUT  
OUT  
h  
2(f) I  
LIM  
||  
L
= L1 L2 for uncoupled dual inductor topologies  
V
MIN  
IN  
(see Figure 16 and Figure 17)  
for boost, topologies, or:  
DC • V  
Maximum Inductance: Excessive inductance can reduce  
currentrippletolevelsthataredifficultforthecurrentcom-  
parator (A3 in the Block Diagram) to cleanly discriminate,  
thus causing duty cycle jitter and/or poor regulation. The  
maximum inductance can be calculated by:  
IN  
L
>
DUAL  
V
• I  
OUT OUT  
2(f) I  
I  
LIM  
OUT  
V
h  
IN  
for the SEPIC and inverting topologies.  
where:  
V V  
DC  
f
IN  
CESAT  
L
=
MAX  
I
MIN-RIPPLE  
L
L
= L1 for boost topologies (see Figure 15)  
BOOST  
where  
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
DUAL  
for boost topologies (see Figure 15)  
= L1  
L
L
MIN  
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
MIN  
L
= L1||L2 for uncoupled dual inductor topologies  
DUAL  
(see Figure 16 and Figure 17)  
||  
L
= L1 L2 for uncoupled dual inductor topologies  
MIN  
DC = switch duty cycle (see previous section)  
(see Figure 16 and Figure 17)  
I
= switch current limit, typically about 1.2A at 50%  
LIM  
I
= typically 80mA  
MIN(RIPPLE)  
dutycycle(seetheTypicalPerformanceCharacteristics  
Current Rating: Finally, the inductor(s) must have a rating  
greater than its peak operating current to prevent inductor  
saturation resulting in efficiency loss. In steady state, the  
peakinputinductorcurrent(continuousconductionmode  
only) is given by:  
section).  
h=powerconversionefficiency(typically85%forboost  
and 83% for dual inductor topologies at high currents).  
f = switching frequency  
I
= maximum load current  
OUT  
|V  
• I  
|
V • DC  
IN  
OUT OUT  
I
=
+
L1-PEAK  
Negative values of L indicate that the output load current  
OUT  
LT8580.  
V
h  
2 • L1• f  
IN  
I
exceeds the switch current limit capability of the  
fortheboost,SEPICanddualinductorinvertingtopologies.  
Rev. B  
10  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Fordualdualinductortopologies,thepeakoutputinductor  
current is given by:  
Table 2 shows a list of several ceramic capacitor manufac-  
turers. Consultthemanufacturersfordetailedinformation  
on their entire selection of ceramic parts.  
V
• 1DC  
(
)
OUT  
I
= I  
+
Table 2. Ceramic Capacitor Manufacturers  
L2-PEAK  
OUT  
2 • L2 • f  
For the dual inductor topologies, the total peak current is:  
Kemet  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
Murata  
Taiyo Yuden  
TDK  
V
V • DC  
IN  
OUT  
I
= I  
1+  
+
L-PEAK  
OUT  
h • V  
2 • L • f  
IN  
Compensation—Adjustment  
Note:Peakinductorcurrentislimitedbytheswitchcurrent  
limit. Refer to the Electrical Characteristics table and to  
the Switch Current Limit vs Duty Cycle plot in the Typical  
Performance Characteristics.  
To compensate the feedback loop of the LT8580, a series  
resistor-capacitornetworkinparallelwithasinglecapacitor  
should be connected from the VC pin to GND. For most  
applications, the series capacitor should be in the range  
of 470pF to 2.2nF with 1nF being a good starting value.  
The parallel capacitor should range in value from 10pF to  
100pF with 47pF a good starting value. The compensation  
Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R or X7R dielectrics are preferred, as  
these materials retain their capacitance over wider voltage  
andtemperatureranges.A0.47µFto1Foutputcapacitor  
is sufficient for most applications. Always use a capacitor  
with a sufficient voltage rating. Many ceramic capacitors,  
particularly 0805 or 0603 case sizes, have greatly reduced  
capacitance at the desired output voltage. Solid tantalum  
or OS-CON capacitors can be used, but they will occupy  
more board area than a ceramic and will have a higher  
ESR with greater output ripple.  
resistor, R , is usually in the range of 5k to 50k. A good  
C
technique to compensate a new application is to use a  
100kΩ potentiometer in place of series resistor R . With  
C
the series capacitor and parallel capacitor at 1nF and 47pF  
respectively, adjust the potentiometer while observing  
the transient response and the optimum value for R can  
C
be found. Figure 3 (3a to 3c) illustrates this process for  
the circuit of Figure 4 with a load current stepped be-  
tween 60mA and 160mA. Figure 3a shows the transient  
response with R equal to 2k. The phase margin is poor,  
C
as evidenced by the excessive ringing in the output  
voltage and inductor current. In Figure 3b, the value of  
R is increased to 3k, which results in a more damped  
C
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as closely  
response.Figure3cshowstheresultswhenR isincreased  
C
further to 6.04k. The transient response is nicely damped  
as possible to the V pin of the LT8580 as well as to the  
IN  
and the compensation procedure is complete.  
inductor connected to the input of the power path. If it is  
not possible to optimally place a single input capacitor,  
Compensation—Theory  
then use one at the V pin of the chip (C ) and one at  
IN  
VIN  
Like all other current mode switching regulators, the  
LT8580 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT8580—  
a fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard bode plot  
analysis can be used to understand and adjust the voltage  
feedback loop.  
the input of the power path (C  
). See equations in  
PWR  
Table 4, Table 5 and Table 6 for sizing information. A 1µF  
to2.2µFinputcapacitorissufficientformostapplications.  
Rev. B  
11  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
ꢒꢃꢏꢍ  
ꢐꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢒꢃꢏꢍ  
ꢐꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢎꢐ  
ꢎꢐ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢕꢄꢕꢅ ꢖꢅꢗꢘ  
ꢕꢄꢕꢅ ꢖꢅꢗꢘ  
ꢐꢅꢅꢓꢔꢇꢈꢉꢀ  
ꢐꢅꢅꢓꢔꢇꢈꢉꢀ  
(3a) Transient Response Shows Excessive Ringing  
(3b) Transient Response Is Better  
ꢒꢃꢏꢍ  
ꢐꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢎꢐ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢕꢄꢕꢅ ꢖꢅꢗꢘ  
ꢐꢅꢅꢓꢔꢇꢈꢉꢀ  
(3c) Transient Response Is Well Damped  
Figure 3. Transient Response  
ꢎꢉ  
ꢉꢏꢆꢐ  
ꢑꢉ  
R
ꢁꢂꢃ  
ꢕꢖ  
ꢉꢊꢈ  
ꢏꢈ  
ꢊꢋꢋꢌꢍ  
ꢉꢋꢔ  
ꢕꢖ  
ꢗꢘ  
ꢇBꢒ  
ꢇBꢒ  
ꢉꢓꢋꢔ  
ꢁꢂꢃ  
SHDN  
ꢄ.ꢅꢆꢇ  
ꢕꢖ  
ꢙꢏꢙꢋ  
ꢊ.ꢊꢆꢇ  
ꢗꢜꢖꢀ  
Rꢃ  
ꢈꢀ  
R
ꢚ.ꢋꢄꢔ  
ꢛꢖꢑ ꢗꢗ  
ꢄꢅꢞꢇ  
ꢓ.ꢓꢝꢇ  
R
ꢏꢚ.ꢊꢔ  
ꢗꢗ  
ꢋ.ꢊꢊꢆꢇ  
ꢙꢏꢙꢋ ꢇꢋꢄ  
Figure 4. 1.5MHz, 5V to 12V Boost Converter  
Rev. B  
12  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure5showsthekeyequivalentelementsofaboostcon-  
verter. Because of the fast current control loop, the power  
stage of the IC, inductor and diode have been replaced by  
a combination of the equivalent transconductance ampli-  
From Figure 5, the DC gain, poles and zeros can be cal-  
culated as follows:  
2
Output Pole: P1=  
2 • π • R • C  
L
OUT  
1
Error Amp Pole: P2 =  
2 • π • R +R • C  
[
]
fier g and the current controlled current source which  
O
C
C
mp  
converts I to (hV /V ) • I . g acts as a current  
VIN  
IN OUT  
VIN mp  
1
Error Amp Zero: Z1=  
DC Gain:  
source where the peak input current, I , is proportional  
VIN  
2 • π • R • C  
C
C
to the VC voltage. h is the efficiency of the switching  
regulator, and is typically about 85%.  
(Breaking Loop at FBX Pin)  
Notethatthemaximumoutputcurrentsofg andg are  
mp  
ma  
∂V  
∂I  
∂V  
∂V  
finite.Thelimitsforg areintheElectricalCharacteristics  
C
VIN  
OUT  
VIN  
FBX  
mp  
A
= A (0) =  
=
DC  
ma  
OL  
∂V  
∂V  
∂I  
∂V  
OUT  
section(switchcurrentlimit), andg isnominallylimited  
FBX  
C
ma  
to about +15µA and –17µA.  
V
R
0.5R2  
R1+ 0.5R2  
IN  
L
g
• R • g h •  
(
)
0
mp  
V
2
OUT  
1
ꢆꢑꢏ  
ꢛꢐꢌ  
ESR Zero: Z2 =  
RHP Zero: Z3 =  
ꢃꢙ  
2 • π • R  
• C  
OUT  
ESR  
R
ꢋꢍR  
ηꢛ  
ꢆꢑꢏ  
R
ꢐꢌ  
ꢛꢐꢌ  
2
ꢆꢑꢏ  
ꢊꢒ  
V • R  
IN  
L
2
ꢟ.ꢇꢦꢧꢛ  
4 • π • V  
• L  
RꢋꢕꢋRꢋꢌꢅꢋ  
Rꢟ  
OUT  
f
S
High Frequency Pole: P3 >  
ꢃꢄ  
Rꢇ  
Rꢇ  
ꢕBꢝ  
3
R
R
ꢣꢤꢣꢦ ꢕꢦꢤ  
1
Phase Lead Zero: Z4 =  
2 • π • R1• C  
1
PL  
ꢅ ꢈ ꢅꢆꢉꢊꢋꢌꢍꢎꢏꢐꢆꢌ ꢅꢎꢊꢎꢅꢐꢏꢆR  
Phase Lead Pole: P4 =  
Error Amp Filter Pole:  
ꢈ ꢆꢑꢏꢊꢑꢏ ꢅꢎꢊꢎꢅꢐꢏꢆR  
ꢈ ꢊꢓꢎꢍꢋ ꢒꢋꢎꢔ ꢅꢎꢊꢎꢅꢐꢏꢆR  
ꢅ ꢈ ꢓꢐꢖꢓ ꢕRꢋꢗꢑꢋꢌꢅꢘ ꢕꢐꢋR ꢅꢎꢊꢎꢅꢐꢏꢆR  
ꢈ ꢏRꢎꢌꢍꢅꢆꢌꢔꢑꢅꢏꢎꢌꢅꢋ ꢎꢉꢊꢒꢐꢕꢐꢋR ꢐꢌꢍꢐꢔꢋ ꢐꢅ  
ꢈ ꢊꢆꢚꢋR ꢍꢏꢎꢖꢋ ꢏRꢎꢌꢍꢅꢆꢌꢔꢑꢅꢏꢎꢌꢅꢋ ꢎꢉꢊꢒꢐꢕꢐꢋR  
R ꢈ ꢅꢆꢉꢊꢋꢌꢍꢎꢏꢐꢆꢌ RꢋꢍꢐꢍꢏꢆR  
R ꢈ ꢆꢑꢏꢊꢑꢏ Rꢋꢍꢐꢍꢏꢎꢌꢅꢋ ꢔꢋꢕꢐꢌꢋꢔ ꢎꢍ ꢛ  
R2  
ꢆꢑꢏ  
R1•  
R1+  
ꢊꢒ  
2
R2  
2
2 • π •  
• C  
PL  
ꢃꢄ  
ꢃꢙ  
ꢔꢐꢛꢐꢔꢋꢔ Bꢘ ꢐ  
ꢒꢆꢎꢔꢜꢉꢎꢝꢞ  
ꢆꢑꢏ  
R ꢈ ꢆꢑꢏꢊꢑꢏ Rꢋꢍꢐꢍꢏꢎꢌꢅꢋ ꢆꢕ ꢂ  
ꢃꢄ  
Rꢟꢠ Rꢇꢈ ꢕꢋꢋꢔBꢎꢅꢡ RꢋꢍꢐꢍꢏꢆR ꢔꢐꢛꢐꢔꢋR ꢌꢋꢏꢚꢆRꢡ  
1
C
C
10  
P5 =  
, C <  
R
ꢋꢍR  
ꢈ ꢆꢑꢏꢊꢑꢏ ꢅꢎꢊꢎꢅꢐꢏꢆR ꢋꢍR  
F
R • R  
C
O
O
ηꢈ ꢅꢆꢌꢛꢋRꢏꢋR ꢋꢕꢕꢐꢅꢐꢋꢌꢅꢘ ꢜꢢꢣꢤꢥ ꢎꢏ ꢓꢐꢖꢓꢋR ꢅꢑRRꢋꢌꢏꢍꢞ  
2 • π •  
• C  
F
R + R  
C
Figure 5. Boost Converter Equivalent Model  
The current mode zero (Z3) is a right-half plane zero  
which can be an issue in feedback control design, but is  
manageable with proper external component selection.  
Rev. B  
13  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Using the circuit in Figure 4 as an example, Table 3 shows  
the parameters used to generate the bode plot shown in  
Figure 6.  
In Figure 6, the phase is –126° when the gain reaches 0dB  
giving a phase margin of 54°. The crossover frequency is  
14kHz, which is more than three times lower than the fre-  
quencyoftheRHPzerotoachieveadequatephasemargin.  
ꢋꢚꢌ  
ꢋꢖꢌ  
ꢋꢌꢌ  
ꢕꢌ  
ꢛꢚꢙ  
Diode Selection  
ꢒꢈꢏꢓꢁ  
ꢛꢝꢌ  
Schottkydiodes, withtheirlowforward-voltagedropsand  
fast switching speeds, are recommended for use with the  
ꢛꢋꢜꢙ  
ꢛꢋꢕꢌ  
ꢛꢖꢖꢙ  
ꢛꢖꢞꢌ  
ꢛꢜꢋꢙ  
ꢛꢜꢍꢌ  
LT8580. For applications where V (see Tables 4, 5 and  
ꢍꢌ  
R
6) < 40V, the Diodes, Inc. SBR1V40LP is a good choice.  
ꢙꢚ° ꢏꢟ  
ꢚꢌ  
ꢎꢏꢐꢄ  
ꢋꢌꢌ  
ꢋꢚꢗꢈꢉ  
Where V > 40V, the Diodes Inc. DFLS1100 works well.  
R
ꢖꢌ  
These diodes are rated to handle an average forward  
current of 1A.  
ꢛꢖꢌ  
ꢋꢌ  
ꢋꢗ  
ꢋꢌꢗ  
ꢋꢌꢌꢗ  
ꢋꢘ  
Oscillator  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢕꢙꢕꢌ ꢀꢌꢍ  
The operating frequency of the LT8580 can be set by the  
internal free-running oscillator. When the SYNC pin is  
driven low (< 0.4V), the frequency of operation is set by a  
Figure 6. Bode Plot for Example Boost Converter  
resistor from R to ground. An internally trimmed timing  
T
Table 3. Bode Plot Parameters  
capacitor resides inside the IC. The oscillator frequency  
is calculated using the following formula:  
PARAMETER  
VALUE  
60  
UNITS  
W
COMMENT  
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Adjustable  
R
L
C
4.7  
10  
µF  
OUT  
85.5  
f
=
OSC  
R
R
mW  
kW  
pF  
ESR  
O
(R + 1)  
T
300  
3300  
47  
where f  
is in MHz and R is in kΩ. Conversely, R  
T T  
OSC  
C
C
C
C
(in kΩ) can be calculated from the desired frequency  
(in MHz) using:  
pF  
Optional/Adjustable  
Optional/Adjustable  
Adjustable  
F
0
pF  
PL  
R
C
6.04  
130  
14.6  
12  
kW  
kW  
kW  
V
85.5  
R =  
1  
T
R1  
R2  
Adjustable  
f
OSC  
Not Adjustable  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Adjustable  
V
OUT  
V
IN  
Clock Synchronization  
5
V
TheoperatingfrequencyoftheLT8580canbesynchronized  
to an external clock source. To synchronize to the external  
source, simply provide a digital clock signal into the SYNC  
pin. The LT8580 will operate at the SYNC clock frequency.  
The LT8580 will revert to the internal free-running oscilla-  
tor clock after SYNC is driven low for a few free-running  
clock periods.  
g
ma  
g
mp  
L
200  
7
µmho  
mho  
µH  
15  
f
S
1.5  
MHz  
Rev. B  
14  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Driving SYNC high for an extended period of time effec-  
tively stops the operating clock and prevents latch SR1  
from becoming set (see the Block Diagram). As a result,  
the switching operation of the LT8580 will stop.  
This capacitor is slowly charged to ~2.1V by an internal  
280k resistor once the part is activated. SS pin voltages  
below ~1.1V reduce the internal current limit. Thus, the  
gradualrampingoftheSSvoltagealsograduallyincreases  
the current limit as the capacitor charges. This, in turn,  
allows the output capacitor to charge gradually toward its  
final value while limiting the start-up current.  
The duty cycle of the SYNC signal must be between 35%  
and 65% for proper operation. Also, the frequency of the  
SYNC signal must meet the following two criteria:  
In the event of a commanded shutdown or lockout (SHDN  
pin), internal undervoltage lockout (UVLO) or a thermal  
lockout,thesoft-startcapacitorisautomaticallydischarged  
to ~200mV before charging resumes, thus assuring that  
the soft-start occurs after every reactivation of the chip.  
(1) SYNC may not toggle outside the frequency range of  
200kHz to 1.5MHz unless it is stopped low to enable  
the free-running oscillator.  
(2) The SYNC frequency can always be higher than the  
free-running oscillator frequency, f , but should not  
OSC  
be less than 25% below f  
.
Shutdown  
OSC  
The SHDN pin is used to enable or disable the chip. For  
most applications, SHDN can be driven by a digital logic  
source. Voltages above 1.4V enable normal active op-  
eration. Voltages below 300mV will shutdown the chip,  
resulting in extremely low quiescent current.  
Operating Frequency Selection  
There are several considerations in selecting the operat-  
ing frequency of the converter. The first is staying clear  
of sensitive frequency bands, which cannot tolerate any  
spectral noise. For example, in products incorporating RF  
communications, the 455kHz IF frequency is sensitive to  
any noise, therefore switching above 600kHz is desired.  
Some communications have sensitivity to 1.1MHz, and in  
thatcase, a1.5MHzswitchingconverterfrequencymaybe  
employed. The second consideration is the physical size  
of the converter. As the operating frequency goes up, the  
inductor and filter capacitors go down in value and size.  
The trade-off is efficiency, since the switching losses due  
to NPN base charge (see Thermal Calculations), Schottky  
diode charge, and other capacitive loss terms increase  
proportionally with frequency.  
While the SHDN voltage transitions through the lockout  
voltagerange(0.3Vto1.21V)thepowerswitchisdisabled  
and the SR2 latch is set (see the Block Diagram). This  
causesthesoft-startcapacitortobegindischarging,which  
continues until the capacitor is discharged and active op-  
eration is enabled. Although the power switch is disabled,  
SHDN voltages in the lockout range do not necessarily  
reduce quiescent current until the SHDN voltage is near  
or below the shutdown threshold.  
Also note that SHDN can be driven above V or V  
as  
IN  
OUT  
long as the SHDN voltage is limited to less than 40V.  
Soft-Start  
ꢇꢌꢄꢆꢑꢅ  
ꢀꢈꢊRꢒꢇꢋ ꢊꢓꢅRꢇꢄꢆꢊꢈꢍ  
TheLT8580containsasoft-startcircuittolimitpeakswitch  
currents during start-up. High start-up current is inherent  
in switching regulators in general since the feedback loop  
is saturated due to V  
regulator tries to charge the output capacitor as quickly as  
possible, which results in large peak currents.  
ꢘ.ꢛꢚꢑ  
ꢀꢁꢂꢃꢄꢅRꢅꢃꢆꢃ ꢇꢈꢉ ꢄꢊꢋꢅRꢇꢈꢌꢅꢍ  
ꢘ.ꢙꢘꢑ  
ꢋꢊꢌꢔꢊꢎꢄ  
being far from its final value. The  
OUT  
ꢀꢓꢊꢏꢅR ꢃꢏꢆꢄꢌꢁ ꢊꢕ ꢖ  
ꢃꢃ ꢌꢇꢓꢇꢌꢆꢄꢊR ꢉꢆꢃꢌꢁꢇRꢗꢅꢉꢍ  
ꢚ.ꢜꢑ  
ꢃꢁꢎꢄꢉꢊꢏꢈ  
ꢀꢋꢊꢏ ꢐꢎꢆꢅꢃꢌꢅꢈꢄ ꢌꢎRRꢅꢈꢄꢍ  
The start-up current can be limited by connecting an  
external capacitor (typically 100nF to 1µF) to the SS pin.  
ꢚ.ꢚꢑ  
ꢝꢞꢝꢚ ꢕꢚꢟ  
Figure 7. Chip States vs SHDN Voltage  
Rev. B  
15  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Configurable Undervoltage Lockout  
For example, to disable the LT8580 for V voltages below  
IN  
3.5V using the single resistor configuration, choose:  
Figure 8 shows how to configure an undervoltage lock-  
out (UVLO) for the LT8580. Typically, UVLO is used in  
situations where the input supply is current-limited, has  
a relatively high source resistance, or ramps up/down  
slowly. A switching regulator draws constant power from  
the source, so source current increases as source voltage  
drops. This looks like a negative resistance load to the  
source and can cause the source to current-limit or latch  
low under low source voltage conditions. UVLO prevents  
the regulator from operating at source voltages where  
these problems might occur.  
3.5V 1.27V  
R
=
= 187k  
UVLO1  
1.27V  
+ 12µA  
To activate the LT8580 for V voltages greater than  
IN  
4.5V using the double resistor configuration, choose  
R
= 10k and:  
UVLO2  
4.5V 1.31V  
R
=
= 22.1k  
UVLO1  
1.31V  
10k  
+ 12µA  
The shutdown pin comparator has voltage hysteresis with  
typicalthresholdsof1.31V(rising)and1.27V(falling). Re-  
Internal Undervoltage Lockout  
The LT8580 monitors the V supply voltage in case V  
sistorR  
isoptional.R  
canbeincludedtoreduce  
UVLO2  
UVLO2  
IN  
IN  
the overall UVLO voltage variation caused by variations  
drops below a minimum operating level (typically about  
2.35V). When V is detected low, the power switch is  
in SHDN pin current (see the Electrical Characteristics).  
A good choice for R  
value for R  
of the following:  
IN  
is 10k 1%. After choosing a  
can be determined from either  
UVLO2  
UVLO2 UVLO1  
deactivated, and while sufficient V voltage persists, the  
IN  
, R  
soft-start capacitor is discharged. After V is detected  
IN  
high, the power switch will be reactivated and the soft-  
+
V
1.31V  
start capacitor will begin charging.  
IN  
R
=
=
UVLO1  
1.31V  
+ 12µA  
Thermal Considerations  
R
UVLO2  
For the LT8580 to deliver its full output power, it is impera-  
tive that a good thermal path be provided to dissipate the  
heat generated within the package. This is accomplished  
bytakingadvantageofthethermalpadontheundersideof  
the IC. It is recommended that multiple vias in the printed  
circuit board be used to conduct heat away from the IC  
and into a copper plane with as much area as possible.  
or  
V
1.27V  
IN  
R
UVLO1  
1.27V  
+ 12µA  
R
UVLO2  
+
where V and V are the V voltages when rising or  
falling, respectively.  
IN  
IN  
IN  
ꢈꢉ  
ꢈꢉ  
ꢊꢒꢇꢈꢁꢓꢔ  
ꢂꢃꢒꢕꢃꢀꢇ  
ꢌ.ꢍꢁ  
R
ꢀꢁꢂꢃꢌ  
SHDN  
ꢌꢄꢘꢊ  
ꢊꢇ ꢌ.ꢍꢁ  
R
ꢀꢁꢂꢃꢄ  
ꢅꢃꢆꢇꢈꢃꢉꢊꢂꢋ  
ꢖꢉꢗ  
ꢎꢏꢎꢐ ꢑꢐꢎ  
Figure 8. Configurable UVLO  
Rev. B  
16  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Thermal Lockout  
P
P
P
P
= 117mW  
= 169mW  
= 44mW  
= 30mW  
SW  
If the die temperature reaches approximately 165°C, the  
part will go into thermal lockout, the power switch will be  
turned off and the soft-start capacitor will be discharged.  
The part will be enabled again when the die temperature  
has dropped by ~5°C (nominal).  
BAC  
BDC  
INP  
Total LT8580 power dissipation (P ) = 361mW  
TOT  
ThermalresistancefortheLT8580isinfluencedbythepres-  
ence of internal, topside or backside planes. To calculate  
die temperature, use the appropriate thermal resistance  
number and add in worst-case ambient temperature:  
Thermal Calculations  
Power dissipation in the LT8580 chip comes from four  
primary sources: switch I R loss, NPN base drive (AC),  
NPN base drive (DC), and additional input current. The  
following formulas can be used to approximate the power  
losses. These formulas assume continuous mode opera-  
tion, so they should not be used for calculating efficiency  
in discontinuous mode or at light load currents.  
2
T = T + θ • P  
TOT  
J
A
JA  
whereT =junctiontemperature,T =ambienttemperature,  
J
A
and θ is the thermal resistance from the silicon junction  
JA  
to the ambient air.  
V
• I  
OUT OUT  
The published θ value is 43°C/W for the 3mm × 3mm  
JA  
Average Input Current: I  
=
IN  
V • h  
DFN package and 35°C/W to 40°C/W for the MSOP ex-  
IN  
posed pad package. In practice, lower θ values can be  
JA  
Switch Conduction Loss: P = (DC)(I )(V  
)
IN  
SW  
SW  
obtained if the board layout uses ground as a heat sink.  
For instance, thermal resistances of 34.7°C/W for the  
DFN package and 22.5°C/W for the MSOP package were  
obtained on a board designed with large ground planes.  
Base Drive Loss (AC): P  
= 20ns(I )(V  
)(f)  
IN  
BAC  
OUT  
(V )(I )(DC)  
IN IN  
Base Drive Loss (DC): P  
=
BDC  
40  
V Ramp Rate  
IN  
Input Power Loss: P = 6mA (V )  
INP  
IN  
While initially powering a switching converter application,  
theV ramprateshouldbelimited.HighV rampratescan  
where:  
IN  
IN  
causeexcessiveinrushcurrentsinthepassivecomponents  
of the converter. This can lead to current and/or voltage  
overstress and may damage the passive components or  
the chip. Ramp rates less than 500mV/µs, depending on  
componentparameters,willgenerallypreventtheseissues.  
Also,becarefultoavoidhot-plugging.Hot-pluggingoccurs  
when an active voltage supply is “instantly” connected or  
switchedtotheinputoftheconverter.Hot-pluggingresults  
in very fast input ramp rates and is not recommended.  
Finally, for more information, refer to Linear application  
note AN88, which discusses voltage overstress that can  
occurwhenaninductivesourceimpedanceishot-plugged  
to an input pin bypassed by ceramic capacitors.  
V
= switch on voltage (see Typical Performance  
SW  
Characteristics for Switch Saturation Voltage)  
DC = duty cycle (see the Power Switch Duty Cycle sec-  
tion for formulas)  
h = power conversion efficiency (typically 85% at high  
currents)  
Example: boost configuration, V = 5V, V  
OUT  
= 12V,  
IN  
OUT  
I
= 0.2A, f = 1.25MHz, V = 0.5V:  
D
I = 0.56A  
IN  
DC = 62.0%  
Rev. B  
17  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Layout Hints  
theboardreducesdietemperatureandincreasesthepower  
capability of the LT8580. Provide as much copper area as  
possible around this pad. Adding multiple feedthroughs  
aroundthepadtothegroundplanewillalsohelp.Figure10  
and Figure 11 show the recommended component place-  
mentfortheboostandSEPICconfigurations,respectively.  
As with all high frequency switchers, when considering  
layout, care must be taken to achieve optimal electrical,  
thermal and noise performance. One will not get adver-  
tised performance with a careless layout. For maximum  
efficiency, switch rise and fall times are typically in the  
10ns to 20ns range. To prevent noise, both radiated and  
conducted,thehighspeedswitchingcurrentpath,shownin  
Figure 9, must be kept as short as possible. This is imple-  
mented in the suggested layout of a boost configuration in  
Figure10.Shorteningthispathwillalsoreducetheparasitic  
trace inductance. At switch-off, this parasitic inductance  
produces a flyback spike across the LT8580 switch. When  
operatingathighercurrentsandoutputvoltages,withpoor  
layout,thisspikecangeneratevoltagesacrosstheLT8580  
that may exceed its absolute maximum rating. A ground  
plane should also be used under the switcher circuitry to  
prevent interplane coupling and overall noise.  
Layout Hints for Inverting Topology  
Figure12showsrecommendedcomponentplacementfor  
the dual inductor inverting topology. Input bypass capaci-  
tor, C1, should be placed close to the LT8580, as shown.  
The load should connect directly to the output capacitor,  
C2, for best load regulation. The local ground may be tied  
into the system ground plane at the C3 ground terminal.  
The cut ground copper at D1’s cathode is essential to  
obtain low noise. This important layout issue arises due  
to the chopped nature of the currents flowing in Q1 and  
D1. If they are both tied directly to the ground plane before  
being combined, switching noise will be introduced into  
the ground plane. It is almost impossible to get rid of this  
noise, once present in the ground plane. The solution  
is to tie D1’s cathode to the ground pin of the LT8580  
before the combined currents are dumped in the ground  
plane as drawn in Figure 2, Figure 13 and Figure 14. This  
single layout technique can virtually eliminate high  
frequency “spike” noise, so often present on switching  
regulator outputs.  
The VC and FBX components should be kept as far away  
as practical from the switch node. The ground for these  
components should be separated from the switch cur-  
rent path. Failure to do so can result in poor stability or  
subharmonic oscillation.  
Board layout also has a significant effect on thermal re-  
sistance. The exposed package ground pad is the copper  
platethatrunsundertheLT8580die.Thisisagoodthermal  
path for heat out of the package. Soldering the pad onto  
DIFFERENCES FROM LT3580  
ꢉꢊ  
LT8580 is very similar to LT3580. However, LT8580 does  
deviate from LT3580 in a few areas:  
ꢏꢊ  
ꢐꢊ  
ꢆꢇꢈ  
• 65V, 1A switch  
ꢋꢌ  
ꢀꢁꢀꢂ  
• 40V V and SHDN absolute maximum rating  
IN  
ꢓꢒꢍꢓ  
ꢃRꢔꢕꢇꢔꢎꢐꢖ  
ꢋꢌꢒꢈꢐꢓꢒꢎꢍ  
ꢗꢘꢈꢓ  
ꢒꢎ  
ꢐꢑ ꢉꢆꢘꢏ  
• FB renamed to FBX  
• 5V FBX absolute maximum rating  
ꢍꢎꢏ  
ꢀꢁꢀꢂ ꢃꢂꢄ  
Figure 9. High Speed “Chopped” Switching  
Path for Boost Topology  
Rev. B  
18  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
ꢗꢊꢔ  
ꢗꢊꢎ  
ꢑꢖꢊꢕ  
ꢕꢄ  
ꢔꢖꢊꢋ  
ꢉꢊ  
ꢋꢄ  
SHDN  
ꢉꢊ  
ꢓꢄ  
ꢓꢐ  
SHDN  
ꢑꢒ  
ꢍꢄ  
ꢔꢕ  
ꢕꢐ  
ꢅꢉꢘꢔ ꢈꢆ ꢗRꢆꢇꢊꢎ  
ꢙꢍꢘꢊꢚ RꢚꢛꢇꢉRꢚꢎ  
ꢈꢆ ꢉꢜꢙRꢆꢅꢚ  
ꢎꢄ  
ꢋꢌ  
ꢅꢉꢘꢑ ꢈꢆ ꢗRꢆꢇꢊꢔ  
ꢙꢓꢘꢊꢚ RꢚꢛꢇꢉRꢚꢔ  
ꢈꢆ ꢉꢜꢙRꢆꢅꢚ  
ꢔꢄ  
ꢕꢏ  
ꢈꢝꢚRꢜꢘꢍ  
ꢙꢚRꢃꢆRꢜꢘꢊꢋꢚ  
ꢀꢁꢀꢂ ꢃꢄꢂ  
ꢈꢝꢚRꢜꢘꢓ  
ꢆꢇꢈ  
ꢙꢚRꢃꢆRꢜꢘꢊꢕꢚ  
ꢀꢁꢀꢂ ꢃꢄꢄ  
ꢆꢇꢈ  
Figure 10. Suggested Component Placement for Boost Topology  
(Both DFN and MSOP Packages. Not to Scale). Pin 9 (Exposed  
Pad) Must Be Soldered Directly to the Local Ground Plane for  
Adequate Thermal Performance. Multiple Vias to Additional  
Ground Planes Will Improve Thermal Performance  
Figure 11. Suggested Component Placement for SEPIC Topology  
(Both DFN And MSOP Packages. Not to Scale). Pin 9 (Exposed  
Pad) Must Be Soldered Directly to the Local Ground Plane for  
Adequate Thermal Performance. Multiple Vias to Additional  
Ground Planes Will Improve Thermal Performance  
ꢗꢋꢔ  
ꢑꢖꢋꢓ  
ꢓꢄ  
ꢊꢋ  
SHDN  
ꢕꢄ  
ꢑꢒ  
ꢓꢅ  
ꢔꢄ  
ꢕꢅ  
ꢆꢊꢘꢑ ꢉꢇ ꢗRꢇꢈꢋꢔ  
ꢙꢕꢘꢋꢚ RꢚꢛꢈꢊRꢚꢔ  
ꢉꢇ ꢊꢜꢙRꢇꢆꢚ  
ꢓꢐ  
ꢉꢝꢚRꢜꢘꢕ  
ꢙꢚRꢃꢇRꢜꢘꢋꢓꢚ  
ꢀꢁꢀꢂ ꢃꢄꢅ  
ꢇꢈꢉ  
Figure 12. Suggested Component Placement for Inverting Topology (Both DFN and MSOP Packages. Not to Scale).  
Note Cut in Ground Copper at Diode’s Cathode. Pin 9 (Exposed Pad) Must be Soldered Directly to Local Ground Plane  
for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance  
Rev. B  
19  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
ꢅꢆꢇ ꢀ ꢍ  
ꢈꢉ ꢊꢋꢌ  
ꢄꢙꢎꢘꢌ  
ꢄꢃ  
ꢁꢂ  
ꢁꢃ  
ꢎꢏ  
ꢎꢏꢐ  
ꢈꢉ  
ꢅꢇ  
ꢊꢋꢌ  
ꢑꢂ  
ꢒꢂ  
ꢄꢂ  
ꢄꢗ  
R
ꢁꢊꢘꢑ  
ꢓꢔꢓꢕ ꢖꢂꢗ  
Figure 13. Switch-On Phase of an Inverting Converter. L1 and L2 Have Positive dI/dt  
ꢀ ꢅ  
ꢆꢇ  
ꢈꢉꢊ  
ꢄꢃ  
ꢁꢂ  
ꢁꢃ  
ꢌꢍ  
ꢌꢍꢎ  
ꢆꢇ  
ꢒꢅ  
ꢈꢉꢊ  
ꢋꢂ  
ꢏꢂ  
ꢄꢂ  
ꢄꢐ  
R
ꢁꢈꢑꢋ  
ꢓꢔꢓꢕ ꢖꢂꢗ  
Figure 14. Switch-Off Phase of an Inverting Converter. L1 and L2 Currents Have Negative dI/dt  
Rev. B  
20  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
BOOST CONVERTER COMPONENT SELECTION  
Table 4. Boost Design Equations  
PARAMETERS/EQUATIONS  
ꢎꢉ  
ꢉꢏꢆꢐ  
ꢑꢉ  
Pick V , V , and f  
to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
ꢁꢂꢃ  
ꢕꢖ  
ꢉꢊꢈ  
ꢏꢈ  
ꢊꢋꢋꢌꢍ  
Step 2:  
DC  
V
– V  
+ 0.5 V  
ꢉꢋꢔ  
OUT  
IN(MIN)  
DC  
DC  
=
MAX  
MIN  
=
V
+ 0.5 V – 0.4 V  
OUT  
ꢗꢘ  
ꢇBꢒ  
R
ꢕꢖ  
ꢇBꢒ  
ꢉꢓꢋꢔ  
V
– V  
+ 0.5 V  
ꢄ.ꢅꢆꢇ  
IN(MAX)  
OUT  
V
ꢁꢂꢃ  
SHDN  
=
+ 0.5 V – 0.4 V  
ꢕꢖ  
OUT  
ꢙꢏꢙꢋ  
ꢊ.ꢊꢆꢇ  
Step 3:  
L1  
ꢗꢜꢖꢀ  
Rꢃ  
ꢈꢀ  
(V  
– 0.4V) • DC  
• 0.3 A  
IN(MIN)  
f
MAX  
(1)  
(2)  
L
R
TYP  
ꢚ.ꢋꢄꢔ  
OSC  
ꢛꢖꢑ ꢗꢗ  
ꢄꢅꢞꢇ  
ꢓ.ꢓꢝꢇ  
R
ꢏꢚ.ꢊꢔ  
ꢗꢗ  
(V  
– 0.4V) • (2 • DC  
1)  
MAX  
IN(MIN)  
ꢋ.ꢊꢊꢆꢇ  
L
=
MIN  
ꢙꢏꢙꢋ ꢇꢉꢏ  
1.25 • (DC  
300ns • f  
) • f  
• (1– DC  
)
MAX  
MAX  
OSC  
OSC  
(V  
– 0.4V) • DC  
IN(MIN)  
MAX  
(3)  
(4)  
L
L
=
MAX1  
MAX2  
Figure 15. Boost Converter: The Component Values and Voltages  
Given Are Typical Values for a 1.5MHz, 5V to 12V Boost  
f
• 0.08 A  
OSC  
(V  
– 0.4V) • DC  
MIN  
IN(MAX)  
=
The LT8580 can be configured as a boost converter as in  
Figure15.Thistopologyallowsforpositiveoutputvoltages  
that are higher than the input voltage. A single feedback  
resistorsetstheoutputvoltage.Foroutputvoltageshigher  
than 60V, see the Charge Pump Aided Regulators section.  
f
• 0.08 A  
OSC  
• Solve equations 1 to 4 for a range of L values  
• The minimum of the L value range is the higher of L and L  
TYP  
MIN  
• The maximum of the L value range is the lower of L  
and L  
.
MAX1  
MAX2  
Step 4:  
RIPPLE  
(V  
– 0.4V) • DC  
MAX  
IN(MIN)  
I
=
I
RIPPLE(MIN)  
f
• L  
1
OSC  
Table4isastep-by-stepsetofequationstocalculatecom-  
ponent values for the LT8580 when operating as a boost  
converter. Input parameters are input and output voltage,  
(V  
– 0.4V) • DC  
MIN  
IN(MAX)  
I
=
RIPPLE(MAX)  
f
• L  
OSC  
1
Step 5:  
andswitchingfrequency(V ,V  
andf  
respectively).  
I
IN OUT  
OSC  
RIPPLE(MIN)  
2
I
I
I
= ⎜1A −  
• (1DC  
)
MAX  
OUT  
OUT(MIN)  
Refer to the Applications Information section for further  
information on the design equations presented in Table 4.  
I
RIPPLE(MAX)  
= ⎜1A −  
• (1DC  
)
MIN  
OUT(MAX)  
2
Variable Definitions:  
V
> V ; I  
> I  
Step 6:  
D1  
R
OUT AVG OUT  
V = Input Voltage  
IN  
Step 7:  
I
• DC  
MAX  
OUT  
C
C
OUT  
OUT  
V
OUT  
= Output Voltage  
f
• 0.005 • V  
OUT  
OSC  
Step 8:  
IN  
DC = Power Switch Duty Cycle  
C
C  
+ C  
PWR  
IN  
VIN  
C
I
1A • DC  
RIPPLE(MAX)  
f
I
I
= Switching Frequency  
MAX  
OSC  
OUT  
+
40 • f  
• 0.005 • V  
8 • f  
• 0.005 • V  
OSC  
IN(MAX)  
OSC  
IN(MIN)  
= Maximum Average Output Current  
= Inductor Ripple Current  
• Refer to the Capacitor Selection Section for definition of C and C  
VIN  
PWR  
Step 9:  
FBX  
RIPPLE  
V
1.204V  
OUT  
R
R
=
R
FBX  
83.3µA  
Step  
10:  
85.5  
=
–1 ; f  
in MHz and R in kΩ  
T
OSC  
T
f
OSC  
R
T
Note 1: This table uses 1A for the peak switch current. Refer to the  
Electrical Characteristics Table and Typical Performance Characteristics  
plots for the peak switch current at an operating duty cycle.  
Note 2: The final values for C  
and C may deviate from the previous  
IN  
OUT  
equations in order to obtain desired load transient performance.  
Rev. B  
21  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
Table 5. SEPIC Design Equations  
PARAMETERS/EQUATIONS  
SEPIC CONVERTER COMPONENT SELECTION  
(COUPLED OR UNCOUPLED INDUCTORS)  
Pick V , V  
and f  
to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
ꢀꢉ  
ꢉꢆꢇ  
ꢎꢉ  
ꢊꢊꢆꢏ  
ꢐꢉ  
ꢁꢂꢃ  
ꢔꢕ  
Step 2:  
DC  
V
+ 0.5 V  
ꢉꢊꢈ  
OUT  
ꢖꢈ ꢃꢁ ꢉꢗꢈ  
DC  
DC  
=
MAX  
ꢊꢄꢋꢌꢍ  
V
+ V  
+ 0.5 V – 0.4V  
IN(MIN)  
OUT  
ꢎꢊ  
ꢊꢊꢆꢏ  
ꢄꢚꢅꢓ  
V
+ 0.5 V  
OUT  
ꢘꢙ  
ꢇBꢑ  
R
=
ꢔꢕ  
ꢇBꢑ  
MIN  
L
V
+ V  
+ 0.5 V – 0.4V  
ꢉꢒꢋꢓ  
IN(MAX)  
OUT  
ꢄ.ꢅꢆꢇ  
ꢁꢂꢃ  
SHDN  
Step 3:  
L
ꢔꢕ  
ꢚꢛꢚꢋ  
(V  
– 0.4V) • DC  
• 0.3 A  
IN(MIN)  
MAX  
ꢄ.ꢅꢆꢇ  
(1)  
(2)  
(3)  
=
TYP  
ꢘꢝꢕꢀ  
Rꢃ  
ꢈꢀ  
f
OSC  
R
ꢉꢗ.ꢊꢓ  
ꢜꢕꢐ ꢘꢘ  
(V  
– 0.4V) • (2 • DC  
1)  
MAX  
IN(MIN)  
L
L
=
ꢊꢊꢟꢇ  
MIN  
ꢘꢘ  
ꢉꢞꢇ  
R
ꢚꢄ.ꢛꢓ  
1.25 • (DC  
300ns • f  
) • f  
• (1– DC  
)
MAX  
MAX  
OSC  
OSC  
ꢋ.ꢊꢊꢆꢇ  
ꢚꢛꢚꢋ ꢇꢉꢗ  
(V  
– 0.4V) • DC  
• 0.08 A  
IN(MIN)  
MAX  
=
MAX  
f
OSC  
Figure 16. SEPIC Converter: The Component Values and Voltages  
Given Are Typical Values for a 1MHz, 9V to 16V Input to 12V  
Output SEPIC Converter  
• Solve equations 1, 2 and 3 for a range of L values  
• The minimum of the L value range is the higher of L and L  
TYP  
MIN  
• The maximum of the L value range is L  
• L = L1 = L2 for coupled inductors  
• L = L1||L2 for uncoupled inductors  
MAX  
Step 4:  
RIPPLE  
(V  
– 0.4V) • DC  
MAX  
The LT8580 can also be configured as a SEPIC, as shown  
in Figure 16. This topology allows for positive output  
voltages that are lower, equal or higher than the input volt-  
age. Output disconnect is inherently built into the SEPIC  
topology, meaning no DC path exists between the input  
and output due to capacitor C1.  
IN(MIN)  
I
=
I
RIPPLE(MIN)  
f
• L  
OSC  
(V  
– 0.4V) • DC  
MIN  
IN(MAX)  
I
I
I
=
RIPPLE(MAX)  
f
• L  
OSC  
Step 5:  
I
RIPPLE(MIN)  
2
I
= ⎜1A −  
• 1DC  
(
)
OUT  
OUT(MIN)  
OUT(MAX)  
MAX  
Table 5 is a step-by-step set of equations to calculate com-  
ponent values for the LT8580 when operating as a SEPIC  
converter. Input parameters are input and output voltage,  
I
RIPPLE(MAX)  
= ⎜1A −  
• 1DC  
(
)
MIN  
2
V
> V + V ; I  
> I  
Step 6:  
D1  
Step 7:  
C1  
R
IN  
OUT AVG OUT  
and switching frequency (V , V  
and f , respectively).  
IN OUT  
OSC  
C1 ≥ 1µF; V  
≥ V  
RATING  
IN  
Refer to the Applications Information section for further  
information on the design equations presented in Table 5.  
Step 8:  
I
• DC  
MAX  
OUT(MIN)  
C
C
OUT  
C
OUT  
f
• 0.005 • V  
OUT  
OSC  
Variable Definitions:  
Step 9:  
C  
+ C  
PWR  
IN  
VIN  
C
IN  
V = Input Voltage  
IN  
I
1A • DC  
RIPPLE(MAX)  
• 0.005 • V  
MAX  
+
V
OUT  
= Output Voltage  
40 • f  
• 0.005 • V  
8 • f  
OSC  
OSC  
IN(MIN)  
IN(MAX)  
• Refer to the Capacitor Selection Section for definition of C and C  
DC = Power Switch Duty Cycle  
VIN  
PWR  
Step 10:  
FBX  
V
1.204V  
OUT  
f
I
I
= Switching Frequency  
R
=
R
FBX  
OSC  
83.3µA  
= Maximum Average Output Current  
OUT  
Step 11:  
85.5  
R
=
–1 ; f  
in MHz and R in kΩ  
T
OSC  
T
R
T
f
OSC  
= Inductor Ripple Current  
RIPPLE  
Note 1: This table uses 1A for the peak switch current. Refer to the  
Electrical Characteristics Table and Typical Performance Characteristics  
plots for the peak switch current at an operating duty cycle.  
Note 2: The final values for C , C and C1 may deviate from the  
OUT IN  
previous equations in order to obtain desired load transient performance.  
Rev. B  
22  
For more information www.analog.com  
LT8580  
APPLICATIONS INFORMATION  
DUAL INDUCTOR INVERTING CONVERTER COMPONENT  
SELECTION (COUPLED OR UNCOUPLED INDUCTORS)  
Table 6. Dual Inductor Inverting Design Equations  
PARAMETERS/EQUATIONS  
Pick V , V  
and f  
to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
ꢀꢊ  
ꢊꢆꢇ  
ꢖꢊ  
ꢕꢕꢆꢗ  
ꢖꢕ  
ꢕꢕꢆꢗ  
Step 2:  
DC  
V
+ 0.5 V  
OUT  
ꢁꢂꢃ  
ꢉꢊꢋꢈ  
ꢌꢍꢎꢏ ꢐꢈ ꢓ ꢋꢈꢔ  
DC  
DC  
=
ꢑꢒ  
ꢋꢈ ꢃꢁ ꢄꢍꢈ  
MAX  
V
+ V  
+ 0.5 V – 0.4 V  
IN(MIN)  
OUT  
ꢑꢒ  
ꢊꢍꢛ  
ꢘꢊ  
ꢕꢊꢍꢎꢏ ꢐꢈ ꢓ ꢊꢕꢈꢔ  
ꢑꢒ  
ꢄꢕꢍꢎꢏ ꢐꢈ ꢓ ꢄꢍꢈꢔ  
ꢑꢒ  
V
+ 0.5 V  
OUT  
=
MIN  
L
ꢜꢝ  
ꢇBꢙ  
R
ꢑꢒ  
ꢇBꢙ  
ꢊꢚꢕꢛ  
V
+ V  
+ 0.5 V – 0.4 V  
IN(MAX)  
OUT  
SHDN  
Step 3:  
L
ꢄ.ꢅꢆꢇ  
ꢑꢒ  
ꢄ.ꢅꢆꢇ  
(V  
– 0.4V) • DC  
• 0.3 A  
ꢁꢂꢃ  
ꢚꢋꢚꢍ  
IN(MIN)  
MAX  
(1)  
=
TYP  
ꢜꢠꢒꢀ  
Rꢃ  
ꢈꢀ  
f
OSC  
R
ꢊꢞ.ꢅꢛ  
ꢟꢒꢘ ꢜꢜ  
(V  
– 0.4V) • (2 • DC  
1)  
MAX  
IN(MIN)  
(2)  
(3)  
L
L
=
ꢄꢅꢢꢇ  
ꢊꢍꢡꢇ  
MIN  
R
ꢊꢊꢞꢛ  
ꢜꢜ  
1.25 • (DC  
300ns • f  
) • f  
• (1– DC  
)
MAX  
MAX  
OSC  
OSC  
ꢍ.ꢕꢕꢆꢇ  
ꢚꢋꢚꢍ ꢇꢊꢅ  
(V  
– 0.4V) • DC  
• 0.08 A  
IN(MIN)  
MAX  
=
MAX  
f
OSC  
Figure 17. Dual Inductor Inverting Converter: The Component  
Values and Voltages Given Are Typical Values for a 750kHz  
Wide Input (5V to 40V) to –15V Inverting Topology Using  
Coupled Inductors  
• Solve equations 1, 2 and 3 for a range of L values  
• The minimum of the L value range is the higher of L and L  
TYP  
MIN  
• The maximum of the L value range is L  
• L = L1 = L2 for coupled inductors  
• L = L1||L2 for uncoupled inductors  
MAX  
Due to its unique FBX pin, the LT8580 can work in a dual  
inductor inverting configuration as in Figure 17. Chang-  
ing the connections of L2 and the Schottky diode in the  
SEPIC topology results in generating negative output  
voltages. This solution results in very low output voltage  
ripple due to inductor L2 being in series with the output.  
Output disconnect is inherently built into this topology  
due to the capacitor C1.  
Step 4:  
RIPPLE  
(V  
– 0.4V) • DC  
MAX  
IN(MIN)  
I
=
I
RIPPLE(MIN)  
f
• L  
OSC  
(V  
– 0.4V) • DC  
MIN  
IN(MAX)  
I
I
I
=
RIPPLE(MAX)  
f
• L  
OSC  
Step 5:  
I
RIPPLE(MIN)  
2
I
= ⎜1A −  
• 1DC  
(
)
OUT  
OUT(MIN)  
OUT(MAX)  
MAX  
I
RIPPLE(MAX)  
= ⎜1A −  
• 1DC  
(
)
MIN  
2
Table 6 is a step-by-step set of equations to calculate  
component values for the LT8580 when operating as a  
dual inductor inverting converter. Input parameters are  
V
> V + |V |; I  
> I  
Step 6:  
D1  
R
IN  
OUT AVG  
OUT  
C1 ≥ 1µF; V  
≥ V  
+ |V  
|
Step 7:  
C1  
RATING  
IN(MAX)  
OUT  
input and output voltage, and switching frequency (V ,  
Step 8:  
IN  
I
RIPPLE(MAX)  
C
C
OUT  
C
V
and f  
respectively). Refer to the Applications  
Information section for further information on the design  
OUT  
OUT  
OSC  
8 • f  
(0.005 • V  
)
OSC  
OUT  
Step 9:  
C  
+ C  
PWR  
IN  
VIN  
equations presented in Table 6.  
C
IN  
I
1A • DC  
RIPPLE(MAX)  
• 0.005 • V  
IN(MAX)  
MAX  
+
Variable Definitions:  
40 • f  
• 0.005 • V  
8 • f  
OSC  
OSC  
IN(MIN)  
• Refer to the Capacitor Selection Section for definition of C and C  
VIN  
PWR  
V = Input Voltage  
IN  
Step 10:  
FBX  
V
+ 3mV  
OUT  
R
R
R
=
V
OUT  
= Output Voltage  
FBX  
83.3µA  
DC = Power Switch Duty Cycle  
Step 11:  
85.5  
=
–1 ; f  
in MHz and R in kΩ  
OSC  
T
R
T
T
f
OSC  
f
I
I
= Switching Frequency  
OSC  
OUT  
Note 1: This table uses 1A for the peak switch current. Refer to the  
Electrical Characteristics Table and Typical Performance Characteristics  
plots for the peak switch current at an operating duty cycle.  
= Maximum Average Output Current  
= Inductor Ripple Current  
Note 2: The final values for C , C and C1 may deviate from the  
RIPPLE  
OUT IN  
previous equations in order to obtain desired load transient performance.  
Rev. B  
23  
For more information www.analog.com  
LT8580  
TYPICAL APPLICATIONS  
1.5MHz, 5V to 12V Output Boost Converter  
ꢎꢉ  
ꢉꢏꢆꢐ  
ꢑꢉ  
ꢁꢂꢃ  
ꢔꢕ  
ꢉꢊꢈ  
ꢏꢈ  
ꢊꢋꢋꢌꢍ  
ꢉꢋꢓ  
ꢖꢗ  
ꢇBꢜ  
ꢈꢀ  
ꢔꢕ  
ꢉꢒꢋꢓ  
ꢁꢂꢃ  
SHDN  
ꢄ.ꢅꢆꢇ  
ꢔꢕ  
ꢘꢏꢘꢋ  
ꢊ.ꢊꢆꢇ  
ꢖꢝꢕꢀ  
Rꢃ  
ꢚ.ꢋꢄꢓ  
ꢒ.ꢒꢞꢇ  
ꢛꢕꢑ ꢖꢖ  
ꢄꢅꢟꢇ  
ꢏꢚ.ꢊꢓ  
ꢋ.ꢊꢊꢆꢇ  
ꢘꢏꢘꢋ ꢃꢍꢋꢊꢙ  
ꢎꢉꢠ ꢗꢡRꢃꢐ ꢉꢏꢆꢐ ꢗꢢꢣꢎꢤꢖ ꢅꢄꢄꢋꢄꢋꢏꢄꢉꢏꢋ  
ꢑꢉꢠ ꢑꢔꢁꢑꢢꢖ ꢔꢕꢀ. ꢖBRꢉꢂꢄꢋꢎꢥ  
ꢠ ꢊ.ꢊꢆ ꢦ ꢒꢏ ꢦ ꢋꢘꢋꢏꢦ ꢜꢅR  
ꢁꢂꢃ  
ꢔꢕ  
ꢠ ꢄ.ꢅꢆ ꢦ ꢉꢚ ꢦ ꢋꢘꢋꢏꢦ ꢜꢅR  
Efficiency and Power Loss  
ꢘꢌꢌ  
ꢕꢙꢌ  
ꢕꢍꢌ  
ꢛꢙꢌ  
ꢛꢌꢌ  
ꢍꢕꢌ  
ꢘꢙꢌ  
ꢘꢍꢌ  
ꢗꢌ  
ꢝꢌ  
ꢙꢌ  
ꢜꢌ  
ꢗꢌ  
ꢖꢌ  
ꢕꢌ  
ꢛꢌ  
ꢍꢌ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢍꢌꢌ  
ꢖꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢘꢌꢌ  
ꢘꢖꢌ  
ꢙꢖꢙꢌ ꢈꢂꢌꢍꢚ  
50mA to 150mA to 50mA Output Load Step  
ꢐꢃꢏꢍ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢎꢑ  
ꢄꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢔꢄꢔꢅ ꢃꢊꢅꢕꢖ  
ꢑꢅꢅꢒꢓꢇꢈꢉꢀ  
Rev. B  
24  
For more information www.analog.com  
LT8580  
TYPICAL APPLICATIONS  
750kHz, –15V Output Inverting Converter Accepts 5V to 40V Input  
ꢀꢊ  
ꢊꢆꢇ  
ꢖꢊ  
ꢕꢕꢆꢗ  
ꢖꢕ  
ꢕꢕꢆꢗ  
ꢁꢂꢃ  
ꢑꢒ  
ꢉꢊꢋꢈ  
ꢌꢍꢎꢏ ꢐꢈ ꢓ ꢋꢈꢔ  
ꢋꢈ ꢃꢁ ꢄꢍꢈ  
ꢑꢒ  
ꢊꢍꢚ  
ꢘꢊ  
ꢕꢊꢍꢎꢏ ꢐꢈ ꢓ ꢊꢕꢈꢔ  
ꢑꢒ  
ꢄꢕꢍꢎꢏ ꢐꢈ ꢓ ꢄꢍꢈꢔ  
ꢑꢒ  
ꢛꢜ  
ꢇBꢠ  
ꢈꢀ  
ꢑꢒ  
ꢊꢙꢕꢚ  
SHDN  
ꢄ.ꢅꢆꢇ  
ꢑꢒ  
ꢁꢂꢃ  
ꢙꢋꢙꢍ  
ꢄ.ꢅꢆꢇ  
ꢛꢡꢒꢀ  
Rꢃ  
ꢊꢝ.ꢅꢚ  
ꢊꢍꢢꢇ  
ꢟꢒꢘ ꢛꢛ  
ꢄꢅꢣꢇ  
ꢍ.ꢕꢕꢆꢇ  
ꢊꢊꢝꢚ  
ꢙꢋꢙꢍ ꢃꢏꢍꢝꢞ  
ꢖꢊꢤ ꢖꢕꢥ ꢀꢁꢑꢖꢀRꢏꢇꢃ ꢕꢕꢆꢗ ꢦꢛꢘꢅꢝꢄꢕꢧꢕꢕꢝ  
ꢘꢊꢥ ꢀꢨꢒꢃRꢏꢖ ꢛꢨꢦꢑ ꢀꢦꢦꢛꢗꢊꢧꢩꢍ  
ꢥ ꢄ.ꢅꢆ ꢤ ꢋꢍ ꢤ ꢊꢕꢍꢩꢤ ꢠꢋR  
ꢑꢒ  
ꢥ ꢄ.ꢅꢆ ꢤ ꢕꢋ ꢤ ꢊꢕꢍꢩꢤ ꢠꢅR  
ꢁꢂꢃ  
ꢀꢊꢥ ꢊꢆ ꢤ ꢊꢍꢍ ꢤ ꢍꢙꢍꢋꢤ ꢠꢅꢛ  
Efficiency and Power Loss (VIN = 12V)  
ꢘꢌ  
ꢜꢖꢌ  
ꢙꢌ  
ꢝꢌ  
ꢜꢌ  
ꢗꢌ  
ꢖꢌ  
ꢕꢌ  
ꢛꢌ  
ꢍꢌ  
ꢗꢜꢌ  
ꢖꢙꢌ  
ꢖꢌꢌ  
ꢕꢛꢌ  
ꢛꢖꢌ  
ꢍꢜꢌ  
ꢙꢌ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢗꢌ  
ꢛꢌꢌ  
ꢍꢌꢌ  
ꢍꢗꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢙꢗꢙꢌ ꢈꢂꢌꢕꢚ  
60mA to 160mA to 60mA Output Load Step (VIN = 12V)  
ꢐꢃꢏꢍ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢒ ꢉ  
ꢎꢑ ꢎꢄ  
ꢄꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢕꢖꢕꢅ ꢃꢊꢅꢗꢘ  
ꢄꢅꢅꢓꢔꢇꢈꢉꢀ  
Rev. B  
25  
For more information www.analog.com  
LT8580  
TYPICAL APPLICATIONS  
1.2MHz Inverting Converter Generates –48V Output From 12V Input  
C2  
2.2µF  
49.9Ω  
C1  
1µF  
L1  
150µH  
L2  
330µH  
V
OUT  
V
IN  
–48V  
12V  
70mA  
619k  
D1  
V
SW  
FBX  
VC  
IN  
576k  
SHDN  
C
C
IN  
OUT  
LT8580  
1µF  
2.2µF  
SYNC  
RT  
20.5k  
4.7nF  
GND SS  
47pF  
0.33µF  
69.8k  
8580 TA04a  
L1: COOPER 150µH DR74-151  
L2: COOPER 330µH DR74-331  
D1: DIODES, INC. DFLS1100  
C
C
: 1µF, 50V, 0805, X7R  
OUT  
IN  
: 2.2µF, 100V, 1206, X7R  
C1: 1µF, 100V, 0805, X7S  
C2: 2.2µF, 100V, 1206, X7S  
Efficiency and Power Loss  
ꢘꢌ  
ꢜꢌꢖꢌ  
ꢘꢍꢌ  
ꢙꢌꢌ  
ꢛꢙꢌ  
ꢗꢛꢌ  
ꢖꢖꢌ  
ꢕꢍꢌ  
ꢍꢌꢌ  
ꢙꢌ  
ꢝꢌ  
ꢛꢌ  
ꢗꢌ  
ꢖꢌ  
ꢕꢌ  
ꢍꢌ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢜꢌ  
ꢍꢌ  
ꢕꢌ  
ꢖꢌ  
ꢗꢌ  
ꢛꢌ  
ꢝꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢙꢗꢙꢌ ꢈꢂꢌꢖꢚ  
Switching Waveforms  
Start-Up Waveforms  
ꢉꢊ  
ꢋꢅꢀꢆꢇꢈꢀ  
ꢐꢑ  
ꢄꢅꢀꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢆꢀꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢀꢆꢇꢈꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢓ ꢉ  
ꢎꢒ ꢎꢄ  
ꢄꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢍ ꢈ  
ꢌꢄ ꢌꢋ  
ꢋꢅꢅꢎꢏꢆꢇꢈꢀ  
ꢖꢗꢖꢅ ꢃꢊꢅꢘꢙ  
ꢒꢓꢒꢅ ꢃꢏꢅꢔꢕ  
ꢄꢅꢅꢔꢕꢇꢈꢉꢀ  
ꢋꢅꢅꢐꢑꢆꢇꢈꢀ  
Rev. B  
26  
For more information www.analog.com  
LT8580  
TYPICAL APPLICATIONS  
VFD (Vacuum Fluorescent Display) Power Supply Switches at 1MHz  
Danger High Voltage! Operation by High Voltage Trained Personnel Only  
D5  
V
OUT3  
180V  
C5  
1µF  
D4  
D2  
20mA*  
22Ω  
C4  
1µF  
D3  
D1  
V
OUT2  
120V  
C3  
1µF  
30mA*  
22Ω  
L1  
C2  
1µF  
68µH  
V
OUT1  
V
IN  
60V  
9V TO 16V  
60mA*  
487k  
V
SW  
FBX  
VC  
IN  
698k  
SHDN  
C
C1  
1µF  
IN  
LT8580  
1µF  
SYNC  
RT  
22.1k  
4.7nF  
GND SS  
330pF  
0.47µF  
84.5k  
8580 TA05a  
*MAX TOTAL OUTPUT POWER 3.5W  
L1: WÜRTH 68µH WE-LQS 74404084680  
D1-D5: DIODES, INC. DFLS1100  
C
: 1µF, 100V, 1206, X7R  
IN  
C1-C5: 1µF, 100V, 1206, X7S  
Efficiency and Power Loss  
(VIN = 12V with Load on VOUT3  
)
Start-Up Waveforms  
ꢖꢈ  
ꢗꢈ  
ꢜꢈ  
ꢛꢈ  
ꢕꢈ  
ꢔꢈ  
ꢓꢈ  
ꢉꢈ  
ꢖꢛꢈ  
ꢗꢗꢈ  
ꢗꢈꢈ  
ꢜꢉꢈ  
ꢛꢔꢈ  
ꢕꢛꢈ  
ꢔꢗꢈ  
ꢔꢈꢈ  
ꢁꢂꢃꢄ  
ꢅꢆꢀꢇꢈꢉꢀ  
ꢁꢂꢃꢊ  
ꢅꢆꢀꢇꢈꢉꢀ  
ꢁꢂꢃꢋ  
ꢅꢆꢀꢇꢈꢉꢀ  
ꢌꢋ  
ꢊꢆꢆꢍꢎꢇꢈꢉꢀ  
ꢅꢊꢊꢋꢌꢋꢅꢍꢌꢎ  
ꢃꢀꢄꢅR ꢐꢀꢑꢑ  
ꢐꢅꢐꢆ ꢃꢎꢆꢅꢑ  
ꢊꢍꢏꢇꢈꢉꢀ  
ꢈ.ꢕ  
ꢚ.ꢕ  
ꢉ.ꢕ  
ꢓ.ꢕ  
ꢀꢁꢂꢃꢁꢂ ꢃꢀꢄꢅR ꢆꢄꢇ  
ꢗꢕꢗꢈ ꢂꢘꢈꢕꢙ  
Rev. B  
27  
For more information www.analog.com  
LT8580  
TYPICAL APPLICATIONS  
550kHz SEPIC Converter Generates 24V from 15V to 30V Input  
ꢀꢊ  
ꢊꢆꢇ  
ꢖꢊ  
ꢄꢅꢆꢗ  
ꢘꢊ  
ꢁꢂꢃ  
ꢐꢑ  
ꢉꢄꢈ  
ꢊꢌꢈ ꢃꢁ ꢔꢕꢈ  
ꢊꢋꢌꢍꢎ ꢏꢈ ꢒ ꢊꢌꢈꢓ  
ꢔꢕꢕꢍꢎ ꢏꢈ ꢒ ꢉꢄꢈꢓ  
ꢐꢑ  
ꢐꢑ  
ꢖꢉ  
ꢄꢅꢆꢗ  
ꢊꢟ  
ꢚꢛ  
ꢇBꢡ  
ꢈꢀ  
ꢐꢑ  
ꢉꢅꢄꢙ  
SHDN  
ꢐꢑ  
ꢁꢂꢃ  
ꢜꢌꢜꢕ  
ꢉ.ꢉꢆꢇ  
ꢄ.ꢅꢆꢇ  
ꢚꢢꢑꢀ  
Rꢃ  
ꢊꢉ.ꢅꢙ  
ꢔ.ꢔꢣꢇ  
ꢠꢑꢘ ꢚꢚ  
ꢉꢉꢤꢇ  
ꢕ.ꢊꢆꢇ  
ꢊꢌꢄꢙ  
ꢜꢌꢜꢕ ꢃꢎꢕꢝꢞ  
ꢖꢊꢥ ꢖꢉꢦ ꢀꢁꢐꢖꢀRꢎꢇꢃ ꢄꢅꢆꢗ ꢟꢚꢘꢅꢔꢄꢉꢧꢄꢅꢔ  
ꢘꢊꢦ ꢘꢐꢁꢘꢨꢚ ꢐꢑꢀ. ꢘꢇꢖꢚꢊꢊꢕꢕ  
ꢦ ꢉ.ꢉꢆ ꢥ ꢔꢌ ꢥ ꢕꢜꢕꢌꢥ ꢡꢅR  
ꢐꢑ  
ꢦ ꢄ.ꢅꢆ ꢥ ꢔꢌ ꢥ ꢊꢉꢕꢝꢥ ꢡꢅR  
ꢁꢂꢃ  
ꢀꢊꢦ ꢊꢆ ꢥ ꢊꢕꢕ ꢥ ꢕꢜꢕꢌꢥ ꢡꢅꢚ  
Efficiency and Power Loss  
(VIN = 24V)  
ꢙꢌ  
ꢚꢌ  
ꢝꢌ  
ꢛꢌ  
ꢘꢌ  
ꢗꢌ  
ꢕꢌ  
ꢖꢌ  
ꢍꢌ  
ꢍꢗꢌꢌ  
ꢍꢖꢘꢌ  
ꢍꢍꢌꢌ  
ꢙꢘꢌ  
ꢚꢌꢌ  
ꢛꢘꢌ  
ꢘꢌꢌ  
ꢕꢘꢌ  
ꢖꢌꢌ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢘꢌ  
ꢍꢌꢌ  
ꢍꢘꢌ  
ꢖꢌꢌ  
ꢖꢘꢌ  
ꢕꢌꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢚꢘꢚꢌ ꢈꢂꢌꢛꢜ  
Transient Response with 100mA to 225mA  
to 100mA Output Load Step (VIN = 24V)  
ꢐꢃꢏꢍ  
ꢑꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢁꢂꢃ  
ꢄꢅꢅꢆꢀꢇꢈꢉꢀ  
ꢊꢋꢌꢋꢁꢂꢍꢎꢏꢈ  
ꢒ ꢉ  
ꢎꢑ ꢎꢓ  
ꢄꢅꢅꢆꢊꢇꢈꢉꢀ  
ꢖꢄꢖꢅ ꢃꢊꢅꢗꢘ  
ꢑꢅꢅꢔꢕꢇꢈꢉꢀ  
Rev. B  
28  
For more information www.analog.com  
LT8580  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
ꢃReꢩeꢪeꢫꢬe ꢗꢌꢓ ꢇꢏꢐ ꢭ ꢁꢠꢘꢁꢧꢘꢂꢣꢚꢧ Rev ꢓꢉ  
ꢁ.ꢥꢁ ±ꢁ.ꢁꢠ  
ꢀ.ꢠ ±ꢁ.ꢁꢠ  
ꢙ.ꢂꢁ ±ꢁ.ꢁꢠ ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
ꢂ.ꢣꢠ ±ꢁ.ꢁꢠ  
ꢔꢎꢓꢕꢎꢐꢈ  
ꢋꢖꢌꢗꢆꢊꢈ  
ꢁ.ꢙꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢠꢁ  
Bꢅꢓ  
ꢙ.ꢀꢧ ±ꢁ.ꢁꢠ  
Rꢈꢓꢋꢑꢑꢈꢊꢇꢈꢇ ꢅꢋꢗꢇꢈR ꢔꢎꢇ ꢔꢆꢌꢓꢞ ꢎꢊꢇ ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ  
ꢎꢔꢔꢗꢢ ꢅꢋꢗꢇꢈR ꢑꢎꢅꢕ ꢌꢋ ꢎRꢈꢎꢅ ꢌꢞꢎꢌ ꢎRꢈ ꢊꢋꢌ ꢅꢋꢗꢇꢈRꢈꢇ  
R ꢦ ꢁ.ꢂꢙꢠ  
ꢁ.ꢄꢁ ±ꢁ.ꢂꢁ  
ꢌꢢꢔ  
ꢀ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢂ.ꢣꢠ ±ꢁ.ꢂꢁ  
ꢃꢙ ꢅꢆꢇꢈꢅꢉ  
ꢔꢆꢊ ꢂ  
ꢌꢋꢔ ꢑꢎRꢕ  
ꢃꢊꢋꢌꢈ ꢣꢉ  
ꢃꢇꢇꢧꢉ ꢇꢜꢊ ꢁꢠꢁꢚ Rꢈꢛ ꢓ  
ꢁ.ꢙꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢥꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢙꢁꢁ Rꢈꢜ  
ꢁ.ꢠꢁ Bꢅꢓ  
ꢙ.ꢀꢧ ±ꢁ.ꢂꢁ  
Bꢋꢌꢌꢋꢑ ꢛꢆꢈꢏꢤꢈꢝꢔꢋꢅꢈꢇ ꢔꢎꢇ  
ꢁ.ꢁꢁ ꢨ ꢁ.ꢁꢠ  
ꢊꢋꢌꢈꢍ  
ꢂ. ꢇRꢎꢏꢆꢊꢐ ꢌꢋ Bꢈ ꢑꢎꢇꢈ ꢎ ꢒꢈꢇꢈꢓ ꢔꢎꢓꢕꢎꢐꢈ ꢋꢖꢌꢗꢆꢊꢈ ꢑꢁꢘꢙꢙꢚ ꢛꢎRꢆꢎꢌꢆꢋꢊ ꢋꢜ ꢃꢏꢈꢈꢇꢘꢂꢉ  
ꢙ. ꢇRꢎꢏꢆꢊꢐ ꢊꢋꢌ ꢌꢋ ꢅꢓꢎꢗꢈ  
ꢀ. ꢎꢗꢗ ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ ꢎRꢈ ꢆꢊ ꢑꢆꢗꢗꢆꢑꢈꢌꢈRꢅ  
ꢄ. ꢇꢆꢑꢈꢊꢅꢆꢋꢊꢅ ꢋꢜ ꢈꢝꢔꢋꢅꢈꢇ ꢔꢎꢇ ꢋꢊ Bꢋꢌꢌꢋꢑ ꢋꢜ ꢔꢎꢓꢕꢎꢐꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢓꢗꢖꢇꢈ  
ꢑꢋꢗꢇ ꢜꢗꢎꢅꢞ. ꢑꢋꢗꢇ ꢜꢗꢎꢅꢞꢟ ꢆꢜ ꢔRꢈꢅꢈꢊꢌꢟ ꢅꢞꢎꢗꢗ ꢊꢋꢌ ꢈꢝꢓꢈꢈꢇ ꢁ.ꢂꢠꢡꢡ ꢋꢊ ꢎꢊꢢ ꢅꢆꢇꢈ  
ꢠ. ꢈꢝꢔꢋꢅꢈꢇ ꢔꢎꢇ ꢅꢞꢎꢗꢗ Bꢈ ꢅꢋꢗꢇꢈR ꢔꢗꢎꢌꢈꢇ  
ꢣ. ꢅꢞꢎꢇꢈꢇ ꢎRꢈꢎ ꢆꢅ ꢋꢊꢗꢢ ꢎ RꢈꢜꢈRꢈꢊꢓꢈ ꢜꢋR ꢔꢆꢊ ꢂ ꢗꢋꢓꢎꢌꢆꢋꢊ  
ꢋꢊ ꢌꢋꢔ ꢎꢊꢇ Bꢋꢌꢌꢋꢑ ꢋꢜ ꢔꢎꢓꢕꢎꢐꢈ  
Rev. B  
29  
For more information www.analog.com  
LT8580  
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
ꢄReꢪeꢫeꢬꢭe ꢕꢑꢙ ꢗꢛꢔ ꢮ ꢈꢎꢤꢈꢅꢤꢊꢏꢏꢉ Rev ꢍꢇ  
Bꢂꢑꢑꢂꢀ ꢌꢒꢆꢛ ꢂꢝ  
ꢆꢟꢃꢂꢁꢆꢗ ꢃꢐꢗ ꢂꢃꢑꢒꢂꢓ  
ꢊ.ꢅꢅ  
ꢄ.ꢈꢥꢢꢇ  
ꢊ.ꢏꢅ  
ꢈ.ꢉꢧ  
Rꢆꢝ  
ꢊ.ꢅꢅ ±ꢈ.ꢊꢈꢉ  
ꢄ.ꢈꢥꢢ ±.ꢈꢈꢢꢇ  
ꢈ.ꢅꢅꢧ ±ꢈ.ꢊꢉꢥ  
ꢄ.ꢈꢋꢎ ±.ꢈꢈꢎꢇ  
ꢄ.ꢈꢏꢏꢇ  
ꢈ.ꢈꢎ Rꢆꢝ  
ꢗꢆꢑꢐꢒꢕ ꢨBꢩ  
ꢎ.ꢊꢈ  
ꢄ.ꢉꢈꢊꢇ  
ꢀꢒꢓ  
ꢋ.ꢉꢈ ꢦ ꢋ.ꢢꢎ  
ꢄ.ꢊꢉꢏ ꢦ .ꢊꢋꢏꢇ  
ꢊ.ꢏꢅ ±ꢈ.ꢊꢈꢉ  
ꢙꢂRꢓꢆR ꢑꢐꢒꢕ ꢒꢁ ꢃꢐRꢑ ꢂꢝ  
ꢑꢚꢆ ꢕꢆꢐꢗꢝRꢐꢀꢆ ꢝꢆꢐꢑꢜRꢆ.  
ꢝꢂR RꢆꢝꢆRꢆꢓꢙꢆ ꢂꢓꢣ  
ꢄ.ꢈꢏꢏ ±.ꢈꢈꢢꢇ  
ꢗꢆꢑꢐꢒꢕ ꢨBꢩ  
NO MEASUREMENT PURPOSE  
ꢋ.ꢈꢈ ±ꢈ.ꢊꢈꢉ  
ꢄ.ꢊꢊꢅ ±.ꢈꢈꢢꢇ  
ꢄꢓꢂꢑꢆ ꢋꢇ  
ꢈ.ꢏꢎ  
ꢄ.ꢈꢉꢎꢏꢇ  
Bꢁꢙ  
ꢈ.ꢎꢉ  
ꢄ.ꢈꢉꢈꢎꢇ  
Rꢆꢝ  
ꢈ.ꢢꢉ ±ꢈ.ꢈꢋꢅ  
ꢄ.ꢈꢊꢏꢎ ±.ꢈꢈꢊꢎꢇ  
ꢥ ꢏ ꢎ  
ꢑꢣꢃ  
Rꢆꢙꢂꢀꢀꢆꢓꢗꢆꢗ ꢁꢂꢕꢗꢆR ꢃꢐꢗ ꢕꢐꢣꢂꢜꢑ  
ꢋ.ꢈꢈ ±ꢈ.ꢊꢈꢉ  
ꢄ.ꢊꢊꢅ ±.ꢈꢈꢢꢇ  
ꢄꢓꢂꢑꢆ ꢢꢇ  
ꢢ.ꢧꢈ ±ꢈ.ꢊꢎꢉ  
ꢄ.ꢊꢧꢋ ±.ꢈꢈꢏꢇ  
ꢗꢆꢑꢐꢒꢕ ꢨꢐꢩ  
ꢈ.ꢉꢎꢢ  
ꢄ.ꢈꢊꢈꢇ  
° ꢦ ꢏ° ꢑꢣꢃ  
ꢔꢐꢜꢔꢆ ꢃꢕꢐꢓꢆ  
ꢈ.ꢎꢋ ±ꢈ.ꢊꢎꢉ  
ꢄ.ꢈꢉꢊ ±.ꢈꢈꢏꢇ  
ꢊ.ꢊꢈ  
ꢄ.ꢈꢢꢋꢇ  
ꢀꢐꢟ  
ꢈ.ꢅꢏ  
ꢄ.ꢈꢋꢢꢇ  
Rꢆꢝ  
ꢗꢆꢑꢐꢒꢕ ꢨꢐꢩ  
ꢈ.ꢊꢅ  
ꢄ.ꢈꢈꢥꢇ  
ꢁꢆꢐꢑꢒꢓꢔ  
ꢃꢕꢐꢓꢆ  
ꢈ.ꢉꢉ ꢦ ꢈ.ꢋꢅ  
ꢄ.ꢈꢈꢧ ꢦ .ꢈꢊꢎꢇ  
ꢑꢣꢃ  
ꢈ.ꢊꢈꢊꢏ ±ꢈ.ꢈꢎꢈꢅ  
ꢄ.ꢈꢈꢢ ±.ꢈꢈꢉꢇ  
ꢈ.ꢏꢎ  
ꢄ.ꢈꢉꢎꢏꢇ  
Bꢁꢙ  
ꢀꢁꢂꢃ ꢄꢀꢁꢅꢆꢇ ꢈꢉꢊꢋ Rꢆꢌ ꢍ  
ꢓꢂꢑꢆꢖ  
ꢊ. ꢗꢒꢀꢆꢓꢁꢒꢂꢓꢁ ꢒꢓ ꢀꢒꢕꢕꢒꢀꢆꢑꢆRꢘꢄꢒꢓꢙꢚꢇ  
ꢉ. ꢗRꢐꢛꢒꢓꢔ ꢓꢂꢑ ꢑꢂ ꢁꢙꢐꢕꢆ  
ꢋ. ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢓꢂꢑ ꢒꢓꢙꢕꢜꢗꢆ ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚꢞ ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢂR ꢔꢐꢑꢆ BꢜRRꢁ.  
ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚꢞ ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢂR ꢔꢐꢑꢆ BꢜRRꢁ ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢟꢙꢆꢆꢗ ꢈ.ꢊꢎꢉꢠꢠ ꢄ.ꢈꢈꢏꢡꢇ ꢃꢆR ꢁꢒꢗꢆ  
ꢢ. ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢓꢂꢑ ꢒꢓꢙꢕꢜꢗꢆ ꢒꢓꢑꢆRꢕꢆꢐꢗ ꢝꢕꢐꢁꢚ ꢂR ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ.  
ꢒꢓꢑꢆRꢕꢆꢐꢗ ꢝꢕꢐꢁꢚ ꢂR ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢟꢙꢆꢆꢗ ꢈ.ꢊꢎꢉꢠꢠ ꢄ.ꢈꢈꢏꢡꢇ ꢃꢆR ꢁꢒꢗꢆ  
ꢎ. ꢕꢆꢐꢗ ꢙꢂꢃꢕꢐꢓꢐRꢒꢑꢣ ꢄBꢂꢑꢑꢂꢀ ꢂꢝ ꢕꢆꢐꢗꢁ ꢐꢝꢑꢆR ꢝꢂRꢀꢒꢓꢔꢇ ꢁꢚꢐꢕꢕ Bꢆ ꢈ.ꢊꢈꢉꢠꢠ ꢄ.ꢈꢈꢢꢡꢇ ꢀꢐꢟ  
ꢏ. ꢆꢟꢃꢂꢁꢆꢗ ꢃꢐꢗ ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢒꢓꢙꢕꢜꢗꢆ ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚ. ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚ ꢂꢓ ꢆꢤꢃꢐꢗ  
ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢟꢙꢆꢆꢗ ꢈ.ꢉꢎꢢꢠꢠ ꢄ.ꢈꢊꢈꢡꢇ ꢃꢆR ꢁꢒꢗꢆ.  
Rev. B  
30  
For more information www.analog.com  
LT8580  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
09/16 Changed Minimum On-Time in the Electrical Characteristics table to typical room value instead of worst case.  
Added Minimum On-Time vs Temperature graph.  
3
5
Added text and equations explaining minimum on-time.  
9
Clarified inductor paragraph in the Applications Information section.  
10, 11  
11, 14  
Adjusted R , R , R , g and resultant gain and phase margin numbers and plot to better reflect applications and the  
C
L
O
ma  
Electrical Characteristics table.  
Clarified Thermal Calculations section.  
17  
Corrected L  
equation.  
21, 22, 23  
MIN  
Clarified the Related Parts table.  
11/19 Add AEC-Q100 Qualification in Progress  
Add #W Part Numbers  
32  
1
B
2
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
31  
LT8580  
TYPICAL APPLICATION  
12V Battery Stabilizer Survives 40V Transients  
Efficiency and Power Loss  
(VIN = 12V)  
ꢀꢉ  
ꢉꢆꢇ  
ꢎꢉ  
ꢊꢊꢆꢏ  
ꢐꢉ  
ꢚꢌ  
ꢛꢌ  
ꢜꢌ  
ꢙꢌ  
ꢘꢌ  
ꢗꢌ  
ꢕꢌ  
ꢖꢌ  
ꢍꢌ  
ꢛꢌꢌ  
ꢜꢌꢌ  
ꢙꢌꢌ  
ꢘꢌꢌ  
ꢗꢌꢌ  
ꢕꢌꢌ  
ꢖꢌꢌ  
ꢍꢌꢌ  
ꢁꢂꢃ  
ꢓꢔ  
ꢉꢊꢈ  
ꢕꢈ ꢃꢁ ꢉꢖꢈ  
ꢂꢗ ꢃꢁ ꢄꢋꢈ  
ꢃRꢍꢔꢘꢓꢙꢔꢃ  
ꢊꢄꢋꢌꢍ  
ꢎꢊ  
ꢊꢊꢆꢏ  
ꢄꢛꢅꢒ  
ꢘꢚ  
ꢇBꢟ  
ꢈꢀ  
ꢓꢔ  
ꢉꢑꢋꢒ  
SHDN  
ꢄ.ꢅꢆꢇ  
ꢓꢔ  
ꢁꢂꢃ  
ꢛꢜꢛꢋ  
ꢄ.ꢅꢆꢇ  
ꢘꢠꢔꢀ  
Rꢃ  
ꢉꢖ.ꢊꢒ  
ꢉꢡꢇ  
ꢞꢔꢐ ꢘꢘ  
ꢊꢊꢢꢇ  
ꢆꢎꢎꢏꢄꢏꢆꢇꢄꢐ  
ꢒꢁꢓꢆR ꢀꢁꢔꢔ  
ꢋ.ꢊꢊꢆꢇ  
ꢛꢄ.ꢜꢒ  
ꢛꢜꢛꢋ ꢃꢍꢋꢅꢝ  
ꢗꢌ  
ꢛꢌ  
ꢍꢖꢌ  
ꢍꢙꢌ  
ꢖꢌꢌ  
ꢖꢗꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢎꢉꢣ ꢎꢊꢤ ꢚꢥRꢃꢏ ꢊꢊꢆꢏ ꢚꢙꢦꢐꢐ ꢅꢄꢄꢛꢅꢅꢊꢊꢋ  
ꢐꢉꢤ ꢐꢓꢁꢐꢙꢘ ꢓꢔꢀ. ꢐꢇꢎꢘꢉꢉꢋꢋ  
ꢛꢘꢛꢌ ꢈꢂꢌꢜꢝ  
ꢤ ꢄ.ꢅꢆ ꢣ ꢜꢋ ꢣ ꢉꢊꢋꢖꢣ ꢟꢅR  
ꢓꢔ  
ꢁꢂꢃ  
ꢤ ꢄ.ꢅꢆ ꢣ ꢊꢜ ꢣ ꢉꢊꢋꢖꢣ ꢟꢅR  
ꢀꢉꢤ ꢉꢆ ꢣ ꢉꢋꢋ ꢣ ꢋꢛꢋꢜꢣ ꢟꢅꢘ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1613  
550mA (I ), 1.4MHz High Efficiency Step-Up DC/DC Converter V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
ThinSOT Package  
LT1618  
1.5A (I ), 1.4MHz High Efficiency Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
= 35V, I = 1.8mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
MS10, 3mm × 3mm DFN Packages  
LT1930/LT1930A 1A (I ), 1.2MHz/2.2MHz High Efficiency Step-Up DC/DC  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA, I < 1µA,  
Q SD  
SW  
Converter  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
ThinSOT Package  
LT1935  
2A (I ), 40V, 1.2MHz High Efficiency Step-Up DC/DC Converter V : 2.3V to 16V, V  
= 38V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
ThinSOT Package  
LT1944/LT1944-1 Dual Output 350mA (I ), Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
MS10 Package  
LT1946/LT1946A 1.5A (I ), 1.2MHz/2.7MHz High Efficiency Step-Up DC/DC  
V : 2.6V to 16V, V  
= 34V, I = 3.2mA, I < 1µA,  
Q SD  
SW  
IN  
Converter  
MS8E Package  
LT3467  
LT3477  
LT3479  
LT3580  
LT3581  
LT3579  
LT8582  
1.1A (I ), 1.3MHz High Efficiency Step-Up DC/DC Converter  
V : 2.4V to 16V, V  
= 40V, I = 1.2mA, I < 1µA,  
Q SD  
SW  
IN  
ThinSOT, 2mm × 3mm DFN Packages  
42V, 3A, 3.5MHz Boost, Buck-Boost, Buck LED Driver  
V : 2.5V to 25V, V = 40V, Analog/PWM, I < 1µA,  
IN  
OUT(MAX)  
SD  
QFN, TSSOP-20E Packages  
3A Full-Featured DC/DC Converter with Soft-Start and Inrush  
Current Protection  
V : 2.5V to 24V, V  
= 40V, I = 5mA, I < 1µA,  
Q SD  
IN  
OUT(MAX)  
DFN, TSSOP Packages  
2A (I ), 42V, 2.5MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 32V, V  
= 42V, I = 1mA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
Converter  
3mm × 3mm DFN-8, MSOP-8E  
3.3A (I ), 42V, 2.5MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 22V, V = 42V, I = 1.9mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter  
4mm × 3mm DFN-14, MSOP-16E  
6A (I ), 42V, 2.5MHz, High Efficiency, Step-Up DC/DC  
V : 2.5V to 16V, V = 42V, I = 1.9mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter  
4mm × 5mm QFN-20, TSSOP-20  
Dual Channel, 3A (I ), 42V, 2.5MHz, High Efficiency Step-Up  
V : 2.5V to 22V, V = 42V, I = 2.1mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
DC/DC Converter  
4mm × 7mm DFN-24  
Rev. B  
11/19  
www.analog.com  
ANALOG DEVICES, INC. 2014–2019  
32  

相关型号:

LT8580HMS8E#PBF

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8580HMS8E#TRPBF

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8580IDD#PBF

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8580IDD#TRPBF

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8580IMS8E#PBF

暂无描述
Linear

LT8580IMS8E#TRPBF

LT8580 - Boost/SEPIC/Inverting DC/DC Converter with 1A, 65V Switch, Soft-Start and Synchronization; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8582EDKD#PBF

LT8582 - Dual 3A Boost/Inverting/SEPIC DC/DC Converter with Fault Protection; Package: DFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8584

2.5A Monolithic Active Cell Balancer with Telemetry Interface
Linear

LT8584_15

2.5A Monolithic Active Cell Balancer with Telemetry Interface
Linear

LT8601

42V, Low IQ, Quad Output Triple Monolithic Buck Converter and Boost Controller
Linear

LT8602

42V, Low IQ, Quad Output Triple Monolithic Buck Converter and Boost Controller
Linear

LT8602

42V, 750mA Synchronous Step-Down Regulator with 2.5μA Quiescent Current
ADI