LT8711EFE#PBF [Linear]

LT8711 - Micropower Synchronous Multitopology Controller with 42V Input Capability; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT8711EFE#PBF
型号: LT8711EFE#PBF
厂家: Linear    Linear
描述:

LT8711 - Micropower Synchronous Multitopology Controller with 42V Input Capability; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总38页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8711  
Micropower Synchronous  
Multitopology Controller  
with 42V Input Capability  
DescripTion  
The LT®8711 is a multi-topology current mode PWM con-  
trollerthatcaneasilybeconfiguredasasynchronousbuck,  
boost, SEPIC, ZETA or as a nonsynchronous buck-boost  
converter. Its dual gate drive voltage inputs optimize gate  
driver efficiency.  
FeaTures  
n
Easily Configurable as a Synchronous Buck, Boost,  
SEPIC, ZETA or Nonsynchronous Buck-Boost Converter  
n
Wide Input Range: 4.5V to 42V (V Can Operate  
IN  
to 0V, when EXTV > 4.5V)  
CC  
Automatic Low Noise Burst Mode® Operation  
n
n
n
n
n
n
n
n
n
Low I in Burst Mode Operation (15μA Operating)  
Q
The1Ano-loadquiescentcurrentwiththeoutputvoltage  
inregulationextendsoperatingrun-timeinbatterypowered  
systems. Low ripple Burst Mode operation enables high  
efficiency at very light loads while maintaining low output  
voltageripple.TheLT8711'sfixedswitchingfrequencycan  
be set from 100kHz to 750kHz or can be synchronized to  
an external clock.  
Input Voltage Regulation for High Impedance Source  
100% Duty Cycle in Dropout (Buck Mode)  
2A Gate Drivers (BG and TG)  
Adjustable Soft-Start with One Capacitor  
Frequency Programmable from 100kHz to 750kHz  
Can Be Synchronized to External Clock  
Available in 20-Lead TSSOP and 20-Lead 3mm×4mm  
QFN Packages  
The additional features include 100% duty cycle capability  
wheninbuckmode,atopologyselectionpinandadjustable  
soft-start. LT8711 is available in the 20-lead TSSOP and  
20-lead 3mm × 4mm QFN packages.  
applicaTions  
L, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks  
of Analog Devices, Inc. All other trademarks are the property of their respective owners.  
n
General Purpose DC/DC Conversion  
n
Automotive Systems  
n
Industrial Supplies  
Solar Panel Power Converter  
n
Typical applicaTion  
400kHz 5V to 40V Input/12V Output Nonsynchronous Buck Boost  
V
IN  
Efficiency vs Load Current  
5V TO  
40V  
10µF ×6  
100  
90  
V
BIAS  
IN  
50V, X7R  
2.2µF  
EN/FBIN  
EXTV  
LT8711  
OPMODE  
INTV  
V
CC  
EE  
OUT  
80  
100pF  
TG  
M1  
L1  
4.7µH  
70  
V
OUT  
2.2µF  
60  
D1  
D2  
12V,  
INTV  
CC  
3.5A (V >16V)  
ISN  
IN  
50  
2.5A (9V < V < 16V)  
IN  
60.4k  
1.5A (V < 9V)  
IN  
40  
30  
20  
10  
0
4mΩ  
1M  
RT  
100µF ×2  
16V, X7R  
SYNC  
ISP  
GND  
V
V
V
V
= 5V  
330nF  
100pF  
2.2nF  
IN  
IN  
IN  
IN  
M2  
69.8k  
= 12V  
= 24V  
= 36V  
SS  
BG  
CSP  
CSN  
4mΩ  
0.001  
0.01  
0.1  
1
4
110k  
LOAD CURRENT (A)  
V
C
8711 TA01b  
FB  
8711 TA01a  
8711f  
1
For more information www.linear.com/LT8711  
LT8711  
absoluTe MaxiMuM raTings  
(Note 1)  
V Voltage ................................................ –0.3V to 42V  
CSN Voltage........................... CSP – 0.3V to CSP + 0.3V  
ISP Voltage .............................. ISN – 0.3V to ISN + 0.3V  
ISN Voltage ...............................................–0.3V to BIAS  
IN  
BIAS Voltage.............................................. –0.3V to 42V  
EXTV Voltage ......................................... –0.3V to 42V  
CC  
BG, TG Voltage .....................................................Note 2  
INTV Voltage ......................................... –0.3V to 5.5V  
CC  
FB Voltage................................................. –0.3V to 5.5V  
RT Voltage ................................................ –0.3V to 5.5V  
SS Voltage ............................................... –0.3V to 5.5V  
Operating Junction Temperature Range  
LT8711E............................................. –40°C to 125°C  
LT8711I.............................................. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
V Voltage ................................................ –0.3V to 2.5V  
C
EN/FBIN Voltage................. –0.3V to MAX(V , EXTV )  
IN  
CC  
SYNC Voltage ........................................... –0.3V to 5.5V  
OPMODE Voltage ...................................... –0.3V to 5.5V  
INTV Voltage..................................................... Note 2  
EE  
CSP Voltage ............................................... –0.3V to 42V  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
EN/FBIN  
FB  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RT  
SYNC  
NC  
20 19 18 17  
V
C
V
1
2
3
4
5
6
16 CSP  
15 CSN  
14 EXTV  
C
SS  
OPMODE  
ISP  
CSP  
CSN  
EXTV  
SS  
OPMODE  
ISP  
21  
GND  
CC  
21  
GND  
CC  
13  
V
IN  
ISN  
V
IN  
ISN  
12 INTV  
11 NC  
CC  
INTV  
EE  
INTV  
NC  
CC  
INTV  
EE  
BIAS  
7
8
9 10  
TG 10  
BG  
FE PACKAGE  
UDC PACKAGE  
20-LEAD (3mm × 4mm) PLASTIC QFN  
20-LEAD PLASTIC TSSOP  
T
JMAX  
= 125°C, θ = 38°C/W, θ = 10°C/W  
JA JC  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 52°C/W, θ = 6.8°C/W  
JA Jc  
JMAX  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
http://www.linear.com/product/LT8711#orderinfo  
LEAD FREE FINISH  
LT8711EFE#PBF  
LT8711IFE#PBF  
TAPE AND REEL  
PART MARKING*  
LT8711 FE  
LT8711 FE  
LGQJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8711EFE#TRPBF  
LT8711IFE#TRPBF  
LT8711EUDC#TRPBF  
LT8711IUDC#TRPBF  
20-Lead TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
20-Lead TSSOP  
LT8711EUDC#PBF  
LT8711IUDC#PBF  
20-Lead 3mm × 4mm QFN  
20-Lead 3mm × 4mm QFN  
LGQJ  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
8711f  
2
For more information www.linear.com/LT8711  
LT8711  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VBIAS = 12V, unless otherwise noted (Note 3).  
PARAMETER  
Operating Voltage Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
V
= 0V  
= 4.5V  
4.5  
0
42  
42  
V
V
IN  
EXTVCC  
EXTVCC  
Quiescent Current in Normal Operation  
(I + I + I  
V
V
V
= 2.5V, Not Switching  
2.0  
15  
1
2.5  
25  
2
mA  
µA  
µA  
EN/FBIN  
)
BIAS  
VIN  
EXTVCC  
Quiescent Current in Burst Mode Operation  
(I + I + I  
= V  
+ 3mV  
FB_REG  
FB  
)
BIAS  
VIN  
EXTVCC  
Quiescent Current in Shutdown  
(I + I + I  
= 0V  
EN/FBIN  
)
BIAS  
VIN  
EXTVCC  
l
l
FB Output Regulation Voltage, V  
784  
795  
800  
800  
816  
805  
mV  
mV  
FB_REG  
FB Line Regulation  
4.5V ≤ V ≤ 42V  
0.01  
0
0.05  
50  
%/V  
nA  
IN  
FB Pin Input Bias Current  
Error Amp Transconductance  
Error Amp Voltage Gain  
V
= 0.8V  
–50  
FB  
∆I = 5µA  
250  
90  
µmhos  
dB  
l
l
Maximum Current Sense Voltage,  
– V  
Minimum Duty Cycle  
Maximum Duty Cycle  
46  
26  
50  
33  
54  
40  
mV  
mV  
V
CSP  
CSN  
l
l
Switching Frequency, f  
R = 30.3k  
T
675  
85  
750  
100  
825  
115  
kHz  
kHz  
OSC  
T
R = 247k  
l
l
Switching Frequency Range  
Free-Running  
Synchronizing  
85  
140  
825  
750  
kHz  
kHz  
l
l
SYNC Input Voltage High  
SYNC Input Voltage Low  
SYNC Clock Pulse Duty Cycle  
1.3  
V
V
0.4  
80  
V
= 0V to 2V, f  
= 10mA  
= 500kHz  
20  
0.8  
%
SYNC  
SYNC  
Recommended SYNC Ratio f  
/f  
1.2  
5.25  
SYNC OSC  
l
INTV Voltage  
I
4.75  
5
V
CC  
INTVCC  
INTV Line Regulation  
6V ≤ V ≤ 42V, V  
= 0, I = 10mA  
INTVCC  
VIN  
–0.003  
–0.003  
–0.03  
–0.03  
%/V  
%/V  
CC  
IN  
EXTVCC  
6V ≤ V  
≤ 42V, V = 0, I  
= 10mA  
INTVCC  
EXTVCC  
INTV Load Regulation  
I
= 0mA to 40mA  
–1  
10  
–2  
%
CC  
INTVCC  
INTV Maximum External Load Current  
Internal Load Current = 40mA  
mA  
CC  
l
l
INTV Undervoltage Lockout  
INTV Rising  
3.9  
3.45  
4.1  
3.6  
4.3  
3.75  
V
V
CC  
CC  
INTV Falling  
CC  
INTV Undervoltage Lockout Hysteresis  
500  
mV  
V
CC  
l
INTV Voltage, V  
– V  
I = 10mA  
INTVEE  
4.85  
5.15  
5.4  
EE  
BIAS  
INTVEE  
l
l
INTV Undervoltage Lockout, V  
– V  
V
BIAS  
V
BIAS  
– V  
Rising  
Falling  
3.6  
3.4  
3.85  
3.6  
4.1  
3.8  
V
V
EE  
BIAS  
INTVEE  
INTVEE  
INTVEE  
– V  
INTV Undervoltage Lockout Hysteresis,  
BIAS  
250  
mV  
EE  
V
– V  
INTVEE  
BG Rise Time  
C
C
C
C
= 3.3nF (Note 4)  
= 3.3nF (Note 4)  
= 3.3nF (Note 4)  
= 3.3nF (Note 4)  
14  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BG  
BG  
TG  
TG  
BG Fall Time  
TG Rise Time  
11  
TG Fall Time  
14  
BG and TG Non-Overlap Time  
BG and TG Non-Overlap Time  
Minimum On-Time  
TG Rising to BG Rising, C = C = 3.3nF (Note 4)  
70  
BG  
TG  
BG Falling to TG Falling, C = C = 3.3nF (Note 4)  
70  
BG  
TG  
C
BG  
= C = 3.3nF  
100  
TG  
8711f  
3
For more information www.linear.com/LT8711  
LT8711  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VBIAS = 12V, unless otherwise noted (Note 3).  
PARAMETER  
CONDITIONS  
V = 0V, Current Flows Out of SS pin  
SS  
MIN  
6
TYP  
10  
MAX  
15  
UNITS  
µA  
l
l
l
SS Charge Current  
SS Low Detection Voltage  
EN/FBIN Active Mode  
EN/FBIN Chip Enable  
Part Exiting Undervoltage Lockout  
EN/FBIN Rising  
65  
85  
105  
1.42  
mV  
V
1.28  
1.35  
l
l
EN/FBIN Rising  
EN/FBIN Falling  
0.97  
0.94  
1.03  
1
1.11  
1.08  
V
V
EN/FBIN Chip Enable Hysteresis  
EN/FBIN Input Voltage Low  
30  
mV  
V
l
Shutdown Mode  
0.2  
l
l
EN/FBIN Current Limit Adjustment Voltage  
Full Current Limit  
1.27  
V
V
Near Zero Current Limit  
1.12  
–50  
l
EN/FBIN Pin Input Bias Current  
EN/FBIN Amp Transconductance  
EN/FBIN Amp Voltage Gain  
V
V
V
= 12V  
0
50  
nA  
µmhos  
V/V  
EN/FBIN  
= 0.6V  
40  
FB  
FB  
= 0.6V  
100  
Note 4: Rise and fall times are measured using 10% and 90% levels. Delay  
times are measured using 50% levels.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation over the specified maximum operating junction  
temperature may impair device reliability.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Do not apply a positive or negative voltage or current source to  
BG, TG and INTV pins, otherwise permanent damage may occur.  
EE  
Note 3: The LT8711E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the  
–40°C to 125°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8711I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
8711f  
4
For more information www.linear.com/LT8711  
LT8711  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Maximum Current Limit vs  
Duty Cycle (CSP–CSN)  
Maximum Current Limit vs SS  
(CSP–CSN)  
Output Voltage Regulation  
(VFB_REG  
)
55  
48  
41  
34  
27  
20  
60  
50  
40  
30  
20  
10  
0
805  
804  
803  
802  
801  
800  
799  
798  
797  
796  
795  
0
10 20 30 40 50 60 70 80 90 100  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8 2.0  
–50 –25  
0
25  
50  
75 100 125  
DUTY CYCLE (%)  
SS (V)  
TEMPERATURE (°C)  
8711 G01  
8711 G02  
8711 G03  
Input Voltage Regulation  
(EN/FBIN)  
EN/FBIN Chip Enable Threshold  
EN/FBIN Active Mode Threshold  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.370  
1.365  
1.360  
1.355  
1.350  
1.345  
1.340  
1.335  
1.330  
RISING  
FALLING  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8711 G04  
8711 G05  
8711 G06  
Input Voltage Regulation vs FB  
(EN/FBIN)  
CSN Bias Current  
ISN Bias Current  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
180  
160  
140  
120  
100  
80  
350  
300  
250  
200  
150  
100  
V
= V  
= 12V  
V
= V =12V  
ISP ISN  
CSP  
CSN  
60  
0.60 0.65 0.70 0.75 0.80 0.85 0.90  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
FB (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8711 G07  
8711 G08  
8711 G09  
8711f  
5
For more information www.linear.com/LT8711  
LT8711  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
Oscillator Frequency vs  
Temperature  
DCM Thresholds (ISP–ISN)  
BG Transition Time vs Cap Load  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
60  
50  
40  
30  
20  
10  
0
R
T
= 30.3kΩ  
V
= 0V  
ISN  
RISING  
V
= 12V  
ISN  
FALLING  
R
T
= 247kΩ  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CAP LOAD (nF)  
8711 G10  
8711 G11  
8711 G12  
TG Transition Time vs Cap Load  
Minimum Operating Input Voltage  
INTVCC vs Temperature  
60  
50  
40  
30  
20  
10  
0
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
I
= 10mA  
INTVCC  
RISING  
RISING  
FALLING  
FALLING  
0
1
2
3
4
5
6
7
8
9
10  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
CAP LOAD (nF)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8711 G13  
8711 G14  
8711 G15  
INTVCC Current Limit vs  
VIN or EXTVCC  
INTVCC Dropout from  
VIN or EXTVCC  
INTVCC UVLO vs Temperature  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
70  
60  
50  
40  
30  
20  
10  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
RISING  
FALLING  
–50 –25  
0
25  
50  
75 100 125  
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INTV LOAD CURRENT (mA)  
CC  
8711 G16  
8711 G17  
8711 G18  
8711f  
6
For more information www.linear.com/LT8711  
LT8711  
TA = 25°C, unless otherwise noted.  
Typical perForMance characTerisTics  
INTVEE vs Temperature  
INTVEE UVLO vs Temperature  
INTVEE Current Limit vs BIAS  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.9  
3.8  
3.7  
3.6  
3.5  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 10mA  
INTVEE  
RISING  
FALLING  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
5
10  
15  
20  
25  
30  
35  
40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
BIAS (V)  
8711 G19  
8711 G20  
8711 G21  
INTVEE Dropout (BIAS = 6V)  
IQ_BURST vs VIN or EXTVCC  
IQ_BURST vs Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
18  
16  
14  
12  
10  
20.00  
18.00  
16.00  
14.00  
12.00  
10.00  
BIAS = 6V  
0
10  
20  
30  
40  
50  
60  
5
10  
15  
20  
25  
30  
35  
40  
–50 –25  
0
25  
50  
75 100 125  
INTV LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
EE  
8711 G22  
8711 G23  
8711 G24  
8711f  
7
For more information www.linear.com/LT8711  
LT8711  
pin FuncTions (TSSOP/QFN)  
EN/FBIN (Pin 1/Pin 19): Enable and Input Voltage Regu-  
lation Pin. In conjunction with the UVLO (undervoltage  
lockout) circuit, this pin is used to enable/disable the chip  
and restart the soft-start sequence. The EN/FBIN pin is  
also used to limit the switching regulator current to avoid  
collapsingtheinputsupply.Drivebelow0.2Vtodisablethe  
chip with very low quiescent current. Drive above 1.03V  
(typical) to activate the chip. The commanded input cur-  
rent will adjust when the EN/FBIN pin voltage is between  
1.12V and 1.27V. Drive above 1.35V (typical) to activate  
switchingwithnoreductionininputcurrentandrestartthe  
soft-start sequence. See the Block Diagram and Applica-  
tions section for more information. Do not float this pin.  
TG (Pin 10/Pin 8): PFET Gate Drive Pin. Low and high  
levels are INTV and BIAS respectively with a 2A drive  
EE  
capability.  
BG (Pin 11/Pin 10): NFET Gate Drive Pin. Low and high  
levels are GND and INTV respectively with a 2A drive  
CC  
capability.  
NC (Pin 12/Pin 9): No Connection. Do not connect. Must  
be floated.  
INTV (Pin 13/Pin 12): 5V Dual Input LDO Regulator Pin.  
CC  
Must be locally bypassed with a minimum capacitance of  
2.2µF to GND. Logic will choose to run INTV from the  
CC  
VIN or EXTV pins. A maximum 10mA external load can  
CC  
connect to the INTV pin. The undervoltage lockout on  
FB (Pin 2/Pin 20): Feedback Input Pin. The LT8711 regu-  
lates the FB pin to 0.8V. Connect the feedback resistor  
divider tap to this pin.  
CC  
INTV is 3.6V (typical). The BG gate driver can begin  
CC  
switching when INTV exceeds 4.1V (typical).  
CC  
V
(Pin 14/Pin 13): Input Supply Pin. Must be locally  
V (Pin 3/Pin 1): Error Amplifier Output Pin. Tie external  
IN  
C
bypassed. Can run down to 0V as long as EXTV > 4.5V.  
compensation network to this pin.  
CC  
EXTV (Pin 15/Pin 14): Alternate Input Supply Pin.  
SS (Pin 4/Pin 2): Soft Start Pin. Place a soft-start capaci-  
tor here. Upon start-up, the SS pin will be charged by a  
410k resistor to about 4.3V. During an overtemperature  
or UVLO condition, the SS pin will be quickly discharged  
to reset the part. Once those conditions are clear, the part  
will attempt to restart.  
CC  
Must be locally bypassed. Can run down to 0V as long  
as V > 4.5V.  
IN  
CSN & CSP (Pins 16 & 17/ Pins 15 & 16): Current Sense  
Negative and Positive Input Pins Respectively. Kelvin  
connect CSN and CSP pins to a sense resistor to limit  
the input current. The maximum sense voltage at low  
duty cycle is 50mV.  
OPMODE (Pin 5/Pin 3): Topology Selection Pin. Tie this  
pin to ground to select buck/ZETA mode. Tie to INTV  
CC  
to select SEPIC/boost mode. Tie to a 100pF capacitor to  
NC (Pin 18/Pin 11): No Connection. Do not connect. Must  
be floated.  
GND to select nonsynchronous buck-boost mode.  
ISP & ISN (Pins 6 & 7/ Pins 4 & 5): Current Sense Posi-  
tive and Negative Input Pins respectively. Kelvin connect  
ISP and ISN pins to a sense resistor.  
SYNC (Pin 19/Pin 17): To synchronize the switching  
frequency to an outside clock, simply drive this pin with  
a clock. The high voltage level of the clock must exceed  
1.3V, and the low level must be less than 0.4V. Drive this  
pin to less than 0.4V to revert to the internal free running  
clock. See the Applications Information section for more  
information.  
INTV (Pin 8/Pin 6): 5V Below BIAS LDO Regulator Pin.  
EE  
Must be locally bypassed with a minimum capacitance  
of 2.2µF to BIAS. This pin sets the bottom rail for the TG  
gate driver. The TG gate driver can begin switching when  
BIAS – INTV exceeds 3.6V (typical).  
EE  
RT (Pin 20/Pin 18): Timing Resistor Pin. Adjusts the  
LT8711’s switching frequency. Place a resistor from this  
pin to ground to set the frequency to a fixed free running  
level. Do not float this pin.  
BIAS (Pin 9/Pin 7): Power Supply for the TG PFET Driver.  
Must be locally bypassed with a minimum capacitance of  
2.2µF to INTV . The BIAS pin sets the top rail for the TG  
EE  
gate driver.  
GND (Pin 21/Pin 21): Ground. Must be soldered directly  
to the local ground plane.  
8711f  
8
For more information www.linear.com/LT8711  
LT8711  
block DiagraM  
C
INTVEE  
V
IN  
C
IN  
V
IN  
BIAS  
LDO  
UVLO  
INTV  
EE  
BIAS  
DRIVER  
REV  
COMP  
TG  
BG  
LEVEL  
SHIFT  
M2  
PFET  
I
×
REC  
+
BUCK/ZETA  
BOOST/SEPIC  
BUCK-BOOST  
R
L1  
R
SENSE  
SENSE  
CURRENT  
SENSE  
PROCESSOR  
OPMODE  
V
OUT  
MODE  
DETECTION  
LOGIC  
INTV  
CC  
DRIVER  
I
× R  
SW  
SENSE  
M1  
NFET  
IS CS  
CSP  
CSN  
+
A1  
A2  
ISP  
ISN  
+
R
R
FB1  
FB2  
FB  
+
R
R
IN1  
EN/FBIN  
C
OUT  
0.88V  
+
SS_L  
1.35V  
IN2  
DIE  
TEMP  
165°C  
+
UVLO  
D1  
D2  
Q
LDO LOGIC  
S
EXTV  
R
CC  
V
OUT  
1.215V  
REF  
PWM  
COMP  
DISABLE  
DRIVER  
W3  
W4  
START-UP  
AND  
I
S
FAULT  
LOGIC  
C
INTVCC  
LDO  
INTV  
CC  
SYNC  
RT  
SYNC  
RAMP  
BLOCK  
GENERATOR  
ADJUSTABLE  
OSCILLATOR  
CLK  
+
D6  
D4  
+
EN/FBIN  
1.2V  
R
T
EA2  
EA1  
0.8V  
QUICK DISCHARGE  
85mV  
410k R CHARGE  
+
SS_L  
Q1  
PNP  
SS  
V
C
8711 BD  
C
SS  
C
C
C
F
R
C
8711f  
9
For more information www.linear.com/LT8711  
LT8711  
sTarT-up anD FaulT sequence  
EN/FBIN < 1.0V (TYP) OR  
AND EXTV < 4.5V OR  
EN/FBIN > 1.0V (TYP) AND  
V OR EXTV > 4.5V AND  
IN  
V
IN  
CC  
CC  
T
> 165°C  
T
< 160°C  
JUNCTION  
JUNCTION  
CHIP OFF  
• ALL SWITCHES OFF  
INITIALIZE  
• SS PULLED LOW  
• INTV CHARGES UP  
RESET  
CC  
EN/FBIN > 1.35V(TYP) AND  
INTV > 4.1V (TYP) AND  
CC  
BIAS–INTV > 3.85V (TYP)  
EE  
(BUCK/BUCK-BOOST/ZETA)  
RESET DETECTED  
ACTIVE MODE  
• SS CHARGES UP  
RESET  
RESET  
• SS DISCHARGES QUICKLY  
• SWITCHER DISABLED  
SS < 50mV  
BEGIN SWITCHING  
RESET OVER  
• NFET BEGINS SWITCHING  
• PFET BEGINS SWITCHING  
• NO RESET CONDITIONS  
DETECTED  
WHEN INTV REGULATOR  
EE  
IS OUT OF UVLO  
RESET = UVLO ON V OR EXTV (<4.5V MAX)  
IN  
CC  
UVLO ON INTV (<3.6V TYP)  
CC  
UVLO ON INTV (BUCK/BUCK-BOOST/ZETA) (<3.6V TYP)  
EE  
EN/FBIN < 1.35V (TYP) AT 1ST POWER-UP  
EN/FBIN < 1.00V (TYP) AFTER ACTIVE MODE SET  
STATUS CHANGE ON OPMODE PIN  
OVERTEMPERATURE (T > 165°C)  
J
8711 F01  
Figure 1. State Diagram  
8711f  
10  
For more information www.linear.com/LT8711  
LT8711  
operaTion  
OPERATION—OVERVIEW  
latched so that if EN/FBIN drops between 1.03V to 1.35V  
(typical), the SS pin is not pulled low by the EN/FBIN pin.  
The EN/FBIN pin is also used for input voltage regulation  
which is at 1.200V (typical). Input voltage regulation is  
explained in more detail in the Operation—Regulation  
section. Taking the EN/FBIN pin below 0.2V shuts down  
the chip, resulting in extremely low quiescent current.  
See Figure 2 that illustrates the different EN/FBIN voltage  
thresholds.  
TheLT8711usesaconstantfrequency,currentmodecon-  
trol scheme to provide excellent line and load regulation.  
Thepart’sundervoltagelockout(UVLO)function,together  
with soft-start, offers a controlled means of starting up.  
Output voltage and input voltage have control over the  
commanded peak current which allows a wide range of  
applications to be built using the LT8711. Synchronous  
switching makes high efficiency and high output cur-  
rent applications possible. When operating at light load  
condition, the LT8711 will enter burst mode to minimize  
switching loss. Refer to the Block Diagram and the State  
Diagram (Figure 1) for the following description of the  
part’s operation.  
ACTIVE MODE  
(NORMAL OPERATION)  
(MODE LATCHED UNTIL EN/FBIN DROPS BELOW  
CHIP ENABLE TRESHOLD)  
1.42V  
ACTIVE MODE THRESHOLD  
(TOLERANCE)  
1.28V  
NORMAL OPERATION IF ACTIVE MODE SET  
1.27V  
INPUT VOLTAGE REGULATION  
(ONLY IF ACTIVE MODE SET)  
OPERATION—TOPOLOGY SELECTING  
1.12V  
The8711canbeconfiguredasasynchronousbuck,boost,  
SEPIC, ZETAornonsynchronousbuck-boostconverterby  
configuration of the OPMODE pin.  
SWITCH OFF, INTV AND INTV ENABLED, SS CAP  
CC  
EE  
DISCHARGED IF ACTIVE MODE NOT SET  
1.11V  
0.94V  
CHIP ENABLE THRESHOLD  
(HYSTERSIS AND TOLERANCE)  
WhentheOPMODEpinisconnectedtoGND,thecontroller  
operates in buck/ZETA mode.  
LOCKOUT  
(SWITCH OFF, SS CAP DISCHARGED, INTV AND  
CC  
INTV DISABLED)  
EE  
When the OPMODE pin is connected to the INTV pin,  
CC  
0.2V  
0V  
the controller operates in SEPIC/boost mode.  
SHUTDOWN  
(LOW QUIESCENT CURRENT)  
When the OPMODE pin is tied to a 100pF capacitor to  
GND, the controller operates in nonsynchronous buck-  
boost mode.  
8711 F03  
Figure 2. EN/FBIN Modes of Operation  
Undervoltage Lockout (UVLO)  
TheLT8711hasinternalUVLOcircuitrythatdisablesthechip  
OPERATION—START-UP  
when the greater of V or EXTV < 3.6V (typical). The EN/  
IN  
CC  
Several functions are provided to enable a very clean  
start-up of the LT8711.  
FBIN pin can also be used to create a configurable UVLO.  
Soft-Start of Switch Current  
Precise Turn-On Voltages  
The soft-start circuitry provides for a gradual ramp-up of  
the switch current (refer to Max Current Limit vs SS in  
Typical Performance Characteristics). When the part is  
brought out of shutdown, the external SS capacitor is first  
discharged which resets the states of the logic circuits in  
the chip. Once the chip is in active mode, an integrated  
410k resistor pulls the SS pin to ~4.3V at a ramp rate set  
by the external capacitor connected to the pin. Typical  
valuesforthesoft-startcapacitorrangefrom100nFto1μF.  
The EN/FBIN pin has two voltage levels for activating the  
part: one that enables the part and allows internal rails  
to operate and a 2nd voltage threshold which activates  
a soft-start cycle and switching can begin. To enable the  
part, take the EN/FBIN pin above 1.03V (typical). This  
comparator has 50mV of hysteresis to protect against  
glitches and slow ramping. To activate a soft-start cycle  
and allow switching, take EN/FBIN above 1.35V (typical).  
When EN/FBIN exceeds 1.35V (typical), the logic state is  
8711f  
11  
For more information www.linear.com/LT8711  
 
LT8711  
operaTion  
OPERATION—REGULATION  
Input Voltage Regulation  
Use the Block Diagram when stepping through the follow-  
ing description of the LT8711 operating in regulation. The  
LT8711 has two modes of regulation:  
A resistor divider from the converter’s input voltage to  
the EN/FBIN pin sets the input voltage regulation point.  
The EN/FBIN pin voltage connects to the positive input of  
amplifier EA2. The V pin voltage is set by EA2, which is  
C
1. Output Voltage (via FB pin)  
the amplified difference between the EN/FBIN pin voltage  
and an internal 1.200V reference voltage. In this manner,  
the EN/FBIN error amplifier sets the correct peak current  
level to maintain input voltage regulation.  
2. Input Voltage (via EN/FBIN pin)  
Both of these regulation loops control the peak com-  
manded current. At the start of each oscillator cycle, the  
SR latch is set, which first turns off the external rectifier  
switch (NFET in Block Diagram), and then turns on the  
external main switch (PFET in Block Diagram). The PFET’s  
current flows through an external current sense resistor  
(RSENSE) generating a voltage proportional to the PFET  
switch current. This voltage is then amplified by A1 and  
added to a stabilizing ramp. The resulting sum is fed into  
the positive terminal of the PWM comparator. When the  
voltage on the positive input of the PWM comparator ex-  
OPERATION—RESET CONDITIONS  
TheLT8711hasthreeresetcases.Whenthepartisinreset,  
the SS pin is pulled low and both power switches, NFET  
and PFET, are forced off. Once all of the reset conditions  
are gone, the part is allowed to begin a soft-start sequence  
andswitchingcancommence.Eachofthefollowingevents  
can cause the LT8711 to be in reset:  
1. UVLO  
ceeds the voltage on the negative input (V pin), the SR  
C
latch is reset, turning off the PFET and then turning on the  
a. ThegreaterofV andEXTV is<4.5V(maximum)  
IN  
CC  
NFET. The voltage on the V pin is controlled by one of the  
C
b. UVLO on INTV . INTV < 3.6V (typical)  
CC  
CC  
regulation loops, or a combination of regulation loops.  
c. UVLO on INTV . V  
– V  
< 3.6V (typical)  
INTVEE  
EE BIAS  
Slope compensation provides stability in constant fre-  
quency current mode control architectures by preventing  
subharmonic oscillations at high duty cycles. This is ac-  
complished internally by adding a compensating ramp to  
the positive terminal of the PWM comparator.  
unless BOOST/SEPIC topology is selected  
d. EN/FBIN < 1.35V (typical) at first power-up  
e. EN/FBIN < 1.00V (typical) after active mode set  
2. OPMODE pin status changes  
Output Voltage Regulation  
3. Die Temperature > 165°C  
The error amplifier servos the V node by comparing the  
C
voltage on the FB pin with an internal 0.800V reference.  
When the load current increases it causes a reduction in  
the feedback voltage relative to the reference causing the  
OPERATION—POWER SWITCH CONTROL  
The external PFET and NFET switches are never on at the  
same time (except buck-boost mode), and there is a non-  
overlap time of about 100ns to prevent cross conduction.  
error amplifier to raise the V voltage. In this manner, the  
C
FB error amplifier sets the correct peak current level to  
maintain output voltage regulation.  
8711f  
12  
For more information www.linear.com/LT8711  
LT8711  
operaTion  
Light Load Operation Modes  
OPERATION—LDO REGULATORS (INTV AND INTV )  
CC EE  
The SYNC pin can be used to tell the LT8711 to operate  
in FCM regardless of load current, or operate in DCM and  
Burst Mode at light loads.  
The INTV LDO regulates at 5.0V (typical) and is used  
CC  
as the top rail for the BG gate driver. The INTV LDO can  
CC  
run from V or EXTV and will intelligently select to run  
IN  
CC  
from the best rail to minimize power loss in the chip, but  
SYNC = logic high: FCM  
at the same time, select the proper input for maintaining  
SYNC = logic low: DCM or Burst Mode operation  
INTV as close to 5.0V as possible. The INTV regulator  
CC  
CC  
also has safety features to limit the power dissipation in  
theinternalpassdeviceandalsotopreventitfromdamage  
if the pin is shorted to ground. The UVLO threshold on  
IfaclockisappliedtotheSYNCpinthepartwillsynchronize  
to an external clock frequency and operate in FCM mode.  
INTV is 3.6V (typical), and the LT8711 will be in reset  
CC  
OPERATION—AUTOMATIC LOW NOISE Burst Mode  
OPERATION  
until the LDO comes out of UVLO.  
The INTV regulator regulates to 5.15V (typical) below  
EE  
At no load or very light load condition, high FB voltage  
the BIAS pin voltage. The BIAS and INTV voltages are  
EE  
causes V to decrease. When V voltage is lower than a  
C
C
used for the top and bottom rails of the TG gate driver  
threshold voltage, the controller operates in Burst Mode  
to minimize switching loss. Between bursts, all circuitry  
associated with controlling the output switch is shut  
down, reducing the average input supply current to 15μA  
in a typical application. Low standby power and higher  
conversion efficiency is thus achieved. To optimize the  
quiescent current performance at light loads, the current  
in the feedback resistor divider must be minimized as it  
appears to the output as load current.  
respectively. Just like the INTV regulator, the INTV  
CC  
EE  
regulatorhasasafetyfeaturetolimitthepowerdissipation  
in the internal pass device. The TG pin can begin switch-  
ing only after the INTV regulator comes out of UVLO  
EE  
(3.85V typical across the BIAS and INTV pins). When  
EE  
the INTV regulator is in UVLO, for the boost and SEPIC  
EE  
topologies, the bottom switch is allowed to switch. The  
output current would flow through the body diode of the  
PFET. To protect the PFET from thermal damage under this  
condition, the peak commanded current is folded back to  
25mV (maximum) across the CSP-CSN pins.  
8711f  
13  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
BUCK CONVERTER COMPONENT SELECTION  
Table 1. Buck Design Equations  
Parameters/Equations  
The LT8711 can be configured as a buck converter as in  
Figure 3.  
Step 1: Inputs  
Pick V , V , I , and f to calculate equations  
IN OUT OUT  
below.  
Step 2: DC  
For a desired output current and output voltage over a  
given input voltage range, Table 1 is a step-by-step set of  
equations to calculate component values for the LT8711  
when operating as a buck converter. Refer to more detail  
in this section and the Appendix for further information  
on the design equations presented in Table 1.  
MAX  
VOUT  
DCMAX  
V
IN MIN  
(
)
Step 3: V  
Step 4: R  
See Max Current Limit vs Duty Cycle plot in Typical  
Performance Characteristics to find V  
CSPN  
at DC  
.
CSPN  
MAX  
SENSE  
VCSPN  
IOUT  
R
SENSE 0.75 •  
Step 5: L  
Variable Definitions:  
RSENSE V  
VOUT  
)
(
)
IN MIN  
VOUT  
(
LTYP  
LMIN  
LMAX  
=
=
V
V
V
= Minimum Input Voltage  
= Maximum Input Voltage  
12.5mf  
VIN MIN  
IN(MIN)  
IN(MAX)  
(
)
RSENSE VIN MIN 2VOUT – V  
IN MIN  
(
)
(
)
40mf  
VOUT  
= Output Voltage  
OUT  
OUT  
RSENSE V  
VOUT  
(
)
IN MIN  
VOUT  
(
)
I
= Output Current of Converter  
=
2.5mf  
VIN MIN  
(
)
f = Switching Frequency  
Solve equations 1 to 4 for a range of L values.  
The minimum value of the L range is the higher of  
and L  
DC  
= Power Switch Duty Cycle at V  
MAX  
IN(MIN)  
L
TYP  
.
MIN  
V
CSPN  
= Current Limit Voltage at DC  
MAX  
Step 6: C  
OUT  
IN  
1DCMIN  
8 L f2 0.005  
V
IN  
COUT ≥  
5V TO  
40V  
C
IN  
10µF  
×5  
V
IN  
EN/FBIN  
BIAS  
Step 7: C  
2.2µF  
IOUT DCMAX  
CIN  
EXTV  
CC  
INTV  
f V  
V
EE  
OUT  
IN  
LT8711  
OPMODE  
∆V is acceptable maximum input ripple voltage.  
IN  
TG  
M1  
L1  
R
SENSE  
2.2µF  
Step 8: R /R  
4.7µH 4.5mΩ  
V
3.3V,  
6.5A  
FB1 FB2  
OUT  
VOUT  
0.8V  
INTV  
CC  
RFB1  
=
– 1 R  
FB2  
R 60.4k  
T
M2  
BG  
RT  
C
OUT  
Step 9: R  
T
SYNC  
SS  
GND  
100µF  
×2  
25000  
f
RT =  
– 2: f is in kHz and RT is in k  
47nF  
CSP  
CSN  
ISP  
R
1M  
FB1  
68pF  
NOTE: The final values for C  
and C may deviate from the above  
IN  
OUT  
equations in order to obtain desired load transient performance for a  
particular application. The C and C equations assume zero ESR, so  
1.5nF  
R
316k  
FB2  
ISN  
51k  
OUT  
IN  
V
C
increase the capacitance accordingly based on the combined ESR.  
FB  
8711 F03  
ADDITIONAL 470µF, 6.3V ELECTROLYTIC CAP ON V  
OUT  
47µF, 50V ELECTROLYTIC CAP ON V  
IN  
Figure 3. Buck Converter—The Component Values Given Are  
Typical Values for a 400kHz, 5V–40V to 3.3V/6.5A Buck  
8711f  
14  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
BOOST CONVERTER COMPONENT SELECTION  
Table 2. Boost Design Equations  
Parameters/Equations  
The LT8711 can be configured as a boost converter as  
in Figure 4.  
Step 1: Inputs  
Pick V , V , I , and f to calculate equations  
IN OUT OUT  
below.  
Step 2: DC  
For a desired output current and output voltage over a  
given input voltage range, Table 2 is a step-by-step set of  
equations to calculate component values for the LT8711  
when operating as a boost converter. Refer to more detail  
in this section and the Appendix for further information  
on the design equations presented in Table 2.  
MAX  
V
IN MIN  
(
)
DCMAX 1–  
VOUT  
Step 3: V  
Step 4: R  
See Max Current Limit vs Duty Cycle plot in Typical  
Performance Characteristics to find V  
CSPN  
at DC  
.
CSPN  
MAX  
SENSE  
VCSPN  
IOUT  
R
SENSE 0.63 •  
1DC  
(
MAX  
)
Step 5: L  
Variable Definitions:  
R
SENSE VIN MIN  
VIN MIN  
(
)
(
)
LTYP  
=
=
1–  
12.5mf  
VOUT  
V
V
V
I
= Minimum Input Voltage  
= Maximum Input Voltage  
IN(MIN)  
IN(MAX)  
V
RSENSE VOUT  
40mf  
IN MIN  
(
)
LMIN  
1–  
VOUT – V  
IN MIN  
(
)
= Output Voltage  
OUT  
R
SENSE VIN MIN  
VIN MIN  
(
)
(
)
= Output Current of Converter  
OUT  
LMAX1  
=
=
1–  
5mf  
VOUT  
f = Switching Frequency  
RSENSE VIN MAX  
VIN MAX  
(
)
(
)
LMAX2  
1–  
DC  
= Power Switch Duty Cycle at V  
IN(MIN)  
= Current Limit Voltage at DC  
MAX  
MAX  
5mf  
VOUT  
V
CSPN  
Solve equations 1 to 4 for a range of L values.  
The minimum value of the L range is the higher of  
and L . The maximum of the L value range  
V
IN  
10.8V TO  
13.2V  
L
TYP  
MIN  
C
10µF  
×6  
IN  
is the lower of L  
.
MAX  
EN/FBIN  
V
CSP  
ISP  
ISN  
CSN  
IN  
R
Step 6: C  
SENSE  
4mΩ  
OUT  
IN  
IOUT DCMAX  
f 0.005 VOUT  
EXTV  
CC  
V
COUT  
OUT  
LT8711  
V
L1  
8.2µH  
OUT  
2.2µF  
OPMODE  
Step 7: C  
BIAS  
DCMAX  
V
24V,  
3A  
OUT  
CIN  
M2  
2.2µF  
INTV  
RT  
8 L f2 0.005  
CC  
R
T
INTV  
EE  
60.4k  
R
FB1  
1M  
Step 8: R /R  
C
6.8µF  
×4  
FB1 FB2  
OUT  
VOUT  
0.8V  
SYNC  
RFB1  
=
– 1 R  
FB2  
BG  
GND  
TG  
M1  
330nF  
42pF  
R
34k  
FB2  
SS  
Step 9: R  
T
25000  
f
RT =  
– 2: f is in kHz and RT is in kΩ  
1nF  
187k  
NOTE: The final values for C  
equations in order to obtain desired load transient performance for a  
particular application. The C and C equations assume zero ESR, so  
and C may deviate from the above  
V
C
OUT  
IN  
FB  
8711 F04  
OUT  
IN  
ADDITIONAL 270µF, 50V ELECTROLYTIC CAP ON V  
increase the capacitance accordingly based on the combined ESR.  
OUT  
47µF, 50V ELECTROLYTIC CAP ON V  
IN  
Figure 4. Boost Converter—The Component Values Given are  
Typical Values for a 400kHz, 12V to 24V/3A Boost  
8711f  
15  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
SEPIC CONVERTER COMPONENT SELECTION  
Table 3. SEPIC Design Equations  
Parameters/Equations  
The LT8711 can be configured as a SEPIC converter as  
in Figure 5.  
Step 1: Inputs  
Pick V , V , I , and f to calculate equations  
IN OUT OUT  
below.  
Step 2: DC  
For a desired output current and output voltage over a  
given input voltage range, Table 3 is a step-by-step set of  
equations to calculate component values for the LT8711  
when operating as a SEPIC converter. Refer to more detail  
in this section and the Appendix for further information  
on the design equations presented in Table 3.  
MAX  
VOUT  
) + VOUT  
DCMAX  
V
IN MIN  
(
Step 3: V  
Step 4: R  
See Max Current Limit vs Duty Cycle plot in Typical  
Performance Characteristics to find V  
CSPN  
at DC  
.
CSPN  
MAX  
SENSE  
VCSPN  
R
SENSE 0.63 •  
1DC  
MAX  
(
)
IOUT  
= R  
R
= R  
SENSE1  
SENSE2  
SENSE  
Variable Definitions:  
Step 5: L  
VIN MIN  
RSENSE VOUT  
12.5mf  
(
)
V
V
V
= Minimum Input Voltage  
= Maximum Input Voltage  
LTYP  
=
=
IN(MIN)  
IN(MAX)  
VIN MIN + VOUT  
(
)
2
V
RSENSE VOUT  
40mf  
IN MIN  
(
)
= Output Voltage  
LMIN  
1–  
OUT  
OUT  
VOUT  
I
= Output Current of Converter  
V
RSENSE VOUT  
5mf  
IN MIN  
(
)
LMAX  
=
f = Switching Frequency  
VIN MIN + VOUT  
(
)
DC  
V
= Power Switch Duty Cycle at V  
= Current Limit Voltage at DC  
MAX  
IN(MIN)  
Solve equations 1 to 4 for a range of L values.  
The minimum value of the L range is the higher of  
and L . The maximum of the L value range  
CSPN  
MAX  
L
TYP  
MIN  
L1  
8.2µH  
is the lower of L  
.
MAX  
V
IN  
4.5V TO  
40V  
L = L1 = L2 for coupled inductors.  
L = L1 || L2 for uncoupled inductors.  
C
10µF  
×2  
V
OUT  
IN  
EN/FBIN  
V
BIAS  
IN  
C1  
10µF  
×3  
2.2µF  
Step 6: C1  
C1 ≥ 10µF (Typical); V  
> V  
RATING IN  
R
2mΩ  
SENSE  
EXTV  
CC  
INTV  
V
EE  
OUT  
V
12V,  
4A  
OUT  
M2  
LT8711  
Step 7: C  
OUT  
IOUT DCMAX  
f 0.005 VOUT  
2.2µF  
COUT  
R
OPMODE  
BG  
M1  
FB1  
1M  
L2  
C
22µF  
×3  
OUT  
INTV  
RT  
CC  
15µH  
R
T
118k  
R
71.5k  
FB2  
Step 8: C  
IN  
CSP  
DCMAX  
8 L f2 0.005  
CIN  
SYNC  
R
SENSE1  
2mΩ  
470nF  
4.7nF  
CSN  
GND  
SS  
100pF  
49.9k  
Step 9: R /R  
FB1 FB2  
VOUT  
0.8V  
RFB1  
=
– 1 R  
FB2  
TG  
ISP  
ISN  
V
C
Step 10: R  
FB  
T
25000  
f
RT =  
– 2: f is in kHz and RT is in kΩ  
8711 F05  
ADDITIONAL 270µF, 25V ELECTROLYTIC CAP ON V  
56µF, 50V ELECTROLYTIC CAP ON V  
OUT  
IN  
NOTE: The final values for C  
and C may deviate from the above  
OUT  
IN  
equations in order to obtain desired load transient performance for a  
particular application. The C and C equations assume zero ESR, so  
increase the capacitance accordingly based on the combined ESR.  
Figure 5. SEPIC Converter—The Component Values Given Are  
Typical Values for a 200kHz, 4.5V–40V to 12V/4A SEPIC  
OUT  
IN  
8711f  
16  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
ZETA CONVERTER COMPONENT SELECTION  
Table 4. ZETA Design Equations  
Parameters/Equations  
The LT8711 can be configured as a ZETA converter as in  
Figure 6.  
Step 1: Inputs  
Pick V , V , I , and f to calculate equations  
IN OUT OUT  
below.  
Step 2: DC  
For a desired output current and output voltage over a  
given input voltage range, Table 4 is a step-by-step set of  
equations to calculate component values for the LT8711  
when operating as a ZETA converter. Refer to more detail  
in this section and the Appendix for further information  
on the design equations presented in Table 4.  
MAX  
VOUT  
DCMAX  
V
) + VOUT  
IN MIN  
(
Step 3: V  
Step 4: R  
See Max Current Limit vs Duty Cycle plot in Typical  
Performance Characteristics to find V  
CSPN  
at DC  
.
CSPN  
MAX  
SENSE  
VCSPN  
R
SENSE 0.63 •  
1DC  
MAX  
(
)
IOUT  
= R  
R
= R  
SENSE1  
SENSE2  
SENSE  
Variable Definitions:  
Step 5: L  
VIN MIN  
RSENSE VOUT  
12.5mf  
(
)
V
V
V
= Minimum Input Voltage  
= Maximum Input Voltage  
LTYP  
=
=
IN(MIN)  
IN(MAX)  
VIN MIN + VOUT  
(
)
2
V
RSENSE VOUT  
40mf  
IN MIN  
(
)
= Output Voltage  
LMIN  
1–  
OUT  
OUT  
VOUT  
I
= Output Current of Converter  
V
RSENSE VOUT  
5mf  
IN MIN  
(
)
LMAX  
=
f = Switching Frequency  
VIN MIN + VOUT  
(
)
DC  
V
= Power Switch Duty Cycle at V  
= Current Limit Voltage at DC  
MAX  
IN(MIN)  
Solve equations 1 to 4 for a range of L values.  
The minimum value of the L range is the higher of  
and L . The maximum of the L value range  
CSPN  
MAX  
L
TYP  
MIN  
V
is the lower of L  
.
IN  
5V TO  
40V  
MAX  
C
IN  
CSP  
CSN  
L = L1 = L2 for coupled inductors.  
L = L1 || L2 for uncoupled inductors.  
10µF  
×6  
R
EN/FBIN  
V
BIAS  
SENSE1  
3.5mΩ  
IN  
2.2µF  
EXTV  
CC  
INTV  
V
EE  
OUT  
Step 6: C1  
C1 ≥ 10µF (Typical); V  
> V  
RATING IN  
LT8711  
OPMODE  
TG  
2.2µF  
L1A 2.2µH  
Step 7: C  
OUT  
IN  
IOUT DCMAX  
f 0.005 VOUT  
INTV  
COUT  
CC  
C1  
10µF ×3  
R
T
V
118k  
OUT  
RT  
CSP  
CSN  
CSP  
CSN  
12V,  
L1B 2.2µH  
3.5A (V > 16V)  
SYNC  
SS  
IN  
Step 8: C  
DCMAX  
8 L f2 0.005  
2.5A (9V < V < 16V)  
IN  
470nF  
CIN  
BG  
1.5A (V < 9V)  
IN  
R
ISN  
FB1  
100pF  
1M  
C
22µF  
×4  
OUT  
R
SENSE2  
3.5mΩ  
Step 9: R /R  
FB1 FB2  
VOUT  
0.8V  
2.2nF  
R
FB2  
69.8k  
ISP  
GND  
20k  
RFB1  
=
– 1 R  
FB2  
V
C
FB  
8711 F06  
Step 10: R  
T
25000  
f
RT =  
– 2: f is in kHz and RT is in kΩ  
ADDITIONAL 270µF, 25V ELECTROLYTIC CAP ON V  
OUT  
56µF, 50V ELECTROLYTIC CAP ON V  
IN  
NOTE: The final values for C  
and C may deviate from the above  
IN  
OUT  
equations in order to obtain desired load transient performance for a  
particular application. The C and C equations assume zero ESR, so  
increase the capacitance accordingly based on the combined ESR.  
Figure 6. ZETA Converter—The Component Values Given Are  
Typical Values for a 200kHz, 5V–40V to 12V/3.5A ZETA  
OUT  
IN  
8711f  
17  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
BUCK-BOOST CONVERTER COMPONENT SELECTION  
Table 5. Buck-Boost Design Equations  
Parameters/Equations  
The LT8711 can be configured as a buck-boost converter  
as in Figure 7.  
Step 1: Inputs  
Pick V , V , I , and f to calculate equations  
IN OUT OUT  
below.  
Step 2: DC  
For a desired output current and output voltage over a  
given input voltage range, Table 5 is a step-by-step set of  
equations to calculate component values for the LT8711  
when operating as a buck-boost converter. Refer to more  
detail in this section and the Appendix for further informa-  
tion on the design equations presented in Table 5.  
MAX  
VOUT  
) + VOUT  
DCMAX  
V
IN MIN  
(
Step 3: V  
Step 4: R  
See Max Current Limit vs Duty Cycle plot in Typical  
Performance Characteristics to find V  
CSPN  
at DC  
.
CSPN  
MAX  
SENSE  
VCSPN  
R
SENSE 0.63 •  
1DC  
MAX  
(
)
IOUT  
= R  
R
= R  
SENSE1  
SENSE2  
SENSE  
Variable Definitions:  
Step 5: L  
VIN MIN  
RSENSE VOUT  
12.5mf  
(
)
V
V
V
= Minimum Input Voltage  
= Maximum Input Voltage  
LTYP  
=
=
IN(MIN)  
IN(MAX)  
VIN MIN + VOUT  
(
)
2
V
RSENSE VOUT  
40mf  
IN MIN  
(
)
= Output Voltage  
LMIN  
1–  
OUT  
OUT  
VOUT  
I
= Output Current of Converter  
V
RSENSE VOUT  
5mf  
IN MIN  
(
)
LMAX  
=
f = Switching Frequency  
VIN MIN + VOUT  
(
)
DC  
V
= Power Switch Duty Cycle at V  
= Current Limit Voltage at DC  
MAX  
IN(MIN)  
Solve equations 1 to 4 for a range of L values.  
The minimum value of the L range is the higher of  
and L . The maximum of the L value range  
CSPN  
MAX  
L
TYP  
MIN  
is the lower of L  
.
MAX  
V
IN  
5V TO  
40V  
Step 6: C  
Step 7: C  
C
10µF  
×6  
OUT  
IN  
IOUT DCMAX  
f 0.005 VOUT  
COUT ≥  
EN/FBIN  
V
BIAS  
IN  
2.2µF  
EXTV  
CC  
LT8711  
OPMODE  
INTV  
V
EE  
OUT  
100pF  
IN  
TG  
DCMAX  
8 L f2 0.005  
M1  
L1 4.7µH  
V
OUT  
12V,  
CIN  
D2  
2.2µF  
3.5A (V >16V)  
IN  
INTV  
2.5A (9V < V < 16V)  
IN  
CC  
R
T
D1  
R
1.5A (V < 9V)  
IN  
Step 8: R /R  
FB1  
FB1 FB2  
60.4k  
VOUT  
0.8V  
ISN  
1M  
RT  
RFB1  
=
– 1 R  
FB2  
C
OUT  
R
SENSE2  
4mΩ  
SYNC  
SS  
100µF  
×2  
330nF  
100pF  
2.2nF  
R
FB2  
ISP  
GND  
69.8k  
Step 9: R  
T
25000  
f
M2  
R
RT =  
– 2: f is in kHz and RT is in kΩ  
BG  
CSP  
CSN  
10nF  
10Ω  
110k  
SENSE1  
NOTE: The final values for C  
equations in order to obtain desired load transient performance for a  
particular application. The C and C equations assume zero ESR, so  
and C may deviate from the above  
10Ω  
10nF  
OUT  
IN  
V
C
4mΩ  
FB  
OUT  
IN  
8711 F07  
increase the capacitance accordingly based on the combined ESR.  
Figure 7. Buck-Boost Converter—The Component Values  
Given Are Typical Values for a 400kHz, 5V–40V to 12V/2.5A  
Buck-Boost  
8711f  
18  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
SETTING THE OUTPUT VOLTAGE REGULATION  
The LT8711 output voltage is set by a resistor divider  
FROM SYSTEM  
V
OUT  
LT8711  
FB  
R
FB1  
between V , FB, and GND.  
OUT  
+
EA1  
RFB1  
RFB2  
R
FB2  
R2  
0.8V  
INTV  
5V  
VOUT = 0.8V 1+  
CC  
V
C
R
NTC  
where R and R are shown in the Block Diagram.  
FB1  
FB2  
See the Electrical Characteristics for tolerances on the FB  
regulation voltage.  
R1  
8711 F08  
Figure 8. Temperature Dependent Output Using an  
NTC Resistor Divider  
SETTING THE INPUT VOLTAGE REGULATION OR  
UNDERVOLTAGE LOCKOUT  
TheFBvoltagesregulatesto0.8V(typical).Foranaccurate  
room temperature output voltage, size the resistor divider  
By connecting a resistor divider between V , EN/FBIN,  
IN  
and GND, the EN/FBIN pin provides a means to regulate  
the input voltage or to create an undervoltage lockout  
function. Referring to error amplifier EA2 in the block  
diagram, when EN/FBIN is lower than the 1.2V reference,  
offtheINTV pintogive0.8Vsuchthatthecurrentthrough  
CC  
R2 is ~0 at room temperature. Choose R  
and use the equations below to calculate R1, R , and  
at room temperature and R  
change over temperature.  
≤ 10kΩ  
FB1  
for a desired V  
NTC(25)  
V
OUT  
FB2  
OUT  
V is pulled low. For example, if V is provided by a  
C
IN  
relatively high impedance source (e.g. a solar panel) and  
0.8V  
the current draw pulls V below a preset limit, V will be  
IN  
C
R1=R  
NTC(25) 5.0V – 0.8V  
reduced,thusreducingcurrentdrawfromtheinputsupply  
and limiting the input voltage drop.  
RFB1  
R2  
VOUT 0.8V+  
To set the minimum or regulated input voltage use:  
R1  
RFB1  
RFB2  
RIN1  
RIN2  
0.8V – 5.0V •  
+0.8V •  
V
= 1.2V 1+  
IN MIN–REG  
(
)
R1+RNTC(25)  
where R and R are shown in the Block Diagram.  
1
T
1
T
25  
IN1  
IN2  
β•  
R
NTC =RNTC 25) e  
(
Temperature Dependent Output Voltage Using NTC  
Resistor  
R
VOUT = –5.0V FB1 R1  
R2  
Itmaybedesirabletoregulatetheconverter’soutputbased  
on the ambient temperature. The INTV LDO regulated  
1
1
CC  
voltage is 5.0V 4% (see Electrical Characteristics), and  
a negative temperature coefficient (NTC) resistor can be  
used to sum into the FB pin to create an output voltage  
that decreases with temperature. See Figure 8 for the  
necessary connections.  
R1+RNTC(T(MAX)) R1+RNTC(T(MIN))  
–5.0V  
VOUT  
R2 =  
RFB1 R1  
1
1
R1+RNTC(T(MAX)) R1+RNTC(T(MIN))  
8711f  
19  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
where:  
ISP-ISN CURRENT SENSING  
R
ß
= Resistance of the NTC resistor at 25°C  
CSP/CSN current sensing is used in switching regulator  
peak current control.  
NTC(25)  
= Material-specific constant of NTC resistor.  
Specified at two temperatures such as  
ISP/ISN current sensing monitors the current of the rec-  
tifier switch and helps protect the circuit from overload  
conditions.  
ß
. If more than two ßs are specified,  
25/85  
usethemostappropriatefortheapplication.  
T
= Absolute temperature in Kelvin  
TheISP-ISNcircuitrydelaysswitchingiftherectifierswitch  
current goes too high. This mechanism also protects  
the part during short-circuit and overload conditions by  
keeping the current through the inductor under control.  
T
25  
= Room temperature in Kelvin (298.15K)  
SWITCH CURRENT LIMIT (CSP-CSN CURRENT  
SENSING)  
Let’s see a buck mode example.  
The external current sense resistor (R  
) sets the maxi-  
SENSE  
C
V
EN/FBIN V BIAS  
IN  
IN  
mum peak current. The maximum voltage across R  
SENSE  
is 50mV (typical) at very low switch duty cycles, and then  
slope compensation decreases the current limit as the duty  
cycle increases (see the Max Current Limit vs Duty Cycle  
(CSP-CSN)plotintheTypicalPerformanceCharacteristics).  
Theequationbelowgivestheswitchcurrentlimitforagiven  
duty cycle and current sense resistor (find V  
operating duty cycle in the plot mentioned).  
EXTV  
INTV  
EE  
CC  
OUT  
LT8711  
TG  
M1  
M2  
OPMODE  
L1  
R
SENSE  
INTV  
CC  
R
T
BG  
RT  
at the  
CSPN  
SYNC  
GND  
SS  
CSP  
CSN  
ISP  
R
R
FB1  
FB2  
VCSPN  
ISW LIMIT  
=
C
OUT  
(
)
RSENSE  
Toprovideadesiredloadcurrentforanygivenapplication,  
must be sized appropriately. The equation below  
ISN  
V
C
FB  
8711 F09  
R
SENSE  
calculates R  
for a desired output current:  
SENSE  
Figure 9. ISP-ISN Current Sensing Example  
VCSPN  
IOUT  
iRIPPLE  
RSENSE 0.74η•  
1DC  
(
1–  
MAX  
)
A potential controllability problem could occur under  
short-circuit conditions without rectifier switch current  
sensing. If the power supply output is short circuited, the  
feedbackamplifier(EA)respondstothelowoutputvoltage  
2
η
= Converter efficiency (assume ~90%)  
V
= Max current limit voltage (see Max Current  
Limit vs Duty Cycle (CSP-CSN) plot in the  
Typical Performance Characteristics)  
CSPN  
by raising the control voltage, V , to its peak current limit  
C
value. Ideally, the top switch would be turned on, and then  
turned off as its current exceeded the value indicated by  
I
= Converter load current  
OUT  
V . However, there is finite response time involved in both  
C
DC  
= Switching duty cycle at minimum V (see  
Power Switch Duty Cycle in Appendix)  
MAX  
IN  
thecurrentcomparatorandturnoffofthetopswitch.These  
result in a minimum on time, t  
. When combined  
ON(MIN)  
with high V , the potential exists for a loss of control.  
i
= Peak-to-peak inductor ripple current percent-  
IN  
RIPPLE  
age at minimum V (recommended to use  
IN  
25%)  
8711f  
20  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
Expressed mathematically the requirement to maintain  
control is:  
as possible to the LT8711. Resistors greater than 10Ω  
should be avoided as this can Increase the offset voltages  
at the CSP/CSN and ISP/ISN pins.  
V
R(SENSE)_L + VDS_NMOS +IR  
f tON  
Table 6. CSP/CSN, ISP/ISN Bias Current:  
V
IN  
V
CM  
= 0V  
V
> 3V  
CM  
where:  
f = switching frequency  
= switch minimum on time  
I_CSP (typ)  
I_CSN (typ)  
I_ISP (typ)  
I_ISN (typ)  
0µA  
4µA ~ 25µA  
110µA  
–4µA ~ –25µA  
0µA  
4µA ~ 25µA  
220µA  
t
ON  
–4µA ~ –25µA  
V
V
= voltage drop on high side sense resistor  
R(SENSE)_L  
When V changes from 0V to 3V, bias current changes  
gradually from low side values to high side values as  
shown in Table 6.  
CM  
= voltage drop on high side PMOS switch  
DS_NMOS  
V = Input voltage  
IN  
I R = inductor I R voltage drop  
CSN/ISN bias current at high side is proportional to tem-  
perature (see the CSN/ISN Bias Current vs Temperature  
plots in the Typical Performance Characteristics).  
If this condition is not observed, the current will not be  
limited at I , but will cycle-by-cycle ratchet up to some  
PK  
higher value. With rectifier switch current sensing, the  
current through the inductor would be controlled under  
thewholeclockcycle.Theswitchingwillonlyresumeonce  
Positive bias currents flow into the pins. Negative bias  
currents flow out of the pins.  
Bias current of 4µA ~ 25µA and –4µA ~ –25µA in the  
rectifier switch current has fallen below I .  
PK  
table changes according to the V voltage. 4µA (–4µA)  
C
ISP-ISN current sensing is also used in reverse current  
detecting for DCM operation.  
corresponds to the minimum V voltage. 25µA (–25µA)  
C
corresponds to the maximum V voltage.  
C
5.1Ω  
CURRENT SENSE FILTERING  
CSP OR ISP  
LT8711  
Certain applications may require filtering of the current  
sense signals due to excessive switching noise that can  
R
, R  
2.2nF  
SENSE1 SENSE2  
CSN OR ISN  
5.1Ω  
appear across R  
and/or R  
. Higher operating  
SENSE1  
SENSE2  
8710 F10a  
voltages,higherinductorcurrent,highervaluesofR  
,
SENSE  
andmorecapacitiveMOSFETswillallcontributeadditional  
noise across R when MOSFETs transition. The CSP/  
Figure 10a. Differential RC Filter on CSP/CSN and/or ISP/ISN Pins  
SENSE  
5.1Ω  
CSN and/or the ISP/ISN sense signals can be filtered by  
adding one of the RC networks shown in Figure 10. The  
filter shown in Figure 10a filters out differential noise,  
whereas the filter in Figure 10b filters out the differential  
and common mode noise at the expense of an additional  
capacitor and approximately twice the capacitance value.  
It is recommended to Kelvin tie the ground connection  
directly to the paddle of the LT8711 if using the filter in  
Figure 10b. The filter network should be placed as close  
CSP OR ISP  
4.7nF  
LT8711  
R
, R  
SENSE1 SENSE2  
4.7nF  
CSN OR ISN  
5.1Ω  
8711 F10b  
Figure 10b. Differential and Common Mode RC Filter on CSP/  
CSN and/or ISP/ISN Pins  
8711f  
21  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
SWITCHING FREQUENCY  
the SYNC pin is driven below 0.4V for a few free-running  
clock periods. The LT8711 will operate in FCM mode with  
internal free-running oscillator clock if driving SYNC high  
for an extended period of time.  
TheLT8711usesaconstantfrequencyarchitecturewhose  
frequency can be between 100kHz and 750kHz. The fre-  
quency can be set using the internal oscillator or can be  
synchronized to an external clock source. Selection of  
the switching frequency is a trade-off between efficiency  
and component size. Low frequency operation increases  
efficiency by reducing MOSFET switching losses, but  
requires larger inductance and/or capacitance to maintain  
low output ripple voltage. For high power applications,  
consider operating at lower frequencies to minimize  
MOSFET heating from switching losses. The switching  
frequency can be set by placing an appropriate resistor  
from the RT pin to ground and tying the SYNC pin low. The  
frequency can also be synchronized to an external clock  
source driven into the SYNC pin. The following sections  
provide more details.  
The duty cycle of the SYNC signal must be between 20%  
and 80% for proper operation. Also, the frequency of the  
SYNC signal must meet the following two criteria:  
1. SYNC may not toggle outside the frequency range of  
140kHz to 750kHz unless it is stopped below 0.4V to  
enable the free-running oscillator.  
2. TheSYNCfrequencycanalwaysbehigherthanthefree-  
running oscillator frequency (as set by the R resistor),  
T
f
, but should not be less than 20% below f  
.
OSC  
OSC  
LDO REGULATORS  
The LT8711 has two linear regulators to run the BG and  
TG gate drivers. The INTV LDO regulates 5V (typical)  
CC  
Oscillator Timing Resistor (RT)  
above ground, and the INTV regulator regulates 5.15V  
EE  
The operating frequency of the LT8711 can be set by the  
internal free-running oscillator. When the SYNC pin is  
driven low (< 0.4V), the frequency of operation is set by a  
resistorfromtheRTpintoground.Theoscillatorfrequency  
is calculated using the following formula:  
(typical) below the BIAS pin.  
INTV LDO Regulator  
CC  
The INTV LDO is used as the top rail for the BG gate  
CC  
driver. An external capacitor greater than 2.2μF must be  
25000  
RT +2  
placedfromtheINTV pintoground.Thecapacitorshould  
CC  
f =  
have low ESR, such as a ceramic capacitor.  
The INTV LDO can run off V or EXTV and will  
where f is in kHz and R is in kΩ. Conversely, R can  
CC  
IN  
CC  
T
T
intelligently select to run off the best rail for minimizing  
be calculated from the desired frequency using:  
chip power loss, but at the same time, select the proper  
25000  
input for maintaining INTV as close to 5V as possible.  
CC  
RT =  
– 2  
For example, Figure 11 is a plot that shows how V or  
f
IN  
EXTV is selected.  
CC  
Clock Synchronization  
Overcurrent protection circuitry typically limits the maxi-  
mum current draw from the LDO to ~50mA. If the selected  
inputvoltageisgreaterthan24V(typical), thenthecurrent  
limit of the LDO reduces linearly with input voltage to limit  
An external source can set the operating frequency of  
the LT8711 by providing a digital clock signal into the  
SYNC pin (RT resistor still required). The LT8711 will  
operate at the SYNC clock frequency. The LT8711 will  
revert to its internal free-running oscillator clock when  
the maximum power in the INTV pass device. See the  
CC  
INTV Current Limit vs V or EXTV plot in the Typical  
CC  
IN  
CC  
Performance Characteristics.  
8711f  
22  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
EXTV  
CC  
Overcurrent protection circuitry typically limits the maxi-  
mum current draw from the regulator to ~80mA. If the  
BIAS voltage is greater than15V (typical), then the current  
limit of the regulator reduces linearly with input voltage  
40V  
to limit the maximum power in the INTV pass device.  
EE  
See the INTV Current Limit vs BIAS plot in the Typical  
EE  
POWERED BY V  
IN  
Performance Characteristics.  
POWERED BY EXTV  
CC  
ThesamethermalguidelinesfromtheINTV LDORegula-  
CC  
tor section apply to the INTV regulator as well.  
EE  
5.5V  
0
V
IN  
NONSYNCHRONOUS CONVERTER  
0
5.5V  
40V  
V
, EXTV POWER SELECTION  
CC  
8711 F11  
IN  
It may be desirable in some applications to replace the  
external PFET with a Schottky diode to make a nonsyn-  
chronous converter. One example would be a high output  
voltage application because the voltage drop across the  
rectifierhasasmalleffectontheefficiencyoftheconverter.  
In fact, for high output voltage applications, replacing  
the PFET with a Schottky may result in higher efficiency  
because the LT8711 doesn’t have to supply gate drive to  
the PFET. Figure 12 shows the recommended connec-  
tions for using the LT8711 as a nonsynchronous boost  
converter, however the same concept can be used for any  
other converter topology.  
Figure 11. INTVCC Input Voltage Selection  
PowerdissipatedintheINTV LDOshouldbeminimizedto  
CC  
improveefficiencyandpreventoverheatingoftheLT8711.  
The current limit reduction with input voltage circuit helps  
prevent the part from overheating, but these guidelines  
should be followed. The maximum current drawn through  
the INTV LDO occurs under the following conditions:  
CC  
1. Large (capacitive) MOSFETs being driven at high  
frequencies  
2. The converter’s switch voltage (V for BUCK, V  
V
IN  
IN  
OUT  
for SEPIC  
for BOOST and BUCK-BOOST, V + V  
C
V
EN/FBIN V  
CSP  
ISP  
ISN  
CSN  
IN  
OUT  
IN  
IN  
converters) is high, thus requiring more charge to  
turn the MOSFET gates on and off.  
R
SENSE  
EXTV  
CC  
OUT  
LT8711  
OPMODE  
V
OUT  
L1  
In general, use appropriately sized MOSFETs and lower  
the switching frequency for higher voltage applications to  
BIAS  
V
C
OUT  
INTV  
INTV  
CC  
EE  
keep the INTV current at a minimum.  
CC  
R
R
FB1  
FB2  
OUT  
BG  
GND  
FB  
M1  
INTV LDO Regulator  
EE  
The BIAS and INTV voltages are used for the top and  
EE  
8711 F12  
bottom rails of the TG gate driver respectively. An external  
capacitor greater than 2.2μF must be placed between the  
Figure 12. Simplified Schematic of a Nonsynchronous  
Boost Converter  
BIAS and INTV pins. The capacitor should have low  
EE  
ESR, such as ceramic capacitor.  
8711f  
23  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
LAYOUT GUIDELINES FOR BUCK, BOOST, SEPIC, ZETA  
AND BUCK-BOOST TOPOLOGIES  
BUCK Topology Specific Layout Guidelines  
Keep length of loop (high speed switching path)  
governing MN, MP, C , and ground return as short  
IN  
General Layout Guidelines  
as possible to minimize parasitic inductive spikes at  
the switch node during switching.  
To optimize thermal performance, solder the ex-  
posed pad of the LT8711 to the ground plane with  
multiple vias around the pad connecting to additional  
ground planes.  
V
V
OUT  
IN  
L
High speed switching path (see specific topology  
below for more information) must be kept as short  
as possible.  
PFET  
R
SENSE  
C
IN1  
C
OUT1  
NFET  
The FB, V and RT components should be placed as  
C
C
IN2  
C
OUT2  
GND  
GND  
close to the LT8711 as possible, while being far away  
as practically possible from switching nodes. The  
ground for these components should be separated  
from the switch current path.  
LT8711  
Place bypass capacitors for the V and EXTV pins  
IN CC  
8711 F13  
(1μF or greater) as close as possible to the LT8711.  
Figure 13. Suggested Component Placement for Buck Topology  
Place bypass capacitors for the INTV and INTV  
CC  
EE  
(between BIAS and INTV ) pins (2.2μF or greater) as  
EE  
close as possible to the LT8711.  
Boost Topology Specific Layout Guidelines  
The load should connect directly to the positive and  
negative terminals of the output capacitor for best  
load regulation.  
Keep length of loop (high speed switching path) gov-  
erning MN, MP, C , and ground return as short as  
OUT  
possible to minimize parasitic inductive spikes at the  
switch node during switching.  
V
V
OUT  
IN  
R
SENSE  
L
PFET  
OUT2  
C
IN1  
C
OUT1  
NFET  
C
IN2  
C
GND  
GND  
LT8711  
8711 F13  
Figure 14. Suggested Component Placement for Boost Topology  
8711f  
24  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
SEPIC Topology Specific Layout Guidelines  
Buck-Boost Topology Specific Layout Guidelines  
Keep length of loop (high speed switching path)  
governing R , MN, C1, MP, R , C , and  
Keep length of loop (high speed switching path)  
governing R , DIO1, MP, C , and ground return  
SENSE1  
SENSE2 OUT  
SENSE1  
IN  
groundreturnasshortaspossibletominimizeparasitic  
as short as possible to minimize parasitic inductive  
inductive spikes at the switch node during switching.  
spikes at the switch node during switching.  
Keep length of loop (high speed switching path) gov-  
C1  
L
V
V
OUT  
IN  
erning R  
, MN, DIO2, C , and ground return  
SENSE2  
OUT  
PFET  
as short as possible to minimize parasitic inductive  
spikes at the switch node during switching.  
NFET  
R
SENSE2  
C
C
IN1  
OUT1  
L
V
V
OUT  
IN  
R
GND  
GND  
C
IN2  
SENSE1  
C
OUT2  
PFET  
DI01  
DI02  
NFET  
C
IN1  
C
OUT1  
LT8711  
R
R
C
IN2  
C
OUT2  
SENSE2 SENSE1  
8711 F15  
GND  
GND  
Figure 15. Suggested Component Placement for SEPIC Topology  
LT8711  
ZETA Topology Specific Layout Guidelines  
8711 F17  
Keep length of loop (high speed switching path)  
governing R , MN, C1, MP, R , C , and  
SENSE1  
SENSE2 IN  
Figure 17. Suggested Component Placement for Buck-Boost Topology  
groundreturnasshortaspossibletominimizeparasitic  
inductive spikes at the switch node during switching.  
Current Sense Resistor Layout Guidelines  
L
Route the CSP/CSN and ISP/ISN lines differentially  
(close together) from the chip to the current sense  
resistor as shown in Figure 17.  
C
V
V
OUT  
IN  
PFET  
Place the vias that connect the CSP/CSN and ISP/ISN  
lines directly at the terminals of the current sense  
resistor as shown in Figure 17.  
R
NFET  
SENSE2  
C
C
IN1  
OUT1  
R
GND  
GND  
C
IN2  
SENSE1  
C
OUT2  
R
SENSE1, 2  
LT8711  
TO  
CURRENT  
SENSE  
PINS  
8705 F20  
8711 F16  
Figure 18. Suggested Routing and Connections of  
CSP/CSN and ISP/ISN Lines  
Figure 16. Suggested Component Placement for ZETA Topology  
8711f  
25  
For more information www.linear.com/LT8711  
 
LT8711  
applicaTions inForMaTion  
THERMAL CONSIDERATIONS  
The following applies for both the NFET and PFET power  
switches. Below are the equations for the power loss in  
MN and MP.  
Overview  
The primary components on the board that consume the  
most power and produce the most heat are the power  
switches, MN and MP, the power inductor, the Schottky  
diodes in the nonsynchronous buck-boost converter and  
the LT8711 IC. It is imperative that a good thermal path  
be provided for these components to dissipate the heat  
generated within the packages. This can be accomplished  
by taking advantage of the thermal pads on the underside  
of the packages. It is recommended that multiple vias in  
the printed circuit board be used to conduct heat away  
from each of these components and into a copper plane  
with as much area as possible. For the case of the power  
switches,thecopperareaofthedrainconnectionsshouldn’t  
be too big as to create a large EMI surface that can radiate  
noise around the board.  
PMOSFET =P2 +P  
SWITCHING  
I R  
2
P
MN =IN RDS ON + VDS IN f tRF +P  
RR–N  
(
)
IVY  
1.6  
2
PMP =IP RDS ON + V I +  
f 140nx+P  
RR–N  
BD  
PK  
(
)
i
iRIPPLE  
IPK =ISW  
+
RIPPLE ; IVY =ISW  
2
2
VDS IRR tRR f  
P
RR–N  
2
VDS IRR tRR f  
P
RR–P  
2
where:  
f
= Switching Frequency  
= NFET RMS Current  
= PFET RMS Current  
Power MOSFET Loss and Thermal Calculations  
I
I
t
N
The LT8711 requires two external power MOSFETs, an  
NFET switch for the BG gate driver and a PFET switch for  
the TG gate driver. Important parameters for estimating  
the power dissipation in the MOSFETs are:  
P
= Average of the rise and fall times of the NFET’s  
drain voltage  
RF  
I
I
I
= Average switch current during its on-time  
= Peak inductor current  
SW  
PK  
VY  
1. On-resistance (R  
)
DS(ON)  
2. Gate-to-drain charge (Q )  
GD  
= Valley inductor current  
3. PFET body diode forward voltage (V )  
BD  
i
= Inductor ripple current  
RIPPLE  
4. V of the FETs during their Off-Time  
DS  
DC  
= Switchdutycycle(seePowerSwitchDutyCycle  
section in Appendix)  
5. Switch current (I  
)
SW  
6. Switching frequency (f)  
V
V
P
= PFET body diode forward voltage at I  
= Voltage across the FET when it’s off.  
BD  
SW  
The power loss in each power switch has a DC and AC  
term. The DC term is when the power switch is fully on,  
and the AC term is when the power switch is transitioning  
from on-off or off-on.  
DS  
= PFET body diode reverse recovery power loss  
in the NFET  
RR-N  
8711f  
26  
For more information www.linear.com/LT8711  
LT8711  
applicaTions inForMaTion  
P
RR-P  
= PFET body diode reverse recovery power loss  
in the PFET  
The INTV LDO primarily supplies voltage for the BG  
CC  
gate driver. The BIAS and INTV voltages supply the top  
EE  
and bottom rails of the TG gate driver respectively. The  
I
t
= Current needed to remove the PFET body diode  
charge  
RR  
chip Q current comes from INTV . Below are the chip  
CC  
power equations:  
= Reverse recovery time of PFET body diode  
RR  
P
P
P
= Q f V  
MN  
INTVCC_BG  
SELECT  
Typical values for t are 10ns to 40ns depending on the  
RF  
= 2mA V  
INTVCC_Q  
SELECT  
MOSFET capacitance and drain voltage. In general, the  
lower the QGD of the MOSFET, the faster the rise and fall  
times of its drain voltage. For best calculations, measure  
the rise and fall times in the application.  
= Q f V  
BIAS  
INTVEE  
MP  
where:  
f
= Switching frequency  
PFET body diode reverse recovery power loss is depen-  
dent on many factors and can be difficult to quantify in  
an application. In general, this power loss increases with  
Q
MN  
= Total gate charge of NFET power switch (MN)  
Q
MP  
= Total gate charge of PFET power switch (MP)  
higher V and/or higher switching frequency.  
DS  
V
= INTV LDO selected input  
CC  
SELECT  
voltage, V or EXTV (see LDO Regulators  
IN  
CC  
Chip Power and Thermal Calculations  
section)  
Power dissipation in the LT8711 chip comes from three  
Thermal Lockout  
primary sources: INTV and INTV LDOs providing gate  
CC  
EE  
drive to the BG and TG pins and the chip quiescent cur-  
rent. Theaveragecurrentthrough eachLDOisdetermined  
by the gate charge of the power switches, MN and MP,  
and the switching frequency. Below are the equations for  
calculating the chip power loss.  
If the die temperature reaches ~165°C, the part will go  
into shutdown, so the power switches turn off and the  
soft-start capacitor will be discharged. The LT8711 will  
come out of shutdown when the die temperature drops  
by ~5°C (typical).  
8711f  
27  
For more information www.linear.com/LT8711  
LT8711  
appenDix  
POWER SWITCH DUTY CYCLE  
INDUCTOR SELECTION  
The external power main switch (PFET in the Block Dia-  
gram)cannotremainofffor100%ofeachclockcycle, and  
will turn on for a minimum on time (MinOnTime) when in  
regulation. This MinOnTime governs the minimum allow-  
able duty cycle given by:  
For high efficiency, choose inductors with high frequency  
core material, such as ferrite, to reduce core losses.  
Additionally,chooseinductorswithmorevolumeforagiven  
inductance. The inductor should have low DCR (copper-  
2
wire resistance) to reduce I R losses, and must be able  
to handle the peak inductor current without saturating.  
Note that in some applications, the current handling  
requirements of the inductor can be lower, such as in the  
SEPIC topology where each inductor carries a fraction of  
the total switch current. Molded chokes or chip inductors  
do not have enough core area to support peak inductor  
currents in the 5A to 15A range. To minimize radiated  
noise, use a toroidal or shielded inductor. See Table 7 for  
a list of inductor manufacturers.  
(MinOnTime)  
DCMIN  
=
100%  
T
P
where TP is the clock period and MinOnTime (found in  
the Electrical Characteristics) is 100ns (typ).  
Theapplicationshouldbedesignedsuchthattheoperating  
duty cycle is higher than DC  
.
MIN  
Duty cycle equations for different topologies are given  
below.  
Table 7. Inductor Manufacturers  
For the Buck topology (see Figure 3):  
VOUT  
Coilcraft  
MSS1278, XAL1010, and  
MSD1278 Series  
www.coilcraft.com  
DCBUCK  
Cooper  
DRQ127, DR127, and  
www.cooperbussmann.com  
V
Bussmann HCM1104 Series  
IN  
Vishay  
Würth  
IHLP Series  
www.vishay.com  
For the Boost topology (see Figure 4):  
WE-DCT Series  
WE-CFWI Series  
www.we-online.com  
V
IN  
DCBOOST 1–  
VOUT  
For the SEPIC topology (see Figures 6):  
VOUT  
Minimum Inductance  
Although there can be a trade-off with efficiency, it is  
often desirable to minimize board space by choosing  
smaller inductors. When choosing an inductor, there are  
two conditions that limit the minimum inductance; (1)  
providing adequate load current, and (2) avoidance of  
subharmonic oscillation.  
DCSEPIC  
V + V  
IN  
OUT  
For the ZETA topology (see Figures 7):  
VOUT  
DCZETA  
V + V  
IN  
OUT  
Adequate Load Current  
For the Buck-Boost topology (see Figures 8):  
Small value inductors result in increased ripple currents  
and thus, due to the limited peak switch current, decrease  
the average current that can be provided to the load.  
VOUT  
DCBUCKBOOST  
V + V  
IN  
OUT  
8711f  
28  
For more information www.linear.com/LT8711  
 
LT8711  
appenDix  
Avoiding Subharmonic Oscillations  
IfoperatingclosetotheBV  
ratingoftheMOSFET,check  
DSS  
theleakagespecificationsontheMOSFETbecauseleakage  
can decrease the efficiency of the converter.  
The LT8711’s internal slope compensation circuit will  
prevent subharmonic oscillations that can occur when  
the duty cycle is greater than 50%, provided that the in-  
ductance exceeds a minimum value. In applications that  
operate with duty cycles greater than 50%, the inductance  
must be at least:  
The NFET and PFET gate-to-source drive is 5V typical.  
The BG gate driver can begin switching when the INTV  
CC  
voltage exceeds ~4.1V, so ensure the selected NFET is in  
the linear mode of operation with 4.1V of gate-to-source  
drive to prevent possible damage to the NFET.  
V R  
2 DC – 1  
(
)
IN  
SENSE  
LMIN  
LMIN  
where  
, Buck Topology  
The TG gate driver can begin switching when the BIAS-  
40mDC f  
INTV voltage exceeds ~3.85V, so it is optimal that the  
EE  
V R  
2 DC – 1  
(
)
IN  
SENSE  
PFET be in the linear mode of operation with 3.85V of  
gate-to-source drive. Try to choose a PFET with a low body  
diode reverse recovery time to minimize stored charge in  
the PFET. The stored charge in the PFET body diode gets  
removed when the NFET switch turns on and can lead to  
, Other Topologies  
40mDC f 1DC  
(
)
L
= L1 for buck, boost and buck-boost topologies  
= L1 = L2 for coupled dual inductor topologies  
MIN  
efficiency hits especially in applications where the V of  
DS  
L
MIN  
thePFET(duringoff-time)ishigh.Fortheseapplications,it  
may be beneficial to put a Schottky diode across the PFET  
to reduce the amount of charge in the PFET body diode.  
(SEPIC and ZETA)  
L
= L1 || L2 for uncoupled dual inductor topologies  
MIN  
(SEPIC and ZETA)  
Power MOSFET on-resistance and total gate charge go  
hand-in-hand and are typically inversely proportional to  
each other; the lower the on-resistance, the higher the  
total gate charge. Choose MOSFETs with an on-resistance  
to give a voltage drop to be less than 300mV at the peak  
current. At the same time, choose MOSFETs with a lower  
total gate charge to reduce LT8711 power dissipation and  
MOSFET switching losses.  
Inductor Current Rating  
The inductor(s) must have a rating greater than its (their)  
peak operating current to prevent inductor saturation,  
which would result in efficiency losses.  
POWER MOSFET SELECTION  
The LT8711 requires two external power MOSFETs, an  
NFET switch for the BG gate driver and a PFET switch for  
the TG gate driver. It is important to select MOSFETs for  
optimizing efficiency. For choosing an NFET and PFET, the  
important device parameters are:  
The turn-off delay time (t  
) of available NFETs is  
D(OFF)  
generally smaller than the LT8711’s non-overlap time.  
However, the turn-off time of the available PFETs should  
be looked at before deciding on a PFET for a given applica-  
tion. The turn-off time must be less than the non-overlap  
time of the LT8711 or else the NFET and PFET could be  
on at the same time and damage to external components  
may occur. If the PFET turn-off delay time as specified in  
the data sheet is less than the LT8711 non-overlap time,  
then the PFET is good to use. If the turn-off delay time is  
longer than the non-overlap time, it doesn’t necessarily  
mean it can’t be used. It may be unclear how the PFET  
1. Breakdown voltage (BV  
)
DSS  
2. Gate threshold voltage (V  
)
GSTH  
3. On-resistance (R  
)
DS(ON)  
4. Total gate charge (Q )  
G
5. Turn-off delay time (t  
)
D(OFF)  
6. Package has exposed paddle  
8711f  
29  
For more information www.linear.com/LT8711  
LT8711  
appenDix  
manufacturer measures the turn-off delay time, so it is  
best to measure the PFET turn-off delay time with respect  
to the PFET gate voltage.  
Ceramic capacitors should be placed near the regulator  
input and output to suppress high frequency switching  
noise. A minimum 1μF ceramic capacitor should also be  
placed from V to GND and from EXTV to GND as close  
IN  
CC  
Finally, both the NFET and PFET power MOSFETs should  
be in a package with an exposed paddle for the drain  
connection to be able to dissipate heat. The on-resistance  
of MOSFETs is proportional to temperature, so it’s more  
efficient if the MOSFETs are running cool with the help  
of the exposed paddle. See Table 8 for a list of power  
MOSFET manufacturers.  
to the LT8711 pins as possible. Due to their excellent low  
ESR characteristics, ceramic capacitors can significantly  
reduce ripple voltage and help reduce power loss in the  
higher ESR bulk capacitors. X5R or X7R dielectrics are  
preferred, as these materials retain their capacitance over  
wide voltage and temperature ranges. Many ceramic ca-  
pacitors,particularly0805or0603casesizes,havegreatly  
reduced capacitance at the desired operating voltage.  
Table 8. Power MOSFET (NFET and PFET) Manufacturers  
Fairchild Semiconductor  
On-Semiconductor  
Vishay  
www.fairchildsemi.com  
www.onsemi.com  
www.vishay.com  
COMPENSATION – ADjUSTMENT  
To compensate the feedback loop of the LT8711, a series  
resistorcapacitornetworkinparallelwithanoptionalsingle  
capacitorshouldbeconnectedfromtheV pintoGND.For  
Diodes Inc.  
www.diodes.com  
C
INPUT AND OUTPUT CAPACITOR SELECTION  
most applications, choose a series capacitor in the range  
of 0.47nF to 10nF with 2.2nF being a good starting value.  
The optional parallel capacitor should range in value from  
47pF to 220pF with 100pF being a good starting value.  
Input and output capacitance is necessary to suppress  
voltage ripple caused by discontinuous current moving  
in and out of the regulator. A parallel combination of  
capacitorsistypicallyusedtoachievehighcapacitanceand  
low ESR (equivalent series resistance). Tantalum, special  
polymer,aluminumelectrolyticandceramiccapacitorsare  
all available in surface mount packages. Capacitors with  
low ESR and high ripple current ratings, such as OS-CON  
and POSCAP are also available.  
The compensation resistor, R , is usually in the range  
C
of 10k to 100k. A good technique to compensate a new  
application is to use a 100k potentiometer in place of the  
series resistor RC. With the series and parallel capacitors  
at 2.2nF and 100pF respectively, adjust the potentiometer  
while observing the transient response and the optimum  
value for RC can be found. The series capacitor can be  
reducedorincreasedfrom2.2nFtospeeduptheconverter  
or slow down the converter, respectively.  
8711f  
30  
For more information www.linear.com/LT8711  
 
LT8711  
Typical applicaTions  
400kHz, 5V–40V Input to 3.3V/6.5A Buck  
V
IN  
5V TO  
40V  
C
10µF  
×5  
IN  
EN/FBIN  
V
BIAS  
IN  
2.2µF  
EXTV  
CC  
INTV  
V
EE  
OUT  
LT8711  
OPMODE  
TG  
M1  
L1  
4.7µH  
R
SENSE  
5mΩ  
2.2µF  
V
OUT  
INTV  
CC  
3.3V, 6.5A  
R
60.4k  
T
M2  
BG  
RT  
C
OUT  
SYNC  
SS  
GND  
100µF  
×2  
47nF  
CSP  
CSN  
ISP  
R
FB1  
68pF  
1M  
1.5nF  
R
316k  
FB2  
ISN  
51k  
V
C
FB  
8711 TA02a  
L1: COILCRAFT 4.7µH XAL7070-472  
M1: ST STL42P6LLF6  
M2: FAIRCHILD FDMC86520L  
C : 10µF, 50V, X7R  
IN  
ADDITIONAL 47µF, 50V ELECTROLYTIC CAP ON V  
IN  
C
: 100µF, 6.3V, X7R  
OUT  
ADDITIONAL 470µF, 16V ELECTROLYTIC CAP ON V  
OUT  
Efficiency vs Load Current  
Transient Response with 2A to 5.5A to 2A Output Load Step  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LOAD STEP  
5A/DIV  
V
OUT  
200mV/DIV  
I
L1  
5A/DIV  
V
V
V
V
= 5V  
IN  
IN  
IN  
IN  
= 12V  
= 24V  
= 36V  
8711 TA02c  
200µs/DIV  
0.001  
0.01  
0.1  
1
7
LOAD CURRENT (A)  
8711 TA02b  
8711f  
31  
For more information www.linear.com/LT8711  
LT8711  
Typical applicaTions  
400kHz, 12V Input to 24V/3A Boost Converter  
V
IN  
10.8V TO  
13.2V  
C
10µF  
×6  
IN  
EN/FBIN V  
CSP  
ISP  
IN  
R
SENSE  
ISN  
CSN  
4mΩ  
EXTV  
CC  
V
OUT  
LT8711  
V
L1  
OUT  
2.2µF  
8.2µH  
M2  
OPMODE  
BIAS  
V
OUT  
2.2µF  
INTV  
RT  
CC  
24V, 3A  
R
T
INTV  
EE  
60.4k  
R
FB1  
1M  
C
OUT  
SYNC  
6.8µF  
×4  
BG  
GND  
TG  
M1  
330nF  
42pF  
R
34k  
FB2  
SS  
1nF  
187k  
V
C
FB  
8711 TA03a  
L1: WÜRTH 8.2µH WE-HCI 7443550820  
M1: INFINEON BSC026N04  
M2: ST STL60P4LLF6  
C : 10µF, 50V, X7R  
IN  
ADDITIONAL 47µF, 50V ELECTROLYTIC CAP ON V  
IN  
C
: 6.8µF, 50V, X7R  
OUT  
ADDITIONAL 270µF, 50V ELECTROLYTIC CAP ON V  
OUT  
Efficiency vs Load Current  
Transient Response with 1A to 2.5A to 1A  
Output Load Step (VIN = 12V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LOAD STEP  
2A/DIV  
V
OUT  
500mV/DIV  
I
L1  
5A/DIV  
V
V
V
= 5V  
= 12V  
= 20V  
IN  
IN  
IN  
8711 TA03c  
500µs/DIV  
0.001  
0.01  
0.1  
1
3
LOAD CURRENT (A)  
8711 TA03b  
8711f  
32  
For more information www.linear.com/LT8711  
LT8711  
Typical applicaTions  
200kHz, 4.5V–40V Input to 12V/4A SEPIC  
V
IN  
4.5V TO  
40V  
C
10µF  
×2  
V
OUT  
IN  
EN/FBIN V BIAS  
IN  
L1  
2.2µF  
8.2µH  
EXTV  
INTV  
EE  
LT8711  
V
CC  
OUT  
C1  
10µF ×3  
R
SENSE2  
2mΩ  
V
M2  
OUT  
2.2µF  
12V, 4A (V > 5V)  
OPMODE  
IN  
R
INTV  
CC  
FB1  
L2  
15µH  
BG  
1M  
M1  
C
22µF  
×3  
OUT  
R
118k  
T
RT  
SYNC  
CSP  
R
71.5k  
FB2  
R
SENSE1  
470nF  
4.7nF  
2mΩ  
CSN  
GND  
SS  
100pF  
49.9k  
TG  
ISP  
ISN  
V
C
FB  
8711 TA04a  
L1: COILCRAFT 8.2µH XAL1510-822ME  
L2: COILCRAFT 15µH XAL1510-153ME  
M1: VISHAY SiR826ADP  
C : 10µF, 50V, X7R  
IN  
ADDITIONAL 56µF, 50V ELECTROLYTIC CAP ON V  
IN  
C
: 22µF, 25V, X7R  
OUT  
M2: ST STL42P6LLF6  
ADDITIONAL 270µF, 25V ELECTROLYTIC CAP ON V  
OUT  
Efficiency vs Load Current  
Transient Response with 2A to 4A to 2A  
Output Load Step (VIN = 12V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
OUT  
500mV/DIV  
LOAD STEP  
2A/DIV  
I
L1  
V
V
V
V
= 5V  
IN  
IN  
IN  
IN  
5A/DIV  
= 12V  
= 24V  
= 36V  
8711 TA04c  
500µs/DIV  
0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
8711 TA04b  
8711f  
33  
For more information www.linear.com/LT8711  
LT8711  
Typical applicaTions  
200kHz, 5V–40V Input to 12V/3.5A ZETA Converter  
V
IN  
5V TO  
40V  
C
10µF  
×6  
IN  
CSP  
EN/FBIN V BIAS  
R
IN  
SENSE1  
2.2µF  
3.5mΩ  
CSN  
EXTV  
INTV  
EE  
V
CC  
OUT  
LT8711  
OPMODE  
TG  
CSP  
CSN  
M2  
C1  
10µF ×3  
CSP  
CSN  
2.2µF  
L1B  
10µH  
L1A  
10µH  
INTV  
CC  
V
OUT  
R
T
12V, 3.5A (V > 16V)  
IN  
118k  
2.5A (9V < V < 16V)  
1.5A (V < 9V)  
IN  
RT  
IN  
M1  
SYNC  
SS  
BG  
330nF  
ISN  
R
FB1  
R
SENSE2  
1M  
100pF  
3.5mΩ  
C
OUT  
22µF ×4  
ISP  
GND  
R
69.8k  
FB2  
1nF  
62k  
V
C
FB  
8711 TA05a  
L1: COILCRAFT 10µH MSD1583-103  
M1: VISHAY SiR826ADP  
M2: VISHAY Si7461DP  
C : 10µF, 50V, X7R  
IN  
ADDITIONAL 56µF, 50V ELECTROLYTIC CAP ON V  
IN  
C
: 22µF, 25V, X7R  
OUT  
ADDITIONAL 270µF, 25V ELECTROLYTIC CAP ON V  
OUT  
Efficiency vs Load Current  
Transient Response with 1.5A to 3A to 1.5A  
Output Load Step (VIN = 16V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LOAD STEP  
2A/DIV  
V
OUT  
200mV/DIV  
I
L1  
2A/DIV  
V
V
V
= 6V  
= 12V  
= 24V  
IN  
IN  
IN  
8711 TA05c  
400µs/DIV  
0.001  
0.01  
0.1  
1
4
LOAD CURRENT (A)  
8711 TA05b  
8711f  
34  
For more information www.linear.com/LT8711  
LT8711  
Typical applicaTions  
400kHz, 5V–40V Input to 12V/3.5A Buck-Boost Converter  
V
IN  
5V TO  
40V  
C
IN  
EN/FBIN V  
BIAS  
IN  
10µF ×6  
2.2µF  
EXTV  
CC  
LT8711  
OPMODE  
INTV  
V
EE  
OUT  
100pF  
TG  
M1  
L1  
4.7µH  
2.2µF  
D1  
D2  
V
OUT  
INTV  
CC  
ISN  
12V, 3.5A (V >16V)  
IN  
R
T
60.4k  
R
R
SENSE2  
FB1  
2.5A (9V < V < 16V)  
IN  
1.5A (V < 9V)  
IN  
RT  
4mΩ  
1M  
C
OUT  
100µF ×2  
SYNC  
SS  
ISP  
GND  
330nF  
100pF  
2.2nF  
M2  
R
69.8k  
FB2  
BG  
CSP  
10Ω  
10Ω  
10nF  
R
SENSE1  
4mΩ  
CSN  
110k  
V
C
10nF  
FB  
8711 TA06a  
L1: COILCRAFT 4.7µH XAL8080-472ME  
M1: ST STL60P4LLF6  
M2: FAIRCHILD FDMC86520L  
D1, D2: VISHAY SS10P6M3  
C : 10µF, 50V, X7R  
IN  
ADDITIONAL 47µF, 50V ELECTROLYTIC CAP ON V  
IN  
C
: 100µF, 16V, X7R  
OUT  
ADDITIONAL 390µF, 16V ELECTROLYTIC CAP ON V  
OUT  
Efficiency vs Load Current  
Transient Response with 1.5A to 3A to 1.5A  
Output Load Step (VIN = 9V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LOAD STEP  
2A/DIV  
V
OUT  
200mV/DIV  
I
L1  
V
V
V
V
= 5V  
IN  
IN  
IN  
IN  
5A/DIV  
= 12V  
= 24V  
= 36V  
8711 TA06c  
500µs/DIV  
0.001  
0.01  
0.1  
1
3
LOAD CURRENT (A)  
8711 TA06b  
8711f  
35  
For more information www.linear.com/LT8711  
LT8711  
package DescripTion  
Please refer to http://www.linear.com/product/LT8711#packaging for the most recent package drawings.  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev K)  
Exposed Pad Variation CB  
DETAIL A  
6.40 – 6.60*  
3.86  
(.152)  
(.252 – .260)  
0.60  
(.024)  
REF  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
0.28  
(.011)  
REF  
6.60 ±0.10  
DETAIL A IS THE PART OF  
THE LEAD FRAME FEATURE  
FOR REFERENCE ONLY  
2.74  
(.108)  
DETAIL A  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
NO MEASUREMENT PURPOSE  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE20 (CB) TSSOP REV K 0913  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
8711f  
36  
For more information www.linear.com/LT8711  
LT8711  
package DescripTion  
Please refer to http://www.linear.com/product/LT8711#packaging for the most recent package drawings.  
UDC Package  
20-Lead Plastic QFN (3mm × 4mm)  
(Reference LTC DWG # 05-08-1742 Rev Ø)  
0.70 ±0.05  
3.50 ±0.05  
2.10 ±0.05  
1.50 REF  
2.65 ±0.05  
1.65 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
2.50 REF  
3.10 ±0.05  
4.50 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.25  
0.75 ±0.05  
× 45° CHAMFER  
1.50 REF  
19 20  
R = 0.05 TYP  
3.00 ±0.10  
0.40 ±0.10  
1
PIN 1  
TOP MARK  
(NOTE 6)  
2
2.65 ±0.10  
1.65 ±0.10  
4.00 ±0.10  
2.50 REF  
(UDC20) QFN 1106 REV Ø  
0.200 REF  
0.00 – 0.05  
0.25 ±0.05  
R = 0.115  
TYP  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
8711f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
37  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT8711  
Typical applicaTion  
Boost Pre-Regulator for Automotive Stop-Start/Idle  
V
IN  
3V TO  
36V  
C
10µF  
×6  
IN  
EN/FBIN  
V
CSP  
ISP  
IN  
R
SENSE  
ISN  
CSN  
3.5mΩ  
EXTV  
CC  
V
OUT  
LT8711  
D1  
V
L1  
5.6µH  
OUT  
2.2µF  
OPMODE  
BIAS  
V
OUT  
9V , 3A  
M2  
2.2µF  
2Ω  
INTV  
RT  
CC  
MIN  
R
T
INTV  
EE  
100k  
R
FB1  
560k  
C
OUT  
L1: WÜRTH 5.6µH WE-HCI 7443557560  
M1: FAIRCHILD FDS8447  
M2: FAIRCHILD FDD4141  
D1: FAIRCHILD MBRS340  
SYNC  
22µF  
×4  
BG  
GND  
TG  
M1  
330nF  
100pF  
R
55k  
FB2  
SS  
2Ω  
C
: 10µF, 50V, X7R  
IN  
ADDITIONAL 56µF, 50V ELECTROLYTIC CAP ON V  
IN  
2.2nF  
C
: 22µF, 25V, X7R  
OUT  
ADDITIONAL 270µF, 25V ELECTROLYTIC CAP ON V  
100k  
OUT  
V
C
FB  
8711 TA07a  
No-Load Supply Current  
Transient VIN and VOUT Waveforms  
150  
120  
90  
60  
30  
0
V
OUT  
5V/DIV  
V
IN  
5V/DIV  
0V  
8711 TA07c  
10ms/DIV  
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
8711 TA07b  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT3757A  
LT3758A  
LT3957A  
LT3958  
LT8705A  
LT8709  
LT8710  
LT8714  
Boost, Flyback, SEPIC and Inverting Controller  
2.9V ≤ V ≤ 40V, 100kHz to 1MHz Programmable Operating Frequency,  
IN  
3mm × 3mm DFN-10 and MSOP-10E  
Boost, Flyback, SEPIC and Inverting Controller  
5.5V ≤ V ≤ 100V, 100kHz to 1MHz Programmable Operating Frequency,  
IN  
3mm × 3mm DFN-10 and MSOP-10E  
Boost, Flyback, SEPIC and Inverting Converter  
with 5A, 40V Switch  
3V ≤ V ≤ 40V, 100kHz to 1MHz Programmable Operating Frequency,  
IN  
5mm × 6mm QFN  
Boost, Flyback, SEPIC and Inverting Converter  
with 3.3A, 84V Switch  
5V ≤ V ≤ 80V, 100kHz to 1MHz Programmable Operating Frequency,  
IN  
5mm × 6mm QFN  
80V V and V  
Synchronous 4-Switch Buck-Boost 2.8V ≤ V ≤ 80V, 100kHz to 400kHz Programmable Operating Frequency,  
IN  
OUT  
IN  
DC/DC Controller  
5mm × 7mm QFN-38 and TSSOP-38  
Negative Input Synchronous Multitopology DC/DC  
Control  
–80V ≤ V ≤ –4.5V, Up to 400kHz Programmable Operating Frequency,  
IN  
TSSOP-20  
Synchronous SEPIC/Inverting/Boost Controller with  
Output Current Control  
4.5V ≤ V ≤ 80V, 100kHz to 1MHz Programmable Operating Frequency,  
IN  
TSSOP-20  
Bipolar Output Synchronous Controller with  
Seamless Four Quadrant Operation  
4.5V ≤ V ≤ 80V, Output Can Source or Sink Current for Any Output Voltage,  
IN  
Switching Frequency Up to 750kHz, 20-Lead TSSOP  
8711f  
LT 0817 • PRINTED IN USA  
www.linear.com/LT8711  
38  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LT8711EUDC#PBF

LT8711 - Micropower Synchronous Multitopology Controller with 42V Input Capability; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8711IFE#PBF

LT8711 - Micropower Synchronous Multitopology Controller with 42V Input Capability; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8711IUDC#PBF

LT8711 - Micropower Synchronous Multitopology Controller with 42V Input Capability; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT8900

高性价比,2.4G无线收发器
ETC

LT89BS-RED

Single Color LED, Red, Diffused, T-3, 8mm,
SENSITRON

LT9001/4S823JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 82000ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT9001/6S433JT26

RESISTOR, TEMPERATURE DEPENDENT, PTC, 43000ohm, THROUGH HOLE MOUNT, AXIAL LEADED
KOA

LT9002D

暂无描述
SHARP

LT9002E

Single Color LED, Yellow Green, 9mm, 2
SHARP

LT9002ED

Dual Color LED, Red/yellow Green, 9mm, 1
SHARP

LT9002H

Single Color LED, Yellow, 9mm, 2
SHARP

LT9010D

Single Color LED, Red, 19mm, 3
SHARP