LTB2 [Linear]

Rail-to-Rail Input and Output, Ultralow 1.9n Root Hz Noise, Low Power Op Amps; 轨至轨输入和输出,超低1.9n根Hz的噪声,低功耗运算放大器
LTB2
型号: LTB2
厂家: Linear    Linear
描述:

Rail-to-Rail Input and Output, Ultralow 1.9n Root Hz Noise, Low Power Op Amps
轨至轨输入和输出,超低1.9n根Hz的噪声,低功耗运算放大器

运算放大器
文件: 总24页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6202/LT6203/LT6204  
Single/Dual/Quad 100MHz,  
Rail-to-Rail Input and Output,  
Ultralow 1.9nV/Hz Noise, Low Power Op Amps  
U
DESCRIPTIO  
FEATURES  
Low Noise Voltage: 1.9nV/Hz (100kHz)  
Low Supply Current: 3mA/Amp Max  
Gain Bandwidth Product: 100MHz  
Dual LT6203 in Tiny DFN Package  
Low Distortion: –80dB at 1MHz  
Low Offset Voltage: 500µV Max  
Wide Supply Range: 2.5V to 12.6V  
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
Common Mode Rejection Ratio 90dB Typ  
Unity Gain Stable  
Low Noise Current: 1.1pA/Hz  
Output Current: 30mA Min  
The LT®6202/LT6203/LT6204 are single/dual/quad low  
noise, rail-to-rail input and output unity gain stable op  
amps that feature 1.9nV/Hz noise voltage and draw only  
2.5mA of supply current per amplifier. These amplifiers  
combineverylownoiseandsupplycurrentwitha100MHz  
gain bandwidth product, a 25V/µs slew rate, and are  
optimized for low supply signal conditioning systems.  
These amplifiers maintain their performance for supplies  
from 2.5V to 12.6V and are specified at 3V, 5V and ±5V  
supplies. Harmonic distortion is less than 80dBc at  
1MHz making these amplifiers suitable in low power data  
acquisition systems.  
The LT6202 is available in the 5-pin SOT-23 and the 8-pin  
SO, while the LT6203 comes in 8-pin SO and MSOP pack-  
ages with standard op amp pinouts. For compact layouts  
the LT6203 is also available in a tiny fine line leadless  
package (DFN), while the quad LT6204 is available in the  
16-pin SSOP and 14-pin SO packages. These devices can  
be used as plug-in replacements for many op amps to  
improve input/output range and noise performance.  
Operating Temperature Range –40°C to 85°C  
U
APPLICATIO S  
Low Noise, Low Power Signal Processing  
Active Filters  
Rail-to-Rail Buffer Amplifiers  
Driving A/D Converters  
DSL Receivers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Battery Powered/Battery Backed Equipment  
U
TYPICAL APPLICATIO  
Low Noise 4- to 2-Wire Local Echo Cancellation Differential Receiver  
Line Receiver Integrated Noise 25kHz to 150kHz  
2k  
1/2 LT1739  
+
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
1k  
1k  
1/2 LT6203  
1:1  
+
V
V
L
V
R
D
LINE  
100Ω  
LINE  
LINE  
DRIVER  
RECEIVER  
+
1/2 LT6203  
+
50Ω  
1k  
1k  
0
20 40 60  
80  
100 160  
120 140  
1/2 LT1739  
2k  
BANDWIDTH (kHz)  
6203 TA01a  
6203 • TA01b  
620234fa  
1
LT6202/LT6203/LT6204  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) ............................ 12.6V  
Input Current (Note 2) ........................................ ±40mA  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) ...–40°C to 85°C  
Specified Temperature Range (Note 5)....–40°C to 85°C  
Junction Temperature........................................... 150°C  
Junction Temperature (DD Package) .................... 125°C  
Storage Temperature Range ..................–65°C to 150°C  
Storage Temperature Range  
(DD Package) ........................................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
+
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
OUT 1  
5 V  
+
+
V
V
2
OUT  
NC  
+IN 3  
4 –IN  
V
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 190°C/W  
TJMAX = 150°C, θJA = 250°C/W  
ORDER PART  
NUMBER  
S5 PART  
MARKING*  
ORDER PART  
S8 PART  
MARKING  
NUMBER  
LT6202CS5  
LT6202IS5  
LTG6  
LT6202CS8  
LT6202IS8  
6202  
6202I  
TOP VIEW  
TOP VIEW  
+
TOP VIEW  
+
OUT A  
1
2
3
4
8
7
6
5
V
V
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
+
OUT A  
1
2
3
4
8 V  
–IN A  
+IN A  
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
+
A
+
–IN A  
+IN A  
7 OUT B  
6 –IN B  
5 +IN B  
+
+
B
V
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX = 150°C, θJA = 250°C/W  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL CONNECTED TO V–  
TJMAX = 150°C, θJA = 190°C/W  
ORDER PART  
DD PART  
MARKING*  
ORDER PART  
NUMBER  
MS8 PART  
MARKING  
ORDER PART  
NUMBER  
S8 PART  
MARKING  
NUMBER  
LT6203CDD  
LT6203IDD  
LAAP  
LTB2  
LTB3  
LT6203CS8  
LT6203IS8  
LT6203CMS8  
LT6203IMS8  
6203  
6203I  
*The temperature grades are identified by a label on the shipping container.  
620234fa  
2
LT6202/LT6203/LT6204  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
14  
13  
+ 12  
11  
OUT D  
–IN D  
+IN D  
+
+A  
LT6204CS  
LT6204IS  
D
C
LT6204CGN  
LT6204IGN  
+A  
14  
13  
12  
11  
10  
9
+IN D  
D
C
+
V
V
+
V
V
+
+
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
B  
+
+IN B  
–IN B  
OUT B  
+ 10  
+IN C  
–IN C  
OUT C  
B
GN PART  
MARKING  
9
8
S PACKAGE  
14-LEAD PLASTIC SO  
6204  
6204I  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
TJMAX = 150°C, θJA = 150°C/W  
TJMAX = 150°C, θJA = 135°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS =5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, 0V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
OS  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
0.1  
0.1  
0.5  
0.7  
mV  
mV  
V = 3V, 0V, V = Half Supply  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
S
CM  
0.6  
0.6  
1.5  
1.7  
mV  
mV  
+
V = 5V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
0.25  
0.25  
2.0  
2.2  
mV  
mV  
+
V = 3V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
1.0  
1.0  
3.5  
3.7  
mV  
mV  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
= Half Supply  
= V to V  
0.15  
0.3  
0.8  
1.8  
mV  
mV  
CM  
CM  
+
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–8.8  
–1.3  
1.3  
–3.3  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
2.5  
= V  
+
I  
B
I Shift  
V
= V to V  
4.7  
0.1  
11.3  
0.6  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
I
Input Offset Current  
V
V
V
= Half Supply  
0.12  
0.07  
0.12  
1
1
1.1  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 100kHz, V = 5V  
800  
nV  
P-P  
e
Input Noise Voltage Density  
2
2.9  
nV/Hz  
nV/Hz  
n
S
f = 10kHz, V = 5V  
4.5  
S
i
Input Noise Current Density, Balanced  
Input Noise Current Density, Unbalanced  
f = 10kHz, V = 5V  
0.75  
1.1  
pA/Hz  
pA/Hz  
n
S
Input Resistance  
Common Mode  
Differential Mode  
4
12  
MΩ  
kΩ  
620234fa  
3
LT6202/LT6203/LT6204  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VS =5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply,  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
A
Input Capacitance  
Common Mode  
Differential Mode  
1.8  
1.5  
pF  
pF  
IN  
Large Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
40  
8.0  
17  
70  
14  
40  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1V to 4V, R = 100 to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
60  
80  
56  
83  
100  
80  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V = 5V, V = 1.5V to 3.5V  
85  
60  
70  
2.5  
120  
74  
dB  
dB  
dB  
V
S
CM  
V = 2.5V to 10V, V = 0V  
S
CM  
PSRR Match (Channel-to-Channel) (Note 6)  
Minimum Supply Voltage (Note 7)  
V = 2.5V to 10V, V = 0V  
100  
S
CM  
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
5
85  
240  
185  
50  
mV  
mV  
mV  
mV  
OL  
OH  
I
= 5mA  
190  
460  
350  
SINK  
V = 5V, I  
= 20mA  
= 15mA  
S
SINK  
SINK  
V = 3V, I  
S
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
25  
90  
325  
75  
mV  
mV  
mV  
mV  
I
= 5mA  
210  
600  
410  
SOURCE  
V = 5V, I  
= 20mA  
= 15mA  
S
SOURCE  
SOURCE  
V = 3V, I  
S
225  
I
I
Short-Circuit Current  
V = 5V  
V = 3V  
S
±30  
±25  
±45  
±40  
mA  
mA  
SC  
S
Supply Current per Amp  
V = 5V  
2.5  
2.3  
3.0  
2.85  
mA  
mA  
S
S
V = 3V  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
Frequency = 1MHz, V = 5V  
90  
24  
2.5  
85  
MHz  
V/µs  
MHz  
ns  
S
V = 5V, A = –1, R = 1k, V = 4V  
17  
S
V
L
P-P  
O
FPBW  
Full Power Bandwidth (Note 10)  
Settling Time  
V = 5V, V  
S
= 3V  
1.8  
OUT  
t
0.1%, V = 5V, V  
= 2V, A = –1, R = 1k  
STEP V L  
S
S
The denotes the specifications which apply over 0°C < TA < 70°C temperature range. VS = 5V, 0V; VS = 3V, 0V;  
VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL  
V
PARAMETER  
CONDITIONS  
V = 5V, 0V, V = Half Supply  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage  
OS  
S
CM  
0.2  
0.2  
0.7  
0.9  
mV  
mV  
V = 3V, 0V, V = Half Supply  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
S
CM  
0.6  
0.6  
1.7  
1.9  
mV  
mV  
+
V = 5V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
0.7  
0.7  
2.5  
2.7  
mV  
mV  
+
V = 3V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
1.2  
1.2  
4.0  
4.2  
mV  
mV  
V
TC  
Input Offset Voltage Drift (Note 9)  
V
= Half Supply  
= Half Supply  
= V to V  
3.0  
9.0  
µV/°C  
OS  
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
0.15  
0.5  
0.9  
2.3  
mV  
mV  
CM  
CM  
+
620234fa  
4
LT6202/LT6203/LT6204  
The denotes the specifications which apply over 0°C < TA < 70°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–1.3  
1.3  
–3.3  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
2.5  
= V  
–8.8  
+
I  
B
I Shift  
V
= V to V  
4.7  
0.1  
11.3  
0.6  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
I
Input Offset Current  
V
V
V
= Half Supply  
0.15  
0.10  
0.15  
1
1
1.1  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
35  
6.0  
15  
60  
12  
36  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100 to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
60  
78  
56  
83  
97  
75  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 6) V = 5V, V = 1.5V to 3.5V  
83  
60  
70  
3.0  
100  
70  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V, V = 0V  
S CM  
PSRR Match (Channel-to-Channel) (Note 6) V = 3V to 10V, V = 0V  
100  
S
CM  
Minimum Supply Voltage (Note 7)  
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
5.0  
95  
60  
200  
365  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
SINK  
SINK  
= 15mA  
260  
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
= 5mA  
50  
100  
230  
635  
430  
mV  
mV  
mV  
mV  
I
115  
360  
260  
SOURCE  
V = 5V, I  
= 20mA  
= 15mA  
S
SOURCE  
SOURCE  
V = 3V, I  
S
I
I
Short-Circuit Current  
V = 5V  
S
±20  
±20  
±33  
±30  
mA  
mA  
SC  
S
V = 3V  
Supply Current per Amp  
V = 5V  
3.1  
2.75  
3.85  
3.50  
mA  
mA  
S
S
V = 3V  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
Frequency = 1MHz  
87  
21  
MHz  
V/µs  
MHz  
V = 5V, A = –1, R = 1k, V = 4V  
15  
S
V
L
O
FPBW  
Full Power Bandwidth (Note 10)  
V = 5V, V  
= 3V  
1.6  
2.2  
S
OUT  
P-P  
The denotes the specifications which apply over –40°C < TA < 85°C temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half  
supply, unless otherwise noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, 0V, V = Half Supply  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
OS  
S
CM  
LT6203, LT6204, LT6202S8  
LT6202 SOT-23  
0.2  
0.2  
0.8  
1.0  
mV  
mV  
V = 3V, 0V, V = Half Supply  
S
CM  
LT6203, LT6204, LT6202S8  
0.6  
0.6  
2.0  
2.2  
mV  
mV  
LT6202 SOT-23  
+
V = 5V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
1.0  
1.0  
3.0  
3.5  
mV  
mV  
LT6202 SOT-23  
+
V = 3V, 0V, V = V to V  
S
CM  
LT6203, LT6204, LT6202S8  
1.4  
1.4  
4.5  
4.7  
mV  
mV  
LT6202 SOT-23  
620234fa  
5
LT6202/LT6203/LT6204  
The denotes the specifications which apply over –40°C < TA < 85°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL  
TC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage Drift (Note 9)  
V
= Half Supply  
3.0  
9.0  
µV/°C  
OS  
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
= Half Supply  
= V to V  
0.3  
0.7  
1.0  
2.5  
mV  
mV  
CM  
CM  
+
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–8.8  
–1.3  
1.3  
–3.3  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
2.5  
= V  
+
I  
B
I Shift  
V
= V to V  
4.7  
0.1  
11.3  
0.6  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
I
Input Offset Current  
V
V
V
= Half Supply  
0.2  
0.2  
0.2  
1
1.1  
1.2  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large Signal Gain  
V = 5V, V = 0.5V to 4.5V, R = 1k to V /2  
32  
4.0  
13  
60  
10  
32  
V/mV  
V/mV  
V/mV  
VOL  
S
O
L
S
V = 5V, V = 1.5V to 3.5V, R = 100 to V /2  
S
O
L
S
V = 3V, V = 0.5V to 2.5V, R = 1k to V /2  
S
O
L
S
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = V to V  
60  
75  
56  
80  
95  
75  
dB  
dB  
dB  
S
CM  
V = 5V, V = 1.5V to 3.5V  
S
CM  
+
V = 3V, V = V to V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 6) V = 5V, V = 1.5V to 3.5V  
80  
60  
70  
3.0  
100  
70  
dB  
dB  
dB  
V
S
CM  
Power Supply Rejection Ratio  
V = 3V to 10V, V = 0V  
S CM  
PSRR Match (Channel-to-Channel) (Note 6) V = 3V to 10V, V = 0V  
100  
S
CM  
Minimum Supply Voltage (Note 7)  
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
6
95  
210  
70  
210  
400  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 15mA  
SINK  
SINK  
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
= 5mA  
55  
110  
240  
650  
650  
mV  
mV  
mV  
mV  
I
125  
370  
270  
SOURCE  
V = 5V, I  
= 15mA  
= 15mA  
S
SOURCE  
SOURCE  
V = 3V, I  
S
I
I
Short-Circuit Current  
V = 5V  
V = 3V  
S
±15  
±15  
±25  
±23  
mA  
mA  
SC  
S
Supply Current per Amp  
V = 5V  
3.3  
3.0  
4.1  
3.65  
mA  
mA  
S
S
V = 3V  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
Frequency = 1MHz  
83  
17  
MHz  
V/µs  
MHz  
V = 5V, A = –1, R = 1k, V = 4V  
12  
S
V
L
O
FPBW  
Full Power Bandwidth (Note 10)  
V = 5V, V  
S
= 3V  
1.3  
1.8  
OUT  
P-P  
620234fa  
6
LT6202/LT6203/LT6204  
TA = 25°C, VS = ±5V; VCM = VOUT = 0V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT6203, LT6204, LT6202S8  
OS  
V
V
V
= 0V  
1.0  
2.6  
2.3  
2.5  
5.5  
5.0  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
LT6202 SOT-23  
V
V
V
= 0V  
1.0  
2.6  
2.3  
2.7  
6.0  
5.5  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
= 0V  
0.2  
0.4  
1.0  
2.0  
mV  
mV  
CM  
CM  
+
= V to V  
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–9.5  
–1.3  
1.3  
–3.8  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
3.0  
= V  
+
I  
B
I Shift  
V
= V to V  
5.3  
0.1  
12.5  
0.6  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
I
Input Offset Current  
V
V
V
= Half Supply  
0.15  
0.2  
0.35  
1
1.2  
1.3  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
Input Noise Voltage  
0.1Hz to 10Hz  
800  
nV  
P-P  
e
Input Noise Voltage Density  
f = 100kHz  
f = 10kHz  
1.9  
2.8  
nV/Hz  
nV/Hz  
n
4.5  
i
Input Noise Current Density, Balanced  
Input Noise Current Density, Unbalanced  
f = 10kHz  
0.75  
1.1  
pA/Hz  
pA/Hz  
n
Input Resistance  
Common Mode  
Differential Mode  
4
12  
MΩ  
kΩ  
C
A
Input Capacitance  
Common Mode  
1.8  
1.5  
pF  
pF  
IN  
Differential Mode  
Large Signal Gain  
V = ±4.5V, R = 1k  
75  
11  
130  
19  
V/mV  
V/mV  
VOL  
O
L
V = ±2.5V, R = 100  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
65  
85  
85  
98  
dB  
dB  
CM  
CM  
= –2V to 2V  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
85  
60  
70  
120  
74  
dB  
dB  
dB  
CM  
V = ±1.25V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
V = ±1.25V to ±5V  
S
100  
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
5
50  
190  
460  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
87  
SINK  
SINK  
= 20mA  
245  
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
40  
95  
320  
95  
210  
600  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
Short-Circuit Current  
Supply Current per Amp  
Gain Bandwidth Product  
Slew Rate  
±30  
±40  
2.8  
mA  
mA  
SC  
3.5  
S
GBW  
SR  
Frequency = 1MHz  
70  
18  
100  
25  
MHz  
V/µs  
MHz  
ns  
A = –1, R = 1k, V = 4V  
V
L
P-P  
O
FPBW  
Full Power Bandwidth (Note 10)  
Settling Time  
V
= 3V  
1.9  
2.6  
OUT  
t
0.1%, V  
= 2V, A = –1, R = 1k  
78  
S
STEP  
V
L
dG  
dP  
Differential Gain (Note 11)  
Differential Phase (Note 11)  
A = 2, R = R = 499, R = 2k  
0.05  
0.03  
%
V
F
G
L
A = 2, R = R = 499, R = 2k  
DEG  
V
F
G
L
620234fa  
7
LT6202/LT6203/LT6204  
The denotes the specifications which apply over 0°C < TA < 70°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = ±5V; VCM = VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT6203, LT6204, LT6202S8  
OS  
V
V
V
= 0V  
1.6  
3.2  
2.8  
2.8  
6.8  
5.8  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
LT6202 SOT-23  
V
V
V
= 0V  
1.6  
3.2  
2.8  
3.0  
7.3  
6.3  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
V
TC  
Input Offset Voltage Drift (Note 9)  
V
= Half Supply  
7.5  
24  
µV/°C  
OS  
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
= 0V  
0.2  
0.5  
1.0  
2.2  
mV  
mV  
CM  
CM  
+
= V to V  
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–10  
–1.4  
1.8  
–4.3  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
3.6  
= V  
+
I  
B
I Shift  
V
= V to V  
5.4  
13  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
0.15  
0.7  
I
Input Offset Current  
V
V
V
= Half Supply  
0.1  
0.2  
0.4  
1
1.2  
1.4  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large Signal Gain  
V = ±4.5V, R = 1k  
70  
10  
120  
18  
V/mV  
V/mV  
VOL  
O
L
V = ±2V, R = 100  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
65  
83  
84  
95  
dB  
dB  
CM  
CM  
= –2V to 2V  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
83  
60  
70  
110  
70  
dB  
dB  
dB  
CM  
V = ±1.5V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
V = ±1.5V to ±5V  
100  
S
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
6
70  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
95  
200  
400  
SINK  
SINK  
= 15mA  
210  
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
65  
125  
350  
120  
240  
625  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
Short-Circuit Current  
Supply Current per Amp  
Gain Bandwidth Product  
Slew Rate  
±25  
±34  
3.5  
95  
mA  
mA  
SC  
4.3  
S
GBW  
SR  
Frequency = 1MHz  
MHz  
V/µs  
MHz  
A = –1, R = 1k, V = 4V  
16  
22  
V
L
O
FPBW  
Full Power Bandwidth (Note 10)  
V
= 3V  
1.7  
2.3  
OUT  
P-P  
The denotes the specifications which apply over –40°C < TA < 85°C temperature range. VS = ±5V; VCM = VOUT = 0V, unless otherwise  
noted. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
LT6203, LT6204, LT6202S8  
OS  
V
V
V
= 0V  
1.7  
3.8  
3.5  
3.0  
7.5  
6.6  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
LT6202 SOT-23  
V
V
V
= 0V  
1.7  
3.8  
3.5  
3.2  
7.7  
6.7  
mV  
mV  
mV  
CM  
CM  
CM  
+
= V  
= V  
620234fa  
8
LT6202/LT6203/LT6204  
The denotes the specifications which apply over –40°C < TA < 85°C  
ELECTRICAL CHARACTERISTICS  
temperature range. VS = ±5V; VCM = VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL  
TC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage Drift (Note 9)  
V
= Half Supply  
7.5  
24  
µV/°C  
OS  
CM  
Input Offset Voltage Match  
(Channel-to-Channel) (Note 6)  
V
V
= 0V  
0.3  
0.6  
1.0  
2.5  
mV  
mV  
CM  
CM  
+
= V to V  
I
Input Bias Current  
V
V
V
= Half Supply  
–7.0  
–10  
–1.4  
1.8  
–4.5  
µA  
µA  
µA  
B
CM  
CM  
CM  
+
= V  
3.6  
= V  
+
I  
B
I Shift  
V
= V to V  
5.4  
13  
µA  
µA  
B
CM  
I Match (Channel-to-Channel) (Note 6)  
B
0.15  
0.7  
I
Input Offset Current  
V
V
V
= Half Supply  
0.15  
0.3  
0.5  
1
1.2  
1.6  
µA  
µA  
µA  
OS  
CM  
CM  
CM  
+
= V  
= V  
A
Large Signal Gain  
V = ±4.5V, R = 1k  
60  
110  
13  
V/mV  
V/mV  
VOL  
O
L
V = ±1.5V R = 100  
6.0  
O
L
+
CMRR  
PSRR  
Common Mode Rejection Ratio  
V
V
= V to V  
65  
80  
84  
95  
dB  
dB  
CM  
CM  
= –2V to 2V  
CMRR Match (Channel-to-Channel) (Note 6)  
Power Supply Rejection Ratio  
V
= –2V to 2V  
80  
60  
70  
110  
70  
dB  
dB  
dB  
CM  
V = ±1.5V to ±5V  
S
PSRR Match (Channel-to-Channel) (Note 6)  
V = ±1.5V to ±5V  
S
100  
V
V
Output Voltage Swing LOW Saturation  
(Note 8)  
No Load  
7
75  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
98  
205  
500  
SINK  
SINK  
= 15mA  
260  
Output Voltage Swing HIGH Saturation  
(Note 8)  
No Load  
70  
130  
360  
130  
250  
640  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 15mA  
I
I
Short-Circuit Current  
Supply Current per Amp  
Gain Bandwidth Product  
Slew Rate  
±15  
±25  
3.8  
90  
mA  
mA  
SC  
4.5  
S
GBW  
SR  
Frequency = 1MHz  
MHz  
V/µs  
MHz  
A = –1, R = 1k, V = 4V  
13  
18  
V
L
O
FPBW  
Full Power Bandwidth (Note 10)  
V
= 3V  
1.4  
1.9  
OUT  
P-P  
Note 1: Absolute maximum ratings are those values beyond which the life  
of the device may be impaired.  
Note 6: Matching parameters are the difference between the two amplifiers  
A and D and between B and C of the LT6204; between the two amplifiers  
of the LT6203. CMRR and PSRR match are defined as follows: CMRR and  
PSRR are measured in µV/V on the identical amplifiers. The difference is  
calculated between the matching sides in µV/V. The result is converted to  
dB.  
Note 2: Inputs are protected by back-to-back diodes and diodes to each  
supply. If the inputs are taken beyond the supplies or the differential input  
voltage exceeds 0.7V, the input current must be limited to less than 40mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
Note 7: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 8: Output voltage swings are measured between the output and  
power supply rails.  
Note 4: The LT6202C/LT6202I, LT6203C/LT6203I and LT6204C/LT6204I  
are guaranteed functional over the temperature range of –40°C and 85°C.  
Note 9: This parameter is not 100% tested.  
Note 10: Full-power bandwidth is calculated from the slew rate:  
Note 5: The LT6202C/LT6203C/LT6204C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6202C/LT6203C/LT6204C are  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C, but are not tested or QA sampled at these temperatures.  
The LT6202I/LT6203I/LT6204I are guaranteed to meet specified  
performance from –40°C to 85°C.  
FPBW = SR/2πV  
P
Note 11: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Ten  
identical amplifier stages were cascaded giving an effective resolution of  
0.01% and 0.01°.  
620234fa  
9
LT6202/LT6203/LT6204  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOS Distribution, VCM = V+/2  
VOS Distribution, VCM = V+  
VOS Distribution, VCM = V–  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
S
S
S8  
S8  
S8  
40  
30  
20  
10  
0
0
–250  
200 400  
600 800  
–150  
–50  
0
250  
–800 –600 –400 –200  
0
50  
150  
–800–600–400–200  
0
200 400 600 800 1000  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
LT6202/03/04 G01  
LT6202/03/04 G03  
LT6202/03/04 G02  
Supply Current vs Supply Voltage  
(Both Amplifiers)  
Offset Voltage vs Input  
Common Mode Voltage  
Input Bias Current vs  
Common Mode Voltage  
12  
2.0  
1.5  
1.0  
0.5  
2
0
V
= 5V, 0V  
S
T
= 125°C  
10  
8
A
T
= 125°C  
A
–2  
–4  
6
T
T
= 25°C  
T
= –55°C  
A
A
A
T
A
= 25°C  
4
0
–0.5  
–1.0  
= –55°C  
T
= 25°C  
A
T
= –55°C  
2
A
V
= 5V, 0V  
S
T
= 125°C  
A
TYPICAL PART  
–6  
0
8
12  
14  
3
5
6
–1  
0
1
2
3
4
5
6
0
2
4
6
10  
–1  
0
1
2
4
COMMON MODE VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
LT6202/03/04 G04  
LT6202/03/04 G05  
LT6202/03/04 G06  
Output Saturation Voltage vs  
Load Current (Output Low)  
Output Saturation Voltage vs  
Load Current (Output High)  
Input Bias Current vs Temperature  
4
3
2
1
0
10  
1
10  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V
S
= 5V, 0V  
V
CM  
= 5V  
1
T
= 125°C  
A
T
= 125°C  
T
= 25°C  
A
A
T
A
= 25°C  
0.1  
0.1  
–1  
–2  
–3  
–4  
–5  
–6  
V
= 0V  
CM  
0.01  
0.01  
T
= –55°C  
A
T
A
= –55°C  
0.001  
0.001  
–50 –35 –20 –5 10 25 40 55 70 85  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
LT6202/03/04 G08  
LT6202/03/04 G09  
LT6202/03/04 G07  
620234fa  
10  
LT6202/LT6203/LT6204  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Short-Circuit Current vs  
Power Supply Voltage  
Open-Loop Gain  
Minimum Supply Voltage  
10  
8
80  
2.5  
V
S
T
A
= 3V, 0V  
= 25°C  
SOURCING  
2.0  
1.5  
T
= 125°C  
A
60  
40  
6
4
1.0  
T
= 25°C  
A
T
= 125°C  
A
20  
0
2
0.5  
T
= –55°C  
A
R
= 1k  
L
T
= 25°C  
A
0
0
SINKING  
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
T
A
= –55°C  
–20  
–40  
–60  
R
= 100Ω  
L
T
= 25°C  
T
= –55°C  
A
A
T
A
= 125°C  
–80  
2
2.5  
3.5  
4
4.5  
5
0
0.5  
1.5  
2.0  
2.5  
3.0  
1.5  
3
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1.0  
TOTAL SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
POWER SUPPLY VOLTAGE (±V)  
LT6202/03/04 G10  
LT6202/03/04 G11  
LT6202/03/04 G12  
Offset Voltage vs Output Current  
Open-Loop Gain  
Open-Loop Gain  
2.5  
2.5  
2.0  
15  
V
T
= 5V, 0V  
= 25°C  
S
V = ±5V  
S
V = ±5V  
S
2.0  
1.5  
A
T
= 25°C  
A
10  
5
1.5  
T
A
= 125°C  
1.0  
1.0  
0.5  
0.5  
R
L
= 1k  
R
= 1k  
L
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
T
= 25°C  
R
= 100Ω  
A
R
= 100Ω  
L
L
–5  
–10  
–15  
T
= –55°C  
A
0
1
2
3
4
5
20 40  
OUTPUT CURRENT (mA)  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–80 –60 –40 –20  
0
60 80  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
LT6202/03/04 G13  
LT6202/03/04 G14  
LT6202/03/04 G15  
Warm-Up Drift vs Time  
(LT6203S8)  
Total Noise vs  
Total Source Resistance  
Input NoiseVoltage vs Frequency  
100  
10  
1
45  
40  
35  
30  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
V = 5V, 0V  
S
T
= 25°C  
V
V
= ±2.5V  
CM  
f = 100kHz  
A
S
TOTAL SPOT NOISE  
= 0V  
T
= 25°C  
A
V
= ±5V  
NPN ACTIVE  
= 4.5V  
S
V
CM  
PNP ACTIVE  
= 0.5V  
V
CM  
60  
AMPLIFIER SPOT  
NOISE VOLTAGE  
V
= ±2.5V  
S
40  
RESISTOR  
SPOT  
NOISE  
V
S
= ±1.5V  
20  
BOTH ACTIVE  
= 2.5V  
V
CM  
0
0.1  
0
80 100  
120 140 160  
0
20 40 60  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
TIME AFTER POWER-UP (s)  
TOTAL SOURCE RESISTANCE ()  
LT6202/03/04 G17  
LT6202/03/04 G16  
LT6202/03/04 G18  
620234fa  
11  
LT6202/LT6203/LT6204  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Balanced Noise Current vs  
Frequency  
Unbalanced Noise Current vs  
Frequency  
0.1Hz to 10Hz Output  
Voltage Noise  
7
6
5
4
3
2
1
0
12  
1200  
1000  
800  
UNBALANCED SOURCE  
RESISTANCE  
BALANCED SOURCE  
RESISTANCE  
V
V
= 5V, 0V  
S
= V /2  
CM  
S
10  
8
V
= 5V, 0V  
= 25°C  
V
= 5V, 0V  
= 25°C  
S
A
S
A
T
T
PNP ACTIVE  
= 0.5V  
PNP ACTIVE  
= 0.5V  
V
400  
CM  
V
CM  
0
6
4
BOTH ACTIVE  
= 2.5V  
BOTH ACTIVE  
= 2.5V  
–400  
–800  
–1000  
– 1200  
V
NPN ACTIVE  
= 4.5V  
CM  
V
NPN ACTIVE  
= 4.5V  
CM  
V
CM  
V
CM  
2
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TIME (2s/DIV)  
LT6202/03/04 G20  
LT6202/03/04 G19  
LT6202/03/04 G19.1  
Gain Bandwidth and Phase  
Margin vs Temperature  
Open-Loop Gain vs Frequency  
Open-Loop Gain vs Frequency  
90  
80  
70  
60  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
120  
100  
80  
PHASE  
70  
60  
50  
40  
30  
20  
10  
0
PHASE  
V
= ±5V  
S
V
= ±5V  
S
V
= 0.5V  
CM  
PHASE MARGIN  
= 3V, 0V  
V
= 3V, 0V  
60  
60  
S
V
= 4.5V  
GAIN  
CM  
V
S
40  
40  
20  
20  
120  
100  
80  
V
= ±5V  
S
GAIN  
V
S
= ±5V  
0
0
V
= 0.5V  
CM  
V
= 4.5V  
CM  
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
V
S
= 3V, 0V  
V
= 3V, 0V  
S
GAIN BANDWIDTH  
C
= 5pF  
= 1k  
L
L
V
C
= 5V, 0V  
= 5pF  
= 1k  
S
L
L
R
60  
–10  
–10  
–20  
V
= 0V  
CM  
R
40  
–20  
100k  
–55 –25  
0
25  
125  
50  
75 100  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
TEMPERATURE (°C)  
LT6202/03/04 G22  
LT6202/03/04 G23  
LT6202/03/04 G21  
Gain Bandwidth and Phase Margin  
vs Supply Voltage  
Slew Rate vs Temperature  
Output Impedance vs Frequency  
1000  
100  
10  
90  
70  
60  
V
S
= 5V, 0V  
A
= –1  
G
= 1k  
T
R
C
= 25°C  
= 1k  
= 5pF  
V
F
L
A
L
L
R = R = 1k  
80  
70  
60  
50  
RISING  
R
PHASE MARGIN  
V
S
= ±2.5V  
50  
40  
30  
20  
10  
A
V
= 10  
A
V
= 2  
V
S
= ±5V  
120  
100  
80  
GAIN BANDWIDTH  
1
FALLING  
75  
A
V
= 1  
V
= ±2.5V  
V
= ±5V  
0.1  
S
S
60  
0.01  
40  
0
100k  
1M  
10M  
100M  
2
4
8
10  
12  
14  
50  
100 125  
0
6
–55 –25  
0
25  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
LT6202/03/04 G26  
LT6202/03/04 G24  
LT6202/03/04 G25  
620234fa  
12  
LT6202/LT6203/LT6204  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Channel Separation vs Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
–40  
–50  
V
V
= 5V, 0V  
= V /2  
V
T
= 5V, 0V  
= 25°C  
= V /2  
S
CM  
T
A
V
= 25°C  
= 1  
= ±5V  
S
A
CM  
A
V
S
S
V
S
–60  
–70  
POSITIVE  
SUPPLY  
–80  
–90  
NEGATIVE  
SUPPLY  
–100  
–110  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
LT6202/03/04 G28  
LT6202/03/04 G27  
LT6202/03/04 G27.1  
Series Output Resistor vs  
Capacitive Load  
Series Output Resistor vs  
Capacitive Load  
Settling Time vs Output Step  
(Noninverting)  
200  
150  
100  
50  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
A
= ±5V  
= 1  
V
A
= 5V, 0V  
= 2  
S
V
A
V
A
= 5V, 0V  
= 1  
S
V
S
V
R
= 10Ω  
= 20Ω  
+
S
T
= 25°C  
V
OUT  
V
500  
IN  
R
= 10Ω  
S
R
S
1mV  
1mV  
R
= 20Ω  
S
R
S
R
L
= 50Ω  
= 50Ω  
R
R
= 50Ω  
= 50Ω  
S
10mV  
L
10mV  
3
0
0
0
–4 –3 –2 –1  
0
1
2
4
10  
100  
1000  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
OUTPUT STEP (V)  
CAPACITIVE LOAD (pF)  
LT6202/03/04 G31  
LT6202/03/04 G29  
LT6202/03/04 G30  
Settling Time vs Output Step  
(Inverting)  
Maximum Undistorted Output  
Signal vs Frequency  
Distortion vs Frequency  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
200  
150  
100  
50  
10  
A
= 2  
A
V
V
= 1  
V
A
T
= ±5V  
= –1  
V
V
500  
V
S
S
V
A
= ±2.5V  
= 2V  
9
8
7
6
5
4
3
2
500Ω  
+
= 25°C  
A
= –1  
OUT  
(P-P)  
V
IN  
V
OUT  
R
= 100, 3RD  
= 100, 2ND  
L
R
L
1mV  
1mV  
10mV  
V
T
= ±5V  
= 25°C  
HD , HD < –40dBc  
2
R
= 1k, 3RD  
L
S
A
10mV  
3
R
= 1k, 2ND  
L
3
0
–4 –3 –2 –1  
0
1
2
4
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
OUTPUT STEP (V)  
LT6202/03/04 G33  
LT6202/03/04 G32  
LT6202/03/04 G34  
620234fa  
13  
LT6202/LT6203/LT6204  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Distortion vs Frequency  
Distortion vs Frequency  
Distortion vs Frequency  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
A
V
V
= 2  
A
V
V
= 1  
A
V
V
= 2  
V
S
V
S
V
S
R
= 100, 3RD  
L
= ±2.5V  
= 2V  
= ±5V  
= 2V  
= ±5V  
= 2V  
(P-P)  
OUT  
(P-P)  
OUT  
(P-P)  
OUT  
R
= 100, 3RD  
L
R = 100, 2ND  
L
R
L
= 100, 2ND  
R
L
= 100, 3RD  
L
R
= 100, 2ND  
R
L
= 1k, 3RD  
R
= 1k, 2ND  
L
R
L
= 1k, 2ND  
R
L
= 1k, 3RD  
R
= 1k, 3RD  
L
R
= 1k, 2ND  
L
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT6202/03/04 G36  
LT6202/03/04 G37  
LT6202/03/04 G35  
5V Large-Signal Response  
5V Small-Signal Response  
5V  
0V  
0V  
200ns/DIV  
200ns/DIV  
LT6202/03/04 G38  
LT6202/03/04 G39  
V
A
= 5V, 0V  
= 1  
= 1k  
V
A
= 5V, 0V  
= 1  
= 1k  
S
V
L
S
V
L
R
R
Output-Overdrive Recovery  
±5V Large-Signal Response  
5V  
0V  
0V  
0V  
–5V  
200ns/DIV  
200ns/DIV  
LT6202/03/04 G41  
LT6202/03/04 G40  
V
S
A
V
= 5V, 0V  
= 2  
V
A
= ±5V  
= 1  
= 1k  
S
V
L
R
620234fa  
14  
LT6202/LT6203/LT6204  
U
W U U  
APPLICATIO S I FOR ATIO  
Amplifier Characteristics  
Inputbiascurrentnormallyflowsoutofthe+andinputs.  
The magnitude of this current increases when the input  
common mode voltage is within 1.5V of the negative rail,  
and only Q1/Q4 are active. The polarity of this current  
reverses when the input common mode voltage is within  
1.5V of the positive rail and only Q2/Q3 are active.  
Figure 1 shows a simplified schematic of the LT6202/  
LT6203/LT6204, which has two input differential amplifi-  
ers in parallel that are biased on simultaneously when the  
commonmodevoltageisatleast1.5Vfromeitherrail.This  
topology allows the input stage to swing from the positive  
supply voltage to the negative supply voltage. As the  
commonmodevoltageswingsbeyondVCC1.5V,current  
source I1 saturates and current in Q1/Q4 is zero. Feedback  
is maintained through the Q2/Q3 differential amplifier, but  
with an input gm reduction of 1/2. A similar effect occurs  
with I2 when the common mode voltage swings within  
1.5V of the negative rail. The effect of the gm reduction is  
a shift in the VOS as I1 or I2 saturate.  
The second stage is a folded cascode and current mirror  
that converts the input stage differential signals to a single  
ended output. Capacitor C1 reduces the unity cross  
frequency and improves the frequency stability without  
degrading the gain bandwidth of the amplifier. The  
differential drive generator supplies current to the output  
transistors that swing from rail-to-rail.  
+
V
+
R1  
R2  
V
I
1
BIAS  
Q11  
+V  
–V  
Q5  
Q8  
Q6  
DESD1  
DESD2  
+V  
Q2  
Q3  
+
C
C1  
M
+V  
Q9  
Q1  
Q4  
D1  
D2  
DESD5  
DIFFERENTIAL  
DRIVE  
GENERATOR  
DESD3  
DESD4  
DESD6  
Q7  
–V +V  
–V  
Q10  
R3  
R4  
R5  
D3  
I
2
V
6203/04 F01  
Figure 1. Simplified Schematic  
620234fa  
15  
LT6202/LT6203/LT6204  
U
W
U U  
APPLICATIO S I FOR ATIO  
Input Protection  
a diode drop of the input signal. In this photo, the input  
signal generator is clipping at ±35mA, and the output  
transistors supply this generator current through the  
protection diodes.  
There are back-to-back diodes, D1 and D2, across the  
+ and – inputs of these amplifiers to limit the differential  
input voltage to ±0.7V. The inputs of the LT6202/LT6203/  
LT6304 do not have internal resistors in series with the With the amplifier connected in a gain of AV 2, the output  
input transistors. This technique is often used to protect can invert with very heavy input overdrive. To avoid this  
the input devices from over voltage that causes excessive inversion, limit the input overdrive to 0.5V beyond the  
currents to flow. The addition of these resistors would power supply rails.  
significantly degrade the low noise voltage of these ampli-  
ESD  
fiers. For instance, a 100resistor in series with each  
input would generate 1.8nV/Hz of noise, and the total  
amplifier noise voltage would rise from 1.9nV/Hz to  
2.6nV/Hz. Once the input differential voltage exceeds  
±0.7V, steady state current conducted though the protec-  
tion diodes should be limited to ±40mA. This implies 25Ω  
of protection resistance per volt of continuous overdrive  
beyond ±0.7V. The input diodes are rugged enough to  
handle transient currents due to amplifier slew rate over-  
drive or momentary clipping without these resistors.  
The LT6202/LT6203/LT6204 have reverse-biased ESD  
protection diodes on all inputs and outputs as shown in  
Figure 1. If these pins are forced beyond either supply,  
unlimited current will flow through these diodes. If the  
current is transient and limited to one hundred milliamps  
or less, no damage to the device will occur.  
Noise  
ThenoisevoltageoftheLT6202/LT6203/LT6204isequiva-  
lent to that of a 225resistor, and for the lowest possible  
noise it is desirable to keep the source and feedback  
resistance at or below this value, i.e. RS + RG RFB 225.  
With RS + RG RFB = 225the total noise of the amplifier  
Figure 2 shows the input and output waveforms of the  
amplifier driven into clipping while connected in a gain of  
AV = 1. When the input signal goes sufficiently beyond the  
power supply rails, the input transistors will saturate.  
When saturation occurs, the amplifier loses a stage of  
phase inversion and the output tries to change states.  
Diodes D1 and D2 forward bias and hold the output within  
||  
||  
is:en =(1.9nV)2 +(1.9nV)2 =2.7nV.Belowthisresistance  
value, the amplifier dominates the noise, but in the resis-  
tance region between 225and approximately 10k, the  
noise is dominated by the resistor thermal noise. As the  
totalresistanceisfurtherincreased, beyond10k, thenoise  
current multiplied by the total resistance eventually domi-  
nates the noise.  
The product of en ISUPPLY is an interesting way to gauge  
low noise amplifiers. Many low noise amplifiers with low  
en have high ISUPPLY current. In applications that require  
low noise with the lowest possible supply current, this  
productcanprovetobeenlightening.TheLT6202/LT6203/  
LT6204 have an en, ISUPPLY product of 3.2 per amplifier,  
yet it is common to see amplifiers with similar noise  
specificationshaveanen ISUPPLYproductof4.7to13.5.  
OV  
LT6202/03/04 F02  
For a complete discussion of amplifier noise, see the  
LT1028 data sheet.  
Figure 2. VS = ±2.5V, AV = 1 with Large Overdrive  
620234fa  
16  
LT6202/LT6203/LT6204  
U
TYPICAL APPLICATIO S  
Low Noise, Low Power 1MAC  
output therefore sit at a point slightly higher than one  
pinchoff voltage below ground (typically about –0.6V).  
When the photodiode is illuminated, the current must  
come from the LT6202’s output through R1 and R2, as in  
a normal TIA. Amplifier input noise density and gain-  
bandwidth product were measured at 2.4nV/Hz and  
100MHz, respectively. Note that because the JFET has a  
highgm,approximately1/80,itsattenuationlookinginto  
R3 is only about 2%. Gain-bandwidth product was mea-  
sured at 100MHz and the closed-loop bandwidth using a  
3pF photodiode was approximately 1.4MHz.  
Photodiode Transimpedance Amplifier  
Figure 3 shows the LT6202 applied as a transimpedance  
amplifier (TIA). The LT6202 forces the BF862 ultralow-  
noise JFET source to 0V, with R3 ensuring that the JFET  
has an IDRAIN of 1mA. The JFET acts as a source follower,  
bufferingtheinputoftheLT6202andmakingitsuitablefor  
the high impedance feedback elements R1 and R2. The  
BF862hasaminimumIDSS of10mAandapinchoffvoltage  
between –0.3V and –1.2V. The JFET gate and the LT6202  
+
V
S
R1  
499k  
R2  
499k  
Precision Low Noise, Low Power, 1MΩ  
Photodiode Transimpedance Amplifier  
PHILIPS  
BF862  
Figure 4 shows the LT6202 applied as a transimpedance  
amplifier (TIA), very similar to that shown in Figure 3. In  
this case, however, the JFET is not allowed to dictate the  
DC-bias conditions. Rather than being grounded, the  
LT6202’s noninverting input is driven by the LTC2050 to  
the exact state necessary for zero JFET gate voltage. The  
noise performance is nearly identical to that of the circuit  
in Figure 3, with the additional benefit of excellent DC  
performance. Input offset was measured at under 200µV  
and output noise was within 2mVP-P over a 20MHz  
bandwidth.  
C1  
1pF  
V
LT6202  
V
BIAS  
OUT  
+
R3  
4.99k  
V
S
= ±5V  
LT6202/03/04 F03  
V
S
Figure 3. Low Noise, Low Power 1MΩ  
AC Photodiode Transimpedance Amplifier  
+
V
S
R1  
499k  
R2  
499k  
PHILIPS  
BF862  
C2  
R4  
C1  
1pF  
0.1µF  
10M  
V
BIAS  
R5  
10k  
LT6202  
V
OUT  
+
LTC2050HV  
+
C3  
1µF  
R3  
4.99k  
V
S
= ±5V  
LT6202/03/04 F04  
V
S
Figure 4. Precision Low Noise, Low Power Transimpedance Amplifier  
620234fa  
17  
LT6202/LT6203/LT6204  
U
TYPICAL APPLICATIO S  
Single-Supply 16-Bit ADC Driver  
AlthoughtheLTC1864hasasampleratefarbelowthegain  
bandwidth of the LT6203, using this amplifier is not  
necessarily a case of overkill. The designer is reminded  
thatA/Dconvertershavesampleaperturesthatarevanish-  
ingly small (ideally, infinitesimally small) and make de-  
mands on the upstream circuitry far in excess of what is  
implied by the innocent-looking sample rate. In addition,  
when an A/D converter takes a sample, it applies a small  
capacitor to its inputs with a fair amount of glitch energy  
and expects the voltage on the capacitor to settle to the  
true value very quickly. Finally, the LTC1864 has a 20MHz  
analoginputbandwidthandcanbeusedinundersampling  
applications, again requiring a source bandwidth higher  
than Nyquist.  
Figure 5 shows the LT6203 driving an LTC1864 unipolar  
16-bit A/D converter. The bottom half of the LT6203 is in  
a gain-of-one configuration and buffers the 0V negative  
full-scale signal VLOW into the negative input of the  
LTC1864. The top half of the LT6203 is in a gain-of-ten  
configuration referenced to the buffered voltage VLOW and  
drives the positive input of the LTC1864. The input range  
of the LTC1864 is 0V to 5V, but for best results the input  
range of VIN should be from VLOW (about 0.4V) to about  
0.82V. Figure 6 shows an FFT obtained with a 10.1318kHz  
coherent input waveform, from 8192 samples with no  
windowing or averaging. Spurious free dynamic range is  
seen to be about 100dB.  
5V  
R3  
100Ω  
V
= 0.6V  
IN  
DC  
AC  
+
±200mV  
1/2 LT6203  
R1  
1k  
+
LTC1864  
16-BIT  
250ksps  
SERIAL  
DATA  
OUT  
C1  
470pF  
R2  
110Ω  
R4  
100Ω  
V
= 0.4V  
DC  
+
LOW  
1/2 LT6203  
LT6202/03/04 F05  
Figure 5. Single-Supply 16-Bit ADC Driver  
0
–10  
–20  
f
f
= 250ksps  
IN  
S
= 10.131836kHz  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
0
12.5 25 37.5 50 62.5 75 82.5 100 112.5 125  
FREQUENCY (kHz)  
LT6202/03/04 F06  
Figure 6. FFT Showing 100dB SFDR  
620234fa  
18  
LT6202/LT6203/LT6204  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
620234fa  
19  
LT6202/LT6203/LT6204  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.206)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.04  
(.0165 ± .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.015  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.077)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8) 0802  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
620234fa  
20  
LT6202/LT6203/LT6204  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
620234fa  
21  
LT6202/LT6203/LT6204  
U
PACKAGE DESCRIPTIO  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.337 – .344  
.045 ±.005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
7
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 0502  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
620234fa  
22  
LT6202/LT6203/LT6204  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
620234fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT6202/LT6203/LT6204  
U
TYPICAL APPLICATIO  
Low Noise Differential Amplifier with Gain Adjust and Common Mode Control  
+
V
OUT  
C3  
5pF  
C1  
270pF  
R1  
402Ω  
0dB  
6dB  
C2  
R2  
22pF  
R7, 402Ω  
R10, 402Ω  
200Ω  
V
IN  
+
V
R3  
100Ω  
R9  
402Ω  
12dB  
0dB  
R4  
402Ω  
1/2 LT6203  
+
1/2 LT6203  
+
V
OUT  
R
A
+
R5  
200Ω  
V
+
V
6dB  
R
IN  
0.1µF  
B
R6  
100Ω  
R8  
402Ω  
R
B
+
OUTPUT V  
=
V
CM  
(
)
R
+ R  
B
A
12dB  
LT6202/03/04 F07  
Low Noise Differential Amplifier  
Frequency Response  
G = 0dB  
G = 6dB  
G = 12dB  
1M  
50k  
5M  
FREQUENCY (Hz)  
LT6202/03/04 F08  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1028  
Single, Ultralow Noise 50MHz Op Amp  
Single, Low Noise Rail-to-Rail Amplifier  
1.1nV/Hz  
LT1677  
3V Operation, 2.5mA, 4.5nV/Hz, 60µV Max V  
0S  
LT1722/LT1723/LT1724  
LT1800/LT1801/LT1802  
LT1806/LT1807  
LT6200  
Single/Dual/Quad Low Noise Precision Op Amps  
70V/µs Slew Rate, 400µV Max V , 3.8nV/Hz, 3.7mA  
OS  
Single/Dual/Quad Low Power 80MHz Rail-to-Rail Op Amps 8.5nV/Hz, 2mA Max Supply  
Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers  
Single Ultralow Noise Rail-to-Rail Amplifier  
2.5V Operation, 550µV Max V , 3.5nV/Hz  
OS  
0.95nV/Hz, 165MHz Gain Bandwidth  
620234fa  
LT/TP 0403 1K • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTB20-C1050

Constant Current LED Power Supplies
PAIRUI

LTB20-C350

Constant Current LED Power Supplies
PAIRUI

LTB20-C500

Constant Current LED Power Supplies
PAIRUI

LTB20-C700

Constant Current LED Power Supplies
PAIRUI

LTB25-C1050

Constant Current LED Power Supplies
PAIRUI

LTB25-C350

Constant Current LED Power Supplies
PAIRUI

LTB25-C500

Constant Current LED Power Supplies
PAIRUI

LTB25-C700

Constant Current LED Power Supplies
PAIRUI

LTB3

Rail-to-Rail Input and Output, Ultralow 1.9n Root Hz Noise, Low Power Op Amps
Linear

LTB30-C1050

Constant Current LED Power Supplies
PAIRUI

LTB30-C350

Constant Current LED Power Supplies
PAIRUI

LTB30-C500

Constant Current LED Power Supplies
PAIRUI