LTC1040CSW [Linear]

Dual Micropower Comparator; 双通道微功率比较器
LTC1040CSW
型号: LTC1040CSW
厂家: Linear    Linear
描述:

Dual Micropower Comparator
双通道微功率比较器

比较器
文件: 总12页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1040  
Dual Micropower  
Comparator  
U
FEATURES  
DESCRIPTIO  
The LTC®1040 is a monolithic CMOS dual comparator  
manufactured using Linear Technology’s enhanced  
LTCMOSTM silicon gate process. Extremely low operating  
power levels are achieved by internally switching the  
comparator ON for short periods of time. The CMOS  
output logic holds the output information continuously  
while not consuming any power.  
Micropower  
1.5µW (1 Sample/Second)  
Power Supply Flexibility  
Single Supply 2.8V to 16V  
Split Supply ±2.8V to ±8V  
Guaranteed Max Offset 0.75mV  
Guaranteed Max Tracking Error Between Input  
Pairs ± 0.1%  
In addition to switching power ON, a switched output is  
provided to drive external loads during the comparator’s  
active time. This allows not only low comparator power,  
but low total system power.  
Input Common Mode Range to Both Supply Rails  
TTL/CMOS Compatible with ±5V or Single 5V  
Supply  
Input Errors are Stable with Time and Temperature  
Sampling is controlled by an external strobe input or an  
internal oscillator. The oscillator frequency is set by an  
external RC network.  
U
APPLICATIO S  
Battery-Powered Systems  
Each comparator has a unique input structure, giving two  
differential inputs. The output of the comparator will be  
high if the algebraic sum of the inputs is positive and low  
if the algebraic sum of the inputs is negative.  
Remote Sensing  
Window Comparator  
BANG-BANG Controllers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS™ is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Window Comparator with Symmetric Window Limits  
Typical LTC1040 Supply Current  
vs Sampling Frequency  
1000  
V
= ±5V  
S
LTC1040  
100  
10  
V
+
IN  
A
V
= “1” WHEN  
> V + ∆  
C
OUT  
IN  
COMP A  
+
A + B = “1” WHEN  
1
R
= 10M  
EXT  
V
V V + ∆  
C
IN C  
V
+
+
C
0.10  
EXTERNALLY STROBED  
B
V
= “1” WHEN  
< V ∆  
C
OUT  
IN  
COMP B  
0.01  
0.1  
1
10  
100  
1,000 10,000  
SAMPLING FREQUENCY, f (Hz)  
S
LTC1040 • TA02  
LTC1040 • TA01  
1040fa  
1
LTC1040  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V+ to V) ............................... 18V  
lnput Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Operating Temperature Range  
LTC1040C..................................... 40°C TA 85°C  
LTC1040M (OBSOLETE) .................... 55°C to 125°C  
Storage Temperature Range ................. 55°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Output Short-Circuit Duration.......................Continuous  
ORDER PART  
NUMBER  
+
1
2
3
4
5
6
7
8
9
V
V
18  
17  
16  
15  
14  
13  
12  
11  
10  
STROBE  
ON/OFF  
A + B  
P-P  
LTC1040CN  
LTC1040CSW  
OSC  
B
OUT  
A
OUT  
+
+
B1  
A1  
B1  
A1  
+
+
B2  
A2  
B2  
A2  
V
GND  
N PACKAGE  
18-LEAD PDIP  
SW PACKAGE  
18-LEAD PLASTIC SO WIDE  
T
= 110°C, θ = 120°C/W (N)  
JA  
JMAX  
T
= 125°C, θ = 85°C/W (SW)  
JMAX  
JA  
J PACKAGE  
LTC1040MJ  
LTC1040CJ  
18-LEAD CERDIP  
= 150°C, θ = 80°C/W  
T
JMAX  
JA  
OBSOLETE PACKAGE  
Consider the N18 Package as an Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions: V+ = 5V, V= 5V, unless otherwise noted.  
LTC1040M/LTC1040C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Offset Voltage (Note 2)  
Split Supplies ±2.8V to ±6V  
±0.3  
± 0.75  
mV  
OS  
Single Supply (V = GND) 2.8V to 6V  
Split Supplies ±6V to ±8V  
±1  
±4.5  
mV  
%
Single Supply (V = GND) 6V to 15V  
Tracking Error Between  
Input Pairs (Notes 2 and 3)  
Split Supplies ±2.8V to ±8V  
0.05  
0.1  
Single Supplies (V = GND) 2.8 to 16V  
I
Input Bias Current  
OSC = GND  
±0.3  
nA  
MΩ  
V
BIAS  
R
Average Input Resistance  
Common Mode Range  
Power Supply Range  
f = 1kHz (Note 4)  
S
20  
30  
IN  
+
CMR  
PSR  
V
V
Split Supplies  
±2.8  
±8  
16  
3
V
Single Supplies (V = GND)  
2.8  
V
+
I
I
Power Supply ON Current (Note 5)  
Power Supply OFF Current (Note 5)  
V = 5V, V On  
1.2  
mA  
S(ON)  
P-P  
+
V = 5V, V Off  
LTC1040C  
LTC1040M  
0.001  
0.001  
0.5  
5
µA  
µA  
S(OFF)  
P-P  
t
Response Time (Note 6)  
60  
80  
100  
µs  
D
A, B, A + B and  
ON/OFF Outputs (Note 7)  
Logic “1” Output Voltage  
Logic “0” Output Voltage  
+
+
V
V
V = 4.75V, l  
= 360µA  
= 1.6mA  
2.4  
4.4  
0.25  
V
V
OH  
OL  
OUT  
OUT  
V = 4.75V, l  
0.4  
1040fa  
2
LTC1040  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range otherwise specifications are at TA = 25°C. Test conditions: V+ = 5V, V= 5V, unless otherwise specified  
LTC1040M/LTC1040C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2.0  
TYP  
MAX  
UNITS  
STROBE Input (Note 7)  
Logic “1” Input Voltage  
Logic “0” Input Voltage  
+
V
V
V = 5.25V  
1.6  
1.0  
V
V
IH  
IL  
+
V = 4.75V  
0.8  
+
R
External Timing Resistor  
Sampling Frequency  
Resistor Tied Between V and OSC Pin  
= 1M, C = 0.1µF  
100  
10,000  
kΩ  
EXT  
f
R
EXT  
5
Hz  
S
EXT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: Average supply current = t • l  
• f + (1 – t x f ) • l  
.
S(OFF)  
D
S(ON)  
S
D
S
of a device may be impaired.  
Note 6: Response time is set by an internal oscillator and is independent  
Note 2: Applies over input voltage range limit and includes gain  
of overdrive voltage.  
uncertainty.  
Note 7: Inputs and outputs also capable of meeting EIA/JEDEC B series  
Note 3: Tracking error = (V – V )/ V .  
IN1  
CMOS specifications.  
IN1  
IN2  
Note 4: R is guaranteed by design and is not tested.  
IN  
R
IN  
= 1/(f • 33pF).  
S
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Peak Supply Current  
vs Supply Voltage  
Normalized Sampling Frequency  
vs Supply Voltage and Temperature  
Sampling Rate vs REXT, CEXT  
3
2
20  
18  
16  
14  
12  
10  
8
10  
10  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
R = 1M  
C = 0.1µF  
C
EXT  
= 1000pF  
C
EXT  
= 0.01µF  
T
A
= 125°C  
C
EXT  
= 0.05µF  
25°C  
10  
1
–55°C  
C
EXT  
= 0.1µF  
6
T
A
= 25°C  
125°C  
4
C
= 1µF  
EXT  
2
T
= 55°C  
A
0.1  
0
2
6
8
10  
12  
+
14  
16  
4
100k  
1M  
()  
10M  
8
10  
0
2
4
6
12 14 16  
+
SUPPLY VOLTAGE, V (V)  
R
SUPPLY VOLTAGE, V (V)  
EXT  
LT1040 • TPC03  
LTC1040 • TPC01  
LTC1040 • TPC02  
Response Time  
Input Resistance  
VP-P Output Voltage  
vs Load Current  
vs Supply Voltage  
vs Sampling Frequency  
11  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
10  
300  
250  
200  
150  
T
A
= 25°C  
10  
10  
+
V
= 10V  
+
V
= 16V  
9
+
10  
V
= 2.8V  
100  
50  
0
+
8
V
= 5V  
10  
7
10  
2
3
4
0
1
2
3
4
5
6
7
8
9
10  
1
10  
10  
10  
10  
10  
14  
16  
2
4
6
8
12  
+
SAMPLING FREQUENCY, f (Hz)  
LOAD CURRENT, I (mA)  
L
S
SUPPLY VOLTAGE, V (V)  
LTC1040 • TPC05  
LTC1040 • TPC06  
LTL1040 • TPC04  
1040fa  
3
LTC1040  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quick Hookup Guide  
Response Time  
vs Temperature  
Self-Oscillating  
External Strobe  
130  
+
+
+
V
V
= 5V  
V
EXTERNAL  
STROBE  
INPUT  
1
18  
17  
16  
1
18  
17  
16  
120  
110  
100  
90  
R
EXT  
C
EXT  
LTC1040  
LTC1040  
80  
70  
60  
9
10  
9
10  
50  
40  
–50 –25  
0
25  
125  
50  
75 100  
LTC1040 • TPC08  
AMBIENT TEMPERATURE, T (°C)  
A
LTC1040 • TPC07  
TEST CIRCUIT  
+
V
(18)  
+
+
V
IN  
OUTPUT  
GND (9)  
V
(10)  
LTC1040 • TA01  
ALL INPUTS ON OPPOSITE COMPARATOR AT GROUND  
W
BLOCK DIAGRA  
+
V
18  
+
A1  
A1  
A2  
A2  
5
6
7
8
V
V
IN1  
+
+
+
COMP A  
4
2
A
OUT  
IN2  
ON/OFF  
4
+
+
B1  
B1  
B2  
B2  
14  
13  
12  
11  
1
V
V
IN1  
3
A + B  
+
COMP B  
4
15  
B
OUT  
+
IN2  
+
V
STROBE  
OSC  
TIMING  
GENERATOR TIMING  
SWITCH  
V
P-P  
CIRCUIT  
16  
17  
10  
V
P-P  
POWER ON  
9
GND  
V
80µs  
LTC1040 • BD01  
1040fa  
4
LTC1040  
W U U  
APPLICATIO S I FOR ATIO  
U
The LTC1040 uses sampled data techniques to achieve its  
unique characteristics. Some of the experience acquired  
using classic linear comparators does not apply to this  
circuit, so a brief description of internal operation is  
essential to proper application.  
For RS > 1OkΩ  
For RS greater than 10k, CIN cannot fully charge and a  
bypass capacitor, CS, is needed. When switch S1 closes,  
charge is shared between CS and CIN. The change in  
voltage on CS because of this charge sharing is:  
The most obvious difference between the LTC1040 and  
other comparators is the dual differential input structure.  
Functionally, when the sum of inputs is positive, the  
comparator output is high and when the sum of the inputs  
is negative, the output is low. This unique input structure  
is achieved with CMOS switches and a precision capacitor  
array. Because of the switching nature of the inputs, the  
concept of input current and input impedance needs to be  
examined.  
CIN  
V = VIN •  
CIN + CS  
This represents an error and can be made arbitrarily small  
by increasing CS.  
With the addition of CS, a second error term caused by the  
finiteinputresistanceoftheLTC1040mustbeconsidered.  
Switches S1 and S2 alternately open and close, charging  
and discharging CIN between VIN and ground. The  
alternate charge and discharge of CIN causes a current to  
flow into the positive input and out of the negative input.  
The magnitude of this current is:  
The equivalent input circuit is shown in Figure 1. Here, the  
input is being driven by a resistive source, RS, with a  
bypass capacitor, CS. The bypass capacitor may or may  
not be needed, depending on the size of the source  
resistance and the magnitude of the input voltage, VIN.  
IIN = q • fS = VIN CIN fS  
where fS is the sampling frequency. Because the input  
currentisdirectlyproportionaltoinputvoltage,theLTC1040  
can be said to have an average input resistance of:  
C
IN  
33pF  
S1  
S2  
R
S
+
VIN  
1
1
RIN =  
=
=
IIN fS CIN fS • 33pF  
V
C
S
IN  
V
(see typical curve of Input Resistance vs Sampling Fre-  
quency). A voltage divider is set up between RS and RIN  
causing error.  
LTC1040 DIFFERENTIAL INPUT  
LTC1040 • AI01  
Figure 1. Equivalent Input Circuit  
The input voltage error caused by these two effects is:  
C
R
IN  
S
+
V
= V  
IN  
ERROR  
(
)
For RS < 1Ok  
C + C R + R  
IN IN  
S
S
Assuming CS is zero, the input capacitor, CIN, charges to  
VIN with a time constant of RS CIN. When RS is too large,  
CIN does not have a chance to fully charge during the  
sampling interval (80µs) and errors will result. If RS  
exceeds 10k, a bypass capacitor is necessary to mini-  
mize errors.  
Example: f = 10Hz, R = 1M,  
S
S
C = 1µF, V = 1V  
S
IN  
–12  
33 • 10  
–6  
1 • 10  
6
10  
+
V
= 1V  
ERROR  
(
)
6
9
10 + 3 • 10  
= 33µV + 330µV = 363µV.  
Notice that most of the error is caused by RIN. If the  
sampling frequency is reduced to 1Hz, the voltage error is  
reduced to 66µV.  
1040fa  
5
LTC1040  
W U U  
U
APPLICATIO S I FOR ATIO  
Minimizing Comparison Errors  
Tracking Error  
The two differential input voltages, V1 and V2, are con- Tracking error is caused by the ratio error between CIN1  
verted to charge by the input capacitors CIN1 and CIN2 (see and CIN2 and is expressed as a percentage. For example,  
Figure 2). The charge is summed at the virtual ground consider Figure 3a with VREF = 1V. Then at null,  
point; if the net charge is positive, the comparator output  
C
CIN2  
VIN = VREF IN1 = 1V ± 1mV  
is high and if negative, it is low. There is an optimum way  
to connect these inputs, in a specific application, to  
minimize error.  
because CIN1 is guaranteed to equal CIN2 to within 0.1%.  
C
VIRTUAL  
GROUND  
IN1  
S1  
+
+
V
V
REF  
V1  
V2  
REF  
+
+
V
S2  
IN  
+
+
V
IN  
C
IN2  
(a) OK  
(b) Optimum  
Figure 3. Two Ways to Do It  
LTC1040 • TA03  
LTC1040 DUAL DIFFERENTIAL INPUT  
LTC1040 • AI02  
Figure 2. Dual Differential Equivalent Input Circuit  
Common Mode Range  
The input switches of the LTC1040 are capable of  
switchingtoeithertheV+orVsupply.Thismeansthatthe  
input common mode range includes both supply rails.  
Many applications, not feasible with conventional com-  
parators, are possible with the LTC1040. In the load  
current detector shown in Figure 4, a 0.1resistor is used  
to sense the current in the V+ supply. This application  
requires the dual differential input and common mode  
capabilities of the LTC1040.  
Ignoring internal offset, the LTC1040 will be at its switch-  
ing point when:  
V1 • CIN1 + V2 • CIN2 = 0.  
Optimum error will be achieved when the differential  
voltages, V1 and V2, are individually minimized. Figure 3  
shows two ways to connect the LTC1040 to compare an  
input voltage, VIN, to a reference voltage, VREF. Using the  
above equation, each method will be at null when:  
(a) (VREF – 0V) CIN1 – (0V – VIN) CIN2 = 0  
I
L
or VIN = VREF (CIN1/CIN2  
)
0.1  
(b) (VREF – VIN) CIN1 – (0V – 0V) CIN2 = 0  
or VIN = VREF  
R
L
+
+
.
1/2  
LTC1040  
OUT  
Notice that in method (a) the null point depends on the  
ratio of CIN1/CIN2, but method (b) is independent of this  
ratio. Also, because method (b) has zero differential input  
voltage, the errors due to finite input resistance are  
negligible. The LTC1040 has a high accuracy capacitor  
array and even the non-optimum connection will only  
result in ± 0.1% more error, worst-case compared to the  
optimum connection.  
+
V
100mV  
S
OUT = HI IF I > 1A  
L
OUT = LO IF I < 1A  
L
LTC1040 • AI04  
Figure 4. Load Current Detector  
1040fa  
6
LTC1040  
W U U  
APPLICATIO S I FOR ATIO  
U
Offset Voltage Error  
The VP-P output voltage is not precise (see VP-P Output  
Voltage versus Load Current curve). There are two ways  
VP-P can be used to power external networks without  
excessive errors: (1) ratiometric networks and (2) fast  
settling references.  
The errors due to offset, common mode, power supply  
variation, gain and temperature are all included in the  
offsetvoltagespecification. Thismakesiteasytocompute  
the error when using the LTC1040.  
In a ratiometric network, the inputs are all proportional to  
VP-P (see Figure 6). Consequently, for small changes, the  
absolute value of VP-P does not affect accuracy.  
Example: error computation for Figure 4.  
Assume: 2.8V VS 6V.  
Then total worst-case error is:  
1A  
It is critical that the inputs to the LTC1040 completely  
settle within 4µs of the start of the comparison cycle and  
that they do not change during the 80µs ON time. When  
driving resistive networks with VP-P, capacitive loading on  
= ±6mA  
I
= ± (100mV • 0.001 + 0.5mV) •  
L (ERROR)  
100mV  
Tracking Error  
6mA  
VOS  
V
OUTPUT  
P-P  
IL (ERROR)% =  
• 100 = ± 0.6%.  
1A  
V
+
IN  
+
+
Note: If source resistance exceeds 10k, bypass  
capacitors should be used and the associated errors must  
be included.  
1/2  
LTC1040  
OUTPUT  
V
TRIP  
LTC1040 • AI06  
Pulsed Power (VP-P) Output  
Figure 6. Ratiometric Network Driven by VP-P  
It is often desirable to use comparators with resistive  
networks such as bridges. Because of the extremely low  
powerconsumptionoftheLTC1040,thepowerconsumed  
by these resistive networks can far exceed that of the  
device itself.  
the network should be minimized to meet the 4µs settling  
timerequirement.ItisnotrecommendedthatVP-P beused  
to drive networks with source impedances, as seen by the  
inputs, of greater than 10k.  
At low sample rates the LTC1040 spends most of its time  
off.Totakeadvantageofthis,apulsedpower(VP-P)output  
is provided. VP-P is switched to V+ when the comparator  
is on and to a high impedance (open circuit) when the  
comparator is off. The ON time is nominally 80µs.  
Figure 5 shows the VP-P output circuit.  
In applications where an absolute reference is required,  
the VP-P output can be used to drive a fast settling  
reference. The LT1009 2.5V reference, ideal in this  
application, settles in approximately 2µs (see Figure 7).  
The current through R1 must be large enough to supply  
the LT1009 minimum bias current (1mA) and the load  
current, IL.  
+
V
18  
V
OUTPUT  
P-P  
R1  
+
+
V
Q1 P1  
IN  
1/2  
LTC1040  
R2  
80µs  
I
L
R3  
LT1009  
COMPARATOR ON TIME  
9
17  
GND  
V
P-P  
LTC1040 • AI07  
LTC1040 • AI05  
Figure 5. VP-P Output Switch  
Figure 7. Driving Reference with VP-P Output  
1040fa  
7
LTC1040  
W U U  
U
APPLICATIO S I FOR ATIO  
Output Logic  
Because of the sampling nature of the LTC1040, some  
sensitivity exists between the offset voltage and the falling  
edge of the input strobe. When the falling edge of the  
strobe signal falls within the comparator’s active time  
(80µsafterrisingedge),offsetchangesofasmuchas2mV  
canoccur.Toeliminatethisproblem,makesurethestrobe  
pulse width is greater than the response time, tD.  
In addition to the normal outputs (AOUT and BOUT), two  
additional outputs, A + B and ON/0FF, are provided (see  
Figure 8 and Table 1). All logic is powered from V+ and  
ground, thusinputandoutputlogiclevelsareindependent  
of the Vsupply. The LTC1040 is directly compatible with  
CMOS logic and is TTL compatible for 4.75VV + 5.25V.  
No external pull-up resistors are required.  
Using Internal Strobe  
Table 1. Output Logic Truth Table  
An internal oscillator allows the LTC1040 to strobe itself.  
The frequency of oscillation, and hence sampling rate, is  
set by an external RC network (see typical curve of  
Sampling Rate vs REXT, CEXT).  
ΣA INPUTS  
ΣB INPUTS  
A
OUT  
B
A + B  
ON/OFF  
OUT  
+
+
+
+
H
H
L
H
L
H
L
L
L
L
L
H
For self-oscillation, the STROBE pin must be tied to  
ground. The external RC network is connected as shown  
in Figure 9.  
L
L
H
I*  
*I = indeterminate. When both A and B outputs are low, the ON/OFF output  
remains in the state it was in prior to entering A  
= B  
= L.  
OUT  
OUT  
To assure oscillation, REXT must be between 100k and  
Using External Strobe  
10M. There is no limit to the size of CEXT  
.
Apositivepulseonthestrobeinput,withthe0SCinputtied  
to ground, will initiate a comparison cycle. The STROBE  
input is edge-sensitive and pulse widths of 50ns will  
typically trigger the device.  
REXT is very important in determining the power  
consumption. The average voltage at the oscillator pin is  
approximatelyV+/2.ThepowerconsumedbyREXT isthen:  
PREXT = (V+/2)2/REXT  
.
+
V
1
18  
17  
16  
2
ON/OFF  
R
EXT  
C
EXT  
LTC1040  
COMPARATOR A  
OUTPUT  
D
C
4
3
A
Q
Q
OUT  
10  
9
A + B  
COMPARATOR B  
OUTPUT  
D
C
B
15  
OUT  
LTC1040 • AI09  
Figure 9. External RC Connection  
STROBE  
Example: REXT = 1M, V+ 5V, PREXT = (2.5)2/106 =  
6.25 • 10–6W.  
80µs  
LTC1040 • AI08  
This is about four times the power consumed by the  
LTC1040 at V+ = 5V and fS = 1 sample/second. Where  
power is a premium REXT should be made as large as  
possible. Note that the power consumed by REXT is not a  
Figure 8. LTC1040 Logic Diagram  
function of fS or CEXT  
.
1040fa  
8
LTC1040  
U
TYPICAL APPLICATIO S  
Complete Heating/Cooling Automatic Thermostat  
5V AT 0.85µA  
17  
18  
20M  
LTC1040  
4.32k  
4.99k  
5
6
7
8
+
+
4
3
COMP A  
82k*  
HEAT  
COOL  
5k  
TEMP  
ADJUST  
14  
13  
12  
11  
+
+
15  
16  
6.81k  
COMP B  
10M  
82k*  
THERMISTOR # 44007  
YELLOW SPRINGS INSTRUMENT CO., INC.  
0.1µF  
9
10  
82k  
20M  
SEPARATION  
(20mV)  
*
LTC1040 • TA03  
HYSTERESIS = 5V •  
= 20mV  
20M  
AIRCONDITIONING ON  
HYSTERESIS  
AIRCONDITIONING OFF  
HEATER OFF  
HYSTERESIS  
HEATER ON  
28°C  
SEPARATION  
27°C  
HEAT  
COOL  
LTC1040 • TA04  
TIME  
Window Comparator with Independent Window Limits and  
Fully Floating Differential Input  
Hysteresis Comparator with Fully Floating Differential Input  
+
V
LTC1040  
+
V
IN  
+
1/2 LTC1040  
OUT  
V
IN  
V
V
TRIP  
+
A
V
= “1” WHEN  
OUT  
IN  
COMP A  
COMP B  
R1  
10k  
> V  
*
+
U
U
A+B = “1” WHEN  
R2  
2.49MΩ  
R2 + (5V) R1  
V
V V  
IN L  
U
+
+
V
TRIP  
OUT = “0” WHEN V > V  
=
= 0.996 V  
+ 20mV  
B
V
= “1” WHEN  
L
IN  
U
TRIP  
OUT  
IN  
R1 + R2  
R2  
< V  
V
L
V
TRIP  
R1 + R2  
OUT = “1” WHEN V < V1 =  
= 0.996V  
TRIP  
IN  
LTC1040 • TA05  
*
TO CENTER HYSTERESIS ABOUT V  
HYSTERESIS/2 (10mV)  
, FORCE THIS INPUT TO  
TRIP  
LTC1040 • TA06  
1040fa  
9
LTC1040  
U
TYPICAL APPLICATIO S  
The LTC1040 as a Linear Amplifier  
With a simple RC filter, the LTC1040 can be made to  
function as a linear amplifier. By filtering the logic output  
and feeding it back to the negative input, the loop forces  
the output duty cycle [tON/(tON + tOFF)] so that VOUT equals  
VIN (Figure 10).  
should be set to 0.5mV to 1mV for best results. Notice that  
thehigherthesamplingfrequency,fS,thelowerRCcanbe.  
This is important because the RC filter also sets the loop  
response. A convenient way to keep fS as high as possible  
under all conditions is to connect a 100k resistor to pin 16  
(OSC) with no capacitance to ground.  
TheRCtimeconstantissettokeeptherippleontheoutput  
small. The maximum output ripple is: V = V+/fSRC and  
+
V
+
+
V
R
1/2 LTC1040  
V
OUT  
V
IN  
+
0V  
t
ON  
+
= V  
C
t
V
OFF  
OUT  
t
+ t  
ON OFF  
t
ON  
LTC1040 • TA08  
LTC1040 • TA07  
Figure 10. The LTC1040 as a Linear Amplifier  
2-Wire 0°C to 100°C Temperature Transducer with 4mA to 20mA Output  
12V TO 40V  
0°C = 4mA  
100°C = 20mA  
+
V
R
LM134  
V
43  
1N914  
430Ω  
1k  
ZERO  
ADJUST  
3200  
6250  
100k  
16  
6
4
6
5
LT1019-5  
18  
1M  
4
+
7
1/2  
LTC1040  
2N6657  
8
9
+
+
+
1µF  
10  
18k  
50  
10µF  
5k  
182Ω  
YELLOW SPRINGS INSTRUMENT  
PART NO. 44201  
RETURN  
FULL-SCALE  
ADJUST  
ACCURACY =  
±0.1°C  
CIRCUIT ERROR  
+
±0.2°C  
TRANSDUCER  
ERROR  
= ±0.3°C  
LTC1040 • TA09  
AT 25°C  
1040fa  
10  
LTC1040  
U
PACKAGE DESCRIPTIO  
J Package  
18-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.960  
(24.384)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
17  
16  
18  
15  
14  
11  
13  
12  
10  
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.220 – .310  
(5.590 – 7.870)  
.025  
(0.635)  
RAD TYP  
.045 – .065  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
3
1
2
4
5
6
7
8
9
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.380 – 1.520)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
J18 0801  
(0.360 – 0.660)  
OBSOLETE PACKAGE  
N Package  
18-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.900*  
(22.860)  
MAX  
18  
17  
16  
15  
14  
13  
12  
11  
10  
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
9
4
7
8
.300 – .325  
(7.620 – 8.255)  
.130 ± .005  
(3.302 ± 0.127)  
.045 – .065  
(1.143 – 1.651)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
–.015  
.325  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
.005  
(0.127)  
MIN  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
N18 1002  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1040fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1040  
U
TYPICAL APPLICATIO S  
Analog Multiplier/Divider  
Single + 5V Voltage-to-Frequency Converter  
5V  
V
(5V)  
REF  
4
5
6
7
8
18  
+
+
1/4 74C00  
1/2  
LTC1040  
4
15  
3
18  
V
V
IN  
C
f
f
OUT  
1
100k  
16  
1/4 74C00  
10  
9
10k  
V
OUT  
+
+
5
6
7
8
100k  
V1  
V2  
+
+
10µF  
18  
10  
1/2  
LTC1040  
16  
13  
4
LTC1043  
IN  
V
A
+
1µF  
14  
12  
9
V *  
B
V
IN  
f
(AVERAGE) = f  
IN  
±0.1% FS  
OUT  
10k  
V
REF  
LTC1040 • TA11  
10µF  
17  
(V + V1 – V2) • V  
A
ACCURACY = ±10mV NO TRIM  
C
V
OUT =  
*
V
B
MUST BE > V + (V1 – V2)  
V
B
A
LTC1040 • TA10  
U
PACKAGE DESCRIPTIO  
SW Package  
18-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
TYP  
.447 – .463  
(11.354 – 11.760)  
NOTE 4  
N
14 13  
11  
15  
12  
10  
18 17 16  
N
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
N/2  
9
RECOMMENDED SOLDER PAD LAYOUT  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
1
4
6
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
.010 – .029  
(0.254 – 0.737)  
× 45°  
(2.362 – 2.642)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S18 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1040fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LTC1040CSW#PBF

LTC1040 - Dual Micropower Comparator; Package: SO; Pins: 18; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1040CSW#TR

LTC1040 - Dual Micropower Comparator; Package: SO; Pins: 18; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1040CSW#TRPBF

LTC1040 - Dual Micropower Comparator; Package: SO; Pins: 18; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1040M

Dual Micropower Comparator
Linear

LTC1040MJ

Dual Micropower Comparator
Linear

LTC1040MJ/883

Analog Comparator
ETC

LTC1040_09

Dual Micropower Comparator
Linear

LTC1041

BANG-BANG Controller
Linear

LTC1041

Ultralow Voltage Step-Up Converter and Power Manager
Linear System

LTC1041C

BANG-BANG Controller
Linear

LTC1041CN8

BANG-BANG Controller
Linear

LTC1041CS8

BANG-BANG Controller
Linear