LTC1041_09 [Linear]

BANG-BANG Controller; Bang-Bang控制
LTC1041_09
型号: LTC1041_09
厂家: Linear    Linear
描述:

BANG-BANG Controller
Bang-Bang控制

文件: 总8页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1041  
BANG-BANG Controller  
U
FEATURES  
DESCRIPTIO  
The LTC®1041 is a monolithic CMOS BANG-BANG  
controller manufactured using Linear Technology’s  
enhanced LTCMOS™ silicon gate process. BANG-BANG  
loops are characterized by turning the control element  
fully ON or fully OFF to regulate the average value of  
the parameter to be controlled. The SET POINT input  
determines the average control value and the DELTA input  
sets the deadband. The deadband is always 2 x DELTA and  
is centered around the SET POINT. Independent control  
of the SET POINT and deadband, with no interaction, is  
made possible by the unique sampling input structure of  
the LTC1041.  
Micropower 1.5µW (1 Sample/Second)  
Wide Supply Range 2.8V to 16V  
High Accuracy  
Guaranteed SET POINT Error ±0.5mV Max  
Guaranteed Deadband ±0.1% of Value Max  
Wide Input Voltage Range V+ to Ground  
TTL Outputs with 5V Supply  
Two Independent Ground-Referred Control Inputs  
Small Size 8-Pin SO  
U
APPLICATIO S  
AnexternalRCconnectedtotheOSCpinsetsthesampling  
rate. At the start of each sample, internal power to the  
analog section is switched on for 80µs. During this time,  
the analog inputs are sampled and compared. After the  
comparison is complete, power is switched off. This  
achieves extremely low average power consumption  
at low sampling rates. CMOS logic holds the output  
continuously while consuming virtually no power.  
Temperature Control (Thermostats)  
Motor Speed Control  
Battery Charger  
Any ON-OFF Control Loop  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS is a trademark of Linear Technology Corporation.  
Tokeepsystempoweratanabsoluteminimum,aswitched  
power output (VP-P) is provided. External loads, such as  
bridge networks and resistive dividers, can be driven by  
this switched output.  
The output logic sense (i.e., ON = V+) can be reversed  
(i.e., ON = GND) by interchanging the VIN and SET POINT  
inputs. This has no other effect on the operation of  
the LTC1041.  
U
TYPICAL APPLICATIO  
Supply Current vs Sampling Frequency  
10000  
Ultralow Power 50°F to 100°F (2.4µW) Thermostat  
V
S
= 6V  
26V AC 2-WIRE THERMOSTAT  
1000  
0.1µF  
4.32k  
4.99k  
56Ω  
1
2
3
4
8
7
6
5
100  
10  
TOTAL SUPPLY  
CURRENT  
10M  
5k  
I
S
LTC1041  
400nA  
+
2N6660  
6.81k  
1
0.1  
6V  
LTC1041 SUPPLY  
CURRENT  
1N4002  
(4)  
1µF  
DELTA = 0.5°F  
49.9Ω  
LTC1041 • TA01  
0.01  
ALL RESISTORS 1%. YELLOW SPRINGS INSTRUMENT CO., INC. P/N 44007.  
DRIVING THERMISTOR WITH V ELIMINATES 3.8°F ERROR DUE TO SELF-HEATING  
0.1  
1
10  
100  
1000  
10000  
P-P  
SAMPLING FREQUENCY, f (Hz)  
LTC1041 • TA02  
S
1041fa  
1
LTC1041  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Total Supply Voltage (V+ to V) .............................. 18V  
Input Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Operating Temperature Range  
LTC1041C......................................... 40°C to 85°C  
LTC1041M (OBSOLETE) .................. 55°C to125°C  
Storage Temperature Range ................. 55°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Output Short Circuit Duration .......................Continuous  
+
1
2
3
4
8
7
6
5
V
V
ON / OFF  
V
IN  
P-P  
LTC1041CN8  
LTC1041CS8  
SET POINT  
GND  
OSC  
DELTA  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PDIP  
T
JMAX  
T
JMAX  
= 110°C, θ = 150°C/W (N8)  
JA  
= 150°C, θ = 150°C/W (S8)  
JA  
J8 PACKAGE  
8-LEAD CERDIP  
LTC1041MJ8  
T
= 150°C, θ = 100°C/W  
JMAX  
JA  
OBSOLETE PACKAGE  
Consider the N8 Package as an Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test Conditions: V+ = 5V, unless otherwise specified.  
TC1041M/LTC1041C  
SYMBOL PARAMETER  
SET POINT Error (Note 3)  
CONDITIONS  
V = 2.8V to 6V (Note 2)  
MIN  
TYP  
MAX  
UNITS  
+
±0.3  
+
±0.05  
±0.5  
+
±0.1  
mV  
% of DELTA  
mV  
+
V = 6V to 15V (Note 2)  
±1  
+
±0.05  
±3  
+
±0.1  
% of DELTA  
mV  
+
Deadband Error (Note 4)  
Input Current  
V = 2.8V to 6V (Note 2)  
±0.6  
+
±0.1  
±1  
+
±0.2  
% of DELTA  
+
V = 6V to 15V (Note 2)  
±2  
+
±0.1  
±6  
+
±0.2  
% of DELTA  
nA  
+
I
V = 5V, T = 25°C, OSC = GND  
±0.3  
OS  
A
(V , SET POINT and DELTA Inputs)  
IN  
R
Equivalent Input Resistance  
Input Voltage Range  
f = 1kHz (Note 5)  
10  
GND  
2.8  
15  
MΩ  
V
IN  
S
+
V
P
Power Supply Range  
16  
3
V
SR  
+
I
I
t
Power Supply ON  
Current (Note 6)  
V = 5V, V ON  
1.2  
mA  
S(ON)  
P-P  
+
Power Supply OFF  
Current (Note 6)  
V = 5V, V OFF  
LTC1041C  
LTC1041M  
0.001  
0.001  
0.5  
5
µA  
µA  
S(OFF)  
D
P-P  
+
Response Time (Note 7)  
V = 5V  
60  
2.4  
100  
80  
100  
µs  
ON/OFF Output (Note 8)  
Logical “1” Output Voltage  
Logical “0” Output Voltage  
+
+
V
V
V = 4.75V, I  
= –360µA  
= 1.6mA  
4.4  
0.25  
V
V
OH  
OL  
OUT  
OUT  
V = 4.75V, I  
0.4  
+
R
EXT  
External Timing Resistor  
Sampling Frequency  
Resistor Connected between V and OSC Pin  
10,000  
kΩ  
+
f
V = 5V, T = 25°C,  
5
Hz  
S
A
R
= 1M C = 0.1µF  
EXT  
EXT  
Note 2: Applies over input voltage range limit and includes gain  
uncertainty.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
1041fa  
2
LTC1041  
ELECTRICAL CHARACTERISTICS  
Note 5: R is guaranteed by design and is not tested.  
V + V  
IN  
U
L
Note 3: SET POINT error ≡  
– SET POINT  
(
)
R
IN  
= 1/(f x 66pF).  
2
S
Note 6: Average supply current = t • I  
• f + (1 – t • f ) l  
S
.
S(OFF)  
where V = upper band limit and V = lower band limit.  
D
S(ON)  
D
S
U
L
Note 7: Response time is set by an internal oscillator and is independent  
Note 4: Deadband error (V – V ) – 2 • DELTA where V = upper band  
U
L
U
of overdrive voltage. t = V pulse width.  
D
P-P  
limit and V = lower band limit.  
L
Note 8: Output also capable of meeting EIA/JEDEC standard B series  
CMOS drive specifications.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Normalized Sampling  
IS(ON) vs V+  
Frequency vs V+, Temperature  
Sampling Rate vs REXT, CEXT  
3
2
10  
20  
18  
16  
14  
12  
10  
8
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
R = 1M, C = 0.1µF  
C
EXT = 1000pF  
10  
CEXT = 0.01  
µF  
TA = 125°C  
25°C  
CEXT = 0.05  
µF  
10  
1
–55°C  
CEXT = 0.1  
µF  
6
T
A = 25°C  
125°C  
4
CEXT = 1µ  
F
2
T
A = 55°C  
0.1  
0
8
10  
0
2
4
6
12 14 16  
100k  
1M  
10M  
2
6
8
10  
12  
+
14  
16  
4
+
R
EXT  
()  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
LTC1041 • TPC03  
LTC1041 • TPC02  
LTC1041 • TPC01  
Response Time  
vs Supply Voltage  
Response Time  
vs Temperature  
300  
250  
200  
150  
130  
120  
110  
100  
90  
+
T
= 25°C  
V
= 5V  
A
80  
100  
50  
0
70  
60  
50  
40  
10  
SUPPLY VOLTAGE, V (V)  
14  
16  
2
4
6
8
12  
–50 –25  
0
25  
125  
50  
75 100  
+
AMBIENT TEMPERATURE, T (°C)  
A
LTC1041 • TPC04  
LTC1041 • TPC05  
1041fa  
3
LTC1041  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VP-P Output Voltage  
vs Load Current  
RIN vs Sampling Frequency  
11  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
10  
+
10  
9
V
= 16V  
10  
+
V
= 10V  
10  
+
V
= 2.8V  
8
7
+
10  
V
= 5V  
7
10  
2
3
4
0
1
2
3
4
5
6
8
9
10  
1
10  
10  
10  
10  
SAMPLING FREQUENCY fS (Hz)  
LOAD CURRENT, IL (mA)  
LTC1041 • TPC07  
LTC1041 • TPC06  
W U U  
U
APPLICATIO S I FOR ATIO  
The LTC1041 uses sampled data techniques to achieve  
its unique characteristics. It consists of two comparators,  
each of which has two differential inputs (Figure 1a).  
When the sum of the voltages on a comparator’s inputs is  
positive, the output is high and when the sum is negative,  
the output is low. The inputs are interconnected such that  
the RS flip-flop is reset (ON/OFF = GND) when  
VIN > (SET POINT + DELTA) and is set (ON/OFF = V+) when  
VIN < (SET POINT – DELTA). This makes a very precise  
hysteresis loop of 2 • DELTA centered around the  
SET POINT. (See Figure 1b.)  
For RS < 10kΩ  
+
The dual differential input structure is made with CMOS  
switches and a precision capacitor array. Input  
impedance characteristics of the LTC1041 can be  
determined from the equivalent circuit shown in Figure 2.  
The input capacitance will charge with a time constant of  
V
VIN  
(2)  
(8)  
+
+
COMP A  
ON/OFF  
(1)  
4
SET POINT  
SET POINT  
(3)  
DELTA – +DELTA  
+
+
V+  
COMP B  
DELTA  
(5)  
DEADBAND  
+
V
GND  
(4)  
4
+
V
REXT  
OSC  
(6)  
TIMING  
GENERATOR  
VP-P  
(7)  
V
P-P  
CIRCUIT  
GND  
0V  
VL  
VU  
CEXT  
POWER ON  
INPUT VOLTAGE, VIN  
80µs  
LTC1041 • AI01a  
LTC1041 • AI01b  
(a)  
(b)  
Figure 1. LTC1041 Block Diagram  
1041fa  
4
LTC1041  
W U U  
APPLICATIO S I FOR ATIO  
U
Input Voltage Range  
CIN  
(33pF)  
S1  
RS  
The input switches of the LTC1041 are capable of  
switchingeithertotheV+ supplyorground.Consequently,  
the input voltage range includes both supply rails. This is  
a further benefit of the sampling input structure.  
+
VIN  
CS  
S2  
V–  
LTC1041 DIFFERENTIAL INPUT  
LTC1041 • AI01  
Error Specifications  
Figure 2. Equivalent Input Circuit  
The only measurable errors on the LTC1041 are the  
deviations from “ideal” of the upper and lower switching  
levels (Figure 1b). From a control standpoint, the error in  
the SET POINT and deadband is critical. These errors may  
be defined in terms of VU and VL.  
RS • CIN. The ability to fully charge CIN from the signal  
source during the controller’s active time is critical in  
determining errors caused by the input charging current.  
For source resistances less than 10k, CIN fully charges  
and no error is caused by the charging current.  
VU + VL  
SET POINT error ≡  
– SET POINT  
2
For RS > 10kΩ  
deadband error V – V – 2 DELTA  
(
)
U
L
Forsourceresistancesgreaterthan10k, CIN cannotfully  
charge, causing voltage errors. To minimize these errors,  
an input bypass capacitor, CS, should be used. Charge is  
shared between CIN and CS, causing a small voltage error.  
ThemagnitudeofthiserrorisAV =VIN CIN (CIN +CS). This  
error can be made arbitrarily small by increasing CS.  
The specified error limits (see electrical characteristics)  
include error due to offset, power supply variation, gain,  
time and temperature.  
Pulsed Power (VP-P) Output  
It is often desirable to use the LTC1041 with resistive  
networks such as bridges and voltage dividers. The power  
consumed by these resistive networks can far exceed that  
of the LTC1041 itself.  
The averaging effect of the bypass capacitor, CS, causes  
another error term. Each time the input switches cycle  
between the plus and minus inputs, CIN is charged and  
discharged. The average input current due to this is  
IAVG = VIN • CIN • fS, where fS is the sampling frequency.  
Because the input current is directly proportional to the  
differential input voltage, the LTC1041 can be said to have  
an average input resistance of RIN = VIN/IAVG = I/(fS • CIN).  
At low sample rates the LTC1041 spends most of its time  
off. Aswitchedpoweroutput, VP-P, isprovidedtodrivethe  
input network, reducing its average power as well. VP-P is  
switched to V+ during the controller’s active time (80µs)  
and to a high impedance (open circuit) when internal  
power is switched off.  
Sincetwocomparatorinputsareconnectedinparallel, RIN  
is one half of this value (see typical curve of RIN versus  
Sampling Frequency). This finite input resistance causes  
an error due to the voltage divider between RS and RIN.  
Figure 3 shows the VP-P output circuit. The VP-P output  
voltage is not precisely controlled when driving a load  
(seetypicalcurveofVP-P OutputVoltagevsLoadCurrent).  
Inspiteofthis,highprecisioncanbeachievedintwoways:  
(1) driving ratiometric networks and (2) driving fast set-  
tling references.  
The input voltage error caused by both of these effects is  
VERROR = VIN [2CIN/(2CIN + CS) + RS/(RS + RIN)].  
Example: assume fS = 10Hz, RS = 1M, CS = 1µF, VIN = 1V,  
VERROR = 1V(66µV + 660µV) = 726µV. Notice that most of  
the error is caused by RIN. If the sampling frequency is  
reduced to 1Hz, the voltage error from the input  
impedance effects is reduced to 136µV.  
In ratiometric networks all the inputs are proportional to  
VP-P (Figure 4). Consequently, the absolute value of VP-P  
does not affect accuracy.  
1041fa  
5
LTC1041  
W U U  
U
APPLICATIO S I FOR ATIO  
+
V
In applications where an absolute reference is required,  
the VP-P output can be used to drive a fast settling  
reference. The LTC1009 2.5V reference settles in 2µs  
and is ideal for this application (Figure 5). The current  
through R1 must be large enough to supply the LT1009  
minimum bias current (1mA) and the load current, IL.  
8
Q1  
P1  
80µs  
COMPARATOR ON TIME  
4
7
GND  
VP-P  
LTC1041 • AI03  
Internal Oscillator  
Figure 3. VP-P Output Switch  
An internal oscillator allows the LTC1041 to strobe itself.  
The frequency of the oscillation, and hence the sampling  
rate, is set with an external RC network (see typical curve,  
Sampling Rate REXT, CEXT). REXT and CEXT are connected  
as shown in Figure 1. To assure oscillation, REXT must be  
between 100kand 10M. There is no limit to the size of  
+
V
R1  
R2  
1
8
R3  
R4  
R5  
R6  
V
V
IN  
SET POINT  
GND  
2
3
4
7
6
5
P-P  
LTC1041  
CEXT.  
DELTA  
At low sampling rates, REXT is very important in  
determining the power consumption. REXT consumes  
power continuously. The average voltage at the OSC pin  
is approximately V+/2, giving a power dissipation of  
LTC1041 • AI04  
PREXT = (V+/ 2)2/REXT  
.
Figure 4. Ratiometric Network Driven by VP-P  
Example: assume REXT = 1M, V+ = 5V, PREXT  
=
(2.5)2/106 =6.25/µW. Thisisapproximatelyfourtimesthe  
power consumed by the LTC1041 at V+ = 5V and  
fS = 1 sample/second. Where power is a premium,  
REXT should be made as large as possible. Note that the  
+
V
R1  
8
7
6
5
1
2
3
4
I
V
R2  
L
IN  
LTC1041  
SET POINT  
power dissipated by REXT is not a function of fS or CEXT  
.
DELTA  
R3  
R4  
If high sampling rates are needed and power consumption  
is of secondary importance, a convenient way to get the  
maximumpossiblesamplingrateistomakeREXT =100kΩ  
and CEXT = 0. The sampling rate, set by the controller’s  
active time, will nominally be 10kHz.  
LT1009-2.5  
LTC1041 • AI05  
Figure 5. Driving Reference with VP-P Output  
To synchronize the Sampling of the LTC1041 to an  
external frequency source, the OSC pin can be driven by a  
CMOS gate. A CMOS gate is necessary because the input  
trip points of the oscillator are close to the supply rails and  
TTLdoesnothaveenoughoutputswing.Externallydriven,  
there will be a delay from the rising edge of the OSC input  
and the start of the sampling cycle of approximately 5µs.  
If the best possible performance is needed, the inputs to  
the LTC1041 must completely settle within 4µs of the start  
of the comparison cycle (VP-P high impedance to V+  
transition). Also, it is critical that the input voltages do not  
changeduringthe80µsactivetime.Whendrivingresistive  
input networks with VP-P, capacitive loading should be  
minimized to meet the 4µs settling time requirement.  
Further, care should be exercised in layout when driving  
networkswithsourceimpedances,asseenbytheLTC1041,  
of greater than 10k(see For RS > 10k).  
1041fa  
6
LTC1041  
U
TYPICAL APPLICATIO S  
Motor Speed Controller  
+
V
100k  
10k  
1N4002  
MOTOR*  
TACH  
+
V
1.1k  
1
2
3
4
8
2N6387  
LT1009  
7
320k  
24k  
20k  
6
5
LTC1041  
3k  
SPEED  
320pF  
500Ω  
DEADBAND DEMAND  
LTC1041 • TA03  
*CANNON CKT26-T5-3SAE  
Battery Charger  
1N4002  
IN  
89  
GE 106B†  
OUT  
LT1019-5  
5V  
24V  
1A  
74C00  
+
74C00  
100µF  
115VAC  
60 Hz  
UTC D0T20  
+
V
12V  
LEAD  
ACID  
100k  
36.5k  
1
2
3
4
8
7
6
5
1N4002  
1N4022  
40k  
10k  
74C00  
2kΩ  
LTC1041  
2.21k  
0.1µF  
13Ω  
SCR FIRES AT ZERO CROSSING.  
*
SET BATTERY VOLTAGE. BATTERY IS  
MEASURED WITH ZERO CHARGE CURRENT  
LTC1041 • TA04  
1041fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1041  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.015 – .060  
(0.381 – 1.524)  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
J8 0801  
1
2
3
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 ± .015*  
(6.477 ± 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
N8 1002  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.160 ±.005  
.050 BSC  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
N
1
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
N
0°– 8° TYP  
(0.203 – 0.254)  
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
N/2  
4
NOTE:  
2
3
N/2  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
.030 ±.005  
TYP  
1
2
3
RECOMMENDED SOLDER PAD LAYOUT  
SO8 0502  
1041fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1985  

相关型号:

LTC1042

Window Comparator
Linear

LTC1042C

Window Comparator
Linear

LTC1042CN8

Window Comparator
Linear

LTC1042CN8#PBF

LTC1042 - Window Comparator; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1042M

Window Comparator
Linear

LTC1042MJ/883B

IC,VOLT COMPARATOR,SINGLE,CMOS,DIP,8PIN,CERAMIC
Linear

LTC1042MJ8

Window Comparator
Linear

LTC1042MJ8/883

LTC1042MJ8/883
Linear

LTC1042_09

Window Comparator
Linear

LTC1043

2-Channel Differential Input 16-Bit No Latency DS ADC
Linear

LTC1043C

Dual Precision Intrumentation Switched-Capacitor Building Block
Linear

LTC1043CD

IC SPECIALTY ANALOG CIRCUIT, CDIP18, HERMETIC SEALED, SIDE BRAZED, DIP-18, Analog IC:Other
Linear