LTC1043MJ/883 [Linear]

LTC1043MJ/883;
LTC1043MJ/883
型号: LTC1043MJ/883
厂家: Linear    Linear
描述:

LTC1043MJ/883

文件: 总16页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1043  
Dual Precision  
Instrumentation Switched Capacitor  
Building Block  
U
FEATURES  
DESCRIPTIO  
The LTC®1043 is a monolithic, charge-balanced, dual  
switched capacitor instrumentation building block. A pair  
of switches alternately connects an external capacitor to  
an input voltage and then connects the charged capacitor  
across an output port. The internal switches have a  
break-before-make action. An internal clock is provided  
and its frequency can be adjusted with an external  
capacitor.TheLTC1043canalsobedrivenwithanexternal  
CMOS clock.  
Instrumentation Front End with 120dB CMRR  
Precise, Charge-Balanced Switching  
Operates from 3V to 18V  
Internal or External Clock  
Operates up to 5MHz Clock Rate  
Low Power  
Two Independent Sections with One Clock  
U
APPLICATIO S  
The LTC1043, when used with low clock frequencies,  
provides ultra precision DC functions without requiring  
precise external components. Such functions are  
differential voltage to single-ended conversion, voltage  
inversion, voltage multiplication and division by 2, 3, 4, 5,  
etc. The LTC1043 can also be used for precise V–F and  
F–V circuits without trimming, and it is also a building  
block for switched capacitor filters, oscillators and  
modulators.  
Precision Instrumentation Amplifiers  
Ultra Precision Voltage Inverters, Multipliers  
and Dividers  
V–F and F–V Converters  
Sample-and-Hold  
Switched Capacitor Filters  
The LTC1043 is manufactured using Linear Technology’s  
enhanced LTCMOSTM silicon gate process.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Instrumentation Amplifier  
CMRR vs Frequency  
5V  
140  
C
S
= C = 1µF  
H
4
5V  
120  
100  
80  
8
3
7
8
+
1
1µF  
1/2 LTC1013  
V
OUT  
C
H
2
11  
12  
4
1µF  
(EXTERNAL)  
DIFFERENTIAL  
INPUT  
–5V  
C
S
60  
1µF  
40  
13  
16  
17  
14  
20  
R1  
R2  
100  
1k  
10k  
100k  
FREQUENCY OF COMMON MODE SIGNAL  
CMRR > 120dB AT DC  
CMRR > 120dB AT 60Hz  
DUAL SUPPLY OR SINGLE 5V  
GAIN = 1 + R2/R1  
1/2 LTC1043  
LTC1043 • TA02  
0.01µF  
LTC1043 • TA01  
V
150µV  
OS  
V  
–5V  
OS  
2µV/°C  
T  
COMMON MODE INPUT VOLTAGE INCLUDES THE SUPPLIES  
1043fa  
1
LTC1043  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage ........................................................ 18V  
Input Voltage at Any Pin .......... 0.3V VIN V+ + 0.3V  
Operating Temperature Range  
LTC1043C ................................... 40°C TA 85°C  
LTC1043M (OBSOLETE).............55°C TA 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
1
2
3
4
5
6
7
8
9
S3B  
18  
17  
16  
15  
14  
13  
12  
11  
10  
SH  
B
+
V
C
C
B
LTC1043CN  
LTC1043CSW  
+
C
OSC  
B
S4B  
S4A  
V
S2B  
S1B  
S1A  
S2A  
NC  
S3A  
C
A
+
C
A
SH  
A
N PACKAGE  
18-LEAD PDIP  
SW PACKAGE  
18-LEAD PLASTIC SO  
T
JMAX  
T
JMAX  
= 100°C, θ = 100°C/W PACKAGE (N)  
JA  
= 150°C, θ = 85°C/W PACKAGE (SW)  
JA  
D PACKAGE  
18-LEAD SIDE BRAZED (HERMETIC)  
LTC1043MD  
OBSOLETE PACKAGE  
Consider the N18 Package as an Alternate Source  
LTC1043 • POI01  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature  
+
range, otherwise specifications are at T = 25°C. V = 10V, V = 0V, LTC1043M operates from –55°C T 125°C; LTC1043C operates from  
A
A
–40°C T 85°C, unless otherwise noted.  
A
LTC1043M  
LTC1043C  
SYMBOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX UNITS  
I
Power Supply Current  
Pin 16 Connected High or Low  
0.25  
0.4  
0.7  
0.25  
0.4  
0.7  
mA  
mA  
S
C
(Pin 16 to V ) = 100pF  
0.4  
0.65  
1
0.4  
0.65  
1
mA  
mA  
OSC  
I
OFF Leakage Current  
ON Resistance  
Any Switch, Test Circuit 1 (Note 2)  
6
6
100  
500  
6
6
100  
pA  
nA  
I
R
R
Test Circuit 2, V = 7V, 1 = ±0.5mA  
240  
400  
700  
240  
400  
700  
ON  
IN  
+
V = 10V, V = 0V  
ON Resistance  
Test Circuit 2, V = 3.1V, 1 = ±0.5mA  
400  
700  
1
400  
700  
1
k  
ON  
IN  
+
V
= 5V, V = 0V  
f
I
Internal Oscillator Frequency  
C
C
(Pin 16 to V ) = 0pF  
185  
34  
185  
34  
kHz  
kHz  
kHz  
OSC  
OSC  
OSC  
(Pin 16 to V ) = 100pF  
20  
15  
50  
75  
20  
15  
50  
75  
Test Circuit 3  
+
Pin Source or Sink Current  
Pin 16 at V or V  
40  
70  
100  
40  
70  
100  
µA  
µA  
OSC  
Break-Before-Make Time  
Clock to Switching Delay  
Max External CLK Frequency  
25  
75  
5
25  
75  
5
ns  
ns  
C
C
Pin Externally Driven  
OSC  
f
Pin Externally Driven with CMOS Levels  
MHz  
dB  
M
OSC  
+
CMRR  
Common Mode Rejection Ratio V = 5V, V = 5V, –5V < V < 5V  
120  
120  
CM  
DC to 400Hz  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: OFF leakage current is guaranteed but not tested at 25°C.  
1043fa  
2
LTC1043  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Test Circuits 2 through 4)  
Power Supply Current vs  
Power Supply Voltage  
RON vs VIN  
RON vs VIN  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
+
+
V
V
T
= 10V  
= 0V  
V
V
T
= 5V  
R
(PEAK)  
R
(PEAK)  
T
= –55°C  
ON  
ON  
A
= 0V  
C
= 0pF  
OSC  
= 0.0047pF  
= 25°C  
= 25°C  
C
C
C
A
A
OSC  
OSC  
OSC  
I = 100µA  
I = 100µA  
V
V
IN  
IN  
T
= 25°C  
= 0pF  
A
C
OSC  
= 0.0047pF  
I = 100µA  
I = 100µA  
T
C
= 125°C  
A
= 0pF  
I = mA  
I = mA  
OSC  
= 0.0047pF  
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
IN  
(V)  
V
(V)  
IN  
SUPPLY  
LTC1043 • TPC01  
LTC1043 • TPC02  
LTC1043 • TPC03  
RON (Peak) vs Power Supply  
Voltage  
RON (Peak) vs Power Supply  
Voltage and Temperature  
RON vs VIN  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
+
V
V
T
= 15V  
= 0V  
= 25°C  
R
(PEAK)  
R
(PEAK)  
R
(PEAK)  
ON  
ON  
ON  
V
= 1.6V  
IN  
A
I = 100µA  
I = 100µA  
I = 100µA  
V
V
V
IN  
IN  
IN  
I = 100µA  
T = 125°C  
A
V
3.2V  
IN  
I = mA  
V
7V  
IN  
V
T
= 70°C  
A
V
11V  
IN  
+
3V V + 18V  
A
V
T
= 0V  
= 25°C  
15.1V  
IN  
T
= –55°C  
A
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
2
4
6
8
10 12 14 16 18 20  
(V)  
V
V
V
SUPPLY  
IN  
SUPPLY  
LTC1043 • TPC04  
LTC1043 • TPC05  
LTC1043 • TPC06  
Oscillator Frequency, fOSC  
vs COSC  
Oscillator Frequency, fOSC  
vs Supply Voltage  
Normalized Oscillator Frequency,  
fOSC vs Supply Voltage  
250  
225  
200  
175  
150  
125  
100  
75  
1M  
2.0  
1.8  
1.6  
1.4  
1.2  
1
T
A
= 25°C  
T
= 25°C  
0pF < C  
A
< 0.01µF  
OSC  
A
T
= 25°C  
C
= 0pF  
100k  
OSC  
+
= 10V, V = 0V  
V
+
= 5V, V = 0V  
V
10k  
1k  
+
= 15V, V = 0V  
V
0.8  
0.6  
0.4  
0.2  
0
50  
C
= 100pF  
OSC  
25  
100  
0
2
4
6
8
V
10 12 14 16 18 20  
(V)  
0
2
4
6
8
10 12 14 16 18 20  
(V)  
0
2k  
4k  
6k  
(pF)  
8k  
10k  
V
C
SUPPLY  
SUPPLY  
OSC  
LTC1043 • TPC07  
LTC1043 • TPC08  
LTC1043 • TPC09  
1043fa  
3
LTC1043  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Test Circuits 2 through 4)  
Oscillator Frequency, fOSC  
vs Ambient Temperature, TA  
COSC Pin ISINK, ISOURCE  
vs Supply Voltage  
Break-Before-Make Time, tNOV  
,
vs Supply Voltage  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
100  
75  
80  
70  
C
OSC  
= 0pF  
T
= 25°C  
A
I
T
= –55°C  
= 25°C  
SINK,  
A
60  
I
T
A
SINK,  
50  
40  
30  
20  
I
T
A
= –55°C  
SOURCE,  
50  
I
T
= 25°C  
A
SOURCE,  
+
V
= 10V, V = 0V  
25  
I
T = 125°C  
A
SINK,  
+
V
= 5V, V = 0V  
+
I
T = 125°C  
SOURCE, A  
V
= 15V, V = 0V  
0
10  
50  
75 100 125  
0
2
4
6
8
10 12 14 16 18  
–50  
0
25  
–25  
0
6
2
4
8
10 12 14 16 18 20  
AMBIENT TEMPERATURE (°C)  
V
(V)  
SUPPLY  
LTC1043 • TPC11  
LTC1043 • TPC10  
LTC1043 • TPC12  
W
BLOCK DIAGRA  
S1A  
7
S2A  
8
+
10  
11  
12  
SH  
C
C
A
A
A
S3A  
13  
S4A  
14  
CHARGE  
BALANCING  
CIRCUITRY  
S1B  
6
S2B  
5
+
SH  
1
2
3
C
C
B
B
B
S3B  
18  
S4B  
15  
CHARGE  
BALANCING  
CIRCUITRY  
THE CHARGE BALANCING CIRCUITRY SAMPLES THE VOLTAGE  
AT S3 WITH RESPECT TO S4 (PIN 16 HIGH) AND INJECTS A  
SMALL CHARGE AT THE C PIN (PIN 16 LOW).  
THIS BOOSTS THE CMRR WHEN THE LTC1043 IS USED AS AN  
INSTRUMENTATION AMPLIFIER FRONT END.  
FOR MINIMUM CHARGE INJECTION IN OTHER TYPES OF  
APPLICATIONS, S3A AND S3B SHOULD BE GROUNDED  
+
V
+
NON-OVERLAPPING  
CLOCK  
4
+
V
C
V
OSC  
16  
17  
OSCILLATOR  
V
THE SWITCHES ARE TIMED AS SHOWN WITH PIN 16 HIGH  
LTC1043 • BD01  
1043fa  
4
LTC1043  
TEST CIRCUITS  
Test Circuit 1. Leakage Current Test  
Test Circuit 2. RON Test  
(7, 13, 6, 18)  
(8, 14, 5, 15)  
(7, 13, 6, 18)  
(8, 14, 5, 15)  
NOTE: TO OPEN SWITCHES,  
S1 AND S3  
A
SHOULD BE CONNECTED  
+
V
IN  
TO V . TO OPEN S2, S4,  
+
0V TO 10V  
C
TO V  
PIN SHOULD BE  
OSC  
(11, 12, 2, 3)  
+
C
OSC  
(11, 12, 2, 3)  
100µA to 1mA  
CURRENT SOURCE  
A
LTC1043 • TC01  
LTC1043 • TC02  
Test Circuit 3. Oscillator Frequency, fOSC  
Test Circuit 4. CMRR Test  
7
8
V
OUT  
V
(TEST PIN)  
2
4
5
6
17  
16  
10  
11  
12  
C
OSC  
+
V
+
CAPACITORS ARE  
NOT ELECTROLYTIC  
LTC1043  
1µF  
1µF  
+
+
IV  
13  
14  
LTC1043 • TC03  
+
+
V
V V  
CM  
V
CM  
CMRR = 20 LOG  
(
)
V
OUT  
NOTE: FOR OPTIMUM CMRR, THE C  
SHOULD  
OSC  
BE LARGER THAN 0.0047µF, AND  
THE SAMPLING CAPACITOR ACROSS  
PINS 11 AND 12 SHOULD BE PLACED  
OVER A SHIELD TIED TO PIN 10  
LTC1043 • TC04  
W U U  
U
APPLICATIO S I FOR ATIO  
Common Mode Rejection Ratio (CMRR)  
1/2 LTC1043  
7
8
The LTC1043, when used as a differential to single-ended  
converter rejects common mode signals and preserves  
differential voltages (Figure 1). Unlike other techniques,  
the LTC1043’s CMRR does not degrade with increasing  
common mode voltage frequency. During the sampling  
mode, the impedance of Pins 2, 3 (and 11, 12) should be  
reasonably balanced, otherwise, common mode signals  
will appear differentially. The value of the CMRR depends  
on the value of the sampling and holding capacitors  
(CS, CH) and on the sampling frequency. Since the  
common mode voltages are not sampled, the  
common mode signal frequency can well exceed the  
sampling frequency without experiencing aliasing  
phenomena. The CMRR of Figure 1 is measured by  
+
C
11  
12  
+
+
+
V
C
V
D
C
H
D
S
C
13  
14  
V
CM  
C
S,  
C ARE MYLAR OR POLYSTRENE  
H
LTC1043 • AI01  
Figure 1. Differential to Single-Ended Converter  
1043fa  
5
LTC1043  
W U U  
U
APPLICATIO S I FOR ATIO  
shorting Pins 7 and 13 and by observing, with a precision  
DVM, the change of the voltage across CH with respect to  
an input CM voltage variation. During the sampling and  
holding mode, charges are being transferred and minute  
voltage transients will appear across the holding capaci-  
tor. Although the RON on the switches is low enough to  
allow fast settling, as the sampling frequency increases,  
the rate of charge transfer increases and the average  
voltage measured with a DVM across it will increase  
proportionally; this causes the CMRR of the sampled data  
system, as seen by a “continuous” instrument (DVM), to  
decrease (Figure 2).  
Shielding the Sampling Capacitor for Very High CMRR  
Internal or external parasitic capacitors from the C+ pin(s)  
to ground affect the CMRR of the LTC1043 (Figure 1).  
The common mode error due to the internal junction  
capacitancesoftheC+ Pin(s)2and11iscancelledthrough  
internal circuitry. The C+ pin, therefore, should be used as  
the top plate of the sampling capacitor. The interpin  
capacitance between pin 2 and dummy Pin 1 (11 and 10)  
appears in parallel with the sampling capacitor so it does  
not degrade the CMRR. A shield placed underneath  
the sampling capacitor and connected to either Pin 1 or 3  
helps to boost the CMRR in excess of 120dB (Figure 5).  
Switch Charge Injection  
Excessive external parasitic capacitance between the C–  
pins and ground indirectly degrades CMRR; this becomes  
visible especially when the LTC1043 is used with clock  
frequencies above 2kHz. Because of this, if a shield is  
used, the parasitic capacitance between the shield and  
circuit ground should be minimized.  
Figure 3 shows one out of the eight switches of the  
LTC1043, configured as a basic sample-and-hold circuit.  
When the switch opens, a ‘‘hold step’’ is observed and its  
magnitude depends on the value of the input voltage.  
Figure4showschargeinjectedintotheholdcapacitor. For  
instance, a2pCbofchargeinjectedintoa0.01µFcapacitor  
causes a 200µV hold step. As shown in Figure 4, there is  
a predictable and repeatable charge injection cancellation  
when the input voltage is close to half the supply voltage  
of the LTC1043. This is a unique feature of this product,  
containing charge-balanced switches fabricated with a  
self-aligning gate CMOS process. Any switch of the  
LTC1043, when powered with symmetrical dual supplies,  
will sample-and-hold small signals around ground with-  
out any significant error.  
It is recommended that the outer plate of the sampling  
capacitor be connected to the Cpin(s).  
Input Pins, SCR Sensitivity  
An internal 60resistor is connected in series with the  
input of the switches (Pins 5, 6, 7, 8, 13, 14, 15, 18) and  
it is included in the RON specification. When the input  
voltage exceeds the power supply by a diode drop, current  
will flow into the input pin(s). The LTC1043 will not latch  
until the input current reaches 2mA–3mA. The device will  
140  
C
= C = 1µF  
H
S
5V  
120  
100  
80  
C
= 1µF, C = 0.1µF  
ZH  
S
2
6
+
V
1/2 LTC1013  
OUT  
1/8 LTC1043  
1000pF  
V
IN  
–5V  
60  
SAMPLE  
+
V
40  
HOLD TO PIN 16  
0V  
LTC1043 • AI03  
20  
100  
1k  
10k  
100k  
f
(Hz)  
OSC  
LTC1043 • AI02  
Figure 2. CMRR vs Sampling Frequency  
Figure 3  
1043fa  
6
LTC1043  
W U U  
APPLICATIO S I FOR ATIO  
U
recoverfromthelatchmodewhentheinputdrops3Vto4V  
below the voltage value which caused the latch. For  
instance, if an external resistor of 200is connected in  
series with an input pin, the input can be taken 1.3V above  
thesupplywithoutlatchingtheIC.Thesameappliesforthe  
C+ and Cpins.  
with an external clock to override the internal oscillator.  
Although standard 7400 series CMOS gates do not  
guarantee CMOS levels with the current source and sink  
requirements of Pin 16, they will in reality drive the Cosc  
pin. CMOS gates conforming to standard B series output  
drive have the appropriate voltage levels and more than  
enough output current to simultaneously drive several  
LTC1043 COSC pins. The typical trip levels of the Schmitt  
trigger (Figure 6) are given below.  
C
OSC Pin (16), Figure 6  
The Cosc pin can be used with an external capacitor, Cosc,  
connected from Pin 16 to Pin 17, to modify the internal  
oscillator frequency. If Pin 16 is floating, the internal 24pF  
capacitor, plus any external interpin capacitance, set the  
oscillator frequency around 190kHz with ±5V supply. The  
typical performance characteristics curves provide the  
necessary information to set the oscillator frequency for  
various power supply ranges. Pin 16 can also be driven  
SUPPLY  
TRIP LEVELS  
V = 3.4VV = 1.35V  
H
+
V = 5V, V = 0V  
L
+
V = 10V, V = 0V  
V = 6.5VV = 2.8V  
H L  
+
V = 15V, V = 0V  
V = 9.5VV = 4.1V  
H
L
12  
+
V
V
= 15V  
= 0V  
10  
8
+
V
V
= 10V  
= 0V  
6
1
OUTSIDE FOIL  
4
+
V
V
C
S
2
3
= 5V  
= 0V  
2
0
PRINTED CIRCUIT  
BOARD AREA  
10 12  
0
2
4
6
8
14 16  
LTC1043  
V
(V)  
IN  
LTC1043 • AI05  
LTC1043 • AI04  
Figure 5. Printed Circuit Board Layout  
Showing Shielding the Sampling Capacitor  
Figure 4. Individual Switch Charge Injection  
vs Input Voltage  
+
V
4
38µF  
C
OSC  
16  
TO CLK GENERATOR  
C
OSC  
(EXTERNAL)  
24pF  
17  
V
(24pF)  
(24pF + C  
f
= 190kHz •  
OSC  
)
OSC  
LTC1043 * AI06  
Figure 6. Internal Oscillator  
1043fa  
7
LTC1043  
U
TYPICAL APPLICATIO S  
Divide by 2  
Multiply by 2  
Ultra Precision Voltage Inverter  
1/2 LTC1043  
1/2 LTC1043  
V
OUT  
= –V  
IN  
1/2 LTC1043  
7
8
V
IN  
7
8
V
7
8
V
= V /2  
IN  
V
IN  
OUT  
OUT  
1µF  
11  
12  
11  
12  
11  
1µF  
1µF  
1µF  
1µF  
1µF  
12  
V
13  
16  
14  
17  
IN  
13  
16  
14  
17  
13  
16  
14  
17  
0.01µF  
0.01µF  
0.01µF  
V
V
V
= –V ±2ppm  
OUT  
+
IN  
+
V
= V /2 ± 1ppm  
V
= 2V ± 5ppm  
< V < V  
OUT  
IN  
OUT  
IN  
IN  
+
+
0 V V  
3 V 18V  
0 V V /2  
3 V 18V  
= +5V, V = 5V  
IN  
IN  
+
+
LTC1043 * A03  
LTC1043 • A01  
LTC1043 • A02  
Precision Multiply by 3  
Precision Multiply by 4  
Divide by 3  
V
IN  
LTC1043  
LTC1043  
LTC1043  
V
IN  
7
8
7
8
7
8
V
IN  
11  
12  
11  
12  
11  
1µF  
1µF  
1µF  
12  
13  
6
14  
5
13  
6
13  
6
14  
5
14  
5
V
OUT  
V
OUT  
2V  
IN  
1µF  
V
OUT  
= 4V  
IN  
2
3
2
3
2
1µF  
1µF  
1µF  
1µF  
1µF  
1µF  
1µF  
3
V
18  
16  
15  
17  
18  
17  
OUT  
18  
16  
15  
17  
15  
16  
1µF  
0.01µF  
0.01µF  
0.01µF  
V
= 3V ±10ppm  
V
= 4V ±40ppm  
V
= V /3 ±3ppm  
IN  
OUT  
IN  
OUT  
IN  
OUT  
IN  
+
+
+
0 < V < V /3  
3V  
0 V V /4  
3V  
0 V V  
IN  
IN  
+
+
<
<
<
<
18V  
LTC1043 • A06  
V
18V  
LTC1043 • A04  
V
LTC1043 • A05  
1043fa  
8
LTC1043  
U
TYPICAL APPLICATIO S  
Divide by 4  
0.005% V/F Converter  
LT1009  
2.5k  
–5V  
1k  
LTC1043  
V
IN  
7
8
17  
5V  
1/2 LTC1043  
11  
1µF  
8
7
1µF  
12  
1µF  
11  
12  
f : 0kHz TO 30kHz  
OUT  
14  
13  
16  
13  
6
14  
5
4
5V  
0.01µF  
GAIN  
2.5k  
6.19k  
V
IN  
0V TO 3V  
V
OUT  
1µF  
LF356  
–5V  
+
2
1µF  
3
1µF  
30pF  
22k  
330k  
18  
16  
15  
17  
Q1  
2N2907A  
1µF  
0.01µF  
–5V  
LTC1043 • A08  
+
0 V V  
IN  
V
OUT  
= V /4 ±5ppm  
IN  
LTC1043 • A07  
0.01% Analog Multiplier  
1/4 LTC1043  
1k  
1µF  
–5V  
14  
5V  
13  
LT1004-1.2V  
20k  
12  
OUTPUT  
TRIM  
0.001µF†  
80.6k*  
7.5k*  
7
2
3
Y
INPUT  
+
0.01µF  
6
LT1056  
1µF  
16  
6
4
5V  
1/4 LTC1043  
–5V  
2
7
X
INPUT  
5
6
OUTPUT  
XY ±0.01%  
LT1056  
30pF  
3
330k  
22k  
+
4
2
OPERATE LTC1043 FROM ±5V  
POLYSTYRENE, MOUNT CLOSE  
0.001µF†  
–5V  
2N2907A  
*
1% FILM RESISTOR  
(FOR START-UP)  
ADJUST OUTPUT TRIM  
SO X • Y = OUTPUT ±0.01%  
1µF  
–5V  
LTC1043 • A09  
1043fa  
9
LTC1043  
U
TYPICAL APPLICATIO S  
Single 5V Supply, Ultra Precision  
Voltage Controlled Current Source with  
Ground Referred Input and Output  
Instrumentation Amplifier  
5V  
5V  
8
3
2
INPUT  
0V TO 2V  
LTC1043  
+
+
7
3
2
1
7
8
+
1/2 LT1013  
6
OUTPUT  
= 1000  
LTC1052  
1
A
V
8
4
11  
12  
4
0.1µF 0.1µF  
1µF  
1µF  
INPUT  
0.68µF  
99.9k  
100Ω  
5V  
4
13  
6
14  
5
1k  
43k  
+
V
= 5V  
8
7
0.22µF  
10k  
2
3
11  
12  
1µF  
1µF  
1N914  
1µF  
100  
NONPOLARIZED  
1µF  
18  
16  
15  
14  
17  
13  
16  
–0.5V  
V
IN  
1/2 LTC1043  
1
OUT  
=
100Ω  
17  
4
INPUT AND OUTPUT VOLTAGE RANGE INCLUDES GROUND.  
INPUT REFERRED OFFSET ERRORS ARE TYPICALLY 3µV WITH  
1µV OF NOISE  
5V  
~
CMRR ~ 120dB  
0.0047  
0.001µF  
LTC1043 • A10  
OPERATES FROM A SINGLE 5V SUPPLY  
LTC1043 • A11  
Precision Instrumentation Amplifier  
5V  
CHOPPER  
1/4 LTC1043  
AC AMPLIFIER  
5V  
PHASE  
SENSITIVE  
DEMODULATOR  
DC  
OUTPUT AMPLIFIER  
1µF  
4
1/2 LTC1043  
1µF  
+ INPUT  
6
5
7
3
2
7
1/4 LTC1043  
1µF  
11  
+
5V  
6
13  
LT1056  
100k  
2
3
7
1M  
8
12  
2
+
4
6
100k 100k  
OUTPUT  
LT1056  
1µF  
1µF  
14  
–5V  
4
3
–5V  
100  
R2  
100k  
– INPUT  
18  
16  
15  
17  
0.01  
OFFSET = 10µV  
R1  
100Ω  
–5V  
DRIFT = 0.1µV/°C  
0.01µF  
FULL DIFFERENTIAL INPUT  
CMRR = 140dB  
OPEN LOOP GAIN > 108  
GAIN = R2/R1 + 1  
I
= 1nA  
BIAS  
LTC1043 • A12  
1043fa  
10  
LTC1043  
U
TYPICAL APPLICATIO S  
Lock-In Amplifier (= Extremely Narrow-Band Amplifier)  
THERMISTOR BRIDGE  
IS THE SIGNAL SOURCE  
SYNCHRONOUS  
DEMODULATOR  
10k*  
10k*  
5V  
T1  
500Hz  
5V  
SINE DRIVE  
6.19k  
6.19k  
6.19k  
4
1
3
2
3
2
+
+
5V  
1/4 LTC1043  
6
LM301A  
1
13  
LT1007  
–5V  
8
2
3
3
RT  
+
12  
16  
1M  
6
V
= 1000 • DC  
OUT  
BRIDGE SIGNAL  
100k  
LT1012  
–5V  
14  
4
30pF  
1µF  
–5V  
100  
+
T1 = TF5SX17ZZ, TOROTEL  
0.01µF  
47µF  
R
= YSI THERMISTOR 44006  
T
6.19k AT 37.5°C  
*
MATCH 0.05%  
6.19k = VISHAY S-102  
OPERATE LTC1043 WITH  
±5V SUPPLIES  
PHASE TRIM  
0.002  
5V  
50k  
10k  
5V  
LOCK-IN AMPLIFIER TECHNIQUE  
USED TO EXTRACT VERY SMALL  
SIGNALS BURIED INTO NOISE  
1k  
2
8
+
7
LT1011  
1
LTC1043 • A013  
3
4
–5V  
ZERO CROSSING DETECTOR  
50MHz Termal RMS/DC Converter  
5V  
5V  
4
5V  
30k*  
30k*  
10k  
1/2 LTC1043  
3
2
8
5V  
CALIBRATION ADJUST  
20k  
6
5
+
1
5
LT1013  
4
+
7
DC OUTPUT  
0V TO 3.5V  
2
LT1013  
100k*  
6
1µF  
1µF  
1µF  
1µF  
10k  
10k  
16  
15  
3
0.01µF  
301*  
10k  
10k  
18  
0.01µF  
300mV  
10V  
RMS  
INPUT  
17  
BRN  
RED  
RED  
T2A  
GRN  
N
T2  
GRN  
1A  
T1B  
T2B  
2% ACCURACY DC 50MHZ  
100:1 CREST FACTOR CAPABILITY  
T1 TO T2 = YELLOW SPRINGS INST. CO.  
THERMISTOR COMPOSITE  
ENCLOSE T1 AND T2 IN STYROFOAM  
LTC1043 • A14  
*1% RESISTOR  
1043fa  
11  
LTC1043  
U
TYPICAL APPLICATIO S  
Quad Single 5V Supply, Low Hold Step, Sample-and-Hold  
5V  
2
3
13  
12  
4
1
14  
OUTPUT  
OUTPUT  
1/4 LT1014  
1/4 LT1014  
7
8
6
5
NC  
NC  
+
+
11  
C
C
L
0.01µF  
L
11  
2
0.01µF  
V
V
IN  
IN  
6
9
7
8
OUTPUT  
OUTPUT  
1/4 LT1014  
1/4 LT1014  
5
10  
13  
14  
18  
16  
15  
NC  
NC  
+
+
C
C
L
L
12  
V
3
0.01µF  
0.01µF  
V
HOLD  
IN  
IN  
LTC1043 • A15  
17  
4
SAMPLE  
– 5V  
FOR 1V V 4V, THE HOLD STEP IS 300µV  
IN  
ACQUISITION TIME ~ 8 • R  
C FOR 10-BIT ACCURACY  
H
ON  
LTC1043 • A16  
Single Supply Precision Linearized Platinum RTD Signal Conditioner  
250k*  
(LINEARITY CORRECTION LOOP)  
5V  
10k*  
5V  
3
2
8
2.4k  
+
1
1/2 LT1013  
2.74k*  
LT1009  
2.5V  
4
50k  
ZERO  
ADJUST  
8.25k*  
0.1µF  
4
2k  
0V TO 4V = 0°C TO 400°C  
±0.05°C  
1/2 LTC1043  
1/2 LTC1043  
5
6
7
8
5
6
+
7
1/2 LT1013  
1k  
5k  
GAIN  
11  
2
ADJUST  
1µF  
1µF  
1µF  
887  
1µF  
8.06k*  
12  
3
1k*  
13  
15  
16  
14  
1mA  
18  
17  
R
100Ω  
AT 0°C  
p
R
p
= ROSEMOUNT 118MFRTD  
*1% FILM RESISTOR  
TRIM SEQUENCE:  
0.01µF  
SET SENSOR TO 0°C VALUE. ADJUST ZERO FOR 0V OUT  
SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1,000V OUT  
SET SENSOR TO 400°C VALUE. ADJUST LINEARITY FOR 4,000V OUT  
LTC1043 • A17  
REPEAT AS REQUIRED  
1043fa  
12  
LTC1043  
U
TYPICAL APPLICATIO S  
0.005% F/V Converter  
10k  
GAIN TRIM  
75k*  
1µF  
1/4 LTC1043  
14  
5V  
1k  
13  
–5V  
1µF  
LT1004-1.2C  
0V TO 3V OUTPUT  
LF356  
+
12  
–5V  
1000pF  
5V  
4
*75k = TRW # MTR-5/120ppm  
FREQUENCY IN  
0kHz TO 30kHz  
–5V  
16  
17  
LTC1043 • A18  
High Frequency Clock Tunable Bandpass Filter  
R1  
10k  
R2  
10k  
10k  
5V  
R
IN  
V
IN  
1/2 LTC1043  
7
8
LT1056  
+
–5V  
11  
12  
CLOCK  
INPUT  
1000pF  
5V  
16  
13  
200pF  
BANDPASS  
OUTPUT  
5V  
4
14  
+
1/2 LTC1043  
5
6
LT1056  
R
= 10k  
Q
–5V  
2
1000pF  
5V  
200pF  
3
f
CLK  
R2  
R1  
BANDPASS CENTER FREQUENCY f  
=
O
31.4  
BANDPASS GAIN AT f IS: R /R  
O
Q
IN  
15  
R
R2  
18  
+
Q
R2  
R1  
Q =  
LT1056  
f
Q
100kHz  
AT 100kHz f IS 10  
O MAX  
MAX  
(f • Q) MAX 1MHz  
CLK MAX  
17  
O
O
–5V  
5V  
f
3MHz, Q < 2  
LTC1043 • A19  
1043fa  
13  
LTC1043  
U
TYPICAL APPLICATIO S  
Frequency-Controlled Gain Amplifier  
1/2 LTC1043A  
1/2 LTC1043B  
13B  
14B  
13A  
14A  
12A  
0.01µF  
11A  
12B  
100pF  
11B  
16B  
7B  
16A  
7A  
GAIN CONTROL  
0kHz TO 10kHz = GAIN 0 TO 1000  
8B  
8A  
V
IN  
5V  
0.01µF  
7
2
6
V
OUT  
LT1056  
3
+
4
FOR DIFFERENTIAL INPUT, GROUND PIN 8A AND USE PINS 13A AND 7A FOR INPUTS  
• 0.01µF  
–5V  
f
IN  
1kHz • 100pF  
GAIN =  
; GAIN IS NEGATIVE AS SHOWN  
FOR SINGLE-ENDED INPUT AND POSITIVE GAIN, GROUND PIN 8A AND USE PIN 7A FOR INPUT  
USE ±5V SUPPLIES FOR LTC1043  
LTC1043 • A20  
Relative Humidity Sensor Signal Conditioner  
0.01µF  
1/4 LTC1043  
8
7
16  
17  
–5V  
11  
470k  
1k*  
100pF  
5V  
7
1/4 LTC1043  
500  
90%  
RH TRIM  
2
3
13  
14  
10k  
6
3
2
LT1056  
+
6
OUTPUT  
0V TO 1V = 0% TO 100%  
LM301A  
1
+
12  
4
8
–5V  
1µF  
1µF  
LT1004  
1.2V  
9k*  
SENSOR  
22M  
100pF  
10k  
5% RH TRIM  
33k  
* = 1% FILM RESISTOR  
SENSOR = PANAMETRICS # RHS  
500pF AT RH = 76%  
1.7 pF/%RH  
1k*  
LTC1043 • A21  
1043fa  
14  
LTC1043  
U
TYPICAL APPLICATIO S  
Linear Variable Differential Transformer (LVDT), Signal Conditioner  
1/4 LTC1043  
0.005µF  
0.005µF  
7
4
8
30k  
5V  
5V  
11  
RD-BLUE  
30k  
8
3
2
+
1.5kHz  
1
LT1013  
YEL-BLK  
4
100k  
5
6
+
5V  
OUTPUT  
0V ±2.5V  
0M 2.50M  
BLUE  
GRN  
7
AMPLITUDE STABLE  
SINE WAVE SOURCE  
1/2 LT1013  
1µF  
10k  
1N914  
200k  
4.7k  
YEL-RED  
LT1004  
1.2V  
BLK  
Q1  
2N4338  
10k GAIN TRIM  
LVDT  
12  
+
7.5k  
1.2k  
10µF  
–5V  
17  
14  
13  
1/4 LTC1043  
LVDT = SCHAEVITZ E-100  
5V  
5V  
100k  
0.01µF  
1k  
3
2
8
+
7
100k  
PHASE  
TRIM  
LT1011  
TO PIN 16, LTC1043  
1
4
–5V  
LTC1043 • A22  
Precision Current Sensing in Supply Rails  
I
IN  
SHUNT CAN BE IN POSITIVE  
OR NEGATIVE SUPPLY LEAD  
R
SHUNT  
1/2 LTC1043  
V
7
8
OUT  
11  
+
1µF  
1µF  
12  
13  
16  
14  
17  
0.01µF  
LTC1043 • A23  
1043fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1043  
U
PACKAGE DESCRIPTIO  
D Package  
18-Lead Side Brazed (Hermetic)  
(Reference LTC DWG # 05-08-1210)  
.165  
.910  
(23.114)  
MAX  
.485  
(4.191)  
MAX  
(12.319)  
MAX  
.005  
(0.127)  
MIN  
.020 – .060  
(0.508 – 1.524)  
17  
18  
16  
15  
14  
13  
12  
11  
10  
.290  
(7.366)  
TYP  
.008 – .015  
(0.203 – 0.381)  
PIN NO. 1  
IDENT  
.100  
(2.54)  
BSC  
.054  
(1.372)  
TYP  
.125  
(3.175)  
MIN  
.300  
(7.620)  
REF  
9
1
2
3
4
5
6
7
8
.015 – .023  
(0.381 – 0.584)  
D18 0801  
OBSOLETE PACKAGE  
N Package  
18-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.900*  
.130 ± .005  
.300 – .325  
.045 – .065  
(22.860)  
MAX  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.255 ± .015*  
(6.477 ± 0.381)  
+.035  
–.015  
.325  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
.005  
(0.127)  
MIN  
.100  
(2.54)  
BSC  
+0.889  
8.255  
1
2
3
5
6
9
4
7
8
(
)
–0.381  
NOTE:  
INCHES  
N18 1002  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
SW Package  
18-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
TYP  
.447 – .463  
(11.354 – 11.760)  
NOTE 4  
N
14 13  
11  
15  
12  
10  
18 17 16  
N
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
NOTE:  
1. DIMENSIONS IN  
N/2  
9
INCHES  
(MILLIMETERS)  
RECOMMENDED SOLDER PAD LAYOUT  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES  
ON THE BOTTOM OF PACKAGES ARE THE  
MANUFACTURING OPTIONS.  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
1
4
6
.037 – .045  
THE PART MAY BE SUPPLIED WITH OR  
WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT  
EXCEED .006" (0.15mm)  
.093 – .104  
.010 – .029  
(0.254 – 0.737)  
(0.940 – 1.143)  
× 45°  
(2.362 – 2.642)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
S18 (WIDE) 0502  
1043fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1985  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY