LTC1049CS8#TRPBF [Linear]

LTC1049 - Low Power Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1049CS8#TRPBF
型号: LTC1049CS8#TRPBF
厂家: Linear    Linear
描述:

LTC1049 - Low Power Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总12页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1049  
Low Power Zero-Drift  
Operational Amplifier  
with Internal Capacitors  
DescripTion  
The LTC®1049 is a high performance, low power zero-drift  
operationalamplifier.Thetwosample-and-holdcapacitors  
usually required externally by other chopper stabilized  
amplifiers are integrated on the chip. Further, the LTC1049  
offers superior DC and AC performance with a nominal  
supply current of only 200µA.  
FeaTures  
n
Low Supply Current: 200µA  
n
No External Components Required  
n
Maximum Offset Voltage: 10µV  
n
Maximum Offset Voltage Drift: 0.1µV/°C  
n
Single Supply Operation: 4.75V to 16V  
n
Input Common Mode Range Includes Ground  
n
Output Swings to Ground  
Typical Overload Recovery Time: 6ms  
The LTC1049 has a typical offset voltage of 2µV, drift of  
n
0.02µV/°C, 0.1Hz to 10Hz input noise voltage of 3µV  
P-P  
n
Available in 8-Pin SO and PDIP Packages  
and typical voltage gain of 160dB. The slew rate is 0.8V/µs  
with a gain bandwidth product of 0.8MHz.  
applicaTions  
Overload recovery time from a saturation condition is  
6ms, a significant improvement over chopper amplifiers  
using external capacitors.  
n
4mA to 20mA Current Loops  
n
Thermocouple Amplifiers  
n
Electronic Scales  
The LTC1049 is available in a standard 8-pin plastic dual  
in line, as well as an 8-pin SO package. The LTC1049 can  
be a plug-in replacement for most standard op amps with  
improvedDCperformanceandsubstantialpowersavings.  
n
Medical Instrumentation  
n
Strain Gauge Amplifiers  
n
High Resolution Data Acquisition  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Typical applicaTion  
Single Supply Thermocouple Amplifier  
0.068µF  
V
= 5V  
IN  
246k  
1k  
7
2
3
6
2
V
= 0V TO 4V  
OUT  
LTC1049  
FOR 0°C TO 400°C  
7
K
+
+
4
LT®1025A  
0.1µF  
GND  
4
R
TYPE K  
5
SUPPLY CURRENT = 280µA  
LTC1049 • TA01  
1049fb  
1
LTC1049  
absoluTe maximum raTings (Note 1)  
+
Total Supply Voltage (V to V ) ................................18V  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
+
Input Voltage (Note 2)............(V + 0.3V) to (V – 0.3V)  
Output Short-Circuit Duration.......................... Indefinite  
package/orDer inFormaTion  
TOP VIEW  
ORDER PART  
ORDER PART  
NC  
–IN  
+IN  
1
2
3
4
NC  
8
7
6
5
NUMBER  
NUMBER  
TOP VIEW  
+
V
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
LTC1049CN8  
LTC1049CS8  
+
OUT  
NC  
+
V
V
OUT  
NC  
N8 PACKAGE 8-LEAD PDIP  
= 110°C, θ = 130°C/W  
V
T
S8 PART MARKING  
1049  
JMAX  
JA  
S8 PACKAGE  
8-LEAD PLASTIC SO  
J8 PACKAGE 8-LEAD CERDIP  
= 150°C, θ = 100°C/W  
LTC1049CJ8  
T
JMAX  
JA  
T
= 110°C, θ = 200°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N8 Package as an Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, unless noted.  
PARAMETER  
CONDITIONS  
(Note 3)  
MIN  
TYP  
2
MAX  
10  
UNITS  
µV  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
l
(Note 3)  
0.02  
50  
0.1  
µV/°C  
nV√mo  
30  
100  
150  
pA  
pA  
l
l
Input Bias Current  
Input Noise Voltage  
15  
50  
150  
pA  
pA  
0.1Hz to 10Hz  
0.1Hz to 1Hz  
3
1
µVP-P  
µVP-P  
Input Noise Current  
f = 10Hz (Note 4)  
2
130  
fA√Hz  
dB  
l
l
l
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
V
= V to 2.7V  
110  
110  
130  
CM  
V = 2.375V to 8V  
S
130  
dB  
R = 100kΩ, V  
=
4.75V  
160  
dB  
L
OUT  
R = 10kΩ  
L
–4.9/4.2  
V
V
l
l
4.6/3.2  
4.9  
R = 100kΩ  
L
4.97  
0.8  
V
V/µs  
MHz  
Slew Rate  
R = 10kΩ, C = 50pF  
L
L
Gain Bandwidth Product  
Supply Current  
0.8  
No Load  
200  
330  
495  
µA  
µA  
l
Internal Sampling Frequency  
700  
Hz  
1049fb  
2
LTC1049  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic  
test systems. V is measured to a limit determined by test equipment  
OS  
capability.  
+
Note 2: Connecting any terminal to voltages greater than V or less than  
Note 4: Current Noise is calculated from the formula:  
V may cause destructive latch-up. It is recommended that no sources  
I = √(2q • I )  
where q = 1.6 • 10 Coulomb.  
N
b
operating from external supplies be applied prior to power-up of the  
LTC1049.  
–19  
Typical perFormance characTerisTics  
Common Mode Input Range vs  
Supply Voltage  
Voltage Noise vs Frequency  
Gain/Phase vs Frequency  
140  
60  
120  
100  
80  
8
6
V
= ±±V  
S
V
= V  
CM  
NO LOAD  
80  
120  
100  
100  
120  
140  
160  
180  
200  
220  
4
PHASE  
60  
2
40  
80  
60  
0
GAIN  
20  
–2  
–4  
–6  
–8  
0
40  
20  
–20  
–40  
10  
100  
1k  
10k  
100k  
4
5
0
1
2
3
6
7
8
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ( Vꢀ  
FREQUENCY (Hz)  
LTC1049 • TPC03  
LTC1049 • TP01  
LTC1049 • TPC02  
Output Short-Circuit Current vs  
Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
500  
400  
300  
200  
100  
0
1.2  
0.8  
0.4  
0
400  
340  
280  
220  
160  
100  
–3  
–6  
–9  
5
6
7
8
9
10 11 12 13 14 15  
4
6
8
10  
12  
14  
16  
–50  
0
25  
50  
75 100 125  
–25  
+
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
TEMPERATURE (°C)  
LTC1049 • TPC04  
LTC1049 • TPC06  
LTC1049 • TPC05  
1049fb  
3
LTC1049  
Typical perFormance characTerisTics  
Sampling Frequency vs  
Supply Voltage  
Sampling Frequency vs  
Temperature  
CMRR vs Frequency  
5
4
3
2
1
0
160  
140  
120  
100  
80  
3000  
2500  
2000  
1500  
V
= 5V  
V
S
= ±±V  
S
60  
40  
20  
1000  
0
–50  
0
25  
50  
75 100 125  
4
6
8
10  
12  
14  
16  
–25  
1
10  
100  
1k  
10k  
100k  
+
TOTAL SUPPLY VOLTAGE, V TO V (V)  
AMBIENT TEMPERATURE (°C)  
FREQUENCY (Hz)  
LTC1049 • TPC09  
LTC1049 • TPC07  
LTC1049 • TPC08  
Small-Signal Transient  
Response  
Large-Signal Transient  
Response  
Overload Recovery  
400mV  
0.2V/DIV  
2V/DIV  
100mV  
STEP  
6V  
STEP  
0V  
0V  
1µs/DIV  
5µs/DIV  
–5V  
A
V
= –100  
0.5ms/DIV  
A
R
C
V
= 1  
= 10k  
= 50pF  
A
R
C
V
= 1  
V
V
S
V
=
5V  
= 10k  
= 50pF  
L
L
S
L
L
S
=
5V  
= 5V  
LTC1049 • TPC10  
LTC1049 • TPC11  
LTC1049 • TPC12  
LTC1049 DC to 1Hz Noise  
V
= ±±V  
S
1Hz NOISE  
1µV/DIV  
NOISE VOLTAGE  
1µV/DIV  
10s/DIV  
LTC1049 • TPC13  
1049fb  
4
LTC1049  
Typical perFormance characTerisTics  
LTC1049 DC to 10Hz Noise  
V
= ±±V  
S
NOISE VOLTAGE  
1µV/DIV  
10Hz NOISE  
1µV/DIV  
1s/DIV  
LTC1049•TPC14  
TesT circuiTs  
Electrical Characteristics Test Circuit  
DC to 10Hz and DC to 1Hz Noise Test Circuit  
140  
8
V
= V  
CM  
6
120  
100  
4
2
0
80  
60  
–2  
–4  
–6  
–8  
40  
20  
4
5
0
1
2
3
6
7
8
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE ( Vꢀ  
FREQUENCY (Hz)  
LTC1049 • TPC02  
LTC1049 • TP01  
1049fb  
5
LTC1049  
applicaTions inFormaTion  
ACHIEVING PICOAMPERE/MICROVOLT PERFORMANCE  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches, and relays where  
possible.Ininstanceswherethisisnotpossible,attemptto  
balancethenumberandtypeofjunctionssothatdifferential  
cancellation occurs. Doing this may involve deliberately  
introducing junctions to offset unavoidable junctions.  
Picoamperes  
In order to realize the picoampere level of accuracy of  
the LTC1049, proper care must be exercised. Leakage  
currents in circuitry external to the amplifier can signifi-  
cantlydegradeperformance.Highqualityinsulationshould  
be used (e.g., Teflon™, Kel-F); cleaning of all insulating  
surfacestoremovefluxesandotherresidueswillprobably  
be necessary—particularly for high temperature perfor-  
mance. Surface coating may be necessary to provide a  
moisture barrier in high humidity environments.  
PACKAGE-INDUCED OFFSET VOLTAGE  
Package-induced thermal EMF effects are another  
important source of errors. It arises at the copper/kovar  
junctionsformedwhenwireorprintedcircuittracescontact  
a package lead. Like all the previously mentioned thermal  
EMF effects, it is outside the LTC1049’s offset nulling loop  
andcannotbecancelled.Theinputoffsetvoltagespecifica-  
tion of the LTC1049 is actually set by the package-induced  
warm-up drift rather than by the circuit itself. The thermal  
time constant ranges from 0.5 to 3 minutes, depending  
on package type.  
Board leakage can be minimized by encircling the input  
connectionswithaguardringoperatedatapotentialclose  
to that of the inputs: in inverting configurations, the guard  
ringshouldbetiedtoground;innoninvertingconnections,  
to the inverting input. Guarding both sides of the printed  
circuit board is required. Bulk leakage reduction depends  
on the guard ring width.  
Microvolts  
ThermocoupleeffectsmustbeconsiderediftheLTC1049’s  
ultralow drift is to be fully utilized. Any connection of dis-  
similarmetalsformsathermoelectricjunctionproducingan  
electric potential which varies with temperature (Seebeck  
effect).Astemperaturesensors,thermocouplesexploitthis  
phenomenon to produce useful information. In low drift  
amplifier circuits the effect is a primary source of error.  
LOW SUPPLY OPERATION  
The minimum supply for proper operation of the LTC1049  
is typically below 4.0V ( 2.0V). In single supply applica-  
tions,PSRRisguaranteeddownto4.7V( 2.35V)toensure  
proper operation down to the minimum TTL specified  
voltage of 4.75V.  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for thermal  
EMF generation. Junctions of copper wire from different  
manufacturerscangeneratethermalEMFsof200nV/°C—  
twice the maximum drift specification of the LTC1049.  
The copper/kovar junction, formed when wire or printed  
circuit traces contact a package lead, has a thermal EMF  
of approximately 35µV/°C—300 times the maximum drift  
specification of the LTC1049.  
PIN COMPATIBILITY  
The LTC1049 is pin compatible with the 8-pin versions of  
7650, 7652 and other chopper-stabilized amplifiers. The  
7650 and 7652 require the use of two external capacitors  
connected to Pins 1 and 8 which are not needed for the  
LTC1049.Pins1,5,and8oftheLTC1049arenotconnected  
internally; thus, the LTC1049 can be a direct plug- in for  
the 7650 and 7652, even if the two capacitors are left on  
the circuit board.  
1049fb  
6
LTC1049  
Typical applicaTions  
Low Power, Low Hold Step Sample-and-Hold  
5V  
13  
LTC201  
5V  
7
2
3
4.5  
6
V
LTC1049  
OUT  
3
2
V
+
IN  
4
DROOP ≤1mV/s  
HOLD STEP ≤20µV  
0.47µF  
MYLAR  
1
I
S
= 250µA TYP  
S/H  
LTC1049 • TA02  
1049fb  
7
LTC1049  
Typical applicaTions  
Low Power, Single Supply, Low Offset Instrumentation Amp  
5V  
198k  
2k  
2k  
198k  
2
3
2
7
7
6
6
V
LTC1049  
4
OUT  
LTC1049  
3
+
+
4
+ V  
– V  
IN  
IN  
GAIN = 100  
= 400µA  
I
S
CMRR ≥ 60dB, WITH 0.1% RESISTORS (RESISTORS LIMITED)  
LTC1049 • TA03  
1049fb  
8
LTC1049  
package DescripTion  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1049fb  
9
LTC1049  
package DescripTion  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400ꢁ  
(10.160)  
MAX  
8
6
5
4
.255 .015ꢁ  
(6.4ꢀꢀ 0.381)  
1
2
3
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.12ꢀ)  
(1.143 – 1.651)  
(ꢀ.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 .003  
(0.45ꢀ 0.0ꢀ6)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
ꢁTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1049fb  
10  
LTC1049  
package DescripTion  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1049fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC1049  
Typical applicaTion  
Thermocouple-Based Temperature to Frequency Converter  
6V  
+
0.02µF  
6V  
TYPE K  
THERMO-  
COUPLE  
Q1  
2N3904  
V
NC  
10k  
100k  
K
LT1025  
+
1M  
Q2  
2N3906  
LTC1049  
R
l
l
l
3
GND  
OUTPUT  
100k  
1
2
+
0 – 100°C =  
0 – 1kHz  
C1  
100pF  
6.81k*  
1.5k  
C3  
0.47µF  
C4  
300pF  
240k  
6V  
100°C  
TRIM  
+
LT1004 – 1.2  
6.8µF  
9
16  
*IRC/TRW–MTR–5/+120ppm  
†POLYSTYRENE  
15  
11  
14  
10  
C2  
390pF  
S4  
S1  
= 74C14  
I
= 360µA  
S
S2  
S3  
SUPPLY RANGE = 4.5V to 10V  
6
7
LTC201  
2
3
1
8
LTC1049 • TA04  
1049fb  
LT 0406 REV B • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1991  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1049IJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LTC1049MH

Chopper-Stabilized Operational Amplifier
ETC

LTC1049MJ8

Chopper-Stabilized Operational Amplifier
ETC

LTC1049_09

Low Power Zero-Drift Operational Amplifier with Internal Capacitors
Linear

LTC1050

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050AC

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050ACH

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050ACJ8

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050ACN

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050ACN8

Precision Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1050ACN8#PBF

LTC1050 - Precision Zero-Drift Operational Amplifier with Internal Capacitors; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1050AIH

IC OP-AMP, MBCY8, METAL CAN, TO-5, 8 PIN, Operational Amplifier
Linear