LTC1050MJ8/883B [Linear]

OP-AMP, 5uV OFFSET-MAX, 2.5MHz BAND WIDTH, CDIP8;
LTC1050MJ8/883B
型号: LTC1050MJ8/883B
厂家: Linear    Linear
描述:

OP-AMP, 5uV OFFSET-MAX, 2.5MHz BAND WIDTH, CDIP8

放大器 CD
文件: 总16页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1050  
Precision Zero-Drift  
Operational Amplifier  
with Internal Capacitors  
U
FEATURES  
DESCRIPTIO  
The LTC®1050 is a high performance, low cost zero-drift  
operational amplifier. The unique achievement of the  
LTC1050 is that it integrates on-chip the two sample-and-  
hold capacitors usually required externally by other chop-  
per amplifiers. Further, the LTC1050 offers better com-  
bined overall DC and AC performance than is available  
from other chopper stabilized amplifiers with or without  
internal sample-and-hold capacitors.  
No External Components Required  
Noise Tested and Guaranteed  
Low Aliasing Errors  
Maximum Offset Voltage: 5µV  
Maximum Offset Voltage Drift: 0.05µV/°C  
Low Noise: 1.6µVP-P (0.1Hz to 10Hz)  
Minimum Voltage Gain: 130dB  
Minimum PSRR: 125dB  
Minimum CMRR: 120dB  
The LTC1050 has an offset voltage of 0.5µV, drift of  
0.01µV/°C, DC to 10Hz, input noise voltage of 1.6µVP-P  
and a typical voltage gain of 160dB. The slew rate of 4V/µs  
andagainbandwidthproductof2.5MHzareachievedwith  
only 1mA of supply current.  
Low Supply Current: 1mA  
Single Supply Operation: 4.75V to 16V  
Input Common Mode Range Includes Ground  
Output Swings to Ground  
Typical Overload Recovery Time: 3ms  
Overload recovery times from positive and negative satu-  
ration conditions are 1.5ms and 3ms respectively, which  
representsanimprovementofabout100timesoverchop-  
peramplifiersusingexternalcapacitors.Pin5isanoptional  
external clock input, useful for synchronization purposes.  
U
APPLICATIO S  
Thermocouple Amplifiers  
Electronic Scales  
Medical Instrumentation  
The LTC1050 is available in standard 8-pin metal can,  
plastic and ceramic dual-in-line packages as well as an  
SO-8 package. The LTC1050 can be an improved plug-in  
replacement for most standard op amps.  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
DC Accurate RC Active Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
High Performance, Low Cost Instrumentation Amplifier  
Noise Spectrum  
5V  
160  
140  
120  
100  
80  
4
5V  
1/2 LTC1043  
3
2
7
7
8
+
6
V
OUT  
LTC1050  
11  
12  
4
60  
DIFFERENTIAL  
INPUT  
C
C
H
1µF  
S
5V  
1µF  
1µF  
40  
20  
R1  
R2  
0
13  
16  
14  
17  
1050 TA01  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
CMRR > 120dB AT DC  
CMRR > 120dB AT 60Hz  
DUAL SUPPLY OR SINGLE 5V  
GAIN = 1 + R2/R1  
1050 TA02  
0.01µF  
V
= 5µV  
OS  
COMMON MODE INPUT VOLTAGE EQUALS THE SUPPLIES  
5V  
1050fb  
1
LTC1050  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V).............................. 18V  
Input Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration......................... Indefinite  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Operating Temperature Range  
LTC1050AC/C .................................. 40°C to 85°C  
LTC1050H ..................................... 40°C to 125°C  
LTC1050AM/M (OBSOLETE) .......... 55°C to 125°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NC  
NUMBER  
NUMBER  
TOP VIEW  
8
+
7
5
V
(CASE)  
OUT  
NC  
–IN  
+IN  
1
3
LTC1050CS8  
LTC1050HS8  
LTC1050ACH  
LTC1050CH  
LTC1050AMH  
LTC1050MH  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
+
+
2
6
V
OUT  
EXT CLOCK  
INPUT  
4
V
EXT CLOCK  
INPUT  
V
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
1050  
1050H  
TJMAX = 150°C  
TJMAX = 150°C, θJA = 150°C/W  
OBSOLETE PACKAGE  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
NC  
–IN  
+IN  
1
2
3
4
NC  
8
7
6
5
1
2
3
4
5
6
7
NC  
NC  
NC  
14  
13  
12  
11  
10  
9
NC  
NC  
+
V
LTC1050ACN8  
LTC1050CN8  
LTC1050CN  
OUT  
NC  
V
EXT CLOCK  
INPUT  
+
V
–IN  
+IN  
NC  
OUT  
NC  
N8 PACKAGE  
8-LEAD PDIP  
LTC1050ACJ8  
LTC1050CJ8  
LTC1050AMJ8  
LTC1050MJ8  
TJMAX = 150°C, θJA = 100°C/W  
NC  
8
V
J8 PACKAGE 8-LEAD CERDIP  
TJMAX = 150°C, θJA = 100°C/W  
N PACKAGE  
14-LEAD PDIP  
OBSOLETE PACKAGE  
TJMAX = 150°C, θJA = 70°C/W  
Consider the N8 Package for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes specifications which apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. VS = ±5V  
LTC1050AM  
TYP  
LTC1050AC  
TYP  
PARAMETER  
CONDITIONS  
(Note 3)  
(Note 3)  
MIN  
MAX  
MIN  
MAX  
UNITS  
µV  
µV/°C  
nV/Mo  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
±0.5  
±0.01 ±0.05  
50  
±20  
±5  
±0.5  
±0.01 ±0.05  
50  
±20  
±5  
(Note 5)  
(Note 5)  
±60  
±300  
±30  
±60  
±150  
±30  
±100  
pA  
pA  
pA  
pA  
Input Bias Current  
Input Noise Voltage  
±10  
±10  
±2000  
0.1Hz to 10Hz (Note 6)  
DC to 1Hz  
1.6  
0.6  
2.1  
1.6  
0.6  
2.1  
µV  
P-P  
µV  
P-P  
1050fb  
2
LTC1050  
The denotes specifications which apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. VS = ±5V  
LTC1050AM  
TYP  
LTC1050AC  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Input Noise Current  
Common Mode Rejection Ratio  
f = 10Hz (Note 4)  
1.8  
140  
1.8  
140  
fA/Hz  
V
= V to 2.7V  
114  
110  
125  
130  
114  
110  
125  
130  
dB  
dB  
dB  
dB  
V
V
CM  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
V = ±2.375V to ±8V  
S
140  
160  
±4.7 ±4.85  
±4.95  
140  
160  
±4.7 ±4.85  
±4.95  
R = 10k, V  
L
= ±4V  
OUT  
R = 10k  
L
R = 100k  
L
Slew Rate  
Gain Bandwidth Product  
Supply Current  
R = 10k, C = 50pF  
4
2.5  
1
4
2.5  
1
V/µs  
MHz  
mA  
mA  
L
L
No Load  
1.5  
2.3  
1.5  
2.3  
Internal Sampling Frequency  
2.5  
2.5  
kHz  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±5V  
LTC1050M/H  
TYP  
LTC1050C  
TYP  
PARAMETER  
CONDITIONS  
(Note 3)  
(Note 3)  
MIN  
MAX  
MIN  
MAX  
UNITS  
µV  
µV/°C  
nV/Mo  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
±0.5  
±0.01 ±0.05  
50  
±5  
±0.5  
±0.01 ±0.05  
50  
±20  
±5  
(Note 5)  
(Note 5)  
±20  
±100  
±300  
±125  
±200  
±75  
±150  
pA  
pA  
pA  
pA  
Input Bias Current  
Input Noise Voltage  
±10  
±50  
±10  
±2000  
R = 100, 0.1Hz to 10Hz (Note 6)  
1.6  
0.6  
1.6  
0.6  
µV  
P-P  
µV  
P-P  
S
R = 100, DC to 1Hz  
S
Input Noise Current  
Common Mode Rejection Ratio  
f = 10Hz (Note 4)  
1.8  
130  
1.8  
130  
fA/Hz  
V
= V to 2.7V  
114  
110  
100  
114  
110  
dB  
dB  
dB  
CM  
LTC1050M/C  
LTC1050H  
Power Supply Rejection Ratio  
V = ±2.375V to ±8V, LTC1050M/C  
120  
110  
120  
±4.7 ±4.85  
±4.95  
140  
160  
120  
140  
160  
dB  
dB  
dB  
V
V
S
LTC1050H  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
R = 10k, V  
L
= ±4V  
OUT  
120  
±4.7 ±4.85  
±4.95  
R = 10k  
L
R = 100k  
L
Slew Rate  
Gain Bandwidth Product  
Supply Current  
R = 10k, C = 50pF  
4
2.5  
1
4
2.5  
1
V/µs  
MHz  
mA  
mA  
L
L
No Load  
1.5  
2.3  
1.5  
2.3  
Internal Sampling Frequency  
2.5  
2.5  
kHz  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Current Noise is calculated from the formula: In = (2q • Ib)  
–19  
of the device may be impaired.  
where q = 1.6 • 10  
Coulomb.  
+
Note 2: Connecting any terminal to voltages greater than V or less than  
Note 5: At T 0°C these parameters are guaranteed by design and not  
A
V may cause destructive latchup. It is recommended that no sources  
tested.  
operating from external supplies be applied prior to power-up of the  
LTC1050.  
Note 6: Every lot of LTC1050AM and LTC1050AC is 100% tested for  
Broadband Noise at 1kHz and sample tested for Input Noise Voltage at  
0.1Hz to 10Hz.  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic test  
systems. V is measured to a limit determined by test equipment  
OS  
capability.  
1050fb  
3
LTC1050  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Offset Voltage  
vs Sampling Frequency  
10HzP-P Noise  
vs Sampling Frequency  
Common Mode Input Range  
vs Supply Voltage  
8
7
6
5
4
3
2
1
0
10  
8
8
6
V
= ±5V  
V
= ±5V  
S
V
CM  
= V  
S
4
2
6
0
4
–2  
–4  
–6  
–8  
2
0
100  
1k  
SAMPLING FREQUENCY, f (Hz)  
10k  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
±1 ±2 ±3  
±4 ±5  
SUPPLY VOLTAGE (V)  
±6 ±7 ±8  
S
SAMPLING FREQUENCY, f (kHz)  
S
1050 G02  
1050 G01  
1050 G03  
Sampling Frequency  
vs Supply Voltage  
Sampling Frequency  
vs Temperature  
Overload Recovery  
5
4
3
2
1
0
3.5  
3.0  
2.5  
2.0  
V
S
= ±5V  
T
A
= 25°C  
200mV  
0V  
INPUT  
0V  
OUTPUT  
5V  
1050 G6  
AV = 100  
S = ±5V  
0.5ms/DIV  
V
1.5  
–50  
0
25  
50  
75 100 125  
–25  
4
6
8
10  
12  
14  
16  
+
AMBIENT TEMPERATURE, T (°C)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
A
1050 G05  
1050 G04  
Short-Circuit Output Current  
vs Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
6
4
V
= ±5V  
T
= 25°C  
S
A
I
SOURCE  
V
= V  
OUT  
2
0
–10  
–20  
–30  
I
SINK  
+
V
= V  
OUT  
4
8
10  
12  
14  
16  
–50  
0
25  
50  
75 100 125  
6
–25  
4
8
10  
12  
14  
16  
6
+
+
TOTAL SUPPLY VOLTAGE, V TO V (V)  
AMBIENT TEMPERATURE, T (°C)  
A
TOTAL SUPPLY VOLTAGE, V TO V (V)  
1050 G07  
1050 G08  
1050 G09  
1050fb  
4
LTC1050  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain/Phase vs Frequency  
Small-Signal Transient Response  
Large-Signal Transient Response  
120  
100  
80  
60  
80  
VOUT  
100  
120  
140  
160  
180  
200  
220  
PHASE  
2V  
100mV  
STEP  
60  
GAIN  
40  
VIN = 6V  
20  
0
V
T
L
R
= ±5V  
= 25°C  
= 100pF  
1k  
S
A
1050 G11  
1050 G12  
AV = 1  
AV = 1  
20  
40  
C
RL = 10k  
RL = 10k  
L
C
L = 100pF  
CL = 100pF  
VS = ±5V  
VS = ±5V  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1050 G10  
LTC1050 DC to 1Hz Noise  
0.5µV  
1050 G13  
10 SEC  
LTC1050 DC to 10Hz Noise  
1µV  
1050 G14  
1 SEC  
1050fb  
5
LTC1050  
TEST CIRCUITS  
Electrical Characteristics Test Circuit  
DC-10Hz Noise Test Circuit  
475k  
100k  
1M  
0.015µF  
+
V
10  
1k  
2
3
7
158k  
316k  
475k  
6
LTC1050  
LTC1050  
OUTPUT  
TO X-Y  
RECORDER  
LT®1012  
0.015µF  
0.015µF  
+
+
R
L
4
+
1050 TC01  
V
FOR 1Hz NOISE BW, INCREASE ALL  
THE CAPACITORS BY A FACTOR OF10  
1050 TC02  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
+
ACHIEVING PICOAMPERE/MICROVOLT  
PERFORMANCE  
V
Picoamperes  
8
7
OUTPUT  
1
6
In order to realize the picoampere level of accuracy of the  
LTC1050,propercaremustbeexercised.Leakagecurrents  
incircuitryexternaltotheamplifiercansignificantlydegrade  
performance. High quality insulation should be used (e.g.,  
Teflon,Kel-F);cleaningofallinsulatingsurfacestoremove  
fluxes and other residues will probably be necessary—  
particularly for high temperature performance. Surface  
coating may be necessary to provide a moisture barrier in  
high humidity environments.  
OPTIONAL  
EXTERNAL  
CLOCK  
2
5
4
3
V
GUARD  
1050 F01  
Figure 1  
Board leakage can be minimized by encircling the input  
connectionswithaguardringoperatedatapotentialclose  
to that of the inputs: in inverting configurations the guard  
ringshouldbetiedtoground;innoninvertingconnections  
to the inverting input (see Figure 1). Guarding both sides  
oftheprintedcircuitboardisrequired.Bulkleakagereduc-  
tion depends on the guard ring width.  
EMF generation. Junctions of copper wire from different  
manufacturerscangeneratethermalEMFsof200nV/°C—  
4 times the maximum drift specification of the LTC1050.  
The copper/kovar junction, formed when wire or printed  
circuit traces contact a package lead, has a thermal EMF of  
approximately 35µV/°C—700 times the maximum drift  
specification of the LTC1050.  
Microvolts  
Minimizing thermal EMF-induced errors is possible if ju-  
dicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches and relays where  
possible. In instances where this is not possible, attempt  
to balance the number and type of junctions so that differ-  
ential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
Thermocouple effect must be considered if the LTC1050’s  
ultralow drift is to be fully utilized. Any connection of dis-  
similar metals forms a thermoelectric junction producing  
anelectricpotentialwhichvarieswithtemperature(Seebeck  
effect).Astemperaturesensors,thermocouplesexploitthis  
phenomenon to produce useful information. In low drift  
amplifier circuits the effect is a primary source of error.  
Connectors, switches, relay contacts, sockets, resistors,  
solder and even copper wire are all candidates for thermal  
junctions.  
1050fb  
6
LTC1050  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Figure 2 is an example of the introduction of an unneces-  
sary resistor to promote differential thermal balance.  
Maintainingcompensatingjunctionsinclosephysicalprox-  
imity will keep them at the same temperature and reduce  
thermal EMF errors.  
PACKAGE-INDUCED OFFSET VOLTAGE  
Package-induced thermal EMF effects are another impor-  
tantsourceoferrors.Itarisesatthecopper/kovarjunctions  
formed when wire or printed circuit traces contact a  
package lead. Like all the previously mentioned thermal  
EMF effects, it is outside the LTC1050’s offset nulling loop  
and cannot be cancelled. The input offset voltage specifi-  
cationoftheLTC1050isactuallysetbythepackage-induced  
warm-up drift rather than by the circuit itself. The thermal  
time constant ranges from 0.5 to 3 minutes, depending  
upon package type.  
NOMINALLY  
UNNECESSARY  
RESISTOR USED TO  
THERMALLY BALANCE  
OTHER INPUT RESISTOR  
LEAD WIRE/SOLDER/COPPER  
TRACE JUNCTION  
+
LTC1050  
OUTPUT  
RESISTOR LEAD, SOLDER  
COPPER TRACE JUNCTION  
OPTIONAL EXTERNAL CLOCK  
An external clock is not required for the LTC1050 to  
operate. The internal clock circuit of the LTC1050 sets the  
nominal sampling frequency at around 2.5kHz. This fre-  
quencyischosensuchthatitishighenoughtoremovethe  
amplifier 1/f noise, yet still low enough to allow internal  
circuits to settle.The oscillator of the internal clock circuit  
has a frequency 4 times the sampling frequency and its  
output is brought out to Pin 5 through a 2k resistor. When  
the LTC1050 operates without using an external clock,  
Pin 5 should be left floating and capacitive loading on this  
pin should be avoided. If the oscillator signal on Pin 5 is  
used to drive other external circuits, a buffer with low  
input capacitance is required to minimize loading on this  
pin. Figure 3 illustrates the internal sampling frequency  
versus capacitive loading at Pin 5.  
1050 F02  
Figure 2  
When connectors, switches, relays and/or sockets are  
necessary they should be selected for low thermal EMF  
activity. The same techniques of thermally balancing and  
coupling the matching junctions are effective in reducing  
the thermal EMF errors of these components.  
Resistors are another source of thermal EMF errors.  
Table 1 shows the thermal EMF generated for different  
resistors. Thetemperaturegradientacrosstheresistoris  
important, not the ambient temperature. There are two  
junctions formed at each end of the resistor and if these  
junctions are at the same temperature, their thermal  
EMFs will cancel each other. The thermal EMF numbers  
areapproximateandvarywithresistorvalue. Highvalues  
give higher thermal EMF.  
3
V
= ±5V  
S
2
1
Table 1. Resistor Thermal EMF  
RESISTOR TYPE  
Tin Oxide  
THERMAL EMF/°C GRADIENT  
~mV/°C  
Carbon Composition  
Metal Film  
~450µV/°C  
~20µV/°C  
1
5
10  
100  
CAPACITANCE LOADING (pF)  
Wire Wound  
Evenohm  
1050 F03  
~2µV/°C  
~2µV/°C  
Manganin  
Figure 3. Sampling Frequency vs Capacitance Loading at Pin 5  
1050fb  
7
LTC1050  
PPLICATI  
When an external clock is used, it is directly applied to  
Pin 5. The internal oscillator signal on Pin 5 has very low  
drive capability and can be overdriven by any external  
signal. When the LTC1050 operates on ±5V power sup-  
plies, the external clock level is TTL compatible.  
O U  
W
U
A
S I FOR ATIO  
PSRR is guaranteed down to 4.7V (±2.35V) to ensure  
proper operation down to the minimum TTL specified  
voltage of 4.75V.  
PIN COMPATIBILITY  
Using an external clock can affect performance of the  
LTC1050. Effects of external clock frequency on input  
offset voltage and input noise voltage are shown in the  
Typical Performance Characteristics section. The sam-  
pling frequency is the external clock frequency divided  
by 4. Input bias currents at temperatures below 100°C  
are dominated by the charge injection of input switches  
and they are basically proportional to the sampling  
frequency. At higher temperatures, input bias currents  
are mainly due to leakage currents of the input protection  
devices and are insensitive to the sampling frequency.  
The LTC1050 is pin compatible with the 8-pin versions of  
7650, 7652 and other chopper-stabilized amplifiers. The  
7650 and 7652 require the use of two external capacitors  
connected to Pin 1 and Pin 8 that are not needed for the  
LTC1050. Pin 1 and Pin 8 of the LTC1050 are not con-  
nected internally while Pin 5 is an optional external clock  
inputpin. TheLTC1050canbeadirectplug-inforthe7650  
and 7652 even if the two capacitors are left on the circuit  
board.  
In applications operating from below 16V total power  
supply, (±8V), the LTC1050 can replace many industry  
standard operational amplifiers such as the 741, LM101,  
LM108, OP07, etc. For devices like the 741 and LM101,  
the removal of any connection to Pin 5 is all that is  
needed.  
LOW SUPPLY OPERATION  
The minimum supply for proper operation of the LTC1050  
is typically below 4V (±2V). In single supply applications,  
U
O
TYPICAL APPLICATI S  
Strain Gauge Signal Conditioner with Bridge Excitation  
1202.5V  
5V  
*
5V  
350Ω  
LT1009  
BRIDGE  
3
2
7
+
6
OUTPUT  
±2.5V  
LTC1050  
10k  
ZERO  
301k  
RN60C  
R2  
0.1%  
4
C**  
5V  
5V  
7
2
1N4148  
R1  
0.1%  
GAIN  
TRIM  
2k  
6
2N2907  
LTC1050  
3
1050 TA03  
+
4
51Ω  
*OPTIONAL REFERENCE OUT TO MONITORING  
10-BIT A/D CONVERTER  
**AT GAIN = 1000, 10Hz PEAK-TO-PEAK NOISE  
IS <0.5LSB FOR 10-BIT RESOLUTION  
2W  
5V  
5V  
1050fb  
8
LTC1050  
U
O
TYPICAL APPLICATI S  
Single Supply Thermocouple Amplifier  
Air Flow Detector  
1k  
255k  
1%  
5V  
10k  
1k  
1%  
100  
100k  
1%  
0.068µF  
2
3
7
6
LT1004-1.2  
5V = NO AIR FLOW  
0V = AIR FLOW  
LTC1050  
5V  
7
43.2  
5V  
2
3
+
1%  
4
2
6
V
OUT  
LTC1050  
10mV/°C  
7
+
+
K
+
AMBIENT  
TEMPERATURE  
STILL AIR  
+
4
240Ω  
LT1025A  
0.1µF  
TYPE K  
TYPE K  
GND  
4
R
5
AIR FLOW  
0°C ~ 100°C TEMPERATURE RANGE  
1050 TA06  
1050 TA04  
Battery-Operated Temperature Monitor with 10-Bit Serial Output A/D  
V
IN  
= 9V  
2
6
LT1021C-5  
4
+
0.1µF  
10µF  
178k  
0.1%  
1k  
0.1%  
3.4k  
1%  
1N4148  
0.33µF  
LTC1092  
2
1
2
3
4
8
7
6
5
7
CS  
V
CC  
TO µP*  
47Ω  
2
6
LTC1050  
+IN  
–IN  
GND  
CLK  
V
IN  
8
3
J
D
OUT  
+
+
4
1µF  
1µF  
V
LT1025A  
REF  
1050 TA05  
TYPE J  
GND  
4
R
0°C ~ 500°C TEMPERATURE RANGE  
2°C MAX ERROR  
*THERMOCOUPLE LINEARIZATION CODE AVAILABLE FROM LTC  
5
1050fb  
9
LTC1050  
U
O
TYPICAL APPLICATI S  
Fast Precision Inverter  
±100mA Output Drive  
10k  
1%  
10k  
10k  
5pF  
V
IN  
INPUT  
5V  
5V  
100pF  
100k  
10k  
2
3
7
100pF  
V
OUT  
1000pF  
6
LTC1050  
LT1010  
5V  
5V  
±100mA  
+
5V  
7
2
7
4
+
R
L
6
2
3
5V  
OUTPUT  
LT318A  
1050 TA08  
6
3
FULL POWER BANDWIDTH = 10kHz  
LTC1050  
4
10k  
V
V
= 5µV  
OS  
OS  
+
/T = 50nV/°C  
4
5V  
10k  
GAIN = 10  
5V  
1050 TA07  
FULL POWER BANDWIDTH = 2MHz  
SLEW RATE 40V/µs  
SETTLING TIME = 5µs TO 0.01% (10V STEP)  
OFFSET VOLTAGE = 5µV  
OFFSET DRIFT = 50nV/°C  
Ground Referred Precision Current Sources  
LT1034  
+
V
OUT  
0 I  
25mA*  
OUT  
OUT  
1.235V  
SET  
+
+
I
=
0.2V V  
(V ) – 2V  
OUT  
V
R
*MAXIMUM CURRENT LIMITED BY  
POWER DISSIPATION OF 2N2222  
2N2222  
10k  
2
3
3
2
7
7
+
R
SET  
6
6
LTC1050  
LTC1050  
R
10k  
SET  
+
4
4
0 I  
25mA*  
OUT  
2N2907  
LT1034  
(V ) + 2V V  
–1.8V  
1.235V  
SET  
OUT  
I
=
OUT  
R
V
*MAXIMUM CURRENT LIMITED BY  
POWER DISSIPATION OF 2N2907  
1050 TA09  
+
V
OUT  
1050fb  
10  
LTC1050  
U
O
TYPICAL APPLICATI S  
Precision Voltage Controlled Current Source  
with Ground Referred Input and Output  
5V  
INPUT  
0V TO  
3.2V  
3
2
7
+
6
2N2222  
LTC1050  
4
0.68µF  
5V  
1k  
4
LTC1043  
8
7
11  
1µF  
1µF  
100Ω  
12  
14  
17  
13  
16  
V
IN  
I
=
OUT  
100Ω  
0.001µF  
1050 TA10  
Sample-and-Hold Amplifier  
Ultraprecision Voltage Inverter  
LTC1043  
2
V
7
8
IN  
6
V
OUT  
LTC1050  
LTC1043  
2
3
6
5
+
NC  
11  
C1  
1µF  
C2  
+
V
1µF  
C
L
2
3
7
0.01µF  
12  
6
V
16  
17  
LTC1050  
SAMPLE HOLD  
OUT  
+
13  
16  
14  
17  
V
IN  
1050 TA11  
4
FOR 1V V 4V, THE HOLD STEP IS 300µV.  
IN  
V
ACQUISTION TIME IS DETERMINED BY THE SWITCH R  
.
ON  
+
0.01µF  
C
TIME CONSTANT  
L
FOR V = ±5V, (V ) + 1.8V < V < V  
S
OUT  
IN  
V
= V ±20ppm  
IN  
1050 TA12  
MATCHING BETWEEN C1 AND C2 NOT REQUIRED  
1050fb  
11  
LTC1050  
TYPICAL APPLICATI S  
U
O
Instrumentation Amplifier with Low Offset and Input Bias Current  
C
2
3
1k  
0.1%  
100k  
0.1%  
6
LTC1050  
+
INPUT  
+
2
3
6
LTC1050  
OUTPUT  
+
3
2
1k  
0.1%  
100k  
0.1%  
+
6
LTC1050  
1050 TA13  
OFFSET VOLTAGE ±10µV  
INPUT BIAS CURRENT = 15pA  
CMRR = 100dB FOR GAIN = 100  
INPUT REFERRED NOISE = 5µV FOR C = 0.1µF  
P-P  
= 20µV FOR C = 0.01µF  
P-P  
Instrumentation Amplifier with 100V Common Mode Input Voltage  
1k  
1M  
+
V
1M  
1M  
+
2
3
V
7
+
1k  
6
2
3
7
LTC1050  
V
IN  
6
+
V
OUT  
LTC1050  
4
+
1k  
4
V
1050 TA14  
V
OUTPUT OFFSET 5mV  
FOR 0.1% RESISTORS, CMRR = 54dB  
Single Supply Instrumentation Amplifier  
1k  
1M  
+
V
1M  
+
2
3
V
7
1k  
6
2
3
7
LTC1050  
6
+
V
–V  
LTC1050  
OUT  
IN  
4
+V  
+
IN  
4
1050 TA15  
OUTPUT OFFSET 5mV  
FOR 0.1% RESISTORS, CMRR = 54dB  
1050fb  
12  
LTC1050  
U
O
TYPICAL APPLICATI S  
Photodiode Amplifier  
15pF  
500k  
5V  
2
3
7
6
HP  
5082-4204  
V
LTC1050  
OUT  
1050 TA16  
+
4
500k  
6 Decade Log Amplifier  
MAT-01  
MAT-01  
22pF  
0.0022µF  
5V  
3k  
1%  
5V  
5V  
7
25k  
2.5V  
2.5M  
0.1%  
10k  
0.1%  
2M  
1%  
2
3
2
7
15.7k  
0.1%  
V
IN  
1N4148  
6
6
I
IN  
LTC1050  
LTC1050  
LT1009  
3
1k*  
0.1%  
+
+
1050 TA17  
V
OUT  
4
4
–5V  
–5V  
ERROR REFERRED TO INPUT <1%  
I
V
IN  
10mV  
IN  
FOR INPUT CURRENT RANGE 1nA ~ 1mA  
*TEL LAB TYPE Q81  
V
OUT  
= –LOG  
= –LOG  
= –LOG(V ) – 2V  
IN  
(
)
(
)
1µA  
CORRECTS FOR NONLINEARITIES  
DC Accurate, 10Hz, 7th Order Lowpass Bessel Filter  
8V  
R
R′  
R′  
16k  
196k  
196k  
3
2
7
V
+
IN  
C
6
C2  
0.047µF  
C1  
0.047µF  
V
LTC1050  
OUT  
1
2
3
4
8
7
6
5
0.47µF  
4
LTC1062  
–8V  
–8V  
f
1050 TA18  
CLK  
1N4148  
2kHz  
0.1µF  
• WIDEBAND NOISE 52µV  
• LINEAR PHASE  
• V ±6V  
IN  
RMS  
8V  
0.1µF  
• CLOCK TO CUTOFF FREQUENCY RATIO = 200:1  
1050fb  
13  
LTC1050  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.270)  
MAX  
(1.016)  
0.165 – 0.185  
(4.191 – 4.699)  
MAX  
0.200  
(5.080)  
TYP  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
H8(TO-5) 0.200 PCD 1197  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.016 – 0.021**  
(0.406 – 0.533)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
CORNER LEADS OPTION  
(4 PLCS)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.045 – 0.068  
0.300 BSC  
(0.762 BSC)  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
J8 1298  
1
2
3
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
OBSOLETE PACKAGES  
1050fb  
14  
LTC1050  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
N8 1098  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
14  
13  
12  
11  
10  
9
8
7
0.020  
(0.508)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
1
2
3
5
6
4
0.325  
0.005  
(0.125)  
MIN  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
N14 1098  
+0.889  
8.255  
0.100  
(2.54)  
BSC  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
1
3
4
2
1050fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1050  
U
O
TYPICAL APPLICATI S  
DC Accurate 10th Order Max Flat Lowpass Filter  
5V  
C
2
3
7
R
6
V
OUT  
LTC1050  
(DC ACCURATE)  
0.12R  
R
V
+
IN  
4
C
1
2
3
4
C
1
2
3
4
–5V  
8
7
6
5
8
7
6
5
LTC1062  
LTC1062  
–5V  
0.1µF  
5V  
–5V  
5V  
0.1µF  
f
CLK  
1050 TA19  
f
CLK  
• f  
= 0.9  
0.2244  
CUTOFF  
(
)
100  
• RC =  
f
CUTOFF  
• 60dB/OCT. SLOPE  
• PASSBAND ERROR <0.1dB FOR 0 f 0.67f  
CUTOFF  
RMS  
• THD = 0.04%, WIDEBAND NOISE = 120µV  
• f 100kHz  
CLK  
DC Accurate, Noninverting 2nd Order Lowpass Filter  
Gain of 1, 10Hz 3rd Order Bessel DC Accurate Lowpass Filter  
R4  
5V  
5V  
7
R3  
2
2
7
6
6
R3  
5.9k  
R1  
R2  
LTC1050  
V
LTC1050  
OUT  
R1  
47.5k  
24.3k  
R2  
3
3
+
V
+
IN  
4
4
C3  
2µF  
C1  
0.47µF  
C2  
0.22µF  
–5V  
–5V  
C1  
C2  
1050 TA21  
1050 TA20  
Q = 0.707, f = 20Hz. FOR f = 10Hz, THE RESISTOR (R1, R2) VALUES SHOULD BE DOUBLED  
C
C
COMPONENT VALUES  
DC GAIN  
R3  
R4  
0
R1  
R2  
C1  
C2  
1
32.4k 18.7k 0.47µF 0.22µF  
11.8k 24.3k 0.47µF 0.47µF  
2
10k  
10k  
4
10.5k 31.6k 18.7k 34.8k 0.22µF 0.47µF  
10.2k 51.1k  
10.2k 71.5k 11.8k 54.9k 0.22µF 0.47µF  
10.1k 90.9k 10.5k 61.9k 0.22µF 0.47µF  
6
14k  
46.4k 0.22µF 0.47µF  
8
10  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1051  
Dual Zero-Drift Op Amp’s  
Zero-Drift Op Amp  
Dual Version of the LTC1050  
SOT-23 Package  
LTC2050  
LTC2051  
Zero-Drift Op Amp’s  
Zero-Drift Instrumentation Amp  
Dual Version of the LTC2050 in an MS8 Package  
110dB CMRR, MS8 Package, Gain Programmable  
LTC2053  
1050fb  
LW/TP 0802 1K • PRINTED IN USA  
16 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1991  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1050MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LTC1050_09

Precision Zero-Drift Operational Amplifier with Internal Capacitors
Linear

LTC1051

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051AC

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051ACJ8

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051ACN8

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051ACS

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051AM

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051AMJ8

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051CJ8

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051CN8

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1051CN8#PBF

LTC1051 - Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear