LTC1053CSW [Linear]

Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors; 双/四路精密零漂移运算放大器,具有内部电容
LTC1053CSW
型号: LTC1053CSW
厂家: Linear    Linear
描述:

Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors
双/四路精密零漂移运算放大器,具有内部电容

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1051/LTC1053  
Dual/Quad Precision  
Zero-Drift Operational Amplifiers  
With Internal Capacitors  
U
FEATURES  
DESCRIPTIO  
Dual/Quad Low Cost Precision Op Amp  
The LTC®1051/LTC1053 are high performance, low cost  
dual/quad zero-drift operational amplifiers. The unique  
achievementoftheLTC1051/LTC1053isthattheyintegrate  
on chip the sample-and-hold capacitors usually required  
externally by other chopper amplifiers. Further, the  
LTC1051/LTC1053 offer better combined overall DC and  
AC performance than is available from other chopper  
stabilized amplifiers with or without internal sample/hold  
capacitors.  
No External Components Required  
Maximum Offset Voltage: 5µV  
Maximum Offset Voltage Drift: 0.05µV/°C  
Low Noise 1.5µVP-P (0.1Hz to 10Hz)  
Minimum Voltage Gain: 120dB  
Minimum PSRR: 120dB  
Minimum CMRR: 114dB  
Low Supply Current: 1mA/Op Amp  
Single Supply Operation: 4.75V to 16V  
The LTC1051/LTC1053 have an offset voltage of 0.5µV,  
driftof0.01µV/°C,DCto10Hz,inputnoisevoltagetypically  
1.5µVP-P and typical voltage gain of 140dB. The slew rate  
of 4V/µs and gain bandwidth product of 2.5MHz are  
achieved with only 1mA of supply current per op amp.  
Input Common Mode Range Includes Ground  
Output Swings to Ground  
Typical Overload Recovery Time: 3ms  
Pin Compatible with Industry Standard Dual and  
Quad Op Amps  
U
Overload recover times from positive and negative  
saturation conditions are 1.5ms and 3ms respectively,  
about a 100 or more times improvement over chopper  
amplifiers using external capacitors.  
APPLICATIO S  
Thermocouple Amplifiers  
Electronic Scales  
The LTC1051 is available in an 8-lead standard plastic  
dual-in-line package as well as a 16-pin SW package. The  
LTC1053 is available in a standard 14-pin plastic package  
and an 18-pin SO. The LTC1051/LTC1053 are plug in  
replacements for most standard dual/quad op amps with  
improved performance.  
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
DC Accurate R C Active Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
High Performance Low Cost Instrumentation Amplifier  
LTC1051 Noise Spectrum  
120  
R2  
R1  
5V  
100  
80  
60  
40  
20  
R2  
2
3
8
R1  
6
5
1/2  
LTC1051  
1
1/2  
LTC1051  
7
V
+
IN  
V
+
IN  
4
R1 = 499, 0.1%  
R2 = 100k, 0.1%  
GAIN = 201  
5V  
MEASURED CMRR ~ 120dB AT DC  
MEASURED INPUT V 3µV  
OS  
1051/53 TA01a  
MEASURED INPUT NOISE 2µV (DC – 10Hz)  
10  
100  
1k  
10k  
P-P  
FREQUENCY (Hz)  
1051/53 TA01b  
10513fa  
1
LTC1051/LTC1053  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V)............................ 16.5V  
Input Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range  
LTC1051M, LTC1051AM (OBSOLETE) .. –55°C to 125°C  
LTC1051C/LTC1053C ......................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
+
OUT A  
IN A  
+IN A  
1
2
3
4
V
8
7
6
5
1
2
3
4
5
6
7
14 OUT D  
13 IN D  
OUT A  
IN A  
+IN A  
NUMBER  
NUMBER  
OUT B  
–IN B  
+IN B  
12 +IN D  
V
+
11  
V
V
LTC1051CN8  
LTC1051MJ8  
LTC1051CJ8  
LTC1051AMJ8  
LTC1051ACJ8  
LTC1053CN  
10 +IN C  
+IN B  
IN B  
OUT B  
N8 PACKAGE  
8-LEAD PDIP  
TJMAX = 150°C, θJA = 110°C/W  
9
8
IN C  
OUT C  
J8 PACKAGE  
8-LEAD CERDIP  
N PACKAGE  
14-LEAD PDIP  
OBSOLETE PACKAGE  
TJMAX = 150°C, θJA = 65°C/W  
Consider the N8 Package as an Alternate Source  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
NC  
OUT A  
–IN A  
+IN A  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
OUT D  
–IN D  
+IN D  
+
OUT A  
–IN A  
+IN A  
V
OUT B  
–IN B  
+IN B  
NC  
LTC1051CSW  
LTC1053CSW  
+
V
V
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
V
NC  
NC  
NC  
SW PACKAGE  
16-LEAD PLASTIC SO  
SW PACKAGE  
18-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 85°C/W  
T
JMAX = 150°C, θJA = 90°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V unless otherwise noted.  
LTC1051/LTC1053  
MIN TYP MAX  
LTC1051A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
±5  
UNITS  
µV  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Drift  
Input Bias Current  
±0.5  
±0.0  
50  
±5  
±0.5  
±0.0  
50  
±0.05  
±0.05  
µV/°C  
nV/Mo  
±15  
±65  
±135  
±15  
±50  
±100  
pA  
pA  
LTC1051C/LTC1053C  
(All Grades)  
Input Offset Current  
±30  
±125  
±175  
±30  
±100  
±150  
pA  
pA  
Input Noise Voltage (Note 2)  
R = 100, DC to 10Hz  
R = 100, DC to 1Hz  
S
1.5  
0.4  
1.5  
0.4  
2
µV  
P-P  
µV  
P-P  
S
10513fa  
2
LTC1051/LTC1053  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V unless otherwise noted.  
LTC1051/LTC1053  
LTC1051A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
Input Noise Current  
f = 10Hz  
2.2  
2.2  
fA/Hz  
Common Mode Rejection Ratio, CMRR  
V
= V to 2.7V  
106  
100  
130  
114  
110  
130  
dB  
dB  
CM  
Differential CMRR  
V
= V to 2.7V  
112  
112  
dB  
CM  
LTC1051, LTC1053 (Note 3)  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V = ±2.375V to ±8V  
116  
116  
140  
160  
120  
120  
140  
160  
dB  
dB  
S
R = 10k, V  
= ±4V  
L
OUT  
Maximum Output Voltage Swing  
R = 10k  
±4.5  
±4.5  
±4.85  
±4.95  
±4.7  
±4.85  
±4.95  
V
V
L
R = 100k  
L
Slew Rate  
R = 10k, C = 50pF  
4
2.5  
1
4
2.5  
1
V/µs  
L
L
Gain Bandwidth Product  
Supply Current/Op Amp  
MHz  
No Load  
2
2.5  
2
2.5  
mA  
mA  
Internal Sampling Frequency  
3.3  
3.3  
kHz  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±5V unless otherwise noted.VS = 5V, GND unless otherwise noted.  
LTC1051A/LTC1051/LTC1053  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±0.5  
±0.01  
±10  
MAX  
UNITS  
µV  
Input Offset Voltage  
Input Offset Drift  
±5  
±0.05  
±50  
±80  
µV/°C  
pA  
Input Bias Current  
Input Offset Current  
Input Noise Voltage  
Supply Current/Op Amp  
±20  
pA  
DC to 10Hz  
No Load  
1.8  
µV  
P-P  
1.5  
mA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Differential CMRR for the LTC1053 is measured between  
amplifiers A and D, and amplifiers B and C.  
Note 2: For guaranteed noise specification contact LTC Marketing.  
10513fa  
3
LTC1051/LTC1053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Input Range vs  
Supply Voltage  
Sampling Frequency vs Supply  
Voltage  
Sampling Frequency vs  
Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
8
6
T
= 25°C  
V
= ±5V  
A
S
5
4
3
2
1
4
2
0
–2  
–4  
–6  
–8  
V
= V  
CM  
4
6
8
10  
12  
14  
16  
50  
125  
0
1
2
3
4
5
6
7
8
–50  
0
25  
75 100  
–25  
+
TOTAL SUPPLY VOLTAGE, V TO V (V)  
AMBIENT TEMPERATURE, T (°C)  
SUPPLY VOLTAGE (±V)  
A
1051/53 G02  
1051/53 G01  
1051/53 G03  
Supply Current vs Supply Voltage  
Per Op Amp  
Supply Current vs Temperature  
Per Op Amp  
Gain/Phase vs Frequency  
60  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
120  
100  
80  
V
C
= ±5V  
= 100pF  
1k  
T
= 25°C  
V
= ±5V  
S
L
L
A
S
80  
R
T
= 25°C  
A
100  
120  
140  
160  
180  
200  
220  
60  
40  
20  
0
20  
40  
4
8
10  
12  
+
14  
16  
6
100  
1k  
10k  
100k  
1M  
10M  
–50  
0
25  
50  
75 100 125  
–25  
TOTAL SUPPLY VOLTAGE V TO V (V)  
FREQUENCY (Hz)  
AMBIENT TEMPERATURE, T (°C)  
A
1051/53 G06  
1051/53 G04  
1051/53 G05  
Output Short-Circuit Current vs  
Supply Voltage  
CMRR vs Frequency  
Gain/Phase vs Frequency  
6
4
60  
160  
140  
120  
100  
80  
120  
100  
80  
V
C
= ±2.5V  
= 100pF  
1k  
S
L
L
V
= V  
OUT  
80  
R
T
= 25°C  
A
–100  
–120  
–140  
–160  
–180  
–200  
–220  
I
SOURCE  
2
60  
0
40  
60  
20  
10  
20  
30  
40  
0
+
V
= ±5V  
V
= V  
S
A
OUT  
20  
T
= 25°C  
20  
I
SINK  
AC COMMON MODE IN = 0.5V  
P-P  
0
40  
4
8
10  
12  
14  
16  
6
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
+
TOTAL SUPPLY VOLTAGE, V TO V (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1051/53 G08  
1051/53 G09  
1051/53 G07  
10513fa  
4
LTC1051/LTC1053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Small Signal Transient Response  
Large Signal Transient Response  
Overload Recovery  
400mV  
0
OUTPUT  
50mV  
/DIV  
OUTPUT  
2V/DIV  
INPUT  
0
OUTPUT  
INPUT  
6V  
INPUT  
100mV  
5V  
2µs/DIV  
2µs/DIV  
0.5ms  
A
V
V
S
= 1, R = 10k, C = 100pF  
A
V
V
S
= 1, R = 10k, C = 100pF  
A
V
V
S
= –100  
= ±5V  
L L  
L
L
1051/53 G12  
= ±5V, T = 25°C  
1051/53 G11  
= ±5V, T = 25°C  
1051/53 G10  
A
A
LTC1051/LTC1053 DC to 10Hz Noise  
V
= ±5V  
= 25°C  
S
A
T
1.4µV  
P-P  
1µV  
10 SEC  
1 SEC  
TEST CIRCUITS  
Electrical Characteristics Test Circuit  
DC 10Hz Noise Test Circuit  
475k  
1M  
100k  
0.01µF  
+
V
1k  
10  
2
3
2
8
158k  
316k  
475k  
1/2  
LTC1051  
1/2  
LTC1051  
6
6
OUTPUT  
+
3
TO X-Y  
RECORDER  
LT1012  
+
+
R
4
0.1µF  
0.01µF  
L
V
1051/53 TC01  
FOR 1Hz NOISE BW INCREASE ALL THE CAPACITORS BY A FACTOR OF 10.  
10513fa  
5
LTC1051/LTC1053  
W U U  
U
APPLICATIO S I FOR ATIO  
ACHIEVING PICOAMPERE/MICROVOLT PERFORMANCE Avoid connectors, sockets, switches and relays where  
possible. In instances where this is not possible, attempt  
Picoamperes  
to balance the number and type of junctions so that  
differential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
junctions.  
In order to realize the picoampere level of accuracy of the  
LTC1051/LTC1053, proper care must be exercised. Leak-  
age currents in circuitry external to the amplifier can  
significantly degrade performance. High quality insulation  
should be used (e.g., Teflon, Kel-F); cleaning of all insulat-  
ing surfaces to remove fluxes and other residues will  
probably be necessary —particularly for high temperature  
performance.Surfacecoatingmaybenecessarytoprovide  
a moisture barrier in high humidity environments.  
When connectors, switches, relays and/or sockets are  
necessary, they should be selected for low thermal EMF  
activity. The same techniques of thermally balancing and  
coupling the matching junctions are effective in reducing  
the thermal EMF errors of these components.  
Resistors are another source of thermal EMF errors.  
Table 1 shows the thermal EMF generated for different  
resistors. The temperature gradient across the resistor is  
important, not the ambient temperature. There are two  
junctions formed at each end of the resistor and if these  
junctions are at the same temperature, their thermal EMFs  
will cancel each other. The thermal EMF numbers are  
approximate and vary with resistor value. High values give  
higher thermal EMF.  
Board leakage can be minimized by encircling the input  
connections with a guard ring operated at a potential close  
to that of the inputs: in inverting configurations, the guard  
ringshouldbetiedtoground;innoninvertingconnections,  
to the inverting input. Guarding both sides of the printed  
circuit board is required. Bulk leakage reduction depends  
on the guard ring width.  
Microvolts  
Table 1. Resistor Thermal EMF  
Thermocouple effects must be considered if the LTC1051/  
LTC1053’s ultra low drift op amps are to be fully utilized.  
Any connection of dissimilar metals forms a thermoelec-  
tric junction producing an electric potential which varies  
with temperature (Seebeck effect.) As temperature sen-  
sors, thermocouples exploit this phenomenon to produce  
usefulinformation. Inlowdriftamplifiercircuits, thiseffect  
is a primary source of error.  
RESISTOR TYPE  
Tin Oxide  
THERMAL EMF/°C GRADIENT  
~mV/°C  
Carbon Composition  
Metal Film  
~450µV/°C  
~20µV/°C  
Wire Wound  
Evenohm  
Manganin  
~2µV/°C  
~2µV/°C  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for thermal  
EMF generation. Junctions of copper wire from different  
manufacturers can generate thermal EMFs of 200nV/°C—  
4 times the maximum drift specification of the LTC1051/  
LTC1053. Thecopper/kovarjunction, formedwhenwireor  
printed circuit traces contact a package lead, has a thermal  
EMF of approximately 35µV/°C—700 times the maximum  
drift specification of the LTC1051/LTC1053.  
Input Bias Current, Clock Feedthrough  
At ambient temperatures below 60°C, the input bias cur-  
rent of the LTC1051/LTC1053 op amps’ is dominated by  
the small amount of charge injection occurring during the  
sampling and holding of the op amps’ input offset voltage.  
The average value of the resulting current pulses is 10pA  
to 15pA with sign convention shown in Figure 1.  
+
+
I
B
I
B
T
< 60°C  
T > 85°C  
A
A
+
+
1/2  
1/2  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
I
I
B
B
LTC1051  
LTC1051  
(a)  
(b)  
1051/53 F01  
Figure 1. LTC1051 Bias Current  
10513fa  
6
LTC1051/LTC1053  
W U U  
APPLICATIO S I FOR ATIO  
U
R2  
100k  
R
= 0,  
S
R
= 100k,  
A =11V/V  
V
S
A
=11V/V  
V
R1  
1k  
20mV/DIV  
20mV/DIV  
1/2  
LTC1051  
R
S
R
= 0,  
S
R = 100k,  
S
+
A
V
=101V/V  
A =101V/V  
V
20mV/DIV  
20mV/DIV  
100µs/DIV  
100µs/DIV  
1051/53 F02  
(c)  
(a)  
(b)  
Figure 2. Clock Feedthrough  
As the ambient temperature rises, the leakage current of  
the input protection devices increases, while the charge  
injection component of the bias current, for all practical  
purposes,staysconstant.Atelevatedtemperatures(above  
85°C) the leakage current dominates and the bias current  
of both inputs assumes the same sign.  
the feedback resistor value should not exceed 7k for  
industrial temperature range and 5k for military tempera-  
ture range. If a higher feedback resistor value is required,  
a feedback capacitor of 20pF should be placed across the  
feedback resistor. Note that the most common circuits  
with feedback factors approaching unity are unity gain  
followers and instrumentation amplifier front ends.  
(See Figure 4.)  
The charge injection at the op amp input pins will cause  
small output spikes. This phenomenon is often referred to  
as “clock feedthrough” and can be easily observed when  
the closed-loop gain exceeds 10V/V (Figure 2). The mag-  
nitude of the clock feedthrough is temperature indepen-  
dent but it increases when the closed-loop gain goes up,  
when the source resistance increases and when the gain  
settingresistorsincrease(Figure2a, 2b). Itisimportantto  
note that the output small spikes are centered at 0V level  
and do not add to the output offset error budget. For  
instance, with RS = 1M, the typical output offset voltage  
of Figure 2c is:  
R
V
= 100k  
S
A
=101V/V  
R
V
= 1M  
S
A
=101V/V  
100µs/DIV  
C
1000pF  
V
OS(OUT) 108 • IB+ + 101VOS(IN)  
R1  
1k  
R2  
2
100k  
+
A 10pA bias current will yield an output of 1mV ±100µV.  
The output clock feedthrough can be attenuated by lower-  
ing the value of the gain setting resistors, i.e. R2 = 10k,  
R1 = 100, instead of 100k and 1k (Figure 2).  
1/2  
LTC1051  
1
R
S
3
1051/53 F03  
Figure 3. Adding a Feedback Capacitor to  
Eliminate Clock Feedthrough  
Clock feedthrough can also be attenuated by adding a  
capacitor across the feedback resistor to limit the circuit  
bandwidth below the internal sampling frequency  
(Figure 3).  
R2 < 7k, IF R1 > >R2  
R1  
2
3
+
1
1/2  
LTC1051  
Input Capacitance  
The input capacitance of the LTC1051/LTC1053 op amps  
is approximately 12pF. When the LTC1051/LTC1053 op  
amps are used with feedback factors approaching unity,  
1051/53 F04  
Figure 4. Operating the LTC1051  
with Feedback Factors Approaching Unity  
10513fa  
7
LTC1051/LTC1053  
W U U  
U
APPLICATIO S I FOR ATIO  
LTC1051/LTC1053 as AC Amplifiers  
Aliasing  
Although initially chopper stabilized op amps were de-  
signed to minimize DC offsets and offset drifts, the  
LTC1051/LTC1053 family, on top of its outstanding DC  
characteristics, presents efficient AC performance. For  
instance, at single 5V supply, each op amp typically  
consumes 0.5mA and still provides 1.8MHz gain band-  
width product and 3V/µs slew rate. This, combined with  
almost distortionless swing to the supply rails (Figure 8),  
makes the LTC1051/LTC1053 op amps nearly general  
purpose. To further expand this idea (the “aliasing” phe-  
nomenon) which can occur under AC conditions, should  
be described and properly evaluated.  
The LTC1051/LTC1053 are equipped with internal cir-  
cuitry to minimize aliasing. Aliasing, no matter how small,  
occurs when the input signal approaches and exceeds the  
internal sampling rate. Aliasing is caused by the sampled  
data nature of the chopper op amps. A generalized study  
of this phenomenon is beyond the scope of a data sheet;  
however, a set of rules of thumb can answer many  
questions:  
1. Alias signals can be generally defined as output AC  
signalsatafrequencyofnfCLK ±mfIN. ThenfCLK termisthe  
internal sampling frequency of the chopper stabilized op  
amps and its harmonics; mfIN is the frequency of the input  
signal and its harmonics, if any.  
B: MAG  
RANGE: 9dBV  
STATUS: PAUSED  
RMS: 25  
20dBV  
R2  
10k  
5V  
80dB  
15dB  
/DIV  
0.1µF  
R1  
1k  
2
3
+
1
1/2  
LTC1051  
V
OUT  
f
IN  
0.8V  
P-P  
50pF  
–100  
START: 100Hz  
X: 1825Hz  
BW: 47.742Hz  
Y: 70.72dBV  
STOP: 5 100Hz  
0.1µF  
5V  
1051/53 F05a  
f
IN  
= 750Hz  
f
– f  
CLK IN  
2f  
IN  
2f – f  
CLK IN  
Figure 5a. Output Voltage Spectrum of 1/2 LTC1051 Operating as an Inverting Amplifier with Gain of 10,  
and Amplifying a 750Hz/800mV, Input AC Signal  
A: MAG  
RANGE: 11dBV  
STATUS: PAUSED  
RMS: 25  
20dBV  
74dB  
15dB  
/DIV  
–100  
CENTER: 10 000Hz  
X: 5550Hz  
BW: 95.485Hz  
Y: 63.91dBV  
SPAN: 10 000Hz  
6f – f  
CLK IN  
f
IN  
= 10kHz  
Figure 5b. Same as Figure 5a, but the AC Input Signal is 900mV, 10kHz  
10513fa  
8
LTC1051/LTC1053  
W U U  
APPLICATIO S I FOR ATIO  
U
2. If we arbitrarily accept that “aliasing” occurs when  
output alias signals reach an amplitude of 0.01% or more  
of the output signal, then: the approximate minimum  
frequency of an AC input signal which will cause aliasing  
is equal to the internal clock frequency multiplied by the  
square root of the op amp feedback factor. For instance,  
with closed-loop gain of –10, the feedback factor is 1/11  
and if fCLK = 2.6kHz, alias signals can be detected when  
the frequency of the input signal exceeds 750Hz to 800Hz  
(Figure 5a).  
4. When the frequency, fIN, of the input signal is less than  
fCLOCK, the alias signal(s) amplitude(s) directly scale with  
theamplitudeoftheincomingsignal.Theoutputsignal to  
alias ratio” cannot be increased by just boosting the input  
signal amplitude. However, when the input AC signal  
frequencywellexceedstheclockfrequency, theamplitude  
of the alias signals does not directly scale with the input  
amplitude. The “signal to alias ratio” increases when the  
output swings closely to the rails. (See Figure 5b and  
Figure 7.) It is important to note that the LTC1051/  
LTC1053 op amps, under light loads (RL 10k), swing  
closely to the supply rails without generating harmonic  
distortion (Figure 8).  
3. The number of alias signals increases when the input  
signal frequency increases (Figure 5b).  
B: MAG  
RANGE: 9dBV  
STATUS: PAUSED  
RMS: 25  
13dBV  
10k  
5V  
83.5dB  
15dB  
/DIV  
0.1µF  
0.1µF  
10k  
+
1/2  
LTC1051  
50pF  
–107  
CENTER: 2 625Hz  
X: 2535Hz  
BW: 19.097Hz  
Y: 74.16dBV  
SPAN: 2 000Hz  
V
= 10kHz  
IN  
8V  
P-P  
5V  
1051/53 F05a  
NOTE: THE f  
– f = 85Hz  
CLK IN  
ALIAS FREQUENCY IS 95dB  
2f – f  
CLK IN  
f
= 2.685kHz  
IN  
f
DOWN FROM THE OUTPUT LEVEL  
CLK  
Figure 6a. Output Voltage Spectrum of 1/2 LTC1051 Operating as a Unity-Gain Inverting Amplifier.  
VS = ±5V, RL = 10k, CL = 50pF, VIN = 8VP-P, 2.685kHz  
B: MAG  
RANGE: 9dBV  
STATUS: PAUSED  
RMS: 50  
13dBV  
15dB  
80dB  
15dB  
/DIV  
–107  
CENTER: 10 000Hz  
X: 10000Hz  
BW: 95.485Hz  
Y: 7.98dBV  
SPAN: 10 000Hz  
1kHz  
5f  
– f  
CLK IN  
f
IN  
– 2f  
CLK  
2 • f  
CLK IN  
f – f  
IN CLK  
f
IN  
= 10kHz  
CLK  
6f  
– f  
NOTE: ALL ALIAS FREQUENCY  
80dB TO 84dB DOWN FROM OUTPUT  
Figure 6b. Output Voltage Spectrum of 1/2 LTC1051 Operating as a Unity-Gain Inverting Amplifier.  
VS = ±5V, RL = 10k, CL = 50pF, VIN = 8VP-P, 10kHz  
10513fa  
9
LTC1051/LTC1053  
W U U  
U
APPLICATIO S I FOR ATIO  
5. For unity-gain inverting configuration, all the alias  
frequenciesare80dBto84dBdownfromtheoutputsignal  
(Figures6a, 6b). CombinedwithexcellentTHDunderwide  
swing, the LTC1051/LTC1053 op amps make efficient  
unity gain inverters.  
68dB value of Figure 7 decreases to 56dB if a (1k, 100k)  
resistor set is used to set the gain of –100.  
7. When the LTC1051/LTC1053 are used as noninverting  
amplifiers, all the previous approximate rules of thumb  
apply with the following exceptions: when the closed-loop  
gain is 10(V/V) and below, the “signal to alias” ratio is 1dB  
to 3dB less than the inverting case; when the closed-loop  
gain is 100(V/V), the degradation can be up to 9dB,  
especially when the input signal is much higher than the  
clock frequency (i.e. fIN = 10kHz).  
For gain higher than –1, the “signal to alias” ratio de-  
creases at an approximate rate of –6dB per decade of  
closed-loop gain (Figure 9).  
6. For closed-loop gains of –10 or higher, the “signal to  
alias” ratio degrades when the value of the feedback gain  
setting resistor increases beyond 50k. For instance, the  
8. The signal/alias ratio performance improves when the  
op amp has bandlimited loop gain.  
SYSTEM BUSY, ONLY ABORT COMMANDS ALLOWED  
RANGE: 11dBV  
STATUS: PAUSED  
20dBV  
R2  
10k  
5V  
68dB  
15dB  
/DIV  
0.1µF  
R1  
100  
1/2  
LTC1051  
V
OUT  
90mV  
10kHz  
P-P  
50pF  
+
–100  
0.1µF  
CENTER: 10 000Hz  
X: 5475Hz  
BW: 95.485Hz  
Y: –58.05dBV  
SPAN: 10 000Hz  
5V  
1051/53 F07  
6f – f  
CLK IN  
f
IN  
=10kHz  
Figure 7. Output Voltage Spectrum of 1/2 LTC1051 Operating as an Inverting Amplifier with a Gain of –100 and  
Amplifiying a 90mVP-P, 10kHz Input Signal. With a 9VP-P Output Swing the Measured 2nd Harmonic (20kHz)  
was 75 Down from the 10kHz Input Signal  
10  
9
8
7
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
= ±5V  
S
f
10kHz  
V
= ±8V, T 85°C  
A
S
V
V
= ±5V, T 85°C  
S
S
A
= ±2.5V, T 85°C  
A
NEGATIVE SWING  
POSITIVE SWING  
4k  
5k 6k 7k 8k 9k 10k  
(LOAD RESISTANCE,)  
1
10  
INVERTING CLOSED-LOOP GAIN  
100  
0
1k 2k 3k  
R
L
1051/53 G08  
1051/53 G09  
Figure 8. Output Voltage Swing vs Load  
Figure 9. Signal to Alias Ratio vs  
Closed-Loop Gain  
10513fa  
10  
LTC1051/LTC1053  
U
TYPICAL APPLICATIO S  
Obtaining Ultralow VOS Drift and Low Noise  
The dual chopper op amp buffers the inputs of A1 and  
corrects its offset voltage and offset voltage drift. With the  
R, C values shown, the power-up warm up time is typically  
20 seconds. The step response of the composite amplifier  
doesnotpresentsettlingtails. TheLT1007shouldbeused  
when extremely low noise; VOS and VOS drift are sought  
when the input source resistance is low—for instance a  
350strain gauge bridge. The LT1012 or equivalent  
should be used when low bias current (100pA) is also  
required in conjunction with DC to 10Hz low noise and low  
VOS and VOS drift. The measured typical input offset  
voltages were less than 2µV.  
B
+
5
+
2
3
1/2  
LTC1051  
7
R4  
1/2  
LTC1051  
6
1
C1  
+
5V  
R5  
OUT  
C2  
R2  
R1  
1
R3  
3
2
+
8
6
OUT  
A1  
A
1051/53 AC01a  
A1  
R1  
R2  
R3  
R4  
10k  
10k  
R5  
C1  
C2  
e
(DC – 1Hz)**  
e
(DC – 10Hz)**  
OUT  
OUT  
LT1007  
3k  
2k  
340k  
250k  
100k  
100k  
0.01µF  
0.01µF  
0.001µF  
0.001µF  
0.1µV  
0.3µV  
0.15µV  
P-P  
P-P  
P-P  
P-P  
LT1012*  
750Ω  
57Ω  
0.4µV  
* Interchange connections  
A and B .  
** Noise measured in a 10 sec window. Peak-to-peak noise was also measured for 10 continuous minutes: With the LT1007 op amp the recorded noise was less than 0.2µVP-P for both DC-1Hz  
and DC-10Hz.  
LTC1051/LT1007 Peak-to-Peak Noise  
V
S
= ±5V  
DCTO1Hz  
NOISE  
DCTO10Hz  
NOISE  
1051/53 AC01b  
1 SEC/DIV  
10513fa  
11  
LTC1051/LTC1053  
U
TYPICAL APPLICATIO S  
Paralleling Choppers to Improve Noise  
Differential Voltage to Current Converter  
NOTE: THIS CIRCUIT CAN ALSO BE USED AS A  
R2  
0.1µF  
DIFFERENCE AMPLIFIER FOR STRAIN GAUGES.  
CONNECT R2/3 AND R1/3 FROM NONINVERTING  
INPUTS, SHORTED TOGETHER, TO GROUND AND  
TO SOURCE RESPECTIVELY.  
3
2
V1  
+
R1  
R1  
R1  
2
3
1
1/4  
LTC1053  
20k  
5V  
V
IN  
+
R
R
1/4  
LTC1053  
1
7
8
5V  
10k  
10k  
10k  
10k  
R2  
0.1µF  
R
G
20k  
20k  
4
9
0.1µF  
+
5
6
8
1/4  
LTC1053  
4
6
5
13  
12  
+
+
+
R
13  
12  
7
10  
1/4  
LTC1053  
1/4  
LTC1053  
1/4  
LTC1053  
14  
V
OUT  
10k  
11  
14  
1/4  
LTC1053  
11  
V2  
+
0.1µF  
–5V  
R2  
10k  
• I  
OUT  
= 2(V2 – V1)/R  
G
• BW = 100Hz  
• I = 1mA  
0.1µF  
–5V  
10k  
10k  
OUTMAX  
9
+
R
1/4  
LTC1053  
I
OUT  
0.1µF  
R
LOAD  
10  
V
/V = 3(R2/R1); INPUT DC – 10Hz NOISE  
P-P  
OUT IN  
0.8µV = NOISE OF EACH PARALLELED OP AMP/3  
1051/53 AC03  
1051/53 AC02  
Multiplexed Differential Thermometer  
100  
255k  
1k  
0.068µF  
2
3
+
1
7
8
T2  
1/4  
ABSOLUTE  
LTC1053  
TEMPERATURE  
TYPE K  
+
+
+
ABSOLUTE  
TEMPERATURE  
0.1µF  
100Ω  
10k  
255k  
1k  
5V  
5V  
2
0.068µF  
6
5
10k  
13  
+
4
S1  
+
1/4  
LTC1053  
T1  
7
1/4  
LTC1053  
14  
K
OUTPUT  
(DIFFERENTIAL  
TEMPERATURE)  
TYPE K  
10k  
12  
LT1025A  
11  
0.1µF  
100Ω  
10k  
255k  
R
GND  
4
5
1k  
0.068µF  
9
+
T
REF  
1/4  
LTC1053  
ALL FIXED RESISTORS ARE 1% METAL FILM  
OUTPUT = T – T1 OR T – T2(10mV PER °C)  
ACCURACY = (±0.1% FROM 25°C TO 150°C)  
TYPE K  
10  
REF  
REF  
0.1µF  
1051/53 AC04  
10513fa  
12  
LTC1051/LTC1053  
U
TYPICAL APPLICATIO S  
Dual Instrumentation Amplifier  
5V  
LTC1043  
+
3
8
8
7
+
Six Decade Log Amplifier  
1
1/2  
LTC1051  
1µF  
V
OUT1  
2
11  
12  
5V  
INPUT 1  
1µF  
0.0022µF  
Q1  
Q1  
22pF  
0.1µF  
2.5V  
2.5M  
0.1%  
100k  
8
6
1k  
3k  
0.1%  
5V  
+
13  
6
14  
5
7
1/2  
LTC1051  
10k  
GAIN = 101V/DIV  
7
0.22µF  
0.1%  
+
2
5
15.8k  
0.1%  
5
6
V
LT1009  
IN  
1N4148  
2M  
4
+
1
1/2  
LTC1051  
1/2  
LTC1051  
1nA < I <1mA  
IN  
1µF  
V
OUT2  
3
+
–5V  
0.1µF  
1k  
2
3
4
V
= LOG V –2V  
IN  
OUT  
0.1%  
INPUT 2  
1µF  
1051/53 AC05  
Q1: TEL LAB TYPE Q81  
ADJUST 2M POR. FOR NONLINEARITIES  
100k  
1k  
18  
16  
15  
4
0.22µF  
17  
CMRR >100dB  
V 3µV  
5V  
OS  
INPUT REFERRED NOISE 2µV  
P-P  
0.0047µF  
1051/53 AC06  
Linearized Platinum Signal Conditioner  
250k*  
(LINEARITY CORRECTION LOOP)  
5V  
10k*  
3
2
8
5V  
+
1
1/2  
2.4k  
LTC1051  
274k*  
4
50k  
ZERO  
ADJUST  
8.25k*  
LT1009  
2.5V  
0.1µF  
2k  
4
0V TO 4V =  
0°C TO 400°C  
±0.05°C  
5
8
6
7
5
+
7
1/2  
1µF  
6
LTC1051  
1k  
GAIN  
ADJUST  
11  
12  
2
887  
1µF  
1µF  
1µF  
5k  
3
8.06k*  
1k  
13  
14  
15  
16  
18  
17  
R
P
1/2 LTC1043  
1/2 LTC1043  
I
100Ω  
K
AT 0°C  
0.01µF  
RP = ROSEMOUNT 118MFRTD  
*1% FILM RESISTOR  
TRIM SEQUENCE:  
SET SENSOR TO 0°C VALUE. ADJUST ZERO FOR 0V OUT  
SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT  
SET SENSOR TO 400°C VALUE. ADJUST LINEARITY FOR 4.000V OUT  
REPEAT AS REQUIRED. FOR MORE INFORMATION REFER TO AN3  
1051/53 AC07  
10513fa  
13  
LTC1051/LTC1053  
U
PACKAGE DESCRIPTIO  
J Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
.200  
(5.080)  
MAX  
.005  
(0.127)  
MIN  
.300 BSC  
(7.62 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
4
8
7
.015 – .060  
(0.381 – 1.524)  
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER  
DIP/PLATE OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
N Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.130 ± .005  
(3.302 ± 0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.400*  
(10.160)  
MAX  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
(3.048)  
MIN  
.255 ± .015*  
(6.477 ± 0.381)  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
2
3
NOTE:  
1. DIMENSIONS ARE  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
14  
13  
12  
11  
10  
9
8
7
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.255 ± .015*  
(6.477 ± 0.381)  
+.035  
–.015  
.325  
.005  
(0.125)  
MIN  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
+0.889  
8.255  
.100  
(2.54)  
BSC  
1
2
3
5
6
4
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
N14 1002  
10513fa  
14  
LTC1051/LTC1053  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
NOTE:  
1. DIMENSIONS IN  
N/2  
8
INCHES  
1
2
3
N/2  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
RECOMMENDED SOLDER PAD LAYOUT  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES  
ON THE BOTTOM OF PACKAGES ARE THE  
MANUFACTURING OPTIONS.  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
THE PART MAY BE SUPPLIED WITH OR  
WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT  
EXCEED .006" (0.15mm)  
.037 – .045  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
(0.254 – 0.737)  
(0.940 – 1.143)  
× 45°  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
S16 (WIDE) 0502  
(0.406 – 1.270)  
SW Package  
18-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
TYP  
.447 – .463  
(11.354 – 11.760)  
NOTE 4  
N
14 13  
11  
15  
12  
10  
18 17 16  
N
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
NOTE:  
1. DIMENSIONS IN  
N/2  
9
INCHES  
(MILLIMETERS)  
RECOMMENDED SOLDER PAD LAYOUT  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES  
ON THE BOTTOM OF PACKAGES ARE THE  
MANUFACTURING OPTIONS.  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
1
4
6
.037 – .045  
THE PART MAY BE SUPPLIED WITH OR  
WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT  
EXCEED .006" (0.15mm)  
.093 – .104  
.010 – .029  
(0.254 – 0.737)  
(0.940 – 1.143)  
× 45°  
(2.362 – 2.642)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
S18 (WIDE) 0502  
10513fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1051/LTC1053  
U
TYPICAL APPLICATIO S  
DC Accurate, 3rd Order, 100Hz, Butterworth Antialiasing Filter  
Dynamic Range  
60dB  
80dB  
0.1  
0.01  
C1  
0.1µF  
8V  
V
S
= ±5V  
0.1µF  
R1  
16.5k  
R2  
118k  
R3  
21k  
2
3
V
IN  
+
1
V
S
= ±8V 100dB  
0.001  
0.0001  
1/2  
LTC1051  
V
OUT  
C
C2  
0.1µF  
0.1µF  
0.1µF  
120dB  
5.0  
–8V  
, V = ±8V  
0.1  
1.0  
), f = 30Hz  
WIDEBAND NOISE 9µV  
RMS  
V
(V  
IN RMS IN  
THD + NOISE 0.0012%, 1V  
< V < 2V  
IN RMS  
RMS  
S
1051/53 AC08  
1051/53 AC09  
V
(OUT) < 5µV  
OS  
DC Accurate, 18-Bit, 4th Order Antialiasing Bessel (Linear Phase),  
100Hz, Lowpass Filter  
Dynamic Range  
60dB  
0.1  
0.01  
R2A  
10k  
R2B  
50k  
C1A  
0.022µF  
C1B  
0.0022µF  
R1A  
10k  
V
= ±5V  
S
80dB  
V
IN  
R3A  
26.7k  
R1B  
50k  
R3B  
412k  
1/2  
V = ±8V  
S
100dB  
0.001  
0.0001  
LTC1051  
CA  
1/2  
0.22µF  
V
+
OUT  
LTC1051  
CB  
0.022µF  
+
120dB  
WIDEBAND RMS NOISE 4.5µV  
0.1  
1.0  
), f = 30Hz  
5.0  
RMS  
THD + NOISE 0.0005% (= 106dB DYNAMIC RANGE), 2V  
V 3V  
IN RMS  
RMS  
V
(V  
IN RMS IN  
1051/53 AC10  
V
OS  
OUT < 10µV  
1051/53 AC11  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
I = 80µA/0p Amp, 16-Lead SW Package  
LTC1047  
Dual µPower Zero-Drift 0p Amp  
S
LTC1049  
Low Power Zero-Drift 0p Amp  
I = 200µA, SO-8 Package  
S
LTC1050  
Precision Zero-Drift Op Amp with Internal  
Capacitors  
V
(Max) = 5µV, V  
(Max) = 16.5V  
SUPPLY  
OS  
LTC2050/LTC2051/LTC2052 Single/Dual/Quad Zero-Drift 0p Amps  
SOT-23/MS8/GN16 Packages  
LTC2053  
Zero-Drift Instrumentation Amp  
Resistor Programmable Gain, R-R  
10513fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1990  

相关型号:

LTC1053CSW#TR

LTC1053 - Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors; Package: SO; Pins: 18; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1053CSW#TRPBF

暂无描述
Linear

LTC1053IN

IC QUAD OP-AMP, 70 uV OFFSET-MAX, PDIP, 0.300 INCH, PLASTIC, DIP, Operational Amplifier
Linear

LTC1053IS

IC QUAD OP-AMP, 70 uV OFFSET-MAX, PDSO, Operational Amplifier
Linear

LTC1053_15

Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors
Linear

LTC1059

High Performance Switched Capacitor Universal Filter
Linear

LTC1059AC

High Performance Switched Capacitor Universal Filter
Linear

LTC1059ACJ

High Performance Switched Capacitor Universal Filter
Linear

LTC1059ACN

High Performance Switched Capacitor Universal Filter
Linear

LTC1059AM

High Performance Switched Capacitor Universal Filter
Linear

LTC1059AMJ

High Performance Switched Capacitor Universal Filter
Linear

LTC1059AMJ/883

IC SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, CDIP14, CERDIP-14, Active Filter
Linear