LTC1060ACN#PBF [Linear]

LTC1060 - Universal Dual Filter Building Block; Package: PDIP; Pins: 20; Temperature Range: 0°C to 70°C;
LTC1060ACN#PBF
型号: LTC1060ACN#PBF
厂家: Linear    Linear
描述:

LTC1060 - Universal Dual Filter Building Block; Package: PDIP; Pins: 20; Temperature Range: 0°C to 70°C

LTE 光电二极管 有源滤波器
文件: 总20页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1060  
Universal Dual Filter  
Building Block  
U
FEATURES  
DESCRIPTIO  
TheLTC®1060consistsoftwohighperformance,switched  
capacitor filters. Each filter, together with 2 to 5 resistors,  
can produce various 2nd order filter functions such as  
lowpass, bandpass, highpass notch and allpass. The  
center frequency of these functions can be tuned by an  
externalclockorbyanexternalclockandresistorratio. Up  
Guaranteed Filter Specification for ±2.37V and  
±5V Supply  
Operates Up to 30kHz  
Low Power and 88dB Dynamic Range at ±2.5V Supply  
Center Frequency Q Product Up to 1.6MHz  
Guaranteed Offset Voltages  
Guaranteed Clock-to-Center Frequency Accuracy Over to 4th order full biquadratic functions can be achieved by  
Temperature:  
0.3% for LTC1060A  
0.8% for LTC1060  
Guaranteed Q Accuracy Over Temperature  
Low Temperature Coefficient of Q and Center  
Frequency  
Low Crosstalk, 70dB  
Clock Inputs TTL and CMOS Compatible  
cascading the two filter blocks. Any of the classical filter  
configurations(likeButterworth,Chebyshev,Bessel,Cauer)  
can be formed.  
The LTC1060 operates with either a single or dual supply  
from ±2.37V to ±8V. When used with low supply  
(i.e. single5Vsupply), thefiltertypicallyconsumes12mW  
and can operate with center frequencies up to 10kHz. With  
±5V supply, the frequency range extends to 30kHz and  
very high Q values can also be obtained.  
U
APPLICATIO S  
The LTC1060 is manufactured by using Linear  
Technology’s enhanced LTCMOS™ silicon gate process.  
Because of this, low offsets, high dynamic range, high  
center frequency Q product and excellent temperature  
stability are obtained.  
Single 5V Supply Medium Frequency Filters  
Very High Q and High Dynamic Range Bandpass,  
Notch Filters  
Tracking Filters  
Telecom Filters  
The LTC1060 is pinout compatible with MF10.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Single 5V, Gain of 1000 4th Order Bandpass Filter  
Amplitude Response  
70  
3.16k  
OUTPUT  
60  
50  
40  
30  
20  
10  
0
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
100k  
2k  
100k  
2k  
3.16k  
3
V
IN  
1mV(RMS)  
5V  
1k  
4
5
0.1µF  
LTC1060  
6
7
5V  
1k  
8
9
–10  
0
100 125 150 175 200 225 250 275  
INPUT FREQUENCY (Hz)  
LTC1060 • TA02  
10  
CLOCK IN  
17.5kHz  
LTC1060 • TA01  
1060fb  
1
LTC1060  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage ........................................................ 18V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1060AC/LTC1060C................ 40°C TA 85°C  
LTC1060AM/LTC1060M ............ 55°C TA 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
1
2
LP  
B
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LP  
A
BP  
A
A
A
BP  
B
LTC1060ACN  
LTC1060CN  
LTC1060CSW  
3
N/AP/HP  
N/AP/HP  
INV  
B
4
INV  
B
5
S1B  
S1A  
6
AGND  
S
A/B  
+
7
V
A
V
A
+
8
V
D
V
D
9
50/100/HOLD  
CLKB  
LSh  
10  
CLKA  
N PACKAGE  
20-LEAD PDIP  
SW PACKAGE  
20-LEAD PLASTIC SO WIDE  
T
= 100°C, θ = 100°C/W (N)  
JMAX  
JMAX  
JA  
T
= 150°C, θ = 80°C/W (SW)  
JA  
J PACKAGE  
LTC1060ACJ  
LTC1060MJ  
LTC1060AMJ  
LTC1060CJ  
20-LEAD CERDIP  
= 150°C, θ = 70°C/W  
T
JMAX  
JA  
OBSOLETE PACKAGE  
Consider the N20 and SW20 Package for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Complete Filter) Vs = ±5V, unless otherwise noted.  
PARAMETER  
Center Frequency Range  
(See Applications Information)  
CONDITIONS  
f • Q 400kHz, Mode 1, Figure 4  
MIN  
TYP  
0.1 to 20k  
0.1 to 16k  
MAX  
UNITS  
Hz  
Hz  
0
f • Q 1.6MHz, Mode 1, Figure 4  
0
Clock-to-Center Frequency Ratio  
LTC1060A  
Mode 1, 50:1, f  
Mode 1, 50:1, f  
= 250kHz, Q = 10  
= 250kHz, Q = 10  
CLK  
CLK  
50 ± 0.3%  
50 ± 0.8%  
100 ± 0.3%  
100 ± 0.8%  
CLK  
CLK  
LTC1060  
LTC1060A  
LTC1060  
Mode 1, 100:1, f  
Mode 1, 100:1, f  
= 500kHz, Q = 10  
= 500kHz, Q = 10  
Q Accuracy  
LTC1060A  
LTC1060  
Mode 1, 50:1 or 100:1, f = 5kHz, Q=10  
±0.5  
±0.5  
3
5
%
%
0
Mode 1, 50:1 or 100:1, f = 5kHz, Q=10  
0
f Temperature Coefficient  
Q Temperature Coefficient  
Mode 1, f  
Mode 1, f  
< 500kHz  
< 500kHz, Q = 10  
–10  
20  
ppm/°c  
ppm/°c  
0
CLK  
CLK  
DC Offset V  
2
3
6
2
4
2
4
15  
40  
80  
30  
60  
30  
60  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
OS1  
OS2  
OS2  
OS2  
OS2  
OS3  
OS3  
V
V
V
V
V
V
f
f
f
f
f
f
= 250kHz, 50:1, S = High  
A/B  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
= 500kHz, 100:1, S = High  
A/B  
= 250kHz, 50:1, S = Low  
A/B  
= 500kHz, 100:1, S = Low  
A/B  
= 250kHz, 50:1, S = Low  
A/B  
= 500kHz, 100:1, S = Low  
A/B  
DC Lowpass Gain Accuracy  
Mode 1, R1 = R2 = 50k  
Mode 1, Q = 10, f = 5kHz  
±0.1  
±0.1  
10  
1.5  
5
2
%
%
BP Gain Accuracy at f  
Clock Feedthrough  
Max Clock Frequency  
0
0
f
1MHz  
mV  
(P-P)  
CLK  
MHz  
mA  
mA  
Power Supply Current  
3
8
12  
Crosstalk  
70  
dB  
1060fb  
2
LTC1060  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Complete Filter) VS = ±2.37V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Center Frequency Range  
f • Q 100kHz  
0
0.1 to 10k  
Hz  
Clock-to-Center Frequency Ratio  
LTC1060A  
Mode 1, 50:1, f  
Mode 1, 50:1, f  
Mode 1, 100:1, f  
Mode 1, 100:1, f  
= 250kHz, Q = 10  
= 250kHz, Q = 10  
50 ± 0.5%  
CLK  
CLK  
LTC1060  
LTC1060A  
LTC1060  
50 ± 0.8%  
100 ± 0.5%  
100 ± 0.8%  
= 250kHz, Q = 10  
= 250kHz, Q = 10  
CLK  
CLK  
Q Accuracy  
LTC1060A  
LTC1060  
Mode1, 50:1 or 100:1, f = 2.5kHz, Q = 10  
±2  
±4  
%
%
0
Mode1, 50:1 or 100:1, f = 2.5kHz, Q = 10  
0
Max Clock Frequency  
Power Supply Current  
500  
2.5  
kHz  
mA  
4
The denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
(Internal Op Amps).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
±2.37  
±8  
V
Voltage Swings  
LTC1060A  
±4  
±3.8  
±3.6  
±4  
±4  
±4  
V
V
V
LTC01060  
LTC01060, LTC01060A  
V = ±5V,R = 5k (Pins 1,2,19,20)  
S
L
R = 3.5k (Pins 3,18)  
L
Output Short-Circuit Current  
V = ±5V  
S
Source  
Sink  
25  
3
mA  
mA  
Op Amp GBW Product  
Op Amp Slew Rate  
V = ±5V  
2
7
85  
MHz  
V/µs  
dB  
S
V = ±5V  
S
Op Amp DC Open Loop Gain  
R = 10k, V = ±5V  
L
S
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.  
W
BLOCK DIAGRA  
+
+
V
D
8
V
N/AP/HP S1A  
BP  
2
LP  
1
A
A
A
A
7
3
5
INVA  
4
+
+
S
2A  
AGND  
15  
10  
LEVEL NON-OVERLAP  
CLK  
A
SHIFT  
CLOCK  
12  
9
6
S
50/100/HOLD  
LEVEL SHIFT  
CONTROL  
AB  
LEVEL NON-OVERLAP  
CLK  
B
11  
SHIFT  
CLOCK  
TO AGND  
S
2B  
+
+
INV  
17  
B
13 14  
18  
16  
19  
20  
LP  
V
V
A
N/AP/HP S1B  
BP  
D
B
B
B
LTC1060 • BD01  
1060fb  
3
LTC1060  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graph 1. Mode 1:  
(fCLK/f0) Deviation vs Q  
Graph 2. Mode 1:  
(fCLK/f0) Deviation vs Q  
Graph 3. Mode 1:  
Q Error vs Clock Frequency  
V
T
CLK  
= ±5V  
V
T
CLK  
= ±5V  
T
= 25°C  
V = ±5V  
S
f
S
A
S
A
A
CLK  
0.4  
0
= 100 (TEST POINT)  
= 25°C  
V = ±2.5V  
S
= 25°C  
f
50 20 10  
0
20  
10  
Q = 5  
f
= 500kHz  
10  
f
= 250kHz  
Q = 5  
100  
0.1  
0
20  
50  
–0.4  
f
CLK  
– 0.1  
– 0.2  
–0.8  
–1.2  
= 100:1  
f
f
0
CLK  
0
= 50 (TEST POINT)  
f
V
= ±2.5V  
V
= ±5V  
0
S
S
– 0.3  
– 0.4  
– 0.5  
– 0.6  
–1.6  
–2.0  
–2.4  
50 20 10  
2010  
20  
Q = 5  
100  
Q = 5  
f
50  
CLK  
10  
0
= 50:1  
f
0
0.1  
1
10  
100  
0.1  
1
10  
100  
0.2 0.4 0.6 0.8  
1.2  
1.6 1.8 2.0  
1.4  
1.0  
IDEAL Q  
f
(MHz)  
IDEAL Q  
CLK  
LT1060 • TPC02  
LT1060 • TPC01  
LTC1060 • TPC03  
Graph 4. Mode 1:  
Q Error vs Clock Frequency  
Graph 5. Mode 1: Measured Q vs  
fCLK and Temperature  
Graph 6. Mode 1:  
(fCLK/f0) vs fCLK and Q  
0.8  
0.6  
0.4  
0.2  
V = ±5V  
V
T
CLK  
= ±7.5V  
= 25°C  
V = ±5V  
85°C  
S
S
A
S
Q = 10  
T
f
= 25°C  
10  
50  
A
CLK  
125°C  
20  
10  
f
100  
200  
Q = 5  
20  
0
f
T
= 25°C  
CLK  
A
= 100:1  
= 100:1  
= 100:1  
f
–55°C  
f
f
0
0
0
400  
85°C  
0
Q = 20  
T
= 25°C  
A
125°C  
Q = 5  
Q = 50  
100  
200  
10  
f
55°C  
50  
20  
0
20  
CLK  
0
–0.2  
–0.4  
= 50:1  
f
CLK  
f
0
Q = 10  
= 50:1  
f
0
10  
0
Q = 5  
400  
–20  
1.2 1.4  
(MHz)  
0.2 0.4 0.6 0.8 1.0  
1.6 1.8  
0.8  
1.2 1.4  
0
0.2  
0.4 0.6  
1.0  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(MHz)  
f
CLK  
f
f
(MHz)  
CLK  
CLK  
LTC1060 • TPC05  
LTC1060 • TPC06  
LTC1060 • TPC04  
Graph 7. Mode 1:  
(fCLK/f0) vs fCLK and Q  
Graph 8. Mode 1: (fCLK/f0) vs fCLK  
and Temperature  
Graph 9. Mode 1: (fCLK/f0) vs fCLK  
and Temperature  
0.8  
0.6  
0.4  
0.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
V = ±5V  
V = ±5V  
V = ±5V  
85°C  
S
S
T
= 25°C  
S
A
125°C  
T
f
= 25°C  
Q = 10  
Q = 10  
125°C  
A
CLK  
85°C  
f
f
CLK  
CLK  
f
0
T = 25°C  
A
= 50:1  
= 100:1  
= 50:1  
f
f
0
0
Q = 50  
Q = 20  
Q = 10  
–55°C  
–55°C  
0
–0.2  
–0.4  
Q = 5  
0.2 0.4 0.6  
–0.2  
–0.2  
1.2 1.4  
(MHz)  
1.2 1.4  
(MHz)  
0.2 0.4 0.6 0.8 1.0  
1.6 1.8  
0.2 0.4 0.6 0.8 1.0  
1.6 1.8  
0.8  
1.2 1.4  
0
1.0  
f
f
CLK  
CLK  
f
(MHz)  
CLK  
LTC1060 • TPC09  
LTC1060 • TPC08  
LTC1060 • TPC07  
1060fb  
4
LTC1060  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graph 10. Mode 1:  
(fCLK/f0) vs fCLK and Q  
Graph 11. Mode 1:  
(fCLK/f0) vs fCLK and Q  
Graph 12. Mode 1: (fCLK/f0) vs fCLK  
and Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
0.2  
V = ±2.5V  
V = ±2.5V  
V = ±2.5V  
S
S
S
Q = 10  
T
f
= 25°C  
T
f
= 25°C  
A
CLK  
A
CLK  
–55°C  
f
85°C  
CLK  
= 100:1  
= 100:1  
= 50:1  
f
f
f
0
0
0
T
= 25°C  
A
125°C  
Q = 50  
Q = 20  
Q = 10  
Q = 20  
0.2  
0
0
0.2  
–0.4  
Q = 50  
Q = 10  
Q = 5  
Q = 5  
–0.2  
0
0.4  
0.6  
f (kHz)  
CLK  
0.8  
1.0  
1.2  
0.2  
400  
600 700  
0
100 200 300  
f
500  
400  
600 700  
0
100 200 300  
500  
(MHz)  
f
(MHz)  
CLK  
CLK  
LTC1060 • TPC12  
LTC1060 • TPC10  
LTC1060 • TPC11  
Graph 15. Mode 3: Deviation of  
(fCLK/f0) with Respect to Q = 10  
Measurement  
Graph 13. Mode 1: (fCLK/f0) vs  
fCLK and Temperature  
Graph 14. Mode 1:  
Notch Depth vs Clock Frequency  
1.0  
0.8  
0.6  
0.4  
0.2  
0
120  
100  
80  
60  
40  
20  
0
V = ±5V  
V = ±5V  
S
S
f
T
= 25°C  
CLK  
T
= 25°C  
A
A
= 500: 1  
Q = 10  
100:1  
–55°C  
T
= 25°C  
85°C  
V
= 1V  
f
PIN 12 AT 100:1  
RMS  
A
IN  
O
Q = 1  
100:1  
R2  
R4  
1
5
=
0.1  
0
(A)  
–0.1  
125°C  
R2  
R4  
1
2
Q = 10  
50:1  
–0.2  
–0.3  
–0.4  
–0.5  
=
f
CLK  
V = ±2.5V  
= 200: 1  
(B)  
S
f
O
Q = 10  
f
CLK  
= 50:1  
f
0
–0.2  
1.0 1.2  
(MHz)  
0
0.2 0.4 0.6 0.8  
1.4 1.6  
0
0.4  
0.6  
(kHz)  
0.8  
1.0  
1.2  
0.2  
0.1  
1
10  
100  
f
f
IDEAL Q  
CLK  
CLK  
LTC1060 • TPC15  
LTC1060 • TPC14  
LTC1060 • TPC13  
Graph 18. Mode 3 (R2 = R4):  
Measured Q vs fCLK and  
Temperature  
Graph 16. Mode 3:  
Q Error vs Clock Frequency  
Graph 17. Mode 3 (R2 = R4):  
Q Error vs Clock Frequency  
40  
20  
0
125°C  
V = ±5V  
V
= ±2.5V  
V = ±5V  
S
V
= ±7.5V  
= 25°C  
S
S
T
f
= 25°C  
S
A
A
Q = 10  
T
f
50  
20 Q = 5 20 10  
50  
10  
T
= 25°C  
–55°C  
CLK  
10  
f
20  
10  
20  
Q = 5  
A
85°C  
CLK  
= 100:1  
CLK  
= 100:1  
f
= 100:1  
0
f
0
f
0
Q = 5  
10  
50  
V
125°C  
= 50:1  
–20  
40  
0
0
f
= ±2.5V  
V
= ±5V  
S
CLK  
S
f
0
10  
10  
20  
T
= 25°C  
–55°C  
A
Q = 5  
20  
0
20  
20  
85°C  
Q = 5  
50  
20  
50  
10  
Q = 5  
f
50  
f
CLK  
10  
0
10  
0
CLK  
= 50:1  
= 50:1  
f
f
0
0
–20  
1.2 1.4  
(MHz)  
0.2 0.4 0.6 0.8 1.0  
1.6 1.8  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(MHz)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(MHz)  
f
f
f
CLK  
CLK  
CLK  
LTC1060 • TPC18  
LTC1060 • TPC16  
LTC1060 • TPC17  
1060fb  
5
LTC1060  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Graph 19. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Q  
Graph 20. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Q  
Graph 21. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
V = ±5V  
V = ± 5V  
V = ± 5V  
S
S
S
T
f
= 25°C  
Q = 10  
T
f
= 25°C  
A
CLK  
A
CLK  
f
CLK  
= 100:1  
= 50:1  
= 100:1  
f
f
f
0
0
0
Q = 20  
85°C  
125°C  
Q = 50  
T
= 25°C  
–55°C  
Q = 10  
A
Q = 20, Q = 40, Q = 50  
0
–0.2  
–0.4  
0
–0.2  
–0.4  
Q = 10  
Q = 5  
Q = 5  
0.2  
–0.2  
1.2 1.4  
(MHz)  
0.8  
1.2 1.4  
0.2 0.4 0.6 0.8 1.0  
1.6 1.8  
0
0.2  
0.4 0.6  
1.0  
0.8  
1.2  
1.4  
0
0.4 0.6  
1.0  
f
f
(MHz)  
f
(MHz)  
CLK  
CLK  
CLK  
LTC1060 • TPC21  
LTC1060 • TPC19  
LTC1060 • TPC20  
Graph 22. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Temperature  
Graph 23. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Temperature  
Graph 24. Mode 3 (R2 = R4):  
(fCLK/f0) vs fCLK and Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V = ±5V  
V = ±2.5V  
S
S
55°C  
Q = 10  
Q = 10  
–55°C  
f
f
CLK  
CLK  
= 100:1  
= 100:1  
85°C  
f
f
T
= 25°C  
0
0
A
0.4  
T
= 25°C  
A
125°C  
85°C  
85°C  
T
= 25°C  
125°C  
A
125°C  
0.2  
–55°C  
0
V = ±2.5V  
S
Q = 10  
–0.2  
–0.4  
f
CLK  
= 100:1  
f
0
1.2 1.4  
0.2 0.4 0.6 0.8  
f
1
1.6 1.8  
0
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.4  
0.6  
(MHz)  
0.8  
1.0  
0.2  
0.2  
(MHz)  
f
f
(MHz)  
CLK  
CLK  
CLK  
LTC1060 • TPC22  
LTC1060 • TPC23  
LTC1060 • TPC24  
Graph 25. Mode 1c (R5 = 0),  
Mode 2 (R2 = R4) Q Error vs  
Clock Frequency  
Graph 26.Supply Current vs  
Supply Voltage  
20  
18  
16  
14  
12  
10  
8
V = ±5V  
f
1MHz  
S
A
CLK  
Q = 10  
20  
T
f
= 25°C  
20  
10  
0
CLK 70.7  
Q = 20  
MODE 2  
=
f
1
0
T
= –55°C  
A
R2 = R4  
T
= 25°C  
A
Q = 10  
f
20  
Q = 20  
MODE 2  
CLK 35.37  
20  
10  
0
T
= 125°C  
f
1
6
A
0
R2 = R4  
4
2
0
0.8  
1.2 1.4  
0
0.2  
0.4 0.6  
1.0  
±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11  
SUPPLY VOLTAGE (±V)  
f
(MHz)  
CLK  
LTC1060 • TPC25  
LTC1060 • TPC26  
1060fb  
6
LTC1060  
U
U U  
U
W
U
U
PIN DESCRIPTION AND APPLICATIONS INFORMATIO  
Power Supplies  
operation of the device. By tying Pin 12 to 1/2 supplies  
(which should be the AGND potential), the LTC1060  
operates in the 100:1 mode. The 1/2 supply bias of Pin 12  
can vary around the 1/2 supply potential without affecting  
the 100:1 filter operation. This is shown in Table 1.  
The V+ and V+ (pins 7 and 8) and the Vand V–  
A
D
(Pins 14 and 13)Dare, respectively, the analog Aand digital  
positive and negative supply pins. For most cases, Pins 7  
and8shouldbetiedtogetherandbypassedbya0.1µFdisc  
ceramic capacitor. The same holds for Pins 13 and 14. If  
the LTC1060 operates in a high digital noise environment,  
the supply pins can be bypassed separately. Pins 7 and 8  
are internally connected through the IC substrate and  
should be biased from the same DC source. Pins 13 and  
14 should also be biased from the same DC source.  
WhenPin12isshortedtothenegativesupplypin, thefilter  
operation is stopped and the bandpass and lowpass  
outputs act as a S/H circuit holding the last sample. The  
hold step is 20mV and the droop rate is 150µV/second!  
Table 1  
VOLTAGE RANGE OF PIN 12  
The LTC1060 is designed to operate with ±2.5V supply  
(or single 5V) and with ±5V to ±8V supplies. The mini-  
mum supply, where the filter operates reliably, is ±2.37V.  
With low supply operation, the maximum input clock  
frequency is about 500kHz. Beyond this, the device exhib-  
its excessive Q enhancement and center frequency errors.  
TOTAL POWER SUPPLY  
FOR 100:1 OPERATION  
5V  
2.5 ± 0.5V  
10V  
15V  
5V ± 1V  
7.5V ± 1.5V  
S1A, S1B (Pins 5 and 16)  
Clock Input Pins and Level Shift  
These are voltage signal input pins and, if used, they  
shouldbedrivenwithasourceimpedancebelow5k. The  
S1A, S1B pins can be used to alter the CLK to center  
frequency ratio (fCLK/f0) of the filter (see Modes 1b, 1c, 2a,  
2b) or to feedforward the input signal for allpass filter  
configurations (see Modes 4 and 5). When these pins are  
not used, they should be tied to the AGND pin.  
The level shift (LSh) Pin 9 is used to accommodate T2L or  
CMOS clock levels. With dual supplies equal or higher  
to ±4.5V, Pin 9 should be connected to ground (same  
potential as the AGND pin). Under these conditions the  
clock levels can be T2L or CMOS. With single supply  
operation, thenegativesupplypinsandtheLShpinshould  
be tied to the system ground. The AGND, Pin 15, should  
be biased at 1/2 supplies, as shown in the “Single 5V Gain  
of 1000 4th Order Bandpass Filter” circuit. Again, under  
theseconditions, theclocklevelscanbeT2LorCMOS. The  
input clock pins (10,11) share the same level shift pin.  
The clock logic threshold level over temperature is  
typically 1.5V ±0.1V above the LSh pin potential. The duty  
cycle of the input clock should be close to 50%. For clock  
frequenciesbelow1MHz, the(fCLK/f0)ratioisindependent  
from the clock input levels and from its rise and fall times.  
Fast rising clock edges, however, improve the filter DC  
offsets. For clock frequencies above 1MHz, T2L level  
clocks are recommended.  
SA/B (Pin 6)  
When SA/B is high, the S2 input of the filter’s voltage  
summer(seeBlockDiagram)istiedtothelowpassoutput.  
This frees the S1 pin to realize various modes of operation  
for improved applications flexibility. When the SA/B pin is  
connected to the negative supply, the S2 input switches to  
ground and internally becomes inactive. This improves  
the filter noise performance and typically lowers the value  
of the offset VOS2  
.
AGND (Pln 15)  
This should be connected to the system ground for dual  
supply operation. When the LTC1060 operates with a  
single positive supply, the analog ground pin should be  
tied to 1/2 supply and bypassed with a 0.1µF capacitor, as  
shown in the application, “Single 5V, Gain of 1000 4th  
Order Bandpass Filter.” The positive inputs of all the  
1060fb  
50/100/Hold (Pin 12)  
By tying Pin 12 to (V+A and V +D), the filter operates in the  
50:1 mode. With ±5V supplies, Pin 12 can be typically 1V  
below the positive supply without affecting the 50:1  
7
LTC1060  
W U U  
U
APPLICATIO S I FOR ATIO  
internal op amps, as well as the reference point of all the  
internal switches are connected to the AGND pin. Because  
of this, a “clean” ground is recommended.  
clock-to-center frequency is lowered below 50:1. In mode  
1c with R6 = 0 and R6 = , the (fCLK/f0) ratio is 50/2. The  
f0 x Q product can now be increased to 9MHz since, with  
the same clock frequency and same Q value, the filter can  
handle a center frequency of 16kHz x 2.  
fCLK/f0 Ratio  
The fCLK/f0 reference of 100:1 or 50:1 is derived from the  
filter center frequency measured in mode 1, with a Q = 10  
and VS = ±5V. The clock frequencies are, respectively,  
500kHz/250kHz for the 100:1/150:1 measurement. All the  
curves shown in the Typical Performance Characteristics  
section are normalized to the above references.  
For clock frequencies above 1MHz, the f0 x Q product is  
limited by the clock frequency itself. From Graph 4 at  
±7.5V supply, 50:1 and 1.4MHz clock, a Q of 5 has about  
8% error; the measured 28kHz center frequency was  
skewed by 0.8% with respect to the guaranteed value at  
250kHz clock. Under these conditions, the f0 x Q product  
is only 140kHz but the filter can handle higher input signal  
frequencies than the 800kHz clock frequency, very high Q  
case described above.  
Graphs 1 and 2 in the Typical Performance Characteristics  
show the (fCLK/f0) variation versus values of ideal Q. The  
LTC1060 is a sampled data filter and it only approximates  
continuous time filters. In this data sheet, the LTC1060 is  
treated in the frequency domain because this approxima-  
tion is good enough for most filter applications. The  
LTC1060 deviates from its ideal continuous filter model  
when the (fCLK/f0) ratio decreases and when the Q’s are  
low. Since low Q filters are not selective, the frequency  
domain approximation is well justified. In Graph 15 the  
LTC1060 is connected in mode 3 and its ( fCLK/f0) ratio is  
adjusted to 200:1 and 500:1. Under these conditions, the  
filter is over-sampled and the (fCLK/f0) curves are nearly  
independent of the Q values. In mode 3, the ( fCLK/f0) ratio  
typicallydeviatesfromthetestedoneinmode1by±0.1%.  
Mode 3, Figure 11, and the modes of operation where R4  
is finite, are “slower” than the basic mode 1. This is shown  
in Graph 16 and 17. The resistor R4 places the input op  
amp inside the resonant loop. The finite GBW of this op  
amp creates an additional phase shift and enhances the Q  
value at high clock frequencies. Graph 16 was drawn with  
a small capacitor, CC, placed across R4 and as such, at VS  
= ±5V, the (1/2πR4CC) = 2MHz. With VS = ±2.5V the (1/  
2πR4CC) should be equal to 1.4MHz. This allows the Q  
curve to be slightly “flatter” over a wider range of clock  
frequencies. If, at ±5V supply, the clock is below 900kHz  
(or 400kHz for VS = ±2.5V), this capacitor, CC, is not needed.  
For Graph 25, the clock-to-center frequency ratios are  
altered to 70.7:1 and 35.35:1. This is done by using mode  
1c with R5 = 0, Figure 7, or mode 2 with R2 = R4 = 10k.  
The mode 1c, where the input op amp is outside the main  
loop, is much faster. Mode 2, however, is more versatile.  
At 50:1, and for TA = 25°C the mode 1c can be tuned for  
center frequencies up to 30kHz.  
f0 x Q Product Ratio  
This is a figure of merit of general purpose active filter  
building blocks. The f0 x Q product of the LTC1060  
depends on the clock frequency, the power supply volt-  
ages, the junction temperature and the mode of operation.  
At 25°C ambient temperature for ±5V supplies, and  
for clock frequencies below 1MHz, in mode 1 and its  
derivatives, the f0 x Q product is mainly limited by the  
desired f0 and Q accuracy. For instance,from  
Graph 4 at 50:1 and for fCLK below 800kHz, a predictable  
ideal Q of 400 can be obtained. Under this condition, a  
respectable f0 x Q product of 6.4MHz is achieved. The  
16kHz center frequency will be about 0.22% off from the  
tested value at 250kHz clock (see Graph 1). For the same  
clock frequency of 800kHz and for the same Q value of  
400, the f0 x Q product can be further increased if the  
Output Noise  
ThewidebandRMSnoiseoftheLTC1060outputsisnearly  
independent from the clock frequency, provided that the  
clockitselfdoesnotbecomepartofthenoise.TheLTC1060  
noise slightly decreases with ±2.5V supply. The noise at  
the BP and LP outputs increases for high Q’s. Table 2  
shows typical values of wideband RMS noise. The num-  
bers in parentheses are the noise measurement in mode 1  
with the SA/B pin shorted to Vas shown in Figure 25.  
1060fb  
8
LTC1060  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 2. Wideband RMS Noise  
f
NOTCH/HP  
(µV  
BP  
(µV  
LP  
(µV  
CLK  
V
f
)
)
)
CONDITIONS  
S
0
RMS  
RMS  
RMS  
±5V  
±5V  
±2.5V  
±2.5V  
50:1  
100:1  
50:1  
49 (42)  
70 (55)  
33 (31)  
48 (40)  
52 (43)  
80 (58)  
36 (32)  
52 (40)  
75 (65)  
90 (88)  
48 (43)  
66 (55)  
Mode1, R1 = R2 = R3  
Q = 1  
100:1  
±5V  
±5V  
±2.5V  
±2.5V  
50:1  
100:1  
50:1  
20 (18)  
25 (21)  
16 (15)  
20 (17)  
150 (125)  
220 (160)  
100 (80)  
186 (155)  
240 (180)  
106 (87)  
Mode 1, Q = 10  
R1 = R3 for BP out  
R1 = R2 for LP out  
100.1  
150 (105)  
150 (119)  
±5V  
±5V  
±2.5V  
±2.5V  
50:1  
100:1  
50:1  
57  
72  
40  
50  
57  
72  
40  
50  
62  
80  
42  
53  
Mode 3, R1 = R2 = R3 = R4  
Q = 1  
100.1  
±5V  
±5V  
±2.5V  
±2.5V  
50:1  
100:1  
50:1  
135  
170  
100  
125  
120  
160  
88  
140  
185  
100  
130  
Mode 3, R2 = R4, Q = 10  
R3 = R1 for BP out  
R4 = R1 for LP and HP out  
100:1  
115  
Short-Circuit Currents  
Shortcircuitstoground,positiveornegativepowersupply  
are allowed as long as the power supplies do not exceed  
±5V and the ambient temperature stays below 85˚C.  
Above ±5V and at elevated temperatures, continuous  
short circuits to the negative power supply will cause  
excessive currents to flow. Under these conditions, the  
device will get damaged if the short-circuit current is  
allowed to exceed 80mA.  
U
U
U
U
DEFINITION OF FILTER FUNCTIONS  
Each building block of the LTC1060, together with an  
external clock and a few resistors, closely approximates  
2ndorderfilterfunctions. Thesearetabulatedbelowinthe  
frequency domain.  
Q = Quality factor of the complex pole pair. It is the  
ratio of f0 to the –3dB bandwidth of the 2nd or-  
der bandpass function. The Q is always mea-  
sured at the filter BP output.  
1. Bandpass function: available at the bandpass output  
2. Lowpass function: available at the LP output Pins  
Pins 2 (19). (Figure 1.)  
1 (20). (Figure 2.)  
ω2o  
G(s) = HOLP  
sωo/Q  
s2 + (sωo/Q) + ωo  
G(s) = HOBP  
2
s2 + s(ωo/Q) + ω2o  
HOBP = Gain at ω = ωo  
HOLP DC gain of the LP output.  
f0 = ω/2π; f0 is the center frequency of the complex  
pole pair. At this frequency, the phase shift  
between input and output is –180˚.  
1060fb  
9
LTC1060  
U U  
U
U
DEFINITION OF FILTER FUNCTIONS  
3. Highpass function: available only in mode 3 at the  
5. Allpassfunction:availableatPins3(18)formode4,4a.  
ouput Pins 3 (18). (Figure 3.)  
[s2 – s(ωo/Q) + ω2o]  
s2 + s(ωo/Q) + ω2o  
s2  
G(s) = HOAP  
G(s) = HOHP  
s2 + s(ωo/Q) + ω2o  
fCLK  
fCLK  
2
HOAP = gain of the allpass output for 0 <f<  
2
HOHP = gain of the HP output for f→  
For allpass functions, the center frequency and the Q of  
the numerator complex zero pair is the same as the  
denominator. Under these conditions, the magnitude  
responseisastraightline. Inmode5, thecenterfrequency  
fz, of the numerator complex zero pair, is different than f0.  
For high numerator Q’s, the magnitude response will have  
a notch at fz.  
4. Notch function: available at Pins 3 (18) for several  
modes of operation.  
+
s2 ω2  
o
G(s) = (HON2  
)
s2 + (sωo/Q) + ω2o  
fCLK  
2
HON2 = gain of the notch output for f→  
HON1 = gain of the notch output for f0  
fn=ωn/2π;fnisthefrequencyofthenotchoccurrence.  
HIGHPASS OUTPUT  
H
OP  
LOWPASS OUTPUT  
H
OHP  
0.707 H  
H
BANDPASS OUTPUT  
OP  
OHP  
H
OLP  
H
OBP  
0.707 H  
OLP  
0.707 H  
OBP  
f
f
P
C
f(LOG SCALE)  
f
P
f
C
f
f f  
0 H  
L
f(LOG SCALE)  
– 1  
f(LOG SCALE)  
1
1
f
= f  
1 –  
+
1 –  
2+ 1  
C
0
2Q2  
2Q2  
(
(
(
(
1
1
2+ 1  
f
0
f
= f  
0
1 –  
+
1 –  
C
Q =  
2Q2  
2Q2  
; f  
0
=
f
L
f
(
(
(
(
H
f
– f  
H
L
– 1  
1
f
= f  
1 –  
P
0
2Q2  
1
–1  
20  
1
2Q  
f
= f  
1 –  
P
0
f
L
= f  
+
2+ 1  
2Q2  
0
0
(
(
(
(
)
)
1
H
= H  
OHP  
1
OP  
H = H  
OP OLP  
1
2Q  
1
2Q  
f
= f  
+
2+ 1  
1
Q
1
H
1
Q
1
(
(
1 –  
1 –  
4Q2  
4Q2  
TLC1060 • DFF03  
TLC1060 • DFF01  
TLC1060 • DFF02  
Figure 1  
Figure 2  
Figure 3  
U
W
ODES OF OPERATIO  
Table 3. Modes of Operation: 1st Order Functions  
MODE  
PIN 2 (19)  
PIN 3 (18)  
f
f
C
Z
6a  
LP  
HP  
f
R2  
CLK  
100(50) R3  
6b  
7
LP  
LP  
LP  
AP  
f
CLK  
100(50) R3  
R2  
f
R2  
f
R2  
CLK  
CLK  
100(50) R3  
100(50) R3  
1060fb  
10  
LTC1060  
U
W
ODES OF OPERATIO  
Table 4. Modes of Operation: 2nd Order Functions  
MODE  
PIN 1 (20)  
PIN 2 (19)  
PIN 3 (18)  
f
f
n
0
1
LP  
BP  
Notch  
f
CLK  
100(50)  
1a  
1b  
1c  
2
LP  
LP  
LP  
LP  
BP  
BP  
BP  
BP  
BP  
f
CLK  
100(50)  
Notch  
Notch  
Notch  
f
R6  
R5 + R6  
f
R6  
R5 + R6  
CLK  
CLK  
100(50)  
100(50)  
f
R6  
R5 + R6  
f
R6  
R5 + R6  
CLK  
CLK  
1 +  
1 +  
1 +  
100(50)  
100(50)  
f
f
R2  
R4  
CLK  
CLK  
100(50)  
100(50)  
2a  
2b  
3
LP  
LP  
LP  
LP  
LP  
BP  
BP  
BP  
BP  
BP  
Notch  
Notch  
HP  
f
R6  
R5 + R6  
f
R2  
R6  
CLK  
CLK  
1 +  
1 +  
+
100(50)  
100(50)  
R4 R5 + R6  
f
R6  
R5 + R6  
f
R2  
R6  
+
CLK  
CLK  
100(50)  
100(50)  
R4 R5 + R6  
f
R2  
R4  
CLK  
100(50)  
3a  
4
Notch  
AP  
f
R
h
f
R2  
R4  
CLK  
CLK  
100(50)  
R
I
100(50)  
f
CLK  
100(50)  
4a  
5
LP  
LP  
BP  
BP  
AP  
CZ  
f
R2  
R4  
CLK  
100(50)  
f
R2  
1 +  
f
R1  
1 –  
CLK  
CLK  
100(50)  
R4  
100(50)  
R4  
V
IN  
R3  
R2  
R3  
R2  
BP2  
(18)  
S1A  
(16)  
BP1  
(19)  
LP  
(20)  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
2
1
3
5
3
5
R1  
V
IN  
4
+
4
+
+
+
(17)  
(17)  
Σ
Σ
S
A/B  
S
A/B  
TLC1060 • MOO02  
TLC1060 • MOO01  
1/2 LTC1060  
1/2 LTC1060  
6
15  
6
15  
=
+
+
V
V
f
f
R3  
R2  
R3  
CLK  
R2  
R1  
R3  
R1  
R2  
R1  
R3  
R2  
CLK  
100(50)  
f =  
0
; Q =  
; H  
OBP1  
= –  
; H  
= 1(NON-INVERTING) H  
OLP  
= – 1  
f
; f = f ; H  
=
; H = –  
OBP  
; H  
ON1  
= –  
; Q =  
OBP2  
0
n
0
OLP  
R2  
100(50)  
Figure 4. Mode 1: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
Figure 5. Mode 1a: 2nd Order Filter Providing  
Bandpass, Lowpass  
1060fb  
11  
LTC1060  
U
W
ODES OF OPERATIO  
R6  
R5  
R6  
R5  
R3  
R2  
R3  
R2  
N
S1A  
(16)  
BP  
(19)  
LP  
(20)  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
5
2
1
3
5
3
R1  
R1  
V
IN  
V
IN  
4
4
+
+
+
+
(17)  
(17)  
Σ
Σ
S
S
A/B  
A/B  
TLC1060 • MOO04  
TLC1060 • MOO03  
1/2 LTC1060  
R3  
1/2 LTC1060  
6
15  
6
15  
+
V
V
f
R6  
R5 + R6  
R6  
R5 + R6  
CLK  
100(50)  
f
R6  
R5 + R6  
R3  
R2  
R6  
R5 + R6  
CLK  
100(50)  
f
=
1 +  
; f = f ; Q =  
1 +  
;
0
n
0
f
=
; f = f ; Q =  
0
n
0
R2  
f
R2  
= – ; H  
R3  
R1  
–R2/R1  
1 + R6/(R5 + R6)  
CLK  
2
H
(f 0) = H  
f
= –  
; H =  
0LP  
; R5 < 5kΩ  
f
0N1  
0N2  
0BP  
(
)
R2  
R1  
–R2/R1  
R6/(R5 + R6)  
R3  
R1  
CLK  
2
R1  
H
0N1  
(f 0) = H  
f
= –  
; H  
0LP  
=
; H  
0BP  
= –  
; R5 < 5kΩ  
0N2  
(
)
Figure 6. Mode 1b: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
Figure 7. Mode 1c: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
R4  
R4  
R3  
R2  
R6  
R5  
2
R3  
R2  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
1
3
5
3
5
R1  
R1  
V
V
IN  
IN  
4
4
+
+
+
+
(17)  
(17)  
Σ
Σ
S
A/B  
S
A/B  
TLC1060 • MOO05  
TLC1060 • MOO06  
1/2 LTC1060  
1/2 LTC1060  
6
15  
6
15  
+
+
V
V
f
f
CLK  
100(50)  
R2  
R4  
R3  
R2  
R2  
R4  
–R2/R1  
1 + (R2 + R4)  
CLK  
f
f
R2  
R6  
R6  
R5 + R6  
R3  
R2  
R2  
R6  
CLK  
CLK  
1 +  
f
=
1 +  
; f  
n
=
; Q =  
1 +  
; H  
=
0
0LP  
f
f
=
1 +  
+
; f  
=
n
; Q =  
1 +  
+
0
100(50)  
R4 R5 + R6  
R4 R5 + R6  
100(50)  
100(50)  
–R2/R1  
CLK  
f
R2  
R1  
1 + R6/(R5 + R6)  
1 + (R2/R4) + [R6/(R5 + R6)]  
CLK  
H
= – R3/R1 ; H (f 0) =  
; H  
=
0N2  
f
= – R2/R1  
0BP  
0N1  
H
H
(f 0) = –  
; H  
f
0N2  
= – R2/R1  
(
)
0N1  
0BP  
(
)
1 + (R2 + R4)  
2
2
–R2/R1  
1 + (R2/R4) + [R6/(R5 + R6)]  
= – R3/R1 ; H  
=
0LP  
Figure 8. Mode 2: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
Figure 9. Mode 2a: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
1060fb  
12  
LTC1060  
U
W
ODES OF OPERATIO  
R4  
R6  
R3  
R4  
R3  
R2  
R5  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
3
5
R2  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
3
5
R1  
V
IN  
4
+
R1  
+
V
(17)  
IN  
4
+
Σ
+
(17)  
Σ
S
A/B  
TLC1060 • MOO08  
1/2 LTC1060  
S
6
15  
A/B  
TLC1060 • MOO07  
1/2 LTC1060  
6
15  
V
V
f
R2  
R4  
R3  
R2  
R2  
R4  
CLK  
f
=
; Q =  
; H  
= –R2/R1; H  
= –R3/R1; H = –R4/R1  
0LP  
0
0HP  
0BP  
100(50)  
f
f
CLK  
100(50)  
R2  
R6  
R4 R5 + R6  
R6  
R5 + R6  
R3  
R2  
R2  
R6  
R4 R5 + R6  
CLK  
100(50)  
f =  
+
; f =  
n
; Q =  
f
+
0
Figure 11. Mode 3: 2nd Order Filter Providing Highpass,  
Bandpass, Lowpass  
R2  
R1  
R6/(R5 + R6)  
(R2/R4) + [R6/(R5 + R6)]  
CLK  
2
H
H
(f 0) = –  
; H  
f
= – R2/R1  
0N1  
0BP  
0N2  
(
)
–R2/R1  
(R2/R4) + [R6/(R5 + R6)]  
= – R3/R1 ; H  
=
0LP  
Figure 10. Mode 2b: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
R4  
R3  
R2  
HP  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
3
5
(18)  
R1  
V
IN  
4
+
+
(17)  
Σ
R
g
R
I
S
A/B  
6
1/2 LTC1060  
EXTERNAL  
OP AMP  
15  
NOTCH  
R
h
+
V
f
f
CLK  
100(50)  
R2  
R4  
R
h
CLK  
f
=
; f  
=
; H  
=
R2/R1; H  
R2  
=
R3/R1, H =  
0LP  
R4/R1  
0
n
0HP  
=
0BP  
R
100(50)  
I
R
f
R
R
R
g
R4  
R1  
g
h
g
g
h
R3  
R2  
R2  
R4  
CLK  
H
(f 0) =  
; H  
f
; H (f = f ) = Q  
H
H
; Q =  
0N1  
0N2  
0N  
0
0LP  
0HP  
(
)
(
)
R
R
R1  
R
R
2
I
I
TLC1060 • MOO09  
Figure 12. Mode 3a: 2nd Order Filter Providing Highpass,  
Bandpass, Lowpass, Notch  
1060fb  
13  
LTC1060  
U
W
ODES OF OPERATIO  
R4  
R3  
R2  
HP  
S1A  
(16)  
BP  
LP  
(20)  
3
5
2
1
R3  
R2  
(18)  
(19)  
R1  
V
IN  
4
+
AP2  
(18)  
S1A  
(16)  
BP  
LP  
(20)  
2
1
3
5
+
(19)  
(17)  
Σ
R1 = R2  
V
IN  
4
+
R5  
+
(17)  
Σ
S
A/B  
R
1/2 LTC1060  
6
15  
EXTERNAL  
OP AMP  
+
S
A/B  
TLC1060 • MOO10  
2R  
V
1/2 LTC1060  
6
15  
+
V
f
R2  
R4  
R3  
R2  
R2  
R4  
R5  
2R  
R2  
R1  
R3  
R1  
R4  
R1  
CLK  
100(50)  
f
R3  
R2  
R2  
R1  
R3  
R2  
f
0
=
; Q =  
; H  
0AP  
=
; H  
= –  
;
H
= –  
;
H
0LP  
= –  
CLK  
0HP  
0BP  
f
0
=
; Q =  
100(50)  
; H  
OAP  
= –  
; H  
= –2 H  
= – 2  
OBP  
OLP  
(
)
TLC1060 • MOO11  
Figure 13. Mode 4: 2nd Order Filter Providing Allpass,  
Bandpass, Lowpass  
Figure 14. Mode 4a: 2nd Order Filter Providing Highpass,  
Bandpass, Lowpass, Allpass  
R4  
R3  
R3  
R2  
R2  
CZ  
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
3
5
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
2
1
3
5
R1  
V
4
IN  
+
R1  
+
V
(17)  
IN  
4
+
Σ
+
(17)  
Σ
S
A/B  
TLC1060 • MOO12  
1/2 LTC1060  
6
15  
S
A/B  
TLC1060 • MOO13  
1/2 LTC1060  
6
15  
+
V
f
f
R2  
R4  
R1  
R4  
R3  
R2  
R2  
R4  
CLK  
100(50)  
CLK  
100(50)  
f
0
=
1 +  
; f  
=
1 –  
; Q =  
1 +  
z
V
f
R2  
CLK  
100(50) R3  
f
R3  
R1  
R1  
R4  
(R4/R1) –1  
(R4/R2) + 1  
R2  
R1  
CLK  
2
f
=
; H  
0LP  
= –R3/R1 ; H  
= –R2/R1  
0HP  
C
Q
=
1 –  
; H = (f  
OZ  
0) =  
; H  
f
=
;
2
OZ  
(
)
R3  
R2  
R2  
R1  
1 + (R2/R1)  
=
H
=
1 +  
; H  
OBP  
OLP  
(
)
1 + (R2/R4)  
Figure 15. Mode 5: 2nd Order Filter Providing Numerator  
Complex Zeros, Bandpass, Lowpass  
Figure 16. Mode 6a: 1st Order Filter Providing Highpass,  
Lowpass  
1060fb  
14  
LTC1060  
U
W
ODES OF OPERATIO  
R3  
V
R2=R1  
IN  
R3  
R2  
AP  
S1A  
(16)  
LP  
2
(20)  
1
3
5
(18)  
(19)  
R1=R2  
LP1  
(18)  
S1A  
(16)  
LP2  
(19)  
(20)  
1
2
V
3
5
4
IN  
+
+
(17)  
Σ
4
+
+
(17)  
Σ
S
A/B  
6
TLC1060 • MOO15  
1/2 LTC1060  
15  
S
A/B  
TLC1060 • MOO14  
R3  
= 2 x  
H
1/2 LTC1060  
OLP  
6
15  
R2  
; GAIN AT AP OUTPUT = 1 FOR 0 f ≤  
V
f
R2  
f
R2  
f
CLK  
100(50) R3  
CLK  
100(50) R3  
CLK  
2
f
R2  
R3  
R2  
CLK  
100(50) R3  
f
=
; f =  
z
P
f
=
; H  
OLP1  
= 1 ; H  
= –  
C
OLP2  
V
Figure 17. Mode 6b: 1st Order Filter Providing Lowpass  
Figure 18. Mode 7: 1st Order Filter Providing Allpass, Lowpass  
U
W W U  
W
U
COMM E TS ON THE M ODES OF OPERATIO  
There are basically three modes of operation: mode 1,  
mode 2, mode 3. In the mode 1 (Figure 4), the input  
amplifier is outside the resonant loop. Because of this,  
mode 1 and its derivatives (mode 1a, 1b, 1c) are faster  
than modes 2 and 3. In mode 1, for instance, the Q errors  
are becoming noticeable above 1MHz clock frequency.  
The practical clock-to-center frequency ratio range is:  
500  
1
f
100  
1
50  
1
CLK  
or  
; mode 1b  
f
0
f
100 50  
or  
100  
2  
50  
CLK  
f
or  
; mode 1c  
1
1
2  
o
Mode 1a (Figure 5), represents the most simple hook-up  
oftheLTC1060.Mode1aisusefulwhenvoltagegainatthe  
bandpass output is required. The bandpass voltage gain,  
however, is equal to the value of Q; if this is acceptable,  
asecondorder,clocktunable,BPresonatorcanbe achiev-  
edwithonly2resistors.Thefiltercenterfrequencydirectly  
depends on the external clock frequency. For high order  
filters, mode1aisnotpracticalsinceitmayrequireseveral  
clock frequencies to tune the overall filter response.  
The input impedance of the S1 pin is clock dependent,  
and in general R5 should not be larger than 5k. Mode 1b  
can be used to increase the clock-to-center frequency  
ratio beyond 100:1. For this mode, a practical limit for the  
(f /f ) ratio is 500:1. Beyond this, the filter will exhibit  
laCrgLKe 0output offsets. Mode 1c is the fastest mode of  
operation: In the 50:1 mode and with (R5 = 0, R6 = ) the  
clock-to-centerfrequencyratiobecomes(50/2)andcen-  
ter frequencies beyond 20kHz can easily be achieved as  
shown in Graph 25. Figure 19 illustrates how to cascade  
the two sections of the LTC1060 connected in mode 1c to  
obtain a sharp fourth order, 1dB ripple, BP Chebyshev  
filter.NotethatthecenterfrequencytotheBWratioforthis  
fourth order bandpass filter is 20/1. By varying the clock  
frequency to sweep the filter, the center frequency of the  
overallfilterwillincreaseproportionallyandsowilltheBW  
to maintain the 20:1 ratio constant. All the modes of  
operation yield constant Q’s; with any filter realization the  
BW’s will vary when the filter is swept. This is shown in  
Figure 19, where the BP filter is swept from 1kHz to 20kHz  
center frequency.  
Mode 1 (Figure 4), provides a clock tunable notch; the  
depth is shown in Graph 14. Mode 1 is a practical  
configuration for second order clock tunable bandpass/  
notch filters. In mode 1, a bandpass output with a very  
high Q, together with unity gain, can be obtained without  
creating problems with the dynamics of the  
remaining notch and lowpass outputs.  
Modes 1b and 1c (Figures 6 and 7), are similar. They both  
produce a notch with a frequency which is always equal to  
the filter building block center frequency. The notch and  
the center frequency, however, can be adjusted with an  
external resistor ratio.  
1060fb  
15  
LTC1060  
U
W W U  
W
U
COMM E TS ON THE M ODES OF OPERATIO  
Modes2, 2a, and2bhaveanotchoutputwhichfrequency,  
fn, can be tuned independently from the center frequency,  
f0. For all cases, however, fn<f0. These modes are useful  
when cascading second order functions to create an  
overallelliptichighpass, bandpassornotchresponse. The  
input amplifier and its feedback resistors (R2/R4) are now  
part of the resonant loop. Because of this, mode 2 and its  
derivatives are slower than mode 1’s.  
f
= 40kHz  
CLK  
0dB  
LTC1060  
V
–5dB  
OUT  
R61  
R51  
R31  
R21  
R52  
R32  
R22  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
50Hz  
LP  
BP  
N
LP  
B
B
B
B
A
–10dB  
BP  
A
R62  
R12  
3
–15dB  
–20dB  
–25dB  
N
A
R11  
4
V
IN  
INV  
INV  
A
5
S1B  
S1A  
6
+
AGND  
S
V
= 5V  
A/B  
7
+
0.9kHz  
1kHz  
1kHz  
1.1kHz  
V
A
V
A
V
= –5V  
8
+
V
D
V
D
f
= 800kHz  
CLK  
0dB  
9
5V  
50/100  
LSh  
CLK  
–5dB  
10  
CLK  
B
A
–10dB  
2
T L OR CMOS CLK IN  
–15dB  
–20dB  
–25dB  
PRECISE RESISTOR VALUES  
R11 = 149.21k  
R21 = 4.99k  
R31 = 149.12k  
R51 = 2.55k  
R61 = 2.49k  
R12 = 45.14k  
R22 = 5.00k  
R32 = 142.64k  
R5 = 2.49k  
R62 = 4.29k  
LTC1060 • CM01  
18kHz  
19kHz  
20kHz  
21kHz  
22kHz  
TLC1060 • CMO01b  
Figure 19. Cascading the Two Sections of the LTC1060 Connected in Mode 1c to Obtain a Clock Tunable 4th Order  
1dB Ripple Bandpass Chebyshev Filter with (Center Frequency)/(Ripple Bw) = 20/1.  
In mode 3 (Figure 11), a single resistor ratio (R2/R4) can  
tune the center frequency below or above the fCLK/100  
(or fCLK/50) ratio. Mode 3 is a state variable configuration  
since it provides a highpass, bandpass, lowpass output  
through progressive integration; notches are obtained by  
summing the highpass and lowpass outputs (mode 3a,  
Figure 12). The notch frequency can be tuned below or  
above the center frequency through the resistor ratio  
(Rh/Ri). Because of this, modes 3 and 3a are the most  
versatile and useful modes for cascading second order  
sections to obtain high order elliptic filters. Figure 20  
showsthetwosectionsofanLTC1060connectedinmode  
3a to obtain a clock tunable 4th order sharp elliptic  
bandpass filter. The first notch is created by summing  
directly the HP and LP outputs of the first section into the  
inverting input of the second section op amp. The indi-  
vidual Q’s are 29.6 and the filter maintains its shape and  
performance up to 20kHz center frequency (Figure 21).  
For this circuit an external op amp is required to obtain the  
2nd notch. The dynamics of Figure 20 are excellent be-  
cause the amplitude response at each output pin does not  
exceed0dB. Thegaininthepassbanddependsontheratio  
of (Rg/Rh2) • (R22/Rh1)• (R21/R11). Any gain value can be  
obtained by acting on the (Rg/Rh2) ratio of the external op  
amp, meanwhile the remaining ratios are adjusted for  
optimum dynamics of the LTC1060 output nodes. The  
external op amp of Figure 20 is not always required. In  
Figure 22, one section of the LTC1060 in mode 3a is  
cascaded with the other section in mode 2b to obtain a 4th  
order, 1dB ripple, elliptic bandreject filter. This configura-  
tion is interesting because a 4th order function with two  
different notches is realized without requiring an external  
op amp. The clock-to-center frequency ratio is adjusted to  
200:1; this is done in order to better approximate a linear  
R,C notch filter. The amplitude response of the filter is  
shown in Figure 23 with up to 1MHz clock frequency. The  
0dB bandwidth to the stop bandwidth ratio is 9/1. When  
the filter is centered at 1kHz, it should theoretically have a  
44dB rejection with a 50Hz stop bandwidth. For a more  
narrow filter than the above, the unused BP output of the  
1060fb  
16  
LTC1060  
U
W W U  
W
U
COMM E TS ON THE M ODES OF OPERATIO  
mode 2b section (Figure 22), has a gain exceeding unity  
which limits the dynamic range of the overall filter. For  
very selective bandpass/bandreject filters, the mode 3a  
approach, as in Figure 20, yields better dynamic range  
since the external op amp helps to optimize the dynamics  
of the output nodes of the LTC1060.  
R
H1  
L1  
R
G
R
R
L2  
LTC1060  
R42  
R32  
R22  
R41  
R31  
R21  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
EXTERNAL  
OP AMP  
+
V
OUT  
LP  
BP  
HP  
LP  
B
B
B
B
A
BP  
A
3
R
H2  
HP  
A
R11  
4
V
IN  
INV  
INV  
A
5
S1B  
S1A  
6
AGND  
S
–7.5V  
A/B  
7
+
+
V
V
A
= 7.5V  
V
A
–7.5V  
8
+
V
D
V
D
9
7.5V  
50/100  
LSh  
CLK  
10  
CLK  
B
A
2
T L OR CMOS  
CLOCK IN  
PRECISE RESISTOR VALUES  
R11 = 155.93k  
R21 = 5k  
R31 = 152k  
R22 = 5.26k  
R41 = 5.27k  
R32 = 151.8k  
R = 37.3k  
G
R
= 13.2k  
R
L1  
R
L2  
= 10.74k  
= 6.11k  
H1  
R42 = 5k  
R
H2  
= 5k  
NOTE: FOR CLOCK FREQUENCIES ABOVE 700kHz, A 12pF CAPACITOR ACROSS R41 AND A 20pF  
CAPACITOR ACROSS R42 WERE USED TO PREVENT THE PASSBAND RIPPLE FROM ANY  
ADDITIONAL PEAKING  
LTC1060 • CM02  
Figure 20. Combining Mode 3 with Mode 3a to Make The 4th Order BP Filter of Figure 21 with Improved  
Dynamics. The Gain at Each Output Node is 0dB for all Input Frequencies.  
f
= 100kHz  
f
= 1MHz  
CLK  
CLK  
0dB  
0dB  
–10dB  
–10dB  
–20dB  
–30dB  
–20dB  
–30dB  
–40dB  
–40dB  
–50dB  
–50dB  
1.5kHz  
1.75kHz  
2kHz  
2.25kHz  
2.5kHz  
15kHz  
17.5kHz  
20kHz  
22.5kHz  
25kHz  
TLC1060 • CMO03  
Figure 21. The BP Filter of Figure 20, When Swept From a 2kHz to 20kHz Center Frequency.  
1060fb  
17  
LTC1060  
U
W W U  
W
U
COMM E TS ON THE M ODES OF OPERATIO  
f
R
200  
1
CLK  
H1  
=
; f  
CLK  
1MHz  
f
0
R
L1  
LTC1060  
0
–10  
–20  
–30  
40  
50  
60  
R42  
R52  
R32  
R22  
R41  
R31  
R21  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LP  
BP  
N
LP  
B
B
B
B
A
BP  
A
R62  
3
HP  
A
R11  
4
V
IN  
INV  
INV  
A
V
OUT  
5
S1B  
S1A  
6
AGND  
5V  
= 5V  
S
V
V
A/B  
7
+
+
V
A
V
V
= 5V  
A
8
+
V
D
D
9
50/100  
LSh  
CLK  
10  
CLK  
B
A
2
T L OR CMOS  
CLOCK IN  
RESISTOR VALUES  
R21 = 5k  
= 5k  
R62 = 1.59k  
R11 = 60k  
R31 = 54.75k  
R = 19.3k  
R41 = 28.84k  
R52 = 5k  
R32 = 455.75k  
R
H1  
L1  
R22 = 60k  
0.7  
0.9  
f
= 1.0  
1.1  
1.2  
1.3  
0.8  
0
R42 = 503.85k  
LTC1060 • CM04  
INPUT FREQUENCY NORMALIZED TO FILTER CENTER FREQUENCY  
TLC1060 • CMO05  
Figure 22. Combining Mode 3 with Mode 2b to Create a 4th  
Order BR Elliptic Filter with 1dB Ripple and a Ratio of 0dB to  
Stop Bandwidth Equal to 9/1.  
Figure 23. Amplitude Response of the Notch Filter of Figure 22  
LTC1060 OFFSETS  
Switched capacitor integrators generally exhibit higher  
input offsets than discrete R, C integrators. These offsets  
are mainly due to the charge injection of the CMOS  
switches into the integrating capacitors and they are  
temperature independent.  
Figure 24 shows half of an LTC1060 filter building block  
with its equivalent input offsets VOS1, VOS2, VOS3. All three  
are 100% tested for both sides of the LTC1060. VOS2 is  
generally the larger offset. When the SA/B, Pin 6, of the  
LTC1060 is shorted to the negative supply (i.e., mode 3),  
the value of the VOS2 decreases. Additionally, with SA/B  
low, a 20% to 30% noise reduction is observed. Mode 1  
can still be achieved, if desired, by shorting the S1 pin to  
the lowpass output (Figure 25).  
The internal op amp offsets also add to the overall offset  
budget and they are typically a couple of millivolts. Be-  
cause of this, the DC output offsets of switched capacitor  
filters are usually higher than the offsets of discrete active  
filters.  
R3  
R2  
(18) (16)  
(19)  
2
(20)  
1
3
5
V
OS1  
N
(18)  
S1A  
(16)  
BP  
(19)  
LP  
(20)  
(17)  
4
2
1
3
5
+
V
+
OS2  
R1  
+
+
V
V
IN  
OS3  
+
4
Σ
+
+
+
(17)  
+
Σ
S
A/B  
TLC1060 • LO02  
TLC1060 • LO01  
1/2 LTC1060  
6
15  
15  
V
Figure 24. Equivalent Input Offsets of 1/2 LTC1060 Filter  
Building Block  
Figure 25. Mode 1(LN): Same Operation as Mode 1 but Lower  
VOS2 Offset and Lower Noise  
1060fb  
18  
LTC1060  
LTC1060 OFFSETS  
Output Offsets  
dynamic range. As a rule of thumb, the output DC offsets  
increase when:  
The DC offset at the filter bandpass output is always equal  
to VOS3. The DC offsets at the remaining two outputs  
(Notch and LP) depend on the mode of operation and  
external resistor ratios. Table 5 illustrates this.  
1. The Q’s decrease.  
2. The ratio (fCLK/f0) increases beyond 100:1. This is  
done by decreasing either the (R2/R4) or the  
R6/(R5 + R6) resistor ratios.  
It is important to know the value of the DC output offsets,  
especially when the filter handles input signals with large  
Table 5  
V
V
V
OSLP  
PIN 1 (20)  
OSN  
OSBP  
MODE  
1,4  
1a  
PIN 3 (18)  
PIN 2 (19)  
V
V
V
V
[(1/Q) + 1 + ||H ||] – V /Q  
V
V
V
V
V
V
– V  
– V  
OS1  
OS1  
OS1  
OS1  
OLP  
OS3  
OS3  
OS3  
OS3  
OS3  
OSN  
OSN  
OS2  
OS2  
[1 + (1/Q)] – V /Q  
OS3  
1b  
[(1/Q) + 1 + R2/R1] – V /Q  
~ (V  
– V ) (1 + R5/R6)  
OS3  
OSN  
OS2  
1c  
[(1/Q) + 1 + R2/R1] – V /Q  
(R5 + R6)  
(R5 + 2R6)  
OS3  
~(VOSN – VOS2  
)
)
2, 5  
2a  
[V (1 + R2/R1 + R2/R3 + R2/R4) – V (R2/R3)]  
V
V
– V  
OSN OS2  
OS1  
OS3  
OS3  
• [R4/(R2 + R4)] + V [R2/(R2 + R4)]  
OS2  
[VOS1(1 + R2/R1 + R2/R3 + R2/R4) – VOS3(R2/R3)]  
R4(1 + k)  
R2  
R6  
R5 + R6  
(R5 + R6)  
(R5 + 2R6)  
+ VOS2  
;k =  
~(VOSN – VOS2  
R2 + R4(1 + k)  
R2 + R4(1 + k)  
V
OS3  
[VOS1(1 + R2/R1 + R2/R3 + R2/R4) – VOS3(R2/R3)]  
2b  
R4k  
R2 + R4k  
R2  
R2 + R4k  
R6  
R5 + R6  
+ VOS2  
;k =  
V
V
~ (V  
– V ) (1 + R5/R6)  
OS3  
OS3  
OSN  
OS2  
3, 4a  
V
R4 R4 R4  
R4  
R2  
OS2  
VOS1 1 +  
+
+
– VOS2  
R1 R2 R3  
R4  
R3  
– VOS3  
U
PACKAGE DESCRIPTIO  
N Package  
20-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.300 – .325  
(7.620 – 8.255)  
1.040*  
(26.416)  
MAX  
.045 – .065  
(1.143 – 1.651)  
.125 – .145  
(3.175 – 3.683)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.255 ± .015*  
(6.477 ± 0.381)  
.008 – .015  
(0.203 – 0.381)  
+.035  
.005  
(0.127)  
MIN  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
.325  
.100  
(2.54)  
BSC  
–.015  
3
4
5
6
7
8
9
1
2
+0.889  
8.255  
NOTE:  
1. DIMENSIONS ARE  
(
)
–0.381  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
N20 1002  
1060fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1060  
U
PACKAGE DESCRIPTIO  
J Package  
20-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
1.060  
(26.924)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
.023 – .045  
.025  
(0.635)  
RAD TYP  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.220 – .310  
(5.588 – 7.874)  
.045 – .065  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
.005  
3
4
5
6
7
8
9
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
(0.127)  
MIN  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.125  
(3.175)  
MIN  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.356 – 0.660)  
J20 0801  
OBSOLETE PACKAGE  
SW Package  
20-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
TYP  
.496 – .512  
(12.598 – 13.005)  
NOTE 4  
N
19 18  
16  
14 13 12 11  
20  
N
17  
15  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
N/2  
10  
RECOMMENDED SOLDER PAD LAYOUT  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
9
1
4
6
.037 – .045  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
(0.254 – 0.737)  
(0.940 – 1.143)  
× 45°  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.406 – 1.270)  
INCHES  
(MILLIMETERS)  
S20 (WIDE) 0502  
(0.356 – 0.482)  
TYP  
NOTE:  
1. DIMENSIONS IN  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1060fb  
LW/TP 1202 1K REV B • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1988  

相关型号:

LTC1060AM

Universal Dual Filter Building Block
Linear

LTC1060AMJ

Universal Dual Filter Building Block
Linear

LTC1060AMJ/883

IC DUAL SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, CDIP20, CERDIP-20, Active Filter
Linear

LTC1060C

Universal Dual Filter Building Block
Linear

LTC1060CDW

Analog IC
ETC

LTC1060CJ

Universal Dual Filter Building Block
Linear

LTC1060CN

Universal Dual Filter Building Block
Linear

LTC1060CN#PBF

LTC1060 - Universal Dual Filter Building Block; Package: PDIP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1060CS

Universal Dual Filter Building Block
Linear

LTC1060CSW

Universal Dual Filter Building Block
Linear

LTC1060CSW#TR

暂无描述
Linear

LTC1060M

Universal Dual Filter Building Block
Linear