LTC1064-1_09 [Linear]

Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter; 低噪声, 8阶,时钟扫频椭圆低通滤波器
LTC1064-1_09
型号: LTC1064-1_09
厂家: Linear    Linear
描述:

Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter
低噪声, 8阶,时钟扫频椭圆低通滤波器

时钟
文件: 总8页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1064-1  
Low Noise, 8th Order, Clock  
Sweepable Elliptic Lowpass Filter  
U
FEATURES  
DESCRIPTIO  
The LTC®1064-1 is an 8th order, clock sweepable elliptic  
(Cauer) lowpass switched capacitor filter. The passband  
ripple is typically ±0.15dB, and the stopband attenuation  
at 1.5 times the cutoff frequency is 68dB or more.  
8th Order Filter in a 14-Pin Package  
No External Components  
100:1 Clock to Center Ratio  
150µVRMS Total Wideband Noise  
0.03% THD or Better  
50kHz Maximum Corner Frequency  
Operates from ±2.37V to ±8V Power Supplies  
Passband Ripple Guaranteed Over Full Military  
Temperature Range  
An external TTL or CMOS clock programs the value of the  
filter’scutofffrequency.Theclocktocutofffrequencyratio  
is 100:1.  
Noexternalcomponentsareneededforcutofffrequencies  
up to 20kHz. For cutoff frequencies over 20kHz two low  
valuecapacitorsarerequiredtomaintainpassbandflatness.  
The LTC1064-1 features low wideband noise and low  
harmonic distortion even for input voltages up to 3VRMS  
InfacttheLTC1064-1overallperformancecompleteswith  
equivalent multiple op amp RC active realizations.  
U
APPLICATIO S  
.
Antialiasing Filters  
Telecom PCM Filters  
The LTC1064-1 is available in a 14-pin DIP or 16-pin  
surface mounted SW package.  
The LTC1064-1 is pin compatible with the LTC1064-2.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
8th Order Clock Sweepable Lowpass  
Elliptic Antialiasing Filter  
Frequency Response  
15  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
INV C  
0
–15  
–30  
–45  
–60  
–75  
–90  
–105  
V
COMP2*  
V
IN  
IN  
–8V  
V
AGND  
LTC1064-1  
0.1µF  
+
CLOCK  
f
V
8V  
CLK  
(TTL, 5MHz)  
0.1µF  
NC  
AGND  
V
COMP1*  
INV A  
V
OUT  
OUT  
8
NC  
1064 TA01  
20  
FREQUENCY (kHz)  
0
5
10 15  
25 30 35 40  
NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A 0.1µF  
CAPACITOR CLOSE TO THE PACKAGE.  
1064 TA02  
8th ORDER CLOCK SWEEPABLE LOWPASS ELLIPTIC ANTIALIASING  
FILTER MAINTAINS, FOR 0.1Hz f 10kHz, A ±0.15dB PASSBAND  
FOR SERVO OFFSET NULLING APPLICATIONS, PIN 1 IS THE 2ND  
STAGE SUMMING JUNCTION.  
*FOR CUTOFF FREQUENCY ABOVE 20kHz, USE COMPENSATION  
CAPACITORS (5pF TO 56pF) BETWEEN PIN 13 AND PIN 1  
AND PIN 6 AND PIN 7.  
CUTOFF  
RIPPLE AND 72dB STOPBAND ATTENUATION AT 1.5 × f  
.
CUTOFF  
TOTAL WIDEBAND NOISE = 150µV  
, THD = 0.03% FOR V = 1V  
RMS IN RMS  
10641fa  
1
LTC1064-1  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V)............................ 16.5V  
Power Dissipation.............................................. 400mW  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Operating Temperature Range  
LTC1064-1M (OBSOLETE) ............... 55°C to 125°C  
LTC1064-1C/AC.................................. 40°C to 85°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
1
2
3
4
5
6
7
R(h, l)  
14  
13  
12  
11  
10  
9
TOP VIEW  
INV C  
COMP2  
V
IN  
1
2
3
4
5
6
7
8
INV C  
16 R(h, l)  
V
AGND  
LTC1064-1CN  
LTC1064-1ACN  
LTC1064-1CSW  
15 COMP2  
V
IN  
+
f
V
CLK  
14  
13  
12  
11  
10  
9
V
AGND  
NC  
AGND  
COMP1  
INV A  
+
V
NC  
V
OUT  
AGND  
NC  
f
CLK  
NC  
8
NC  
NC  
COMP1  
INV A  
N PACKAGE  
14-LEAD PDIP  
V
OUT  
TJMAX = 110°C, θJA = 70°C/W  
J PACKAGE  
SW PACKAGE  
14-LEAD CERDIP  
16-LEAD PLASTIC (WIDE) SO  
LTC1064-1MJ  
LTC1064-1CJ  
TJMAX = 150°C, θJA = 90°C/W  
OBSOLETE PACKAGE  
Consider the N14 Package for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±7.5V, fCLK = 1MHz, R1 = 10k, C1 = 10pF, TTL or CMOS clock input  
level unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±0.1  
MAX  
UNITS  
dB  
Passband Gain, LTC1064-1, 1A  
Gain TempCo  
Referenced to 0dB, 1Hz to 0.1f  
±0.35  
C
0.0002  
10 ± 1%  
dB/°C  
kHz  
Passband Edge Frequency, f  
C
Gain at f  
Referenced to Passband Gain  
C
LTC1064-1  
LTC1064-1A  
–1.25  
– 0.75  
0.85  
0.65  
dB  
dB  
–3dB Frequency  
10.7  
kHz  
Passband Ripple (Note 1)  
LTC1064-1  
0.1f to 0.85f Referenced to Passband Gain,  
C C  
Measured at 6.25kHz and 8.5kHz  
±0.15  
±0.1  
±0.32  
±0.19  
dB  
dB  
LTC1064-1A  
Ripple TempCo  
0.0004  
dB/°C  
Stopband Attenuation  
LTC1064-1  
At 1.5f Referenced to 0dB  
C
66  
68  
72  
72  
dB  
dB  
LTC1064-1A  
Stopband Attenuation  
LTC1064-1  
At 2f Referenced to 0dB  
C
67  
68  
72  
72  
dB  
dB  
LTC1064-1A  
10641fa  
2
LTC1064-1  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
level unless otherwise specified.  
temperature range, otherwise specifications are at TA = 25°C. VS = ±7.5V, fCLK = 1MHz, R1 = 10k, C1 = 10pF, TTL or CMOS clock input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Frequency Range  
0
f
/2  
CLK  
kHz  
Output Voltage Swing and  
Operating Input Voltage Range  
V = ±2.37V  
±1  
±3  
±5  
V
V
V
S
V = ±5V  
S
V = ±7.5V  
S
Total Harmonic Distortion  
Wideband Noise  
V = ±5V, Input = 1V  
V = ±7.5V, Input = 3V  
S
at 1kHz  
RMS  
0.015  
0.03  
%
%
S
at 1kHz  
RMS  
V = ±5V, Input = GND 1Hz to 999kHz  
150  
165  
µV  
µV  
S
RMS  
RMS  
V = ±7.5V, Input = GND 1Hz to 999kHz  
S
Output DC Offset  
LTC1064-1  
V = ±7.5V, Pin 2 Grounded  
S
50  
50  
175  
125  
mV  
mV  
LTC1064-1A  
Output DC Offset TempCo  
V = ±5V  
S
–100  
µV/°C  
Input Impedance  
10  
20  
2
k  
Output Impedance  
f
= 10kHz  
OUT  
Output Short-Circuit Current  
Clock Feedthrough  
Source/Sink  
3/1  
200  
mA  
µV  
RMS  
Maximum Clock Frequency  
Power Supply Current  
50% Duty Cycle, V = ±7.5V  
5
MHz  
S
V = ±2.37V  
S
10  
12  
22  
mA  
V = ±5V  
S
23  
26  
mA  
mA  
V = ±7.5V, f  
S
= 1MHz  
CLK  
16  
28  
32  
mA  
mA  
Power Supply Voltage Range  
±2.37  
±8  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 2: For tighter specifications please contact LTC Marketing.  
of a device may be impaired.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain vs Frequency  
Phase vs Frequency  
Group Delay  
15  
0
0
–45  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
T
= ±5V  
V
T
= ±5V  
S
A
S
A
= 25°C  
= 25°C  
f
f
= 1MHz  
f
f
= 1MHz  
= 10kHz  
CLK  
= 10kHz  
C
CLK  
C
–90  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
V
= ±5V  
S
A
T
= 25°C  
f
f
f
= 1MHz  
CLK  
C
–3dB  
= 10kHz ± 0.1dB  
= 10.7kHz  
0
1
10  
FREQUENCY (kHz)  
100  
0
1
2
3
4
5
6
7
8
9 10 11  
4
0
1
2
3
5
6
7
8
9
10 11 12  
1064 G03  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064 G01  
1064 G02  
10641fa  
3
LTC1064-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain vs Frequency  
Gain vs Frequency  
Gain vs Frequency  
15  
0
5
0
15  
0
25°C GAIN PEAK =  
f
= 3MHz, f = 30kHz  
0.4dB AT 30kHz  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
–5  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
CLK  
C
f
= 2MHz, f = 20kHz  
C
CLK  
COMP1 = 10pF  
COMP1 NOT USED,  
COMP2 = 20pF  
COMP2 = 15pF  
–10  
–15  
–20  
–25  
–30  
–35  
f
= 4MHz, f = 40kHz  
C
CLK  
f
= 3MHz, f = 30kHz  
C
CLK  
COMP1 = 20pF  
COMP2 = 30pF  
COMP1 = 24pF  
COMP2 = 36pF  
f
= 5MHz, f = 50kHz  
C
f
= 4MHz, f = 40kHz  
CLK  
CLK  
C
V
f
C
= ±7.5V  
CLK  
= 50kHz  
COMP1 = 30pF  
COMP2 = 47pF  
S
COMP1 = 36pF  
= 5MHz  
COMP2 = 47pF  
125°C GAIN PEAK =  
f
1dB AT 35kHz  
V
T
= ±5V  
= 25°C  
V
T
= ±7.5V  
= 25°C  
S
A
S
A
COMP1 = 33pF  
COMP2 = 56pF  
1
10  
100  
1
10  
100  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064 G04  
1064 G06  
1064 G05  
Typical Wideband Noise  
Total Harmonic Distortion  
(151µVRMS) VS = ±5V, TA = 25°C  
fCLK = 1MHz, fC = 10kHz Input  
Grounded  
(0.025%) VS = ±7.5V, TA = 25°C  
fCLK = 1MHz, fC = 10kHz  
Input = 1kHz at 3VRMS  
Power Supply Current vs Power  
Supply Voltage  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
f
= 1MHz  
CLK  
T
= –55°C  
= 25°C  
= 125°C  
A
T
A
A
T
4
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
TOTAL POWER SUPPLY VOLTAGE (V)  
1064 G09  
U
U
U
PI FU CTIO S  
(Pin Numbers Refer to the 14-Pin Package)  
COMP1, INV A, COMP2, INV C (Pins 1,6,7, and 13): For  
filter cutoff frequencies higher than 20kHz, in order to  
minimize the passband ripple, compensation capacitors  
should be added between Pin 6 and Pin 7 (COMP1) and  
Pin1andPin13(COMP2).ForCOMP1(COMP2),add1pF  
(1.5pF) mica capacitor for each kHz increase in cutoff  
frequency above 20kHz. For more detail refer to Gain vs  
Frequency graphs.  
is protected against static discharge. The device’s output,  
Pin9,istheoutputofanopampwhichcantypicallysource/  
sink 3mA/1mA. Although the internal op amps are unity  
gain stable, driving long coax cables is not recommended.  
When testing the device for noise and distortion, the  
output, Pin 9, should be buffered (Figure 4). The op amp  
power supply wire (or trace) should be connected  
directly to the power source.  
VIN, VOUT (Pins 2, 9): The input Pin 2 is connected to an  
18k resistor tied to the inverting input of an op amp. Pin 2  
AGND (Pins 3, 5): For dual supply operation these pins  
should be connected to a ground plane. For single supply  
10641fa  
4
LTC1064-1  
U
U
U
PI FU CTIO S (Pin Numbers Refer to the 14-Pin Package)  
operation both pins should be tied to one half supply  
(Figure 2). Also Pin 8 and Pin 10, although they are not  
internally connected should be tied to analog ground or  
system ground. This improves the clock feedthrough  
performance.  
breadboard,useaoneinch,orless,shieldedcoaxialcable;  
the shield should be grounded. In a PC board, use a one  
inch trace or less; surround the trace by a ground plane.  
NC (Pins 8, 10): The “no connection” pins preferably  
should be grounded.  
V+, V(Pins 4, 12): The V+ and Vpins should be  
bypassed with a 0.1µF capacitor to an adequate analog  
ground. Low noise, nonswitching power supplies are  
recommended. To avoid latchup when the power supplies  
exhibit high turn-on transients, a 1N5817 Schottky diode  
should be added from the V+ and Vpins to ground  
(Figure 1).  
f
CLK (Pin 11): For ±5V supplies the logic threshold level is  
1.4V. For ±8V and 0V to 5V supplies the logic threshold  
levels are 2.2V and 3V respectively. The logic threshold  
levels vary ±100mV over the full military temperature  
range. The recommended duty cycle of the input clock is  
50% although for clock frequencies below 500kHz the  
clock “on” time can be as low as 200ns. The maximum  
clock frequency for ±5V supplies is 4MHz. For ±7V sup-  
plies and above, the maximum clock frequency is 5MHz.  
Donotallowtheclocklevelstoexceedthepowersupplies.  
For clock level shifting (see Figure 3).  
INV A, R(h, I) (Pins 7, 14): A very short connection  
between Pin 14 and Pin 7 is recommended. This connec-  
tion should be preferably done under the IC package. In a  
U
TYPICAL APPLICATIO S  
1
1
14  
14  
R(h, I)  
R(h, I)  
INV C  
INV C  
2
3
4
5
6
7
2
3
4
5
6
7
13  
12  
11  
10  
9
13  
12  
11  
10  
9
V
COMP2*  
V
IN  
V
COMP2*  
V
IN  
IN  
IN  
V
V
AGND  
AGND  
V
LTC1064-1  
LTC1064-1  
0.1µF  
1N5817  
+
+
+
+
V = 15V  
f
0V TO 10V  
f
V
V
V
CLK  
CLK  
0.1µF  
0.1µF  
1N5817  
0.1µF  
NC  
NC  
AGND  
AGND  
5k  
V
V
COMP1*  
INV A  
V
COMP1*  
INV A  
V
OUT  
OUT  
OUT  
OUT  
+
V /2  
8
8
5k  
NC  
NC  
1064 F01  
1064 F02  
Figure 1. Using Schottky Diodes to Protect  
the IC from Power Supply Spikes  
Figure 2. Single Supply Operation. If Fast Power Up  
or Down Transients are Expected, Use a 1N5817  
Schottky Diode Between Pin 4 and Pin 5.  
POWER SOURCE  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
+
INV C  
V
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
INV C  
V
IN  
V
IN  
COMP2*  
+
V
COMP2*  
V
V
IN  
+
IN  
V
AGND  
LTC1064-1  
0.1µF  
V
AGND  
2.2k  
+
f
V
CLK  
LTC1064-1  
2
0.1µF  
10k  
T L  
+
0.1µF  
f
V
V
CLK  
LEVEL  
NC  
AGND  
1µF  
5k  
10k  
NC  
AGND  
5k  
V
OUT  
COMP1*  
INV A  
+
V
COMP1*  
INV A  
V
OUT  
8
OUT  
V
OUT  
NC  
8
5k  
0.1µF  
NC  
1064 F04  
RECOMMENDED OP AMPS:  
LT1022, LT318, LT1056  
0.1µF  
1064 F03  
Figure 3. Level Shifting the Input T2L Clock  
for Single Supply Operation, V+ >6V.  
Figure 4. Buffering the Filter Output. The Buffer Op Amp  
Should Not Share the LTC1064-1 Power Lines.  
10641fa  
5
LTC1064-1  
U
TYPICAL APPLICATIO S  
Transitional Elliptic-Bessel Dual 5th Order Lowpass Filter  
C
Amplitude Response  
15  
0
f
f
= 5kHz  
–3dB  
CLK  
= 1MHz  
47.5k  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
INV C  
V
V
OUT1  
OUT2  
LT1056  
V
OUT1  
COMP2*  
V
V
IN  
IN1  
V
+
V
AGND  
LTC1064-1  
f
= 200  
–3dB  
0.1µF  
CLK  
× f  
+
+
f
V
V
CLK  
0.1µF  
NC  
AGND  
V
COMP1*  
INV A  
V
OUT  
OUT2  
1
10  
(kHz)  
100  
C
8
5
NC  
f
C =  
(µF)  
IN  
f
–3dB  
1064 TA09  
1064 TA06  
47.5k  
IN2  
OUTPUT1 WIDEBAND NOISE: 50µV  
RMS  
OUTPUT2 WIDEBAND NOISE: 110µV  
RMS  
V
Transient Response to a 2V Step  
Input VOUT2  
Transient Response to a 2V Step  
Input VOUT1  
1V/DIV  
1V/DIV  
0.1ms/DIV  
0.1ms/DIV  
Adding an Output Buffer-Filter to Eliminate Any Clock Feedthrough  
Over a 10:1 Clock Range, for fCLK = 2kHz to 20kHz  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
INV C  
V
COMP2*  
V
IN  
IN  
V
V
AGND  
10k  
LTC1064-1  
0.1µF  
V
OUT  
+
+
f
V
V
CLK  
200pF  
0.1µF  
NC  
AGND  
4.99k  
4.99k  
V
OUT  
COMP1*  
INV A  
+
50  
8
LT1056  
NC  
430pF  
0.027µF  
1064 TA10  
10641fa  
6
LTC1064-1  
U
PACKAGE DESCRIPTIO  
J Package  
14-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.785  
(19.939)  
MAX  
.005  
(0.127)  
.015 – .060  
(0.381 – 1.524)  
MIN  
14  
13  
12  
11  
10  
9
8
.220 – .310  
(5.588 – 7.874)  
.025  
(0.635)  
RAD TYP  
.008 – .018  
0° – 15°  
(0.203 – 0.457)  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
2
3
4
5
6
1
7
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 0801  
OBSOLETE PACKAGE  
N Package  
14-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
14  
13  
12  
11  
10  
9
8
7
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.255 ± .015*  
(6.477 ± 0.381)  
+.035  
–.015  
.325  
.005  
(0.125)  
MIN  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
1
2
3
5
6
4
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
N14 1002  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
NOTE:  
1. DIMENSIONS IN  
N/2  
8
1
2
3
N/2  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP  
AND CAVITIES ON THE BOTTOM  
OF PACKAGES ARE THE  
MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED  
WITH OR WITHOUT ANY OF THE  
OPTIONS  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
(0.254 – 0.737)  
× 45°  
.005  
(0.127)  
4. THESE DIMENSIONS DO NOT  
INCLUDE MOLD FLASH OR  
PROTRUSIONS. MOLD FLASH OR  
PROTRUSIONS SHALL NOT  
EXCEED .006" (0.15mm)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
(0.102 – 0.305)  
.009 – .013  
(0.229 – 0.330)  
NOTE 3  
.014 – .019  
(0.356 – 0.482)  
TYP  
.016 – .050  
S16 (WIDE) 0502  
(0.406 – 1.270)  
10641fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1064-1  
U
TYPICAL APPLICATIO  
Transitional Elliptic-Bessel 10th Order Lowpass Filter  
C
47.5k  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R(h, I)  
INV C  
+
LT1056  
V
OUT  
COMP2*  
V
IN  
V
V
AGND  
LTC1064-1  
0.1µF  
f
= 250  
–3dB  
+
CLK  
+
f
V
V
CLK  
× f  
0.1µF  
NC  
AGND  
V
OUT  
COMP1*  
INV A  
C
8
NC  
3
C =  
(µF)  
47.5k  
V
f
–3dB  
1064 TA03  
OUTPUT WIDEBAND NOISE:110µV  
IN  
RMS  
Amplitude Response  
15  
0
f
f
= 3kHz  
Transient Response to a 2V Step Input  
–3dB  
CLK  
= 750kHz  
–15  
–30  
–45  
–60  
–75  
–90  
–105  
1V/DIV  
0.1ms/DIV  
1
10  
100  
f
(kHz)  
IN  
1064 TA05  
RELATED PARTS  
PART NUMBER  
LTC1069-1  
LTC1069-6  
LTC1569-6  
LTC1569-7  
DESCRIPTION  
COMMENTS  
8th Order Elliptic Lowpass  
S0-8 Package, Low Power  
Single Supply, 8th Order Elliptic Lowpass  
DC Accurate, 10th Order, Lowpass  
DC Accurate, 10th Order, Lowpass  
S0-8 Package, Very Low Power  
Internal Precision Clock, Low Power  
Internal Precision Clock, S0-8 Package  
10641fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1989  

相关型号:

LTC1064-2

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2C

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2CJ

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2CN

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2CN#PBF

LTC1064-2 - Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0°C to 70°C
Linear

LTC1064-2CS

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2CSW

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2CSW#PBF

暂无描述
Linear

LTC1064-2CSW#TR

LTC1064-2 - Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1064-2CSW#TRPBF

LTC1064-2 - Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1064-2M

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear

LTC1064-2MJ

Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter
Linear