LTC1064-7CSW [Linear]

Linear Phase, 8th Order Lowpass Filter; 线性相位, 8阶低通滤波器
LTC1064-7CSW
型号: LTC1064-7CSW
厂家: Linear    Linear
描述:

Linear Phase, 8th Order Lowpass Filter
线性相位, 8阶低通滤波器

有源滤波器 过滤器 光电二极管 LTE
文件: 总16页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1064-7  
Linear Phase, 8th Order  
Lowpass Filter  
U
FEATURES  
DESCRIPTIO  
The LTC®1064-7 is a clock-tunable monolithic 8th order  
lowpass filter with linear passband phase and flat group  
delay. The amplitude response approximates a maximally  
flat passband while it exhibits steeper roll-off than an  
equivalent8thorderBesselfilter. Forinstance, attwicethe  
cutoff frequency the filter attains 34dB attenuation (vs  
12dBforBessel),whileatthreetimesthecutofffrequency,  
the filter attains 68dB attenuation (vs 30dB for Bessel).  
The cutoff frequency of the LTC1064-7 is tuned via an  
external TTL or CMOS clock.  
Steeper Roll-Off Than 8th Order Bessel Filters  
fCUTOFF up to 100kHz  
Phase Equalized Filter in 14-Pin Package  
Phase and Group Delay Response Fully Tested  
Transient Response Exhibits 5% Overshoot and  
No Ringing  
Wide Dynamic Range  
72dB THD or Better Throughout a 50kHz Passband  
No External Components Needed  
Available in 14-Pin DIP and 16-Pin SO Wide  
Packages  
The LTC1064-7 features wide dynamic range. With single  
5V supply, the S/N + THD is 76dB. Optimum 92dB S/N is  
obtained with ±7.5V supplies.  
U
APPLICATIO S  
The clock-to-cutoff frequency ratio of the LTC1064-7 can  
be set to 50:1 (Pin 10 to V+) or 100:1 (Pin 10 to V).  
Data Communication Filters  
Time Delay Networks  
When the filter operates at clock-to-cutoff frequency ratio  
of 50:1, the input is double-sampled to lower the risk of  
aliasing.  
Phase-Matched Filters  
The LTC1064-7 is pin-compatible with the LTC1064-X  
series, LTC1164-7 and LTC1264-7.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Eye Diagram  
80kHz Linear Phase Lowpass Filter  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
–7.5V  
LTC1064-7  
CLK = 4MHz  
7.5V  
7.5V  
V
OUT  
8
1064-7 TA01  
NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A  
0.1µF CAPACITOR CLOSE TO THE PACKAGE AND ANY PRINTED  
CIRCUIT BOARD ASSEMBLY SHOULD MAINTAIN A DISTANCE  
OF AT LEAST 0.2 INCHES BETWEEN ANY OUTPUT OR INPUT  
1064-7 TA02  
1µs/DIV  
VS = ± 7.5V  
CLK = 4MHz  
RATIO = 50:1  
f
PIN AND THE f  
LINE.  
CLK  
10647fb  
1
LTC1064-7  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) .......................... 16.5V  
Power Dissipation............................................. 400mW  
Burn-In Voltage ................................................... 16.5V  
Voltage at Any Input ..... (V– 0.3V) VIN (V+ + 0.3V)  
Storage Temperature Range ................ 65°C to 150°C  
Operating Temperature Range  
LTC1064-7C ....................................... – 40°C to 85°C  
LTC1064-7M OBSOLETE ..............– 55°C to 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
1
2
3
4
5
6
7
R
(A)  
14  
13  
12  
11  
10  
9
NC  
IN  
NUMBER  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
(A)  
IN  
NC  
V
IN  
V
IN  
NC  
V
GND  
GND  
V
+
f
V
LTC1064-7CN  
LTC1064-7CSW  
CLK  
+
V
NC  
50/100  
GND  
LP (A)  
INV (A)  
GND  
NC  
f
CLK  
V
OUT  
50/100  
NC  
NC  
8
LP (A)  
INV (A)  
N PACKAGE  
14-LEAD PLASTIC DIP  
= 110°C, θ = 65°C/W (N)  
V
OUT  
T
JMAX  
JA  
SW PACKAGE  
16-LEAD PLASTIC SO (WIDE)  
J PACKAGE 14-LEAD CERAMIC DIP  
= 150°C, θ = 65°C/W (J)  
LTC1064-7CJ  
LTC1064-7MJ  
T
JMAX  
JA  
T
JMAX  
= 110°C, θ = 85°C/W  
JA  
OBSOLETE PACKAGE  
Consider the N Package as an Alternate Source  
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
TTL or CMOS level (maximum clock rise and fall time 1µs) and all gain measurements are referenced to passband gain, unless  
otherwise specified. The filter cutoff frequency is abbreviated as f or f .  
The  
denotes the specifications which apply over the full operating  
= 10kHz or 20kHz, f = 1MHz,  
temperature range, otherwise specifications are at T = 25°C.V = ± 7.5V, R = 10k, T = 25°C, f  
A
S
L
A
CUTOFF  
CLK  
CUTOFF  
C
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Passband Gain  
0.1Hz f 0.25 f  
CUTOFF  
= 5kHz, (f /f ) = 50:1  
f
0.60  
0.10  
0.65  
dB  
TEST  
CLK C  
Gain at 0.5 f  
f
f
= 10kHz, (f /f ) = 50:1  
0.90  
1.30  
– 0.35  
0.35  
0.15  
1.25  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK C  
= 5kHz, (f /f ) = 100:1  
CLK  
C
Gain at 0.75 f  
f
= 15kHz, (f /f ) = 50:1  
2.0  
–1.0  
– 0.35  
dB  
CUTOFF  
TEST  
CLK C  
Gain at f  
f
f
= 20kHz, (f /f ) = 50:1  
– 4.50  
– 5.75  
– 3.4  
– 4.5  
– 2.50  
– 3.75  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK C  
= 10kHz, (f /f ) = 100:1  
CLK  
C
Gain at 2 f  
f
f
= 40kHz, (f /f ) = 50:1  
36.5  
37.0  
34.0  
34.5  
31.75  
31.75  
dB  
dB  
CUTOFF  
TEST  
TEST  
CLK C  
= 20kHz, (f /f ) = 100:1  
CLK  
C
Gain with f  
Gain with f  
= 20kHz  
= 400kHz, V = ± 2.375V  
f
f
f
= 200Hz, (f /f ) = 100:1  
– 6.5  
0.9  
4.5  
– 4.3  
– 0.3  
3.3  
– 3.5  
0.25  
2.00  
dB  
dB  
dB  
CLK  
CLK  
TEST  
CLK C  
= 4kHz, (f /f ) = 50:1  
S
TEST  
TEST  
CLK C  
= 8kHz, (f /f ) = 50:1  
CLK  
C
Phase Factor (F )  
Phase = 180° F (f/f )  
(Note 2)  
0.1Hz f f  
CUTOFF  
(f /f ) = 50:1  
430 ± 2.0  
421 ± 2.5  
430  
Deg  
Deg  
Deg  
Deg  
10647fb  
C
CLK C  
(f /f ) = 100:1  
CLK C  
(f /f ) = 50:1  
422  
414  
437  
429  
CLK  
C
(f /f ) = 100:1  
421  
CLK  
C
2
LTC1064-7  
The  
denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at T = 25°C. V = ± 7.5V, R = 10k, f = 10kHz or 20kHz, f = 1MHz, TTL or  
A
S
L
CUTOFF  
CLK  
CMOS level (maximum clock rise and fall time 1µs) and all gain measurements are referenced to passband gain, unless otherwise  
specified. The filter cutoff frequency is abbreviated as f or f .  
CUTOFF  
CONDITIONS  
(f /f ) = 50:1  
C
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Phase Nonlinearity  
(Notes 2, 4)  
±1.0  
±1.0  
%
%
%
%
CLK  
C
(f /f ) = 100:1  
(f /f ) = 50:1  
(f /f ) = 100:1  
CLK  
C
± 2.0  
± 2.0  
CLK  
C
CLK  
C
Group Delay (t )  
(f /f ) = 50:1, f f  
CUTOFF  
59.7 ± 0.5  
117.0 ± 1.0  
59.7  
µs  
µs  
µs  
µs  
d
CLK  
C
t = (F /360)(1/f )  
(f /f ) = 100:1, f f  
d
C
CLK C  
CUTOFF  
(Note 3)  
(f /f ) = 50:1, f f  
58.6  
115.0  
60.7  
119.0  
CLK  
C
CUTOFF  
(f /f ) = 100:1, f f  
117.0  
CLK  
C
CUTOFF  
Group Delay Deviation  
(Notes 3, 4)  
(f /f ) = 50:1, f f  
±1.0  
±1.0  
%
%
%
%
CLK  
C
CUTOFF  
(f /f ) = 100:1, f f  
CLK  
C
CUTOFF  
(f /f ) = 50:1, f f  
± 2.0  
± 2.0  
CLK  
C
CUTOFF  
(f /f ) = 100:1, f f  
CLK  
C
CUTOFF  
Input Frequency Range (Table 9)  
(f /f ) = 50:1  
<f  
CLK  
<f /2  
CLK  
kHz  
kHz  
CLK  
C
(f /f ) = 100:1  
CLK  
C
Maximum f  
V = 5V (AGND = 2V)  
2.0  
3.5  
5.0  
MHz  
MHz  
MHz  
CLK  
S
V = ±5V  
S
V = ± 7.5V  
S
Clock Feedthrough (f f  
)
CLK  
50:1  
200  
µV  
RMS  
Wideband Noise  
V = ±2.5V  
S
V = ± 7.5V  
S
95 ± 5%  
105 ± 5%  
115 ± 5%  
µV  
RMS  
µV  
RMS  
µV  
RMS  
kΩ  
S
(1Hz f f  
)
CLK  
V = ±5V  
Input Impedance  
25  
40  
70  
Output DC Voltage Swing  
(Note 5)  
V = ±2.375V  
S
V = ±7.5V  
S
±1.0  
±2.1  
±3.0  
±1.2  
±3.2  
±5.0  
V
V
V
S
V = ±5V  
Output DC Offset  
50:1, V = ±5V  
±150  
±150  
±220  
mV  
mV  
S
100:1, V = ±5V  
S
Output DC Offset TempCo  
Power Supply Current  
50:1, V = ±5V  
±200  
±200  
11  
14  
17  
µV/°C  
µV/°C  
S
100:1, V = ±5V  
S
V = ±2.375V, T = 25°C  
S
22  
22  
26  
28  
28  
32  
mA  
mA  
mA  
mA  
mA  
mA  
A
V = ±5V, T = 25°C  
S
A
V = ±7.5V, T = 25°C  
S
A
Power Supply Range  
± 2.375  
±8  
V
10647fb  
3
LTC1064-7  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Group delay and group delay deviation are calculated from the  
measured phase factor and phase deviation specifications.  
Note 2: Input frequencies, f, are linearly phase shifted through the filter as  
Note 4: Phase deviation and group delay deviation for LTC1064-7MJ is  
±4%.  
long as f f ; f = cutoff frequency.  
C
C
Figure 1 curve shows the typical phase response of an LTC1064-7  
operating at f = 1MHz, ratio = 50:1, f = 20kHz and it closely matches  
an ideal straight line. The phase shift is described by: phase shift =  
Note 5: The AC swing is typically 11V , 7V , 2.8V , with ± 7.5V, ±5V,  
P-P P-P P-P  
±2.5V Supply respectively. For more information refer to the THD + Noise  
CLK  
C
vs Input graphs.  
180° F (f/f ); f f .  
C
C
F is arbitrarily called the “phase factor” expressed in degrees. The phase  
factor allows the calculation of the phase at a given frequency.  
Example: The phase shift at 14kHz of the LTC1064-7 shown in Figure 1 is:  
phase shift = 180° – 430° (14kHz/20kHz) ± nonlinearity = –121° ± 1% or  
–121° ± 1.20°.  
180  
90  
f
= 1MHz  
CLK  
RATIO = 50:1  
0
–90  
–180  
–270  
–360  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (kHz)  
1164-7 F01  
Figure 1. Phase Response in the Passband (Note 2)  
10647fb  
4
LTC1064-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Phase Factor vs f  
(Typical Unit)  
Phase Factor vs f  
CLK  
CLK  
Gain vs Frequency  
(Typical Unit)  
10  
0
485  
475  
485  
475  
V
=
5V  
V
=
5V  
S
S
(f /f ) = 50:1  
(f /f ) = 100:1  
CLK  
C
CLK C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
70°C  
465  
455  
445  
435  
465  
455  
445  
435  
50:1  
100:1  
70°C  
0°C  
25°C  
2.5  
25°C  
2.5  
0°C  
3.0  
V
f
A
=
CLK  
= 25°C  
5V  
S
= 1MHz  
425  
415  
425  
415  
T
0.1  
1
10  
100  
0.5  
3.5  
0.5  
3.0  
3.5  
1.0  
1.5  
2.0  
(MHz)  
1.0  
1.5  
2.0  
f
f
(MHz)  
CLK  
FREQUENCY (kHz)  
CLK  
1064-7 G01  
1064-7 G02  
1064-7 G03  
Phase Factor vs f  
(Min and  
Phase Factor vs f  
(Min and  
CLK  
CLK  
Max Representative Units)  
Max Representative Units)  
445  
440  
435  
430  
425  
420  
445  
440  
435  
430  
425  
420  
V
T
= 5V  
V
T
=
5V  
S
A
S
A
= 25°C  
= 25°C  
PINS 3, 5 AT 2V  
(f /f ) = 50:1  
CLK  
C
(f /f ) = 50:1  
CLK  
C
3.5  
0.5  
1.5  
2.0  
0.5  
2.5  
3.0  
1.0  
1.0  
1.5  
2.0  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
1064-7 G04  
1064-7 G05  
Passband Gain and Phase  
Passband Gain and Phase  
180  
180  
3
2
3
2
V
CLK  
(f /f ) = 50:1  
=
5V  
= 1MHz  
S
V
CLK  
=
5V  
= 2MHz  
S
120  
120  
f
f
CLK  
C
(f /f ) = 100:1  
CLK  
C
60  
60  
1
1
0
0
0
0
GAIN  
60  
–120  
–180  
–240  
–300  
–360  
60  
–120  
–180  
–240  
–300  
–360  
–1  
–2  
–1  
–2  
GAIN  
PHASE  
PHASE  
–3  
–4  
–3  
–4  
–5  
–6  
–5  
–6  
2
4
6
8
10 12 14 16 18 20 22  
2
4
6
8
10  
14 16 18 20 22  
12  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064-7 G06  
1064-7 G07  
10647fb  
5
LTC1064-7  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Passband Gain vs Frequency  
and f  
Passband Gain vs Frequency and  
Passband Gain vs Frequency and  
CLK A  
f
at T = 85°C  
f
at T = 85°C  
CLK  
7.5V  
CLK  
A
5
4
5
4
5
4
V
S
CLK  
= 7.5V  
C
A. f  
B. f  
C. f  
D. f  
E. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
= 5MHz  
V
T
=
V
S
CLK C  
= 5V  
A. f  
CLK  
B. f  
CLK  
C. f  
CLK  
D. f  
CLK  
E. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
= 5MHz  
A. f  
CLK  
B. f  
CLK  
C. f  
CLK  
D. f  
CLK  
= 0.5MHz  
= 1.5MHz  
= 2.5MHz  
= 3.5MHz  
CLK  
CLK  
CLK  
CLK  
S
(f /f ) = 50:1  
= 25°C  
(f /f ) = 50:1  
A
(f /f ) = 50:1  
CLK  
C
3
2
3
2
3
2
CLK  
CLK  
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
D
E
D
E
A
B
C
A
A
B
C D  
B C  
1
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
10  
10  
100  
FREQUENCY (kHz)  
1000  
10  
FREQUENCY (kHz)  
1064-7 G09  
1064-7 G10  
1064-7 G08  
Passband Gain vs Frequency  
and f  
Passband Gain vs Frequency and  
f
at T = 85°C  
Delay vs Frequency and f  
CLK  
CLK  
CLK  
A
5
4
5
4
125  
100  
75  
V
S
T
= SINGLE 5V  
= 25°C  
V = SINGLE 5V  
S
CLK C  
A. f  
CLK  
B. f  
CLK  
C. f  
CLK  
D. f  
CLK  
= 0.5MHz  
A. f  
CLK  
B. f  
CLK  
C. f  
CLK  
D. f  
CLK  
= 0.5MHz  
= 1.0MHz  
= 1.5MHz  
= 2.0MHz  
V
T
=
5V  
S
A
A
(f /f ) = 50:1  
= 1.0MHz  
= 1.5MHz  
= 2.0MHz  
A
= 25°C  
(f /f ) = 50:1  
CLK  
C
(f /f ) = 50:1  
CLK  
3
2
3
2
C
A. f  
= 0.5MHz  
= 1.5MHz  
= 2.5MHz  
= 3.5MHz  
CLK  
CLK  
CLK  
CLK  
B. f  
C. f  
D. f  
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
50  
25  
0
B
A
A
B
C
D
B
C D  
C
D
1
10  
100  
1
10  
100  
2
12  
22  
32  
42  
52  
62  
72  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064-7 G11  
1064-7 G12  
1064-7 G13  
THD + Noise vs Frequency  
Delay vs Frequency and f  
THD + Noise vs Frequency  
CLK  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
250  
200  
150  
–40  
–45  
V
T
=
5V  
V
V
f
=
IN  
CLK  
7.5V  
= 1V  
RMS  
V
V
f
= 7.5V  
S
A
S
S
A
= 25°C  
= 2V  
IN  
RMS  
= 1MHz  
(f /f ) = 100:1  
CLK  
= 2.5MHz  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
C
CLK  
(f /f ) = 50:1  
(f /f ) = 50:1  
CLK  
C
CLK  
C
(100k RESISTOR  
(100k RESISTOR  
A. f  
= 0.5MHz  
CLK  
CLK  
CLK  
CLK  
PIN 9 TO V )  
PIN 9 TO V )  
B. f  
C. f  
D. f  
= 1.5MHz  
= 2.5MHz  
= 3.5MHz  
100  
50  
0
B
C
D
1
10  
20  
1
10  
FREQUENCY (kHz)  
50  
1
6
11  
16  
21  
26  
31  
36  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064-7 G15  
1064-7 G16  
1064-7 G14  
10647fb  
6
LTC1064-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
THD + Noise vs Frequency  
40  
–40  
–45  
–40  
–45  
V
V
f
= SINGLE 5V  
V
V
f
=
IN  
CLK  
5V  
RMS  
= 1MHz  
S
V
V
f
= SINGLE 5V  
S
S
–45  
50  
55  
60  
–65  
70  
–75  
–80  
–85  
–90  
= 0.5V  
= 1V  
IN  
RMS  
= 1MHz  
= 0.5V  
IN  
CLK  
RMS  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
CLK  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
= 500kHz  
(f /f ) = 50:1  
(f /f ) = 50:1  
(f /f ) = 100:1  
CLK  
C
CLK  
C
CLK C  
(100k RESISTOR  
(PINS 3, 5 AT 2V)  
(PINS 3, 5 AT 2V)  
PIN 9 TO V )  
1
10  
20  
1
10  
20  
1
2
3
4
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1064-7 G18  
1064-7 G17  
1064-7 G19  
THD + Noise vs Input  
THD + Noise vs Input  
THD + Noise vs Input  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
f
f
= 1kHz  
f
f
= 1kHz  
A. V  
B. V  
=
=
5V  
7.5V  
A. V  
B. V  
=
=
5V  
IN  
IN  
S
S
S
S
V
= SINGLE 5V  
= 1kHz  
S
= 2MHz  
= 1MHz  
7.5V  
CLK  
CLK  
f
IN  
A
B
(f /f ) = 100:1  
(f /f ) = 50:1  
CLK  
C
CLK  
C
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
f
= 1MHz  
CLK  
(100k PIN 9  
TO V )  
B
A
B
A
(f /f ) = 50:1  
CLK  
C
A. PINS 3, 5 AT 2V  
B. PINS 3, 5 AT 2.5V  
0.1  
1
5
0.1  
1
2
0.1  
1
5
INPUT (V  
)
INPUT (V  
)
RMS  
INPUT (V  
)
RMS  
RMS  
1064-7 G21  
1064-7 G22  
1064-7 G20  
Power Supply Current vs  
Power Supply Voltage  
THD + Noise vs Input  
Phase Matching vs Frequency  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
–40  
–45  
5
PHASE DIFFERENCE BETWEEN  
ANY TWO UNITS (SAMPLE OF  
50 REPRESENTATIVE UNITS)  
f
= 1MHz  
V
= SINGLE 5V  
= 1kHz  
CLK  
S
f
IN  
A
B
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
f
= 500kHz  
4
3
2
1
0
CLK  
V
CLK  
5V  
S
(f /f ) = 100:1  
CLK  
C
f
2.5MHz  
(f /f ) = 50:1 OR 100:1  
CLK  
C
T
A
= 0°C TO 70°C  
–55°C  
25°C  
125°C  
A. PINS 3, 5 AT 2V  
B. PINS 3, 5 AT 2.5V  
4
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
0.1  
1
2
0
0.2  
0.4  
0.6  
0.8  
1.0  
INPUT (V  
)
TOTAL POWER SUPPLY VOLTAGE (V)  
RMS  
FREQUENCY (f  
/FREQUENCY)  
CUTOFF  
1064-7 G23  
1064-7 G25  
1064-7 G24  
10647fb  
7
LTC1064-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Table 1. Passband Gain and Phase  
V = ±7.5V, (f /f ) = 50:1, T = 25°C  
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
f
= 1MHz (Typical Unit)  
f
= 4MHz (Typical Unit)  
CLK  
CLK  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.086  
– 0.086  
– 0.334  
– 1.051  
– 3.316  
180.00  
73.54  
–33.60  
–140.81  
– 249.30  
0.000  
10.000  
20.000  
30.000  
40.000  
– 0.116  
– 0.116  
– 0.436  
– 1.171  
– 3.353  
180.00  
72.49  
– 35.21  
– 142.33  
– 250.12  
= 2MHz (Typical Unit)  
f
= 5MHz (Typical Unit)  
CLK  
CLK  
0.000  
10.000  
20.000  
30.000  
40.000  
– 0.131  
– 0.131  
– 0.442  
– 1.108  
– 3.115  
180.00  
72.88  
– 34.71  
–141.99  
– 250.45  
0.000  
12.500  
25.000  
37.500  
50.000  
– 0.097  
– 0.097  
– 0.351  
– 0.951  
– 2.999  
180.00  
71.00  
– 38.08  
– 146.51  
– 256.13  
= 3MHz (Typical Unit)  
CLK  
CLK  
CLK  
0.000  
15.000  
30.000  
45.000  
60.000  
– 0.156  
– 0.156  
– 0.459  
– 0.941  
– 2.508  
180.00  
72.54  
– 35.01  
141.95  
– 250.53  
Table 3. Passband Gain and Phase  
V = ±5V, (f /f ) = 50:1, T = 25°C  
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
f
f
= 0.5MHz (Typical Unit)  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
= 4MHz (Typical Unit)  
0.000  
2.500  
5.000  
7.500  
10.000  
– 0.081  
– 0.081  
– 0.345  
– 1.063  
– 3.283  
180.00  
73.71  
– 33.31  
– 140.36  
– 248.52  
0.000  
20.000  
40.000  
60.000  
80.000  
– 0.121  
– 0.121  
– 0.292  
– 0.476  
– 1.539  
180.00  
72.12  
– 35.75  
142.92  
– 252.63  
= 1MHz (Typical Unit)  
= 5MHz (Typical Unit)  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.071  
– 0.071  
– 0.322  
– 1.036  
– 3.284  
180.00  
73.44  
– 33.83  
– 141.13  
– 249.68  
0.000  
25.000  
50.000  
75.000  
100.000  
– 0.045  
– 0.045  
– 0.006  
0.185  
180.00  
70.85  
– 38.25  
146.77  
– 259.27  
0.356  
= 1.5MHz (Typical Unit)  
0.000  
7.500  
15.000  
22.500  
30.000  
– 0.095  
– 0.095  
– 0.392  
– 1.075  
– 3.155  
180.00  
73.03  
– 34.53  
– 141.89  
– 250.45  
Table 2. Passband Gain and Phase  
V = ±7.5V, (f /f ) = 100:1, T = 25°C  
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
= 1MHz (Typical Unit)  
= 2MHz (Typical Unit)  
CLK  
CLK  
CLK  
0.000  
2.500  
5.000  
7.500  
10.000  
– 0.203  
– 0.203  
– 0.741  
– 1.831  
– 4.451  
180.00  
74.07  
– 31.71  
– 136.47  
– 240.17  
0.000  
10.000  
20.000  
30.000  
40.000  
– 0.127  
– 0.127  
– 0.447  
– 1.041  
– 2.856  
180.00  
72.81  
– 34.70  
– 141.77  
– 250.24  
= 2MHz (Typical Unit)  
= 2.5MHz (Typical Unit)  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.152  
– 0.152  
– 0.575  
– 1.501  
– 3.973  
180.00  
73.79  
– 32.47  
– 138.11  
– 243.84  
0.000  
12.500  
25.000  
37.500  
50.000  
– 0.126  
– 0.126  
– 0.411  
– 0.864  
– 2.397  
180.00  
72.61  
– 34.91  
– 141.88  
– 250.62  
= 3MHz (Typical Unit)  
= 3MHz (Typical Unit)  
0.000  
7.500  
15.000  
22.500  
30.000  
– 0.123  
– 0.123  
– 0.481  
– 1.312  
– 3.654  
180.00  
73.32  
– 33.64  
– 140.14  
– 247.11  
0.000  
15.000  
30.000  
45.000  
60.000  
– 0.102  
– 0.102  
– 0.292  
– 0.546  
– 1.769  
180.00  
72.23  
– 35.64  
– 142.96  
– 252.73  
10647fb  
8
LTC1064-7  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Table 3. Passband Gain and Phase  
V = ±5V, (f /f ) = 50:1, T = 25°C  
Table 5. Passband Gain and Phase  
V = Single 5V, (f /f ) = 50:1, T = 25°C  
S
CLK  
C
A
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
= 3.5MHz (Typical Unit)  
f
= 0.5MHz (Typical Unit)  
CLK  
CLK  
0.000  
17.500  
35.000  
52.500  
70.000  
– 0.054  
– 0.054  
– 0.108  
– 0.137  
– 1.104  
180.00  
71.07  
– 38.00  
– 146.68  
– 258.97  
0.000  
2.500  
5.000  
7.500  
10.000  
– 0.134  
– 0.134  
– 0.391  
– 1.109  
– 3.351  
180.00  
73.52  
– 33.67  
– 140.92  
– 249.32  
f
= 1MHz (Typical Unit)  
CLK  
Table 4. Passband Gain and Phase  
V = ±5V, (f /f ) = 100:1, T = 25°C  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.148  
– 0.148  
– 0.423  
– 1.111  
– 3.241  
180.00  
73.07  
– 34.63  
– 142.25  
– 251.03  
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
f
= 0.5MHz (Typical Unit)  
CLK  
0.000  
1.250  
2.500  
3.750  
5.000  
– 0.186  
– 0.186  
– 0.726  
– 1.805  
– 4.402  
180.00  
74.10  
– 31.65  
– 136.48  
– 240.33  
f
f
= 1.5MHz (Typical Unit)  
CLK  
CLK  
0.000  
7.500  
15.000  
22.500  
30.000  
– 0.157  
– 0.157  
– 0.456  
– 0.981  
– 2.687  
180.00  
72.73  
– 34.83  
– 142.08  
– 251.09  
= 1MHz (Typical Unit)  
CLK  
= 2MHz (Typical Unit)  
0.000  
2.500  
5.000  
7.500  
10.000  
– 0.184  
– 0.184  
– 0.712  
– 1.785  
– 4.387  
180.00  
74.02  
– 31.80  
– 136.61  
– 240.43  
0.000  
10.000  
20.000  
30.000  
40.000  
– 0.188  
– 0.188  
– 0.304  
– 0.513  
– 1.824  
180.00  
71.37  
– 37.52  
– 146.11  
– 257.46  
= 1.5MHz (Typical Unit)  
CLK  
CLK  
CLK  
0.000  
3.750  
7.500  
11.250  
15.000  
– 0.145  
– 0.145  
– 0.596  
– 1.556  
– 4.047  
180.00  
73.84  
– 32.32  
– 137.73  
– 242.95  
Table 6. Passband Gain and Phase  
V = Single 5V, (f /f ) = 100:1, T = 25°C  
S
CLK  
C
A
FREQUENCY (kHz)  
GAIN (dB)  
PHASE (DEG)  
f
f
f
f
= 0.5MHz (Typical Unit)  
CLK  
CLK  
CLK  
CLK  
= 2MHz (Typical Unit)  
0.000  
1.250  
2.500  
3.750  
5.000  
– 0.243  
– 0.243  
– 0.776  
– 1.861  
– 4.483  
180.00  
73.91  
– 31.98  
– 136.98  
– 240.90  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.116  
– 0.116  
– 0.494  
– 1.361  
– 3.761  
180.00  
73.64  
– 32.93  
– 139.03  
– 245.57  
= 1MHz (Typical Unit)  
= 2.5MHz (Typical Unit)  
0.000  
2.500  
5.000  
7.500  
10.000  
– 0.208  
– 0.208  
– 0.678  
– 1.679  
– 4.221  
180.00  
73.76  
– 32.47  
– 137.87  
– 242.65  
0.000  
6.250  
12.500  
18.750  
25.000  
– 0.101  
– 0.101  
– 0.452  
– 1.273  
– 3.611  
180.00  
73.17  
– 33.93  
– 140.58  
– 247.80  
= 1.5MHz (Typical Unit)  
f
f
= 3MHz (Typical Unit)  
CLK  
CLK  
0.000  
7.500  
15.000  
22.500  
30.000  
– 0.105  
– 0.105  
– 0.445  
– 1.228  
– 3.509  
180.00  
72.36  
– 35.47  
– 142.70  
– 250.58  
0.000  
3.750  
7.500  
11.250  
15.000  
– 0.115  
– 0.115  
– 0.473  
– 1.314  
– 3.715  
180.00  
73.26  
– 33.73  
– 140.40  
– 247.66  
= 3.5MHzMHz (Typical Unit)  
= 2MHz (Typical Unit)  
0.000  
8.750  
17.500  
26.250  
35.000  
– 0.104  
– 0.104  
– 0.437  
– 1.188  
– 3.478  
180.00  
70.81  
– 38.39  
– 146.85  
– 256.10  
0.000  
5.000  
10.000  
15.000  
20.000  
– 0.209  
– 0.209  
– 0.499  
– 1.281  
– 3.695  
180.00  
71.18  
– 37.85  
– 146.27  
– 255.38  
10647fb  
9
LTC1064-7  
U
U
U
PI FU CTIO S  
Power Supply Pins (4, 12)  
for the filter should be connected to clock’s ground at a  
single point only. Table 7 shows the clock’s low and high  
levelthresholdvaluesforadualorsinglesupplyoperation.  
A pulse generator can be used as a clock source provided  
thehighlevelONtimeisgreaterthan0.1µs.Sinewavesare  
not recommended for clock input frequencies less than  
100kHz, since excessively slow clock rise or fall times  
generate internal clock jitter (maximum clock rise or fall  
time 1µs). The clock signal should be routed from the  
rightsideoftheICpackageandperpendiculartoittoavoid  
couplingtoanyinputoroutputanalogsignalpath. A200Ω  
resistor between clock source and pin 11 will slow down  
the rise and fall times of the clock to further reduce charge  
coupling (Figures 2 and 3).  
TheV+ (Pin4)andtheV (Pin12)shouldbebypassedwith  
a 0.1µF capacitor to an adequate analog ground. The  
filter’s power supplies should be isolated from other  
digital or high voltage analog supplies. A low noise linear  
supply is recommended. Using a switching power supply  
will lower the signal-to-noise ratio of the filter. The supply  
during power-up should have a slew rate less than 1V/µs.  
When V+ is applied before Vand Vis allowed to go  
above ground, a signal diode should clamp Vto prevent  
latch-up. Figures 2 and 3 show typical connections for  
dual and single supply operation.  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Table 7. Clock Source High and Low Threshold Levels  
V
V
0.1µF  
IN  
+
POWER SUPPLY  
HIGH LEVEL  
LOW LEVEL  
200  
LTC1064-7  
CLOCK SOURCE  
Dual Supply = ± 7.5V  
Dual Supply = ± 5V  
Dual Supply = ± 2.5V  
Single Supply = 12V  
Single Suppl = 5V  
2.18V  
1.45V  
0.73V  
7.80V  
1.45V  
0.5V  
0.5V  
– 2.0V  
6.5V  
0.5V  
+
V
0.1µF  
+
GND  
DIGITAL SUPPLY  
8
V
1064-7 F02  
OUT  
Analog Ground Pins (3, 5)  
Figure 2. Dual Supply Operation for an f /f  
= 50:1  
CLK CUTOFF  
The filter performance depends on the quality of the  
analog signal ground. For either dual or single supply  
operation, an analog ground plane surrounding the pack-  
age is recommended. The analog ground plane should be  
connected to any digital ground at a single point. For dual  
supply operation, Pin 3 should be connected to the analog  
ground plane. For single supply operation pin 3 should be  
biased at 1/2 supply and should be bypassed to the analog  
ground plane with at least a 1µF capacitor (Figure 3). For  
single 5V operation at the highest fCLK of 2MHz, Pin 3  
should be biased at 2V. This minimizes passband gain and  
phase variations.  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
200Ω  
+
V
LTC1064-7  
CLOCK SOURCE  
+
0.1µF  
V
+
GND  
DIGITAL SUPPLY  
10k  
10k  
8
+
1µF  
V
OUT  
1064-7 F03  
Figure 3. Single Supply Operation for an f /f  
= 50:1  
CLK CUTOFF  
Ratio Input Pin (10)  
The DC level at this pin determines the ratio of the clock  
frequency to the cutoff frequency of the filter. Pin 10 at V+  
gives a 50:1 ratio and Pin 10 at Vgives a 100:1 ratio. For  
single supply operation the ratio is 50:1 when Pin 10 is at  
V+ and 100:1 when Pin 10 is at ground. When Pin 10 is not  
tied to ground, it should be bypassed to analog ground  
Clock Input Pin (11)  
Any TTL or CMOS clock source with a square-wave output  
and 50% duty cycle (±10%) is an adequate clock source  
for the device. The power supply for the clock source  
should not be the filter’s power supply. The analog ground  
10647fb  
10  
LTC1064-7  
U
U
U
PI FU CTIO S  
with a 0.1µF capacitor. If the DC level at Pin 10 is switched  
mechanically or electrically at slew rates greater than  
1V/µs while the device is operating, a 10k resistor should  
be connected between Pin 10 and the DC source.  
External Connection Pins (7, 14)  
Pins 7 and 14 should be connected together. In a printed  
circuit board the connection should be done under the IC  
package through a short trace surrounded by the analog  
ground plane.  
Filter Input Pin (2)  
The input pin is connected internally through a 40k resis-  
tor tied to the inverting input of an op amp.  
NC Pins (1, 5, 8, 13)  
Pins 1, 5, 8 and 13 are not connected to any internal circuit  
point on the device and should preferably be tied to analog  
ground.  
Filter Output Pins (9, 6)  
Pin 9 is the specified output of the filter; it can typically  
source 3mA and sink 1mA. Driving coaxial cables or  
resistive loads less than 20k will degrade the total har-  
monic distortion of the filter. When evaluating the device’s  
distortion an output buffer is required. A noninverting  
buffer, Figure 4, can be used provided that its input  
common mode range is well within the filter’s output  
swing. Pin 6 is an intermediate filter output providing an  
unspecified 6th order lowpass filter. Pin 6 should not be  
loaded.  
LT1220  
1k  
+
1064-7 F04  
Figure 4. Buffer for Filter Output  
O U  
W U  
PPLICATI  
A
S I FOR ATIO  
Clock Feedthrough  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple R/C lowpass network at the output of  
the filter pin (9). This R/C will completely eliminate any  
switching transients.  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pin (9). The clock feedthrough is tested with the  
input pin (2) grounded and it depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques the values of the clock feedthrough are shown  
in Table 8.  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering. For instance, the  
Table 8. Clock Feedthrough  
V
50:1  
90µV  
100:1  
S
Single 5V  
±5V  
±7.5V  
100µV  
RMS  
100µV  
RMS  
RMS  
RMS  
300µV  
650µV  
RMS  
RMS  
120µV  
LTC1064-7 wideband noise at ±5V supply is 105µVRMS  
,
Note: The clock feedthrough at single 5V is imbedded in the  
wideband noise of the filter. Clock waveform is a square wave.  
95µVRMS of which have frequency contents from DC up to  
the filter’s cutoff frequency. The total wideband noise  
(µVRMS) is nearly independent of the value of the clock.  
The clock feedthrough specifications are not part of the  
wideband noise.  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
10647fb  
11  
LTC1064-7  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Speed Limitations  
Transient Response  
To avoid op amp slew rate limiting at maximum clock  
frequencies, the signal amplitude should be kept below a  
specified level as shown in Table 9.  
Table 9. Maximum V vs V and Clock  
IN  
S
POWER SUPPLY  
MAXIMUM f  
MAXIMUM V  
IN  
CLK  
±7.5V  
5.0MHz  
4.5MHz  
4.0MHz  
1.8V  
2.3V  
2.7V  
1.4V  
(f > 80kHz)  
RMS IN  
(f > 80kHz)  
RMS IN  
(f > 80kHz)  
RMS IN  
3.5MHz  
(f > 500kHz)  
RMS IN  
± 5V  
3.5MHz  
3.0MHz  
2.0MHz  
1.6V  
0.7V  
0.5V  
(f > 80kHz)  
RMS IN  
1064-7 F05  
50µs/DIV  
(f > 400kHz)  
RMS IN  
VS = ± 7.5V, fIN = 2kHz ± 3V  
fCLK = 1MHz, RATIO = 50:1  
Single 5V  
(f > 250kHz)  
RMS IN  
Figure 5.  
Table 10. Transient Response of LTC Lowpass Filters  
DELAY  
TIME*  
(SEC)  
RISE  
TIME** TIME***  
(SEC) (SEC)  
SETTLING  
OVER-  
SHOOT  
(%)  
0.5  
0
1
5
5
5
11  
18  
20  
20  
t
s
OUTPUT  
INPUT  
LOWPASS FILTER  
LTC1064-3 Bessel  
LTC1164-5 Bessel  
LTC1164-6 Bessel  
LTC1264-7 Linear Phase  
LTC1164-7 Linear Phase  
LTC1064-7 Linear Phase  
LTC1164-5 Butterworth  
LTC1164-6 Elliptic  
90%  
50%  
10%  
0.50/f  
0.43/f  
0.43/f  
0.34/f  
0.34/f  
0.34/f  
0.36/f  
0.39/f  
0.39/f  
0.48/f  
0.54/f  
0.54/f  
0.54/f  
0.80/f  
0.85/f  
1.15/f  
2.05/f  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
t
d
1.15/f  
1.20/f  
1.20/f  
0.80/f  
0.85/f  
0.90/f  
0.85/f  
2.2/f  
2.2/f  
2.4/f  
4.3/f  
4.5/f  
C
C
C
C
C
t
r
LTC1064-4 Elliptic  
LTC1064-1 Elliptic  
0.39  
CUTOFF  
6.5/f  
C
RISE TIME (t ) =  
±5%  
r
f
* To 50% ±5%, ** 10% to 90% ±5%, *** To 1% ±0.5%  
2.2  
SETTLING TIME (t ) =  
s
±5%  
f
CUTOFF  
(TO 1% of OUTPUT)  
Table 11. Aliasing (f  
INPUT FREQUENCY  
= 100kHz)  
CLK  
1.2  
CUTOFF  
DELAY TIME (t ) = GROUP DELAY ≈  
(TO 50% OF OUTPUT)  
d
1064-7 F06  
f
OUTPUT LEVEL  
OUTPUT FREQUENCY  
(Aliased Frequency  
(V = 1V  
,
(Relative to Input,  
IN  
RMS  
f
= f  
± f  
)
0dB = 1V  
(dB)  
)
f
= ABS [f  
± f ])  
CLK IN  
Figure 6.  
IN  
CLK  
(kHz)  
OUT  
RMS  
OUT  
(kHz)  
Aliasing  
50:1, f  
= 2kHz  
CUTOFF  
190 (or 210)  
195 (or 205)  
196 (or 204)  
197 (or 203)  
198 (or 202)  
–76.1  
– 51.9  
– 36.3  
– 18.4  
– 3.0  
10.0  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs when input frequencies close to the  
sampling frequency are applied. For the LTC1064-7 case  
at 100:1, an input signal whose frequency is in the range  
offCLK ±3%, willbealiasedbackintothefilter’spassband.  
If, for instance, an LTC1064-7 operating with a 100kHz  
clock and 1kHz cutoff frequency receives a 98kHz, 10mV  
input signal, a 2kHz, 143µVRMS alias signal will appear at  
its output. When the LTC1064-7 operates with a clock-to-  
cutoff frequency of 50:1, aliasing occurs at twice the clock  
5.0  
4.0  
3.0  
2.0  
199.5 (or 200.5)  
0.2  
0.5  
100:1, f = 1kHz  
CUTOFF  
97 (or 103)  
–74.2  
53.2  
36.9  
– 19.6  
– 5.2  
3.0  
2.5  
2.0  
1.5  
1.0  
97.5 (or 102.5)  
98 (or 102)  
98.5 (or 101.5)  
99 (or 101)  
99.5 (or 100.5)  
– 0.7  
0.5  
frequency. Table 11 shows details.  
10647fb  
12  
LTC1064-7  
U
PACKAGE DESCRIPTIO  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.785  
(19.939)  
MAX  
.005  
(0.127)  
MIN  
14  
13  
12  
11  
10  
9
8
.220 – .310  
.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
2
3
4
5
6
1
7
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 0801  
OBSOLETE PACKAGE  
10647fb  
13  
LTC1064-7  
U
PACKAGE DESCRIPTIO  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 ± .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
10647fb  
14  
LTC1064-7  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
10647fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1064-7  
U
TYPICAL APPLICATIO  
80kHz Linear Phase Lowpass Filter  
Eye Diagram  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
–7.5V  
LTC1064-7  
CLK = 4MHz  
7.5V  
7.5V  
V
OUT  
8
1064-7 TA01  
NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A  
0.1µF CAPACITOR CLOSE TO THE PACKAGE AND ANY PRINTED  
CIRCUIT BOARD ASSEMBLY SHOULD MAINTAIN A DISTANCE  
OF AT LEAST 0.2 INCHES BETWEEN ANY OUTPUT OR INPUT  
1064-7 TA02  
1µs/DIV  
VS = ±7.5V  
CLK = 4MHz  
RATIO = 50:1  
f
PIN AND THE f  
LINE.  
CLK  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1064  
Universal Filter Building Block  
Allows for Bandpass (Up to 50kHz) Using External Resistors  
Elliptic, Butterworth, Bessel, Cauer  
LTC1064-1/2/3/4  
LTC1164  
8th Order Low Pass Filters, F Max = 100kHz  
O
Universal Filter Building Block  
Allows for Bandpass (Up to 20kHz) Using External Resistors  
Butterworth, Bessel or Elliptic  
LTC1164-5/6/7  
LTC1264  
8th Order Low Pass Filters, F Max = 20kHz  
O
Universal Filter Building Block  
Allows for Bandpass (Up to 100kHz) Using External Resistors  
Flat Group Delay, High Speed Lowpass Filter  
LTC1264-7  
LT6600-2.5  
LT6600-10  
8th Order Low Pass Filter, F Max = 200kHz  
O
Low Noise Differential Amp and 10MHz Lowpass  
Low Noise Differential Amp and 20MHz Lowpass  
55µV  
86µV  
Noise 100kHz to 10MHz 3V Supply  
Noise 100kHz to 20MHz 3V Supply  
RMS  
RMS  
10647fb  
LT/LT 0905 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1992  

相关型号:

LTC1064-7CSW#PBF

Linear Phase, 8th Order Lowpass Filter
Linear

LTC1064-7CSW#TR

暂无描述
Linear

LTC1064-7CSW#TRPBF

LTC1064-7 - Linear Phase, 8th Order Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1064-7M

Linear Phase, 8th Order Lowpass Filter
Linear

LTC1064-7M/883

Analog Filter
ETC

LTC1064-7MJ

Linear Phase, 8th Order Lowpass Filter
Linear

LTC1064-7MJ#PBF

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, LEAD FREE, CERDIP-14, Active Filter
Linear

LTC1064-7MJ#TR

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, LEAD FREE, CERDIP-14, Active Filter
Linear

LTC1064-7MJ#TRPBF

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, CDIP14, LEAD FREE, CERDIP-14, Active Filter
Linear

LTC1064-7MS

IC SWITCHED CAPACITOR FILTER, BESSEL, LOWPASS, PDSO14, PLASTIC, SO-14, Active Filter
Linear

LTC1064-7_09

Linear Phase, 8th Order Lowpass Filter
Linear

LTC1064AC

Low Noise, Fast, Quad Universal Filter Building Block
Linear