LTC1067C [Linear]

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; 轨到轨,极低噪声的通用双滤波器积木
LTC1067C
型号: LTC1067C
厂家: Linear    Linear
描述:

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block
轨到轨,极低噪声的通用双滤波器积木

文件: 总20页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1067/LTC1067-50  
Rail-to-Rail, Very Low Noise  
Universal Dual Filter Building Block  
U
FEATURES  
DESCRIPTION  
The LTC®1067/LTC1067-50 consist of two identical rail-  
to-rail, high accuracy and very wide dynamic range 2nd  
order switched-capacitor building blocks. Each building  
block, together with three to five resistors, provides 2nd  
orderfilterfunctionssuchasbandpass,highpass,lowpass,  
notch and allpass. High precision 4th order filters are  
easily designed.  
Rail-to-Rail Input and Output Operation  
Operates from a Single 3V to ±5V Supply  
Dual 2nd Order Filter in a 16-Lead SSOP Package  
> 80dB Dynamic Range on Single 3.3V Supply  
Clock-to-Center Frequency Ratio of 100:1 for the  
LTC1067 and 50:1 for the LTC1067-50  
Internal Sampling-to-Center Frequency Ratio of  
200:1 for the LTC1067 and 100:1 for the LTC1067-50  
Center Frequency Error < ±0.2% Typ  
Low Noise: < 40µVRMS, Q 5  
Customizable with Internal Resistors  
Thecenterfrequencyofeach2ndordersectionistunedby  
the external clock frequency. The internal clock-to-center  
frequency ratio (100:1 for the LTC1067 and 50:1 for the  
LTC1067-50) can be modified by the external resistors.  
These devices have a double sampled architecture which  
placesaliasingandimagingcomponentsattwicetheclock  
frequency. The LTC1067-50 is a low power device con-  
suming about one half the current of the LTC1067. The  
LTC1067-50’s typical supply current is about 1mA from a  
3.3V supply.  
U
APPLICATIONS  
Notch Filters  
Narrowband Bandpass Filters  
Tone Detection  
Noise Reduction Systems  
The LTC1067 and LTC1067-50 are available in 16-pin  
narrow SSOP and SO packages.  
Mask programmable versions of the LTC1067 and  
LTC1067-50, with thin film resistors on-chip and custom  
clock-to-cutoff frequency ratios, can be designed in an  
SO-8 package to realize application specific monolithic  
filters. Please contact LTC Marketing for more details.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
Single 3.3V Supply Rail-to-Rail,  
4th Order, 10kHz Bandpass Filter  
0
1
2
3
4
16  
15  
14  
13  
+
f
= 500kHz  
V
CLK  
CLK  
–10  
–20  
–30  
–40  
NC  
AGND  
1µF  
+
3.3V  
V
V
0.1µF  
SA  
SB  
LTC1067-50  
5
6
7
8
12  
11  
10  
9
LPA  
LPB  
OUT  
R32, 200k  
R22, 10k  
R31, 200k  
R21, 10k  
BPA  
BPB  
HPA/NA  
INV A  
HPB/NB  
INV B  
R11  
200k  
IN  
10  
11  
8
12  
9
TOTAL OUTPUT NOISE: 90µV  
RMS  
RB1, 200k  
FREQUENCY (kHz)  
S/N RATIO: 80dB  
1067 TA01  
1067 • TA02  
1
LTC1067/LTC1067-50  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Total Voltage Supply (V+ to V) .............................. 12V  
Input Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration.......................... Indefinite  
Power Dissipation............................................... 500mV  
Operating Temperature Range  
TOP VIEW  
ORDER PART  
NUMBER  
+
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CLK  
NC  
+
AGND  
LTC1067CGN  
LTC1067-50CGN  
LTC1067IGN  
LTC1067-50IGN  
LTC1067CS  
LTC1067-50CS  
LTC1067IS  
LTC1067-50IS  
V
V
SA  
LPA  
SB  
LTC1067C................................................ 0°C to 70°C  
LTC1067I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LPB  
BPA  
BPB  
HPA/NA  
INV A  
HPB/NB  
INV B  
GN PACKAGE  
S PACKAGE  
16-LEAD PLASTIC SSOP 16-LEAD PLASTIC SO  
TJMAX = 110°C, θJA = 135°C/ W (GN)  
T
JMAX = 110°C, θJA = 115°C/ W (S)  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS LTC1067 (internal op amps) VS = 4.75V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Range  
Positive Output Voltage Swing  
3
11  
V
V = 3V, R = 10k  
2.65  
4.25  
4.15  
2.80  
4.50  
4.50  
V
V
V
S
L
V = 4.75V, R = 10k  
S
L
V = ±5V, R = 10k  
S
L
Negative Output Voltage Swing  
V = 3V, R = 10k  
0.020  
0.025  
4.96  
0.200  
0.225  
4.80  
V
V
V
S
L
V = 4.75V, R = 10k  
S
L
V = ±5V, R = 10k  
S
L
Output Short-Circuit Current  
(Source/Sink)  
V = 3V  
16/1.0  
33/2.2  
70/7.2  
mA  
mA  
mA  
S
V = 4.75V  
S
V = ±5V  
S
DC Open-Loop Gain  
GBW Product  
Slew Rate  
R = 10k  
90  
2.8  
2.25  
dB  
MHz  
V/µs  
L
R = 10k  
L
R = 10k  
L
LTC1067 (complete filter) VS = 4.75V, fCLK = 250kHz, TA = 25°C, unless otherwise noted.  
PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
MHz  
Center Frequency Range, f (Note 1)  
0.001 to 20  
0 to 1  
O
Input Frequency Range  
Clock-to-Center Frequency, f /f  
V = 3V, f  
R1 = R3 = 49.9k, R2 = 10k  
= 250kHz, Mode 1, f = 2.5kHz, Q = 5  
100:1 ±0.2  
%
%
%
%
%
%
CLK  
O
S
CLK  
O
±0.70  
±0.70  
±0.70  
V = 4.75V, f = 250kHz, Mode 1, f = 2.5kHz, Q = 5  
100:1 ±0.2  
100:1 ±0.2  
S
CLK  
O
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 500kHz, Mode 1, f = 5kHz, Q = 5  
S
CLK  
O
R1 = R3 = 49.9k, R2 = 10k  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching  
V = 3V, f = 250kHz, Q = 5  
±0.1  
±0.1  
±0.1  
±0.35  
±0.35  
±0.35  
%
%
%
S
CLK  
V = 4.75V, f  
= 250kHz, Q = 5  
= 500kHz, Q = 5  
S
CLK  
V = ±5V, f  
S
CLK  
2
LTC1067/LTC1067-50  
ELECTRICAL CHARACTERISTICS  
LTC1067 (complete filter) VS = 4.75V, fCLK = 250kHz, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 3V, f  
MIN  
TYP  
MAX  
UNITS  
Q Accuracy  
= 250kHz, Q = 5  
CLK  
±0.5  
±0.5  
±0.5  
±2  
±2  
±2  
%
%
%
S
V = 4.75V, f  
S
= 250kHz, Q = 5  
= 500kHz, Q = 5  
CLK  
V = ±5V, f  
S
CLK  
f Temperature Coefficient  
Q Temperature Coefficient  
±1  
±5  
ppm/°C  
ppm/°C  
O
DC Offset Voltage (See Table 2)  
V
OS1  
V
OS2  
V
OS3  
(DC Offset of Input Inverter)  
(DC Offset of First Integrator)  
(DC Offset of Second Integrator)  
±3  
±4  
±4  
±12.5  
±15.0  
±15.0  
mV  
mV  
mV  
Clock Feedthrough  
Maximum Clock Frequency  
Power Supply Current  
150  
2.0  
2.50  
3.00  
4.35  
µV  
RMS  
MHz  
Q < 2.5, V = ±5V  
S
V = 3V, f  
V = 4.75V, f  
S
= 250kHz  
= 250kHz  
CLK  
4.5  
5.5  
7.5  
mA  
mA  
mA  
S
CLK  
V = ±5V, f  
= 500kHz  
S
CLK  
LTC1067-50 (internal op amps) VS = 4.75V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Range  
Positive Output Voltage Swing  
2.7  
11  
V
V = 3V, R = 10k  
2.65  
4.25  
4.15  
2.80  
4.50  
4.50  
V
V
V
S
L
V = 4.75V, R = 10k  
S
L
V = ±5V, R = 10k  
S
L
Negative Output Voltage Swing  
V = 3V, R = 10k  
0.020  
0.025  
4.96  
0.200  
0.225  
– 4.80  
V
V
V
S
L
V = 4.75V, R = 10k  
S
L
V = ±5V, R = 10k  
S
L
Output Short-Circuit Current  
(Source/Sink)  
V = 3V  
16/0.6  
33/1.2  
70/5.7  
mA  
mA  
mA  
S
V = 4.75V  
S
V = ±5V  
S
DC Open-Loop Gain  
GBW Product  
Slew Rate  
R = 10k  
90  
1.9  
0.8  
dB  
MHz  
V/µs  
L
R = 10k  
L
R = 10k  
L
LTC1067-50 (complete filter) VS = 4.75V, fCLK = 125kHz, TA = 25°C, unless otherwise noted.  
PARAMETER CONDITIONS  
MIN  
TYP  
0.001 to 40  
0 to 1  
MAX  
UNITS  
kHz  
MHz  
Center Frequency Range, f (Note 1)  
O
Input Frequency Range  
Clock-to-Center Frequency, f /f  
V = 3V, f  
R1 = R3 = 49.9k, R2 = 10k  
= 125kHz, Mode 1, f = 2.5kHz, Q = 5  
50:1 ±0.2  
%
%
%
%
%
%
CLK  
O
S
CLK  
O
±0.75  
±0.75  
±0.75  
V = 4.75V, f = 125kHz, Mode 1, f = 2.5kHz, Q = 5  
50:1 ±0.2  
50:1 ±0.3  
S
CLK  
O
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 250kHz, Mode 1, f = 5kHz, Q = 5  
S
CLK  
O
R1 = R3 = 49.9k, R2 = 10k  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching  
V = 3V, f = 125kHz, Q = 5  
±0.2  
±0.2  
±0.2  
±0.55  
±0.55  
±0.55  
%
%
%
S
CLK  
V = 4.75V, f  
= 125kHz, Q = 5  
= 250kHz, Q = 5  
S
CLK  
V = ±5V, f  
S
CLK  
Q Accuracy  
V = 3V, f  
= 125kHz, Q = 5  
= 125kHz, Q = 5  
CLK  
±0.5  
±0.5  
±0.5  
±2  
±2  
±2  
%
%
%
S
CLK  
V = 4.75V, f  
S
V = ±5V, f  
S
= 250kHz, Q = 5  
CLK  
3
LTC1067/LTC1067-50  
ELECTRICAL CHARACTERISTICS  
LTC1067-50 (complete filter) VS = 4.75V, fCLK = 125kHz, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±1  
±5  
MAX  
UNITS  
ppm/°C  
ppm/°C  
f Temperature Coefficient  
O
Q Temperature Coefficient  
DC Offset Voltage (See Table 2)  
V
V
V
(DC Offset of Input Inverter)  
(DC Offset of First Integrator)  
(DC Offset of Second Integrator)  
±3  
±4  
±4  
±12.5  
±15.0  
±15.0  
mV  
mV  
mV  
OS1  
OS2  
OS3  
Clock Feedthrough  
Maximum Clock Frequency  
Power Supply Current  
150  
2.0  
1.00  
1.45  
2.35  
µV  
RMS  
MHz  
Q < 2.5, V = ±5V  
S
V = 3V, f  
V = 4.75V, f  
S
= 125kHz  
2.5  
3.0  
4.0  
mA  
mA  
mA  
S
CLK  
= 125kHz  
CLK  
V = ±5V, f  
= 250kHz  
S
CLK  
Note 1: See Typical Performance Characteristics.  
The  
denotes the specifications which apply over the full operating  
temperature range.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1067 Maximum Q vs  
Center Frequency  
(Modes 1, 1B, 2 where R4 10R2)  
LTC1067 Maximum Q vs  
Center Frequency  
(Modes 2 where R4 < 10R2, 3)  
LTC1067  
Noise + THD vs Input Voltage  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
4TH ORDER BUTTERWORTH LPF  
V
f
= ±5V  
CLK(MAX)  
S
V
f
= SINGLE 3.3V, f = 1kHz  
S
IN  
= 2MHz  
V
= ±5V  
S
= 400kHz, f  
= 4kHz  
–3dB  
CLK  
f
= 2MHz  
CLK(MAX)  
R
L
= 20k  
V
f
= 5V  
CLK(MAX)  
S
V
= 5V  
= 1.5MHz  
S
f
= 1.5MHz  
CLK(MAX)  
V
= 3.3V  
S
V
= 3.3V  
f
= 1MHz  
S
CLK(MAX)  
f
= 1MHz  
CLK(MAX)  
MODE 1  
MODE 3  
10  
15  
0
5
10  
15  
20  
0
5
20  
0.1  
1
2
INPUT VOLTAGE (V  
)
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
RMS  
O
O
1067 G03  
1067 G02  
1067 G01  
LTC1067  
Noise + THD vs Input Voltage  
LTC1067  
Noise + THD vs Input Frequency  
LTC1067  
Noise + THD vs Input Voltage  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
4TH ORDER BUTTERWORTH LPF  
4TH ORDER BUTTERWORTH LPF  
V
f
= SINGLE 5V, f = 1kHz  
V
f
= ±5V, f = 1kHz  
S
IN  
S
IN  
= 500kHz, f  
= 5kHz  
–3dB  
= 500kHz, f  
= 5kHz  
CLK  
CLK  
–3dB  
MODE 1  
R
L
= 20k  
R
L
= 20k  
MODE 2  
MODE 1  
MODE 1  
MODE 3  
MODE 3  
4TH ORDER BUTTERWORTH LPF  
V
f
–3dB  
= SINGLE 3.3V  
S
CLK  
MODE 3  
= 400kHz, V = 0.36V  
IN  
RMS  
f
= 4kHz, R = 20k  
L
1
2
3
4
5
0.1  
1
INPUT VOLTAGE (V  
5
0.1  
1
)
2
INPUT FREQUENCY (kHz)  
)
INPUT VOLTAGE (V  
RMS  
RMS  
1067 G05  
1067 G06  
1067 G04  
4
LTC1067/LTC1067-50  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1067  
LTC1067  
LTC1067  
Noise vs Q  
220  
Noise + THD vs Input Frequency  
Noise + THD vs Input Frequency  
–75  
–80  
–85  
–90  
–75  
–80  
–85  
–90  
4TH ORDER LOWPASS  
BUTTERWORTH  
200  
±5V  
180  
160  
140  
120  
100  
80  
V
CLK  
R
= ±5V, V = 1V  
S
IN RMS  
f
= 1MHz, f = 10kHz  
–3dB  
MODE 1  
MODE 3  
= 20k  
L
5V  
3V  
MODE 1  
MODE 3  
60  
4TH ORDER BUTTERWORTH LPF  
40  
V
V
= SINGLE 5V, f  
IN  
= 500kHz  
= 5kHz, R = 20k  
L
S
CLK  
RMS, –3dB  
20  
= 0.5V  
f
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
1
3
6
9 10  
7 8  
2
4
5
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (MHz)  
Q
1067 G07  
1067 G08  
1067 G09  
LTC1067  
LTC1067  
Output Voltage Swing vs Load  
Resistance, Single Supply Voltage  
LTC1067  
Power Supply Current  
vs Power Supply  
Output Voltage Swing vs Load  
Resistance, ±5V Supply Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
0
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
V
= ±5V  
S
V
= 5V  
S
70°C  
V
S
= 3.3V  
–20°C  
25°C  
0
2
4
6
8
10 12 14 16 18 20  
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
LOAD RESISTANCE (kTO GND)  
LOAD RESISTANCE (kTO V )  
TOTAL POWER SUPPLY (V)  
1067 G10  
1067 G11  
1067 G12  
LTC1067-50  
Maximum Q vs Center Frequency  
(Modes 2 Where R4 < 10R2, 3)  
LTC1067-50  
Maximum Q vs Center Frequency  
LTC1067-50  
Noise + THD vs Input Voltage  
(Modes 1, 1B, 2 Where R4 10R2)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
4TH ORDER BUTTERWORTH LPF  
V
= SINGLE 3V, f = 1kHz  
V
f
= ±5V  
CLK(MAX)  
S
CLK  
IN  
V
f
= ±5V  
CLK(MAX)  
S
S
f
= 200kHz, f  
= 4kHz  
–3dB  
= 2MHz  
= 2MHz  
V
= 5V  
S
V
f
= 5V  
CLK(MAX)  
S
f
= 1.5MHz  
CLK(MAX)  
= 1.5MHz  
V
= 3.3V  
S
V
= 3.3V  
S
f
= 800kHz  
CLK(MAX)  
f
= 800kHz  
CLK(MAX)  
MODE 1  
MODE 3  
V
= 3V  
S
V
f
= 3V  
S
f
= 600kHz  
CLK(MAX)  
= 600kHz  
CLK(MAX)  
0.1  
1
2
0
10  
20  
30  
0
10  
20  
30  
40  
40  
INPUT VOLTAGE (V  
)
RMS  
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
O
O
1067 G15  
1067 G13  
1067 G14  
5
LTC1067/LTC1067-50  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1067-50  
Noise + THD vs Input Voltage  
LTC1067-50  
Noise + THD vs Input Voltage  
LTC1067-50  
Noise + THD vs Input Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
4TH ORDER BUTTERWORTH LPF  
4TH ORDER BUTTERWORTH LPF  
MODE 1  
V
f
–3dB  
= ±5V, f = 1kHz  
V
f
= SINGLE 5V, f = 1kHz  
S
CLK  
IN  
S
IN  
= 250kHz (225kHz FOR MODE 2)  
= 250kHz, f  
= 5kHz  
–3dB  
CLK  
f
= 10kHz, R = 20k  
R
L
= 20k  
L
MODE 3  
MODE 3  
MODE 2  
MODE 1  
MODE 1  
4TH ORDER BUTTERWORTH LPF  
V
V
= SINGLE 3V, f  
IN  
= 200kHz  
= 4kHz, R = 20k  
S
CLK  
RMS, –3dB  
MODE 3  
1
= 0.34V  
f
L
0.1  
2
0.1  
1
5
1
2
3
4
5
INPUT VOLTAGE (V  
)
INPUT VOLTAGE (V  
)
RMS  
INPUT FREQUENCY (kHz)  
RMS  
1067 G16  
1067 G17  
1067 G18  
LTC1067-50  
Noise + THD vs Input Frequency  
LTC1067-50  
Noise vs Q  
LTC1067-50  
Noise + THD vs Input Frequency  
400  
350  
300  
250  
200  
150  
100  
50  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
4TH ORDER BUTTERWORTH LPF  
4TH ORDER BUTTERWORTH LPF  
V
V
= SINGLE 5V, f  
= 250kHz  
V
V
= ±5V, f  
= 250kHz  
S
IN  
CLK  
RMS, –3dB  
S
IN  
CLK  
, f  
= 0.5V  
f
= 5kHz, R = 20k  
L
= 1V  
= 20k  
= 5kHz  
±5V  
RMS –3dB  
R
L
5V  
3V  
MODE 1  
MODE 3  
MODE 1  
MODE 3  
0
0
5
10 15 20 25 30 35 40 45 50  
1
2
3
4
5
1
2
3
4
5
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Q
1067 G19  
1067 G20  
1067 G21  
LTC1067-50  
Output Voltage Swing vs Load  
Resistance, ±5V Supply Voltage  
LTC1067-50  
Output Voltage Swing vs Load  
Resistance, Single Supply Voltage  
LTC1067-50  
Power Supply Current  
vs Power Supply  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
V
= ±5V  
S
V
S
= 5V  
70°C  
V
S
= 3V  
20°C  
25°C  
0
2
4
6
8
10 12 14 16 18 20  
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
LOAD RESISTANCE (kTO GND)  
LOAD RESISTANCE (kTO V )  
TOTAL POWER SUPPLY (V)  
1067 G22  
1067 G23  
1067 G24  
6
LTC1067/LTC1067-50  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1067/LTC1067-50 Mode 1B  
Noise Increase vs R5/R6 Ratio  
2.0  
LTC1067/LTC1067-50 Mode 3  
Noise Increase vs R2/R4 Ratio  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.6  
R2/R4 RATIO  
0.7  
0.8 0.9 1.0  
0.2 0.3 0.4 0.5  
2.0  
2.5  
3.0 3.5  
0
0.5  
1.0 1.5  
R5/R6 RATIO  
1067 G26  
1067 G25  
U
U
U
PIN FUNCTIONS  
V+, V(Pins 1, 3,14): The V+ (Pins 1, 3) and the V(Pin  
14) should each be bypassed with a 0.1µF capacitor to an  
adequateanalogground.Thefilter’spowersuppliesshould  
be isolated from other digital or high voltage analog  
supplies. A low noise linear supply is recommended.  
Using a switching power supply will lower the signal-to-  
noise ratio of the filter. The supply’s power-up slew rate  
shouldbelessthan1V/µs.WhenV+ isappliedbeforeV, and  
Visallowedtogoaboveground,adiodeshouldclampV–  
to prevent latch-up. Figures 1 and 2 show typical connec-  
tions for dual and single supply operation.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
+
V
CLK  
V
CLK  
NC  
AGND  
NC  
AGND  
1µF  
+
+
+
+
V
V
V
V
V
V
V
0.1µF  
0.1µF  
SA  
LTC1067  
LTC1067-50  
SB  
LPB  
BPB  
SA  
SB  
LPB  
BPB  
0.1µF  
LTC1067  
LTC1067-50  
LPA  
LPA  
BPA  
BPA  
HPA/NA  
INV A  
HPB/NB  
INV B  
HPA/NA  
INV A  
HPB/NB  
INV B  
DIGITAL  
GROUND  
PLANE  
DIGITAL  
GROUND  
PLANE  
200Ω  
STAR  
SYSTEM  
GROUND  
STAR  
SYSTEM  
GROUND  
200Ω  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
106 7 F02  
FOR MODE 3, THE SA AND SB SUMMING NODE PINS  
ARE TIED TO THE AGND PIN  
1067 F01  
Figure 2. Single Supply Ground Plane Connections  
Figure 1. Dual Supply Ground Plane Connections  
7
LTC1067/LTC1067-50  
U
U
U
PIN FUNCTIONS  
SA, SB (Pins 4, 13):Summing Inputs. The summing pins’  
connection, along with the other resistor connections,  
determine the circuit topology (mode) of each 2nd order  
section. These pins should never be left floating.  
plane with at least a 1µF capacitor. An on-chip resistive  
voltage divider sets the bias at one-half of the supply.  
CLK (Pin 16): Clock Input. Any CMOS logic clock source  
with a square-wave output and a 50% duty cycle (±10%)  
is an adequate clock source for the device. The power  
supplyfortheclocksourceshouldnotbethefilter’spower  
supply. The analog ground for the filter should be con-  
nected to the clock’s ground at a single point only. Table  
1showstheclock’slowandhighlevelthresholdvaluesfor  
dual supply or single supply operation. Logic low level  
signals must be greater than the negative supply voltage.  
With a ±5V power supply, the clock levels may be either  
±5V or 0V to 5V. Logic high level signals should be less  
than the positive supply voltage. However, when the  
positive supply voltage is either 3V or 3.3V, the clock  
signal can be as high as 5.5V.  
LPA, BPA, HPA/NA, HPB/NB, BPB, LPB (Pins 5, 6, 7, 10,  
11, 12): Output Pins. Each 2nd order section of the  
LTC1067 has three outputs which typically source 33mA  
and sink 2mA. Driving coaxial cable, capacitive loads or  
resistive loads less than 10k will degrade the total har-  
monic distortion performance ofany filter design. Referto  
OutputLoadingintheApplicationsInformationsectionfor  
more details. When evaluating the distortion or noise  
performance of a filter, the output should be buffered with  
a wideband amplifier.  
INV A, INV B (Pins 8, 9): Inverting Input. These pins are  
the high impedance inverting inputs of internal op amps.  
They are susceptible to stray capacitance coupling to low  
impedance nodes such as signal outputs and power  
supply lines. Resistors that are connected from a signal  
outputto theinverting inputpin should be locatedas close  
to the inverting input as possible.  
Table 1. Clock Source High and Low Threshold Levels  
POWER SUPPLY  
±5V  
HIGH LEVEL  
2.2V  
LOW LEVEL  
0.50V  
Single 5V  
2.2V  
0.50V  
Single 3V, 3.3V  
2V  
0.40V  
Sine waves are not recommended for the clock input. The  
clock signal should be routed from the right side of the IC  
package to avoid coupling to any power supply lines or  
input or output signal paths. A 200resistor between the  
clock source and Pin 16 will slow down the rise and fall  
times of the clock to reduce charge coupling of the clock.  
This will result in less clock feedthrough noise on the  
output signal.  
AGND (Pin 15): Analog Ground. The filter performance  
depends on the quality of the analog signal ground. For  
either dual or single supply operation, an analog ground  
plane surrounding the package is recommended. The  
analog ground plane should be connected to any digital  
ground at a single point. For dual supply operation Pin 15  
is connected to the analog ground plane. For single supply  
operationPin15shouldbebypassedtotheanalogground  
W
BLOCK DIAGRA  
+
1
V
V
HPA/NA  
LPA  
5
BPA  
6
INV A  
8
7
+
+
+
3
4
15k  
15k  
AGND  
15  
SA  
BPB  
11  
LPB  
12  
HPB/NB  
10  
+
+
INV B  
9
14  
1067 BD  
V
13  
16  
CLK  
SB  
8
LTC1067/LTC1067-50  
W
U
ODES OF OPERATIO  
Linear Technology’s universal switched-capacitor filters  
are designed with a fixed internal, nominal fCLK/fO ratio.  
The LTC1067 has a 100:1 fCLK/fO ratio and the  
LTC1067-50 has a 50:1 fCLK/fO ratio. Filter designs often  
requirethefCLK/fO ratioofeachsectiontobedifferentfrom  
the nominal ratio and in most cases different from each  
other. Ratios other than the nominal value are possible  
with external resistors. Operating modes use external  
resistors, connected in different arrangements to realize  
different fCLK/fO ratios. By choosing the proper mode, the  
Mode 1  
In Mode 1, the ratio of the external clock frequency to the  
center frequency of each 2nd order section is internally  
fixed at the part’s nominal ratio. Figure 3 illustrates Mode  
1 providing 2nd order notch, lowpass and bandpass  
outputs. Mode 1 can be used to make high order Butter-  
worth lowpass filters; it can also be used to make low Q  
notches and for cascading 2nd order bandpass functions  
tuned at the same center frequency. Mode 1 is faster than  
Mode 3.  
f
CLK/fO ratio canbeincreasedordecreasedfromthe part’s  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
nominal ratio.  
The choice of operating mode also effects the transfer  
function at the HP/N pins. The LP and BP pins always give  
thelowpassandbandpasstransferfunctionsrespectively,  
regardless of the mode utilized. The HP/N pins have a  
different transfer function depending on the mode used.  
Mode 1 yields a notch transfer function. Mode 3 yields a  
highpass transfer function. Mode 2 yields a highpass-  
notch transfer function (i.e., a highpass with a stopband  
notch). More complex transfer functions, such as low-  
pass-notch, allpass or complex zeros, are achieved by  
summing two or more of the LP, BP or HP/N outputs. This  
is illustrated in sections Mode 2n and Mode 3a.  
C
C
R3  
R2  
N
S
LP  
BP  
R1  
V
IN  
+
Σ
1067 F03  
+
f
CLK  
f
=
; f = f  
n O  
O
RATIO  
R3  
R2  
= H  
R2  
R1  
R3  
R1  
AGND  
Q = ; H = – ; H  
= –  
ON  
OBP  
H
OLP  
ON  
NOTE: RATIO = 100 FOR LTC1067  
= 50 FOR LTC1067-50  
Choosing the proper mode(s) for a particular application  
is not trivial and involves much more than just adjusting  
the fCLK/fO ratio. Listed here are six of the nearly twenty  
modes available. To make the design process simpler and  
quicker, Linear Technology has developed the FilterCADTM  
for Windows® design software. FilterCAD is an easy-to-  
use, powerful and interactive filter design program. The  
designer can enter a few filter specifications and the  
program produces a full schematic. FilterCAD allows the  
designer to concentrate on the filter’s transfer function  
and not get bogged down in the details of the design.  
Alternatively, those who have experience with the Linear  
Technology family of parts can control all of the details  
themselves. For a complete listing of all the operating  
modes, consult the appendices of the FilterCAD manual or  
the Help files in FilterCAD. FilterCAD can be obtained free  
of charge on the Linear Technology web site (http://  
www.linear-tech.com) or you can order the FilterCAD  
CD-ROM by contacting Linear Technology’s marketing  
department.  
Figure 3. Mode 1, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
Mode 1b  
Mode 1b is derived from Mode 1. In Mode 1b (Figure 4)  
two additional resistors R5 and R6 are added to lower the  
amount of voltage fed back from the lowpass output into  
the input of the SA (or SB) switched-capacitor summer.  
This allows the filter’s clock-to-center frequency ratio to  
be adjusted beyond the part’s nominal ratio. Mode 1b  
maintains the speed advantages of Mode 1 and should be  
consideredanoptimummodeforhighQdesignswithfCLK  
to fCUTOFF (or fCENTER) ratios greater than the part’s  
nominal ratio.  
FilterCAD is a trademark of Linear Technology Corporation.  
Windows is a registered trademark of Microsoft Corporation.  
9
LTC1067/LTC1067-50  
W
U
ODES OF OPERATIO  
C
C
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
R6  
N
R5  
C
C
R3  
R2  
R4  
R3  
R2  
S
LP  
BP  
R1  
V
IN  
HP  
S
LP  
BP  
+
Σ
R1  
1067 F04  
+
V
IN  
+
f
+
R6  
(R6 + R5)  
CLK  
f
=
;=f f  
n
O
O
Σ
RATIO  
R3  
R2 (R6 + R5)  
R6  
AGND  
1067 F05  
R2  
R3  
R1  
Q =  
; H = – ; H  
= –  
OBP  
ON  
R1  
R2 R6 + R5  
f
1
CLK  
R2  
R4  
R2  
R4  
R3  
H
OLP  
= –  
f
=
NOTE: RATIO = 100 FOR LTC1067  
= 50 FOR LTC1067-50  
; Q = 1.005  
AGND  
O
(
)
(
)
R1  
R6  
RATIO  
R2  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
R3  
R1  
1
R2  
= – ; H  
R4  
R1  
H
= –  
OBP  
;
H
OLP  
= –  
Figure 4. Mode 1b, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
OHP  
R1  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
NOTE: RATIO = 100 FOR LTC1067  
= 50 FOR LTC1067-50  
The parallel combination of R5 and R6 should be kept  
below 5k.  
Figure 5. Mode 3, 2nd Order Section Providing  
Highpass, Bandpass and Lowpass Outputs  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
C
C
Mode 3  
R4  
R3  
In Mode 3, the ratio of the external clock frequency to the  
center frequency of each 2nd order section can be ad-  
justed above or below the part’s nominal ratio. Figure 5  
illustrates Mode 3, the classical state variable configura-  
tion, providing highpass, bandpass and lowpass 2nd  
orderfilterfunctions. Mode3isslowerthanMode1. Mode  
3 can be used to make high order all-pole bandpass,  
lowpass and highpass filters.  
R2  
HPN  
S
LP  
BP  
R1  
V
IN  
+
+
Σ
1067 F06  
AGND  
f
R2  
R4  
f
CLK  
RATIO  
CLK  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
1 +  
f
=
; f =  
n
O
)
RATIO  
R2  
R4  
1
R3  
1 +  
Q = 1.005  
(
R2  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
Mode 2  
R2  
R1  
R2  
1
R2  
R4  
H
OHPN  
= –  
(AC GAIN, f >> f ); H  
= –  
OHPN  
(DC GAIN)  
O
R1  
Mode 2 is a combination of Mode 1 and Mode 3, shown in  
Figure6.WithMode2,theclock-to-centerfrequencyratio,  
fCLK/fO, is always less than the part’s nominal ratio. The  
advantage of Mode 2 is that it provides less sensitivity to  
resistor tolerances than does Mode 3. Mode 2 has a  
highpass-notch output where the notch frequency  
depends solely on the clock frequency and is therefore  
less than the center frequency, fO.  
1 +  
(
)
1
1
R2  
R4  
R3  
R1  
R2  
R1  
H
= –  
; H  
= –  
OBP  
OLP  
R3  
1 +  
1 –  
(
)
(
)
(RATIO)(0.32)(R4)  
NOTE: RATIO = 100 FOR LTC1067  
= 50 FOR LTC1067-50  
Figure 6. Mode 2, 2nd Order Filter Providing Highpass  
Notch, Bandpass and Lowpass Outputs  
10  
LTC1067/LTC1067-50  
W
U
ODES OF OPERATIO  
Mode 3a  
Mode 2n  
This is an extension of Mode 3 where the highpass and  
lowpass outputs are summed through two external resis-  
tors, RH and RL, to create a notch (see Figure 7). Mode 3a  
is more versatile than Mode 2 because the notch fre-  
quency can be higher or lower than the center frequency  
of the 2nd order section. The external op amp of Figure 7  
isnotalwaysrequired. Whencascadingthesectionsofthe  
LTC1067, the highpass and lowpass outputs can be  
summed directly into the inverting input of the next  
section.  
This mode extends the circuit topology of Mode 3a to  
Mode 2 (Figure 8) where the highpass-notch and lowpass  
outputs are summed through two external resistors, RH  
and RL, to create a lowpass output with a notch higher in  
frequency than the notch in Mode 2. This mode, shown in  
Figure 8, is most useful in lowpass elliptic designs. When  
cascading the sections of the LTC1067, the highpass-  
notch and lowpass outputs can be summed directly into  
the inverting input of the next section.  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
C
C
f
f
CLK  
RATIO  
R2  
R4  
R
H
CLK  
f
=
f =  
; n  
O
R
L
RATIO  
R4  
R3  
R2  
1
R2  
R4  
R3  
Q = 1.005  
(
)
R2  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
R
G
R
R2  
R1  
R4  
R1  
G
H
(f = ) =  
; H (f = 0) =  
OLPn  
OHPn  
(
)
(
)
(
)
(
)
HP  
S
R
H
R
L
LP  
R
BP  
NOTE: RATIO = 100 FOR LTC1067  
R1  
V
= 50 FOR LTC1067-50  
IN  
+
Σ
R
G
L
+
+
HIGHPASS  
OR LOWPASS  
NOTCH OUTPUT  
R
H
AGND  
EXTERNAL OP AMP OR INPUT OP  
1067 F07  
AMP OF THE LTC1067, SIDES A OR B  
Figure 7. Mode 3a, 2nd Order Filter Providing a Highpass Notch or Lowpass Notch Output  
f
CLK  
R2  
R4  
f
f
=
=
1 +  
1 +  
O
RATIO  
f
C
C
CLK  
R
H
n
RATIO  
R
L
R
R
R
G
1
R2  
R1  
G
H
H
(f = 0)=  
+
OLPn  
R4  
R3  
R2  
(
)
(
)
R
R2  
R4  
L
1 +  
(
)
R2  
R4  
1
R3  
1 +  
Q = 1.005  
(
)
R2  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
HP  
S
LP  
R
BP  
NOTE: RATIO = 100 FOR LTC1067  
= 50 FOR LTC1067-50  
R1  
V
IN  
+
Σ
R
G
L
+
+
LOWPASS  
NOTCH  
OUTPUT  
R
H
AGND  
EXTERNAL OP AMP OR INPUT OP AMP  
OF THE LTC1067, SIDES A OR B  
1067 F08  
Figure 8. Mode 2n, 2nd Order Filter Providing a Lowpass Notch Output  
11  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
Aswitched-capacitorintegratorgenerallyexhibitsahigher  
input offset than a discrete RC integrator. The larger offset  
is mainly due to the charge injection from the CMOS  
switches into the integrated capacitor. The integrator’s op  
amp offset, typically a couple of millivolts, also adds to the  
overall offset value. Figure 9 shows the input offsets from  
a single 2nd order section. Table 2 lists the formula for the  
output offset voltage for various modes and output pins.  
limits defined by the Typical Performance Characteristics  
graphs, passband gain variations of 2dB or more should be  
expected.  
Clock Feedthrough  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pins. The clock feedthrough is tested with the  
filter’s input grounded and depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques, the typical values of clock feedthrough are  
listed under Electrical Characteristics.  
HP/N  
BP  
LP  
INV  
V
OS1  
+
+
V
OS2  
V
OS3  
1067 F09  
Any parasitic switching transients during the rising and  
fallingedgesoftheincomingclockarenotpartoftheclock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, can be greatly reduced by adding a  
simple RC lowpass network at the final filter output. This  
RC will completely eliminate any switching transients.  
S
Figure 9. Block Diagram of a 2nd Order Section  
Showing the Input Offsets  
Operating Limits  
The Maximum Q vs Frequency (fO) graphs, under Typical  
Performance Characteristics, define an upper limit of  
operating Q for each LTC1067 (or LTC1067-50) 2nd order  
section. These graphs indicate the power supply, fO and Q  
value conditions under which a filter implemented with an  
LTC1067 will remain stable when operated at tempera-  
tures of 70°C or less. For a 2nd order section, a bandpass  
gainerrorof3dBorlessisarbitrarilydefinedasacondition  
for stability.  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and is used to deter-  
mine the operating signal-to-noise ratio. Most of its fre-  
quency contents lie within the filter passband and cannot  
be reduced with post filtering. For a notch filter the noise  
of the filter is centered at the notch frequency.  
When the passband gain error begins to exceed 1dB, the use  
of capacitor CC will reduce the gain error (capacitor CC is  
connected from the lowpass node to the inverting node of a  
2nd order section). Please refer to Figures 3 through 8. The  
value of CC can be best determined experimentally, and as a  
guide it should be about 5pF for each 1dB of gain error and  
not to exceed 15pF. When operating the LTC1067 near the  
Thetotalwidebandnoise(µVRMS)isnearlyindependentof  
the value of the clock. The clock feedthrough specifica-  
tions are not part of the wideband noise.  
For a specific filter design, the total noise depends on the  
Q of each section and the cascade sequence.  
Table 2. Output DC Offsets for a Second Order Section  
MODE  
V
V
V
V
V
V
OSLP  
OSHP/N  
OSBP  
OS3  
OS3  
OS3  
1
1b  
2
V
V
V
[1 + (R2/R3) + (R2/R1)] – (V )(R2/R3)  
V
– V  
OSHP/N OS2  
OS1  
OS1  
OS1  
OS3  
[1 + (R2/R3) + (R2/R1)] – (V )(R2/R3)  
(V  
– V )[1 + (R5/R6)]  
OSHP/N OS2  
OS3  
[1 + (R2/R3) + (R2/R1) + (R2/R4) – (V  
(R2/R3)](R4/R2 + R4) + (V )(R2/R2 + R4)  
)
V
– V  
OSHP/N OS2  
OS3  
OS2  
3
V
V
V
[1 + (R4/R1) + (R4/R2) + (R4/R3)] – (V  
)
OS2  
OS2  
OS3  
OS1  
(R4/R2) – (V )(R4/R3)  
OS3  
12  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
Aliasing  
LTC1067-50, always use a 10× probe. Never use a 1×  
probe. A standard 10× probe has a capacitance of 10pF to  
15pF while a 1× probe’s capacitance can be as high as  
150pF. The 1× probe will probably cause oscillation.  
Aliasingisaninherentphenomenonofswitched-capacitor  
filters and occurs when the frequency of the input signals  
that produce the strongest aliased components have a  
frequency, fIN, such as (fSAMPLING – fIN) that falls into the  
filter’s passband. For both the LTC1067 and the  
LTC1067-50, the sampling frequency is twice fCLK. If the  
input signal spectrum is not band limited, aliasing may  
occur.  
What to Do with an Unused Section  
If the LTC1067 or LTC1067-50 is used as a single 2nd  
order filter, the other 2nd order section is not used. Do not  
leave this section unconnected. If the section is uncon-  
nected,inputsandoutputsarelefttofloattoundetermined  
levels and oscillation may occur. The unused section  
should be connected as shown in Figure 10.  
Output Loading  
The op amps on the LTC1067/LTC1067-50 have a rail-to-  
rail output stage. The output loading issues can be divided  
into resistive loading effects and capacitive loading ef-  
fects.  
+
V
INV  
Resistiveloadingeffectsthemaximumoutputsignalswing.  
This effect is shown in the typical performance curves.  
Note that the load on the output must include both the  
feedback resistor and any external load resistor. For  
example, consider the following situation: the part is  
running on split power supplies, the section is configured  
in Mode 3, the R4 resistor is 20k and an external 20k load  
is connected from the LP node to ground. The load on the  
LP output is 20k in parallel with 20k, or 10k. All testing on  
the LTC1067/LTC1067-50 is done with a 10k load. For the  
best results, the load resistance on all output pins should  
be at least 10k.  
+
HP  
BP  
LP  
1067 F10  
Figure 10. Connections for an Unused Section  
Output Voltage Swing on a Single Supply Voltage  
The typical performance curves show the output voltage  
swing limitations. The curves show the output signal  
swing, in volts peak-to-peak, versus the output load resis-  
tance. The peak-to-peak swing is limited by the following  
three considerations: the op amp’s output swings closer  
to the negative supply than the positive supply, the AGND  
pin is biased at the midpoint of the supplies and all  
operating modes are inverting.  
Capacitive loading reduces the stability of the op amps.  
The signal at the output of a switched-capacitor filter is  
composed of a series of very small steps. The op amp  
mustrespondtoastepandfullysettlebeforethenextstep.  
As the stability of the op amp is decreased, the output step  
responsehasincreasedringingandamuchlongersettling  
time. This longer settling time drastically lowers the maxi-  
mum usable clock speed and introduces errors. If the  
capacitive loading is sufficiently high, the stability will be  
decreased to the point of oscillation at the output.  
The op amps in the LTC1067/LTC1067-50 swing closer to  
the negative supply rail than the positive supply rail. The  
positive output voltage swing for single supply operation  
isshowninFigures11and12. Thenegativeoutputvoltage  
swing is about 15mV for the LTC1067 and 10mV for the  
LTC1067-50. The negative output voltage swing is nearly  
independent of load resistance since the load in this case  
is connected to the Vsupply rail.  
TheLTC1067/LTC1067-50aresensitivetocapacitiveload-  
ing. Capacitive loading should be kept below 20pF. Good,  
tight layout techniques should be maintained at all times.  
These parts should not drive long traces and never drive  
a long coaxial cable. When probing the LTC1067 or  
Forsinglesupplyapplications, theon-chipresistordivider  
sets the voltage at the AGND pin to the midpoint of the V+  
and Vpotentials. The AGND voltage is the reference for  
all internal op amps. If the input to the filter is at the Vrail,  
13  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
5.0  
Many applications are more concerned with the negative  
outputswingthanthepositiveoutputswing.Interfacingto  
an ADC running on a single 5V supply with a 4.096  
reference voltage is a standard example. The LTC1067 or  
LTC1067-50 will easily reach the 4.096V level for a full-  
scale reading. The issue is how close does the output go  
toground. Thefurthertheoutputisfromground, themore  
codes that are essentially lost. The previous example  
demonstrated that the lowest output voltage would be  
about 250mV, although, as is shown below, 15mV is  
achievable.  
4.5  
LTC1067  
4.0  
LTC1067-50  
3.5  
3.0  
2.5  
0
2
4
6
8
10 12 14 16 18 20  
LOAD RESISTANCE (kTO V )  
1067 F11  
To achieve a lower negative output swing voltage, the  
AGNDvoltagemustbeadjusteddownbelowthemidpoint.  
The AGND voltage is determined by two equal, on-chip  
resistors. These resistors are typically 15k each. While the  
ratioofthesetworesistorsistightlymatched, theabsolute  
value of the resistors is not tightly controlled. Adjusting  
the AGND voltage by simply adding an external resistor  
can be done, but caution must be exercised.  
Figure 11. LTC1067/LTC1067-50 Positive Output Voltage  
Swing vs Load Resistance, 5V Supply  
3.3  
LTC1067  
S
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
V
= 3.3V  
LTC1067-50  
V
= 3V  
S
In Figure 13, a resistor is used to adjust the AGND voltage  
for use with a 5V powered ADC with a full-scale input of  
4.096V. The resistor value was chosen carefully to assure  
that a 4.096V input signal to the filter yields a full-scale  
reading from the ADC and a 0V input signal gives the  
lowest possible value (15mV for the LTC1067 and 10mV  
forthe LTC1067-50). The circuit works wellover tempera-  
tureandpartvariations. Forthisapplication, the5Vsupply  
must be above 4.75V.  
0
2
4
6
8
10 12 14 16 18 20  
LOAD RESISTANCE (kTO V )  
1067 F12  
Figure 12. LTC1067/LTC1067-50 Positive Output Voltage  
Swing vs Load Resistance, 3.3V/3V Supplies  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
64.9k  
1%  
V
CLK  
the output of the first section is near the positive rail  
(operating modes invert the signal). The output of the first  
stage will saturate at about 250mV (typical for 5V supply)  
from positive supply. The output from the second stage  
will be 250mV from the negative supply rail (assuming  
inversion again) even though the op amp’s output is  
capable of swinging to within 15mV.  
NC  
AGND  
1µF  
5V  
MIN  
0.1µF  
+
V
V
(4.75V  
)
SA  
LTC1067  
LTC1067-50  
SB  
LPB  
BPB  
LPA  
BPA  
HPA/NA  
INV A  
HPB/NB  
INV B  
1067 F13  
The positive output voltage swing being less than the  
negative swing, coupled with the AGND potential set at the  
midpoint of the supplies and inverting of the signal, yields  
the following equation for peak-to-peak output swing:  
Figure 13. Power and AGND Connections for  
5V ADC with 4.096V Full Scale  
VP-P Swing = (V+ V) – 2(V+ – VPOSITIVE SWING  
)
14  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
Figure 14 illustrates how a resistor adjusts the AGND  
voltage for use with a 3V/3.3V powered ADC with a full-  
scale input of 2.048V. As in the previous circuit, the  
resistorvaluewaschosencarefullytoassurethata2.048V  
input signal to the filter yields a full-scale reading from the  
ADC and a 0V input signal gives the lowest possible value.  
For this application, the power supply must be above 2.7V  
for an LTC1067-50 filter and above 3V for an LTC1067  
filter.  
obtain a demonstration board, call your local representa-  
tive or Linear Technology’s marketing department.  
The demonstration board has all integrated circuits, con-  
nectors and decoupling capacitors installed. The board is  
ready to be configured with the appropriate resistors and  
jumper connections.  
Therearetwosetsofpowersupplyconnections. Oneisfor  
the LTC1067/LTC1067-50 and the other is for the buffer-  
ing op amp on the board. Having separate connections  
gives the board the most flexibility. The two sets of  
supplies can be connected together if a common supply is  
desired.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
33.2k  
1%  
V
CLK  
NC  
AGND  
3V TO 3.6V  
(LTC1067)  
2.7V TO 3.6V  
(LTC1067-50)  
1µF  
+
V
V
SA  
LTC1067  
LTC1067-50  
SB  
LPB  
BPB  
When configuring the board for split supply operation, a  
jumper wire must be installed in the JPAGND position.  
This connects the AGND pin of the device to the ground  
plane of the board. The JPVNEG jumper must be left open.  
The power supply is then connected to V+, Vand GND  
turrets (all of the GND turrets on the board are the same).  
For single supply operation, insert a wire in the JPVNEG  
jumperandleavetheJPAGNDjumperopen.Thisconnects  
the Vpin to the board’s ground plane. The JPAGND  
jumper must be left open so that the on-chip resistor  
network can set the AGND potential at the midpoint of the  
supply. Connect the power supply to V+ and any GND  
turret. The Vturret can be left open or shorted to the  
adjacent GND turret. If the buffering op amp is run on the  
same single voltage supply, the VOA+ turret and the V+  
turrets must be connected together and the VOAturret  
must be shorted to the adjacent GND turret.  
0.1µF  
LPA  
BPA  
HPA/NA  
INV A  
HPB/NB  
INV B  
1067 F14  
Figure 14. Power and AGND Connections for  
3V/3.3V ADC with 2.048V Full Scale  
Semi-Custom Filter Program  
Linear Technology has in place a program to deliver fully  
integratedfilters, customdesignedforanyspecifiedappli-  
cation. Thesesemi-customfilters arebasedonanexisting  
universal filter product with integrated, on-chip resistors.  
The final filter is then tested to the exact parameters  
defined for the application. The final result is a fully  
integrated, accurately tested solution in a smaller pack-  
age. For the LTC1067 or LTC1067-50 parts, a semi-  
customfiltercomesintheSO-8packageandrequiresonly  
aclockandadecouplingcapacitor. Formoredetailsonthe  
semi-custom filter program, contact Linear Technology’s  
marketing department.  
The J1 BNC connector is the clock input. There is a 200Ω  
series resistor connected between the connector and the  
CLK pin of the part. This resistor, coupled with the CLK  
pin’s input capacitance, slows down the rise and fall times  
oftheclocksignalanddecreaseshighfrequencycoupling.  
The clock input is not terminated to 50or 75. An  
external terminator should be used.  
Demonstration Board  
Jumpers JP51 and JP61 are connected in parallel with  
R51andR61respectively. JumperJP51connectstheLPA  
pin of the part with the SA pin. This can be used for  
operating modes 1 or 2. Alternatively, a 0resistor in the  
R51 position fulfills the same requirement. The JP61  
jumper connects the SA pin of the part to the AGND pin.  
There is a demonstration board available for the LTC1067/  
LTC1067-50.Demonstrationboard150AhastheLTC1067  
part installed and the board 150B has the LTC1067-50  
installed. The schematic for the board is shown in Figure  
15 and the assembly drawing is shown in Figure 16. To  
15  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
This would be used for operating Mode 3. Here, a 0Ω  
resistorintheR61positionalsoworks. JumpersJP52and  
JP62 perform the same functions on the B side of the part.  
Several other jumpers should be connected as follows:  
JP1: Install a jumper wire from position 1 to position 2,  
leave the other positions open.  
The buffering amplifier can be configured for inverting or  
noninverting operation. For inverting applications, con-  
nect jumper JP2 positions 1 and 2. Additionally, connect  
jumper JP4 for split supply applications or JP8 for a single  
supply. For a noninverting application, connect jumper  
JP2 positions 2 and 3.  
JP5: Install a jumper wire if split supply, leave open if  
single supply.  
JP6: Leave open.  
JP7: Install a jumper wire.  
JP9: Install a jumper wire if single supply, leave open if  
split supply.  
CONNECT THIS JUMPER  
FOR DUAL SUPPLIES  
JPAGND  
C1  
CONNECT THIS JUMPER  
FOR SINGLE SUPPLIES.  
THE LTC1067 HAS ON-CHIP  
RESISTORS TO GENERATE  
1/2 SUPPLY FOR AGND  
10µF, 6.3V  
+
C2, 0.1µF  
J1  
CLOCK  
D2  
IN  
R1  
200Ω  
1%  
JP3  
C5  
TP1  
TP2  
MBR0630T1  
+
V
V
JP62  
R62  
C4  
JPVNEG  
JP61  
C6, 0.1µF  
+
C3  
10µF  
1
2
3
4
5
6
7
8
16  
D1  
+
+
10µF  
V
CLK  
16V  
MBR0630T1  
R61  
JP51  
R51  
C7  
0.1µF  
16V  
15  
14  
13  
12  
11  
10  
9
R3  
R2  
JP8  
JP4  
NC  
AGND  
JP52  
TP8  
+
TP9  
V
V
LTC1067  
OR  
LTC1067-50  
TP3  
VOA  
R52  
+
SA  
SB  
C8  
0.1µF  
R
+
C9  
10µF  
36V  
R41  
R31  
R21  
L2  
B2  
H2  
LPA  
LPB  
BPB  
JP2  
3
2
R
R
BPA  
1
8
1
3
2
+
TP5  
HPA/NA  
INV A  
HPB/NB  
INV B  
R11  
2
TP4  
IN  
TP10  
JP1  
V
OUT  
1
3
V
1/2  
LT1498  
TP6  
C13  
4
4
R42  
R32 R22  
R
R
R
B1  
L1  
H1  
TP7  
VOA  
C11  
10µF  
36V  
C10  
0.1µF  
+
TP11  
JP9  
R4  
JP6  
JP5  
+
5
6
7
1/2  
LT1498  
JP7  
C12  
1067 F15  
Figure 15. Schematic for the LTC1067/LTC1067-50 Demo Board  
16  
LTC1067/LTC1067-50  
U
W U U  
APPLICATIONS INFORMATION  
Figure 16. Silkscreen for the LTC1067/LTC1067-50 Demo Board  
U
TYPICAL APPLICATIONS  
5th Order Lowpass with Input RC (Fixed Frequency)  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
+
f
V
CLK  
5V  
CLK  
0.1µF  
–5V  
NC  
AGND  
0.1µF  
+
V
V
SA  
SB  
LTC1067  
R42, 47.5k  
R41, 20k  
LPA  
LPB  
BPB  
R32, 29.4k  
R22, 45.3k  
R31, 47.5k  
R21, 22.6k  
V
V
f
C
f
±5V  
20k  
750pF 1000pF  
2MHz 1.5MHz  
5V  
10k  
1500pF  
1MHz  
3V  
S
IN  
BPA  
15k  
5k  
CUTOFF  
R
IN1  
16.9k  
3000pF  
500kHz  
IN1  
R
22.6k  
HPA/NA HPB/NB  
IN2  
CLK  
INV A  
INV B  
, 118k  
C
IN1  
1500pF  
5%  
1067 TA05a  
R
H1  
V
OUT  
R
L1  
, 24.3k  
Frequency Response (fCUTOFF = 10kHz)  
Passband Gain Variation Due to CIN  
10  
1.00  
0
0.75  
0.50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.25  
C
= 1500pF – 5%  
IN1  
C
= 1500pF  
0
IN1  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
C
= 1500pF + 5%  
IN1  
1
10  
100  
1
2
4
6
8 10  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1067 TA05b  
1067 TA05c  
17  
LTC1067/LTC1067-50  
U
TYPICAL APPLICATIONS  
1kHz Linear Phase Bandpass Filter  
16  
1
2
3
4
5
6
7
8
+
100kHz  
V
CLK  
5V  
0.1µF  
15  
14  
13  
12  
11  
10  
9
R61  
–5V  
NC  
AGND  
40.2k  
0.1µF  
+
V
V
R51  
4.99k  
SA  
SB  
LTC1067  
R42, 80.6k  
LPA  
BPA  
LPB  
BPB  
R32, 53.6k  
R22, 10k  
R31, 56.2k  
V
S
±5V  
5V (OR±2.5V) 3V (OR±1.5V)  
R21, 10k  
MAXIMUM  
FREQUENCY  
CENTER  
HPA/NA HPB/NB  
R11  
60.4k  
5kHz  
2.5kHz  
2.2kHz  
INV A  
R
INV B  
, 36.5k  
V
IN  
1067 TA06a  
B1  
V
OUT  
Gain and Group Delay vs Frequency  
10  
Sine Burst Response  
5
0
GAIN  
INPUT  
(500mV/DIV)  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
3.0  
DELAY  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OUTPUT  
(50mV/DIV)  
600  
760  
920  
1080  
1240  
1400  
5ms/DIV  
FREQUENCY (Hz)  
1067 TA06c  
1067 TA06b  
Single Supply, 4th Order Bandpass Filter  
fCENTER = fCLK/64, 3dB BW = fCENTER/20  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
+
64kHz  
V
CLK  
5V  
0.1µF  
R61  
7.32k  
NC  
AGND  
+
V
V
1µF  
R51  
4.99k  
V
S
MAXIMUM f  
CENTER  
R62  
SA  
SB  
R52  
4.99k  
8.66k  
SINGLE 5V  
SINGLE 3.3V  
SINGLE 3V  
12kHz  
7.5kHz  
5.5kHz  
LTC1067-50  
LPA  
LPB  
R32, 255k  
R22, 4.99k  
R31, 255k  
R21, 4.99k  
BPA  
BPB  
NOISE  
(FILTER INPUT AT V/2)  
+
HPA/NA  
INV A  
HPB/NB  
INV B  
R11  
267k  
V
S
SINGLE 5V  
SINGLE 3.3V  
SINGLE 3V  
42µ6V  
3µ3V3  
RMS  
RMS  
RMS  
V
IN  
2µ9V0  
R
, 115k  
B1  
V
OUT  
1067 TA07a  
18  
LTC1067/LTC1067-50  
U
TYPICAL APPLICATIONS  
Single Supply, 4th Order Bandpass Filter  
VS = 5V, fCLK = 64kHz  
Gain vs Frequency  
Gain vs Frequency  
Sine Burst Response  
–5  
1
0
5
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
V
IN  
(500mV/DIV)  
10  
15  
20  
25  
30  
35  
40  
45  
V
OUT  
(50mV/DIV)  
500  
700  
900  
1100  
1300  
1500  
960  
980  
1000  
1020  
1040  
5ms/DIV  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1067 TA07d  
1067 TA07b  
1067 TA07b  
LTC1067 Dual Bandpass Filters  
VS = ±5V, fCLK = 150kHz (fCENTER1 =1.3kHz, fCENTER2 = 2.1kHz)  
Frequency Response  
5
0
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
+
V
V
OUT2  
5V  
150kHz  
V
CLK  
OUT1  
0.1µF  
–5V  
0.1µF  
NC  
AGND  
–5  
R61  
15k  
+
V
V
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
R51  
4.99k  
SA  
SB  
LTC1067  
R42, 5.23k  
R32, 75k  
LPA  
BPA  
LPB  
BPB  
R31, 232k  
R21, 4.99k  
R22, 4.99k  
HPA/NA HPB/NB  
INV A INV B  
R11  
232k  
V
IN1  
R12,140k  
1
2
3
4
5
V
V
V
IN2  
OUT2  
OUT1  
1067 TA08a  
FREQUENCY (kHz)  
1067 TA08b  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
0.015 ± 0.004  
× 45°  
16 15 14 13 12 11 10  
9
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
(0.38 ± 0.10)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN16 (SSOP) 1197  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1067/LTC1067-50  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
16  
15  
14  
13  
12  
11  
10  
9
0.004 – 0.010  
(0.101 – 0.254)  
(1.346 – 1.752)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S16 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
U
TYPICAL APPLICATION  
1.02kHz Notch Filter for Telecom System  
Frequency Response  
0
200Ω  
1µF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
+
f
= 125kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5V  
CLK  
V
CLK  
0.1µF  
AGND  
NC  
+
V
V
R61, 9.88k*  
R62, 10k*  
SB  
SA  
LTC1067  
R52, 4.99k*  
R32, 464k  
R51, 4.99k*  
LPB  
BPB  
LPA  
R31, 61.9k  
BPA  
V
OUT  
R21, 10k  
R22, 75k  
C22, 30pF**  
10  
9
HPA/NA  
INV A  
HPB/NB  
INV B  
C21, 300pF**  
800  
900  
1000  
1100  
1200  
RH1, 40.2k  
V
***  
IN  
FREQUENCY (kHz)  
R11, 18.7k  
1067 TA04  
R51, R61, R52, R62 ARE 0.1% TOLERANCE RESISTORS  
*
C21 AND C22 IMPROVE THE NOTCH DEPTH WHERE  
**  
1
(30)(f  
) <  
< (75)(f  
)
NOTCH  
NOTCH  
2π(R2x)(C2X)  
WITHOUT C21 AND C22 THE NOTCH DEPTH IS LIMITED TO –35dB  
1.25V  
V
1067 TA03  
***  
IN  
P-P  
RELATED PARTS  
PART NUMBER  
LTC1068-25  
LTC1068-50  
LTC1068-200  
LTC1068  
DESCRIPTION  
COMMENTS  
25:1 Clock-to-f Ratio  
High Speed Quad Universal Building Block Filter  
Low Power Quad Universal Building Block Filter  
O
50:1 Clock-to-f Ratio  
O
Low Noise, Oversampled Quad Universal Building Block Filter  
Quad Universal Building Block Filter  
200:1 Clock-to-f Ratio  
O
100:1 Clock-to-f Ratio  
O
LTC1562  
Quad, Universal, Continuous Time Building Block  
10kHz < f < 150kHz  
C
10675f LT/TP 0698 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1997  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1067CGN

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block
Linear

LTC1067CGN#PBF

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1067CGN#TR

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1067CGN#TRPBF

暂无描述
Linear

LTC1067CS

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block
Linear

LTC1067CS#PBF

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1067CS#TR

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1067CS#TRPBF

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1067I

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block
Linear

LTC1067IGN

Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block
Linear

LTC1067IGN#PBF

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1067IGN#TRPBF

LTC1067 - Rail-to-Rail, Very Low Noise Universal Dual Filter Building Block; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear