LTC1099CSW#PBF [Linear]

LTC1099 - High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold; Package: SO; Pins: 20; Temperature Range: 0°C to 70°C;
LTC1099CSW#PBF
型号: LTC1099CSW#PBF
厂家: Linear    Linear
描述:

LTC1099 - High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold; Package: SO; Pins: 20; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总16页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1099  
High Speed 8-Bit A/D  
Converter with Built-In  
Sample-and-Hold  
U
FEATURES  
DESCRIPTIO  
TheLTC®1099isahighspeedmicroprocessorcompatible  
8-bitanalog-to-digitalconverter(A/D).Aninternalsample-  
and-hold (S/H) allows the A/D to convert inputs up to the  
full Nyquist limit. With a conversion rate of 2.5µs, this  
allows 156kHz 5VP-P input signals or slew rates as high as  
2.5V/µs, to be digitized without the need for an external  
S/H.  
Built-In Sample-and-Hold  
No Missing Codes  
No User Trims Required  
All Timing Inputs Edge Sensitive for Easy Processor  
Interface  
Fast Conversion Time: 2.5µs  
Latched Three-State Outputs  
Single 5V Operation  
No External Clock  
Twomodesofoperation,Read(RD)modeandWrite-Read  
(WR-RD) mode, allow easy interface with processors. All  
timing is internal and edge sensitive which eliminates the  
need for external pulse shaping circuits. The Stand-Alone  
(SA) mode is convenient for those applications not involv-  
ing a processor.  
Overflow Output Allows Cascading  
TC Input Allows User Adjustable Conversion Time  
0.3" Wide 20-Pin PDIP  
U
KEY SPECIFICATIO S  
Data outputs are latched with three-state control to allow  
easy interface to a processor data bus or I/O port. An  
overflow output (OFL) is provided to allow cascading for  
higher resolution.  
Resolution: 8-Bits  
Conversion Time: 2.5µs (RD Mode)  
2.5µs (WR/RD Mode)  
Slew Rate Limit (Internal S/H): 2.5V/µs  
Low Power: 75mW Max  
Total Unadjusted Error  
LTC1099: ±1 LSB  
LTC1099A: ±0.75 LSB  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Infinite Hold Time Sample-and-Hold (TACQ = 240ns)  
Signal-to-Noise Ratio (SNR) vs Input Frequency  
5V  
15V  
36  
10k  
T
T
= 25°C  
= 2.5µs  
A
C
38  
40  
42  
44  
46  
48  
50  
52  
12  
+
20  
V
CC  
14  
+
20  
+
REF  
2.5k  
LTC1099  
REF  
V
7
1
6
1
17  
16  
15  
14  
5
4
3
2
MODE  
DB7  
DB6  
DB5  
DB4  
B1  
2
3
4
5
6
7
8
B2  
B3  
B4  
B5  
B6  
B7  
B8  
2
3
18  
19  
7
V
IN  
V
+
IN  
I
O
6
SAMPLE  
HOLD  
V
OUT  
AM6012  
LT1022  
4
WR/RDY DB3  
DB2  
I
O
8
RD  
DB1  
DB0  
13  
CS  
REF  
V
GND  
REF  
15  
17  
1
10  
INPUT FREQUENCY (kHz)  
100  
10k  
10  
11  
1099 G08  
1099 TA01  
–15V  
1
LTC1099  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Supply Voltage (VCC) to GND Voltage ...................... 12V  
Analog and Reference Inputs... 0.3V to (VCC + 0.3V)  
Digital Inputs .........................................0.3V to 12V  
Digital Outputs ........................ 0.3V to (VCC + 0.3V)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1099C/LTC1099AC............................ 0°C to 70°C  
LTC1099I/LTC1099AI ..........................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
V
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
CC  
IN  
1
2
V
T
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
CC  
NUMBER  
IN  
DB0  
DB1  
TC  
DB0  
DB1  
C
OFL  
DB7  
DB6  
DB5  
DB4  
CS  
3
OFL  
LTC1099CN  
LTC1099ACN  
LTC1099AIN  
LTC1099CSW  
DB2  
4
DB7  
DB6  
DB5  
DB4  
CS  
DB2  
DB3  
5
DB3  
WR/RDY  
MODE  
RD  
6
WR/RDY  
MODE  
RD  
7
8
+
+
INT  
REF  
REF  
9
REF  
REF  
INT  
GND 10  
10  
GND  
SW PACKAGE  
20-LEAD PLASTIC SO  
N PACKAGE  
20-LEAD PDIP  
TJMAX = 150°C, θJA = 130°C/W  
TJMAX = 150°C, θJA = 100°C/W  
Consult factory for parts specified with wider operating temperature ranges.  
U
CONVERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, REF+ = 5V, REF= 0V and TA = TMIN to TMAX unless otherwise  
noted.  
LTC1099AI/LTC1099I  
LTC1099AC/LTC1099C  
PARAMETER  
Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Total Unadjusted Error  
LTC1099A  
(Note 3)  
±0.75  
±1  
±0.75  
±1  
LSB  
LSB  
LTC1099  
Minimum Resolution (No Missing Codes)  
Reference Input  
8
8
Bits  
Input Resistance  
1
3.2  
60  
6
2
3.2  
60  
4.5  
kΩ  
V
+
REF Input Voltage Range  
(Note 4)  
(Note 4)  
REF  
V
REF  
V
CC  
CC  
+
+
REF Input Voltage Range  
GND  
GND  
REF  
GND  
GND  
REF  
V
Analog Input  
Input Voltage Range  
Input Leakage Current  
Input Capacitance  
Sample-and-Hold  
Acquisition Time  
Aperture Time  
V
V
V
µA  
pF  
CC  
CC  
CS = V , V = V , GND  
±3  
±3  
CC IN  
CC  
240  
110  
2.5  
240  
110  
2.5  
ns  
ns  
Tracking Rate  
V/µs  
2
LTC1099  
U
DIGITAL ANDDCELECTRICALCHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V, REF+ = 5V, REF= 0V and TA = TMIN to TMAX unless otherwise noted.  
LTC1099AI/LTC1099I  
LTC1099AC/LTC1099C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage All Digital Inputs, V = 5.25V  
2.0  
2.0  
V
V
IH  
IL  
CC  
Low Level Input Voltage  
High Level Input Current  
All Digital Inputs, V = 4.75V  
0.8  
0.0001  
0.8  
CC  
I
V
V
= 5V; CS, RD, Mode  
= 5V; WR  
0.0001  
0.0005  
1
3
1
3
µA  
µA  
IH  
IH  
IH  
0.0005  
I
Low Level Input Current  
V
= 0V; All Digital Inputs  
–0.0001  
–1  
–0.0001  
–1  
µA  
IL  
IL  
V
High Level Output Voltage DB0-DB7, OFL, INT; V = 4.75V  
CC  
OH  
I
I
= 360µA  
=10µA  
2.4  
4.0  
4.7  
2.4  
4.0  
4.7  
V
V
OUT  
OUT  
V
Low Level Output Voltage DB0-DB7, OFL, INT, RDY; V = 4.75V  
OL  
CC  
I
=1.6mA  
0.4  
0.4  
V
OUT  
I
Hi-Z Output Leakage  
DB0-DB7, RDY; V  
DB0-DB7, RDY; V  
= 5V  
= 0V  
0.1  
–0.1  
3
–3  
0.1  
–0.1  
3
–3  
µA  
µA  
OZ  
OUT  
OUT  
I
I
I
Output Source Current  
Output Sink Current  
Supply Current  
DB0-DB7, OFL, INT; V  
= 0V  
OUT  
–11  
14  
–6  
7
–11  
14  
–7  
9
mA  
mA  
mA  
SOURCE  
SINK  
CC  
DB0-DB7, OFL, INT, RDY; V  
= 5V  
OUT  
CS = WR = RD = V  
11  
20  
11  
15  
CC  
The denotes the specifications which apply over the full operating temperature range,  
AC CHARACTERISTICS  
otherwise specifications are at TA = 25°C. VCC = 5V, REF+ = 5V, REF= 0V and TA = TMIN to TMAX unless otherwise noted.  
LTC1099AI/LTC1099I LTC1099AC/LTC1099C  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
RD Mode (Figure 2) Pin 7 = GND  
t
Conversion Time  
T = 25°C  
2.2  
2.5  
70  
2.8  
5.0  
2.2  
2.5  
70  
2.8  
3.75  
µs  
µs  
CRD  
A
t
t
t
t
t
t
Delay From CSto RDY↓  
C = 100pF  
L
ns  
ns  
ns  
ns  
ns  
ns  
RDY  
Delay From RDto Output Data Valid  
Delay From RDto INT↑  
C = 100pF  
L
t
+ 35  
t
+ 35  
CRD  
ACC0  
INTH  
CRD  
C = 100pF  
L
70  
70  
70  
70  
, t  
1H 0H  
Delay From RDto Hi-Z State on Outputs  
Delay Time Between Conversions  
Delay Time From RDto Output Data Valid  
Test Circuit Figure 1  
700  
70  
700  
70  
P
ACC2  
WR/RD Mode (Figures 3 and 4) Pin 7 = V  
CC  
t
Conversion Time  
T = 25°C  
A
2.2  
2.5  
2.8  
5.0  
2.2  
2.5  
2.8  
3.75  
µs  
µs  
CWR  
t
t
t
t
t
t
t
Delay Time From WRto Output Data Valid C = 100pF  
t
+ 40  
t + 40  
CWR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACC0  
ACC2  
INTH  
IHWR  
L
CWR  
Delay From RDto Output Data Valid  
Delay From RDto INT↑  
C = 100pF  
70  
70  
70  
70  
L
C = 100pF  
L
Delay From WRto INT↑  
C = 100pF  
L
240  
70  
240  
70  
, t  
1H 0H  
Delay From RDto Hi-Z State on Outputs  
Delay Time Between Conversions  
Minimum WR Pulse Width  
Test Circuit Figure 1  
700  
55  
700  
55  
P
WR  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Total unadjusted error includes offset, gain, linearity and hold step  
errors.  
Note 2: All voltages are with respect to GND (Pin 10) unless otherwise  
noted.  
Note 4: Reference input voltage range is guaranteed but is not tested.  
3
LTC1099  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Linearity Error vs Reference  
Voltage  
Supply Current vs Temperature  
VOS Error vs Reference Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
18  
16  
14  
12  
10  
8
4
3
2
1
0
T
T
= 25°C  
= 2.5µs  
T
A
T
C
= 25°C  
= 2.5µs  
A
C
6
4
2
0
0
1
2
3
4
5
25  
AMBIENT TEMPERATURE, T (°C)  
50 25  
0
50  
75 100 125  
0
4
5
1
2
3
REFERENCE VOLTAGE, V  
(V)  
REFERENCE VOLTAGE, V  
(V)  
REF  
A
REF  
1099 G03  
1099 G01  
1099 G02  
Total Error vs Reference Voltage  
Accuracy vs Conversion Time  
Conversion Time vs REXT  
4
3
2
1
0
100  
10  
1.0  
0.8  
T
= 25°C  
T
T
= 25°C  
= 2.5µs  
A
A
C
T = 25°C  
A
RESISTOR BETWEEN  
PIN 19 AND V  
CC  
0.6  
0.4  
0.2  
0
RESISTOR BETWEEN  
PIN 19 AND GND  
1.0  
0.1  
0
4
5
1
2
3
10  
100  
1000  
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5  
REFERENCE VOLTAGE, V  
(V)  
RESISTANCE (k)  
CONVERSION TIME (µs)  
REF  
1099 G05  
1099 G06  
1099 G04  
Signal-to-Noise Ratio (SNR) vs  
Input Frequency  
Conversion Time vs Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
36  
T
T
= 25°C  
= 2.5µs  
A
C
38  
40  
42  
44  
46  
48  
50  
52  
50  
100 125  
–50 –25  
0
25  
75  
1
10  
INPUT FREQUENCY (kHz)  
100  
AMBIENT TEMPERATURE, T (°C)  
A
1099 G08  
1099 G07  
4
LTC1099  
U
U
U
PIN FUNCTIONS  
VIN (Pin 1): Analog Input.  
INT (Pin 9): Output that goes low when the conversion in  
process is complete and goes high after data is read.  
DB0 to DB3 (Pins 2 to 5): Data Outputs. DB0 = LSB.  
GND (Pin 10): Ground Connection.  
REF(Pin 11): Low Reference Potential (Analog Ground).  
WR/RDY (Pin 6): WR/RDY is an input when M0DE = VCC.  
Falling edge of WR switches internal S/H to hold then  
startsconversion.WR/RDYisanopendrainoutput(active  
pull-down) when M0DE = GND. RDY goes low at start of  
conversion and pull-down is turned off when conversion  
iscomplete. Resistivepull-upisusuallyusedinthismode.  
REF+ (Pin 12): High Reference Potential. VREF = Full Scale  
= (REF+) – (REF).  
CS(Pin13):ChipSelect. Whenhigh, dataoutputsarehigh  
impedance and all inputs are ignored.  
MODE (Pin 7): WR-RD when MODE = VCC. RD when  
M0DE = GND. No internal pull-down.  
DB4 to DB7 (Pins 14 to 17): Data Outputs. DB7 = MSB.  
OFL(Pin18): OverflowOutput. GoeslowwhenVIN >VREF  
TC (Pin 19): User Adjustable Conversion Time.  
.
RD (Pin 8): A Low on RD with CS Low Activates Three-  
State Outputs. With MODE = GND and CS low, the falling  
edge of RD switches internal S/H to hold and starts  
conversion.  
VCC (Pin 20): Positive Supply. 4.75V VCC 5.25V.  
TEST CIRCUITS  
t
1H  
t = 20ns, C = 10pF  
r
L
t
r
V
CC  
V
90%  
50%  
CC  
RD  
10%  
GND  
RD  
CS  
t
1H  
DATA  
OUT  
V
0H  
90%  
C
1k  
L
DATA OUT  
GND  
t
0H  
t = 20ns, C = 10pF  
r
L
t
r
V
V
CC  
CC  
V
CC  
90%  
50%  
1k  
RD  
RD  
CS  
10%  
GND  
DATA  
OUT  
t
0H  
C
L
V
CC  
DATA OUT  
10%  
V
0L  
1099 F01  
Figure 1. Three-State Test Circuit  
5
LTC1099  
W U  
W
TI I G DIAGRA S  
CS  
RD  
t
P
t
RDY  
WR/RDY  
INT  
t
t
INTH  
CRD  
t
t , t  
1H 0H  
ACC0  
NEW DATA  
DB0-DB7  
OLD DATA  
t
ACC2  
1099 F02  
Figure 2. RD Mode (Pin 7 Is GND)  
CS  
CS  
WR/RDY  
WR/RDY  
t
t
t
P
t
P
CWR  
CWR  
RD  
INT  
RD  
t
t
INTH  
INTH  
INT  
t
t
, t  
1H 0H  
t
, t  
1H 0H  
ACC2  
DB0-DB7  
OLD DATA  
NEW DATA  
DB0-DB7  
t
t
ACC2  
1099 F03B  
1099 F03A  
ACC0  
Figure 3a. WR-RD Mode (Pin 7 Is HIGH and tRD > tCWR  
)
Figure 3b. WR-RD Mode (Pin 7 Is HIGH and tRD< tCWR  
)
CS (GND)  
RD (GND)  
WR/RDY  
t
t
P
IHWR  
INT  
t
CWR  
OLD DATA  
NEW DATA  
DB0-DB7  
t
1099 F04  
ACC0  
Figure 4. WR-RD Mode (Pin 7 Is HIGH) Standalone Operation  
6
LTC1099  
U
U
U
FUNCTIONAL DESCRIPTIO  
V
REF  
Figure 5 shows the functional block diagram for the  
LTC1099 2-step flash ADC. It consists of two 4-bit flash  
converters, a 4-bit DAC and a differencing circuit. The  
conversion process proceeds as follows:  
B7  
B6  
B5  
B4  
MS  
4-BIT  
FLASH  
V
IN  
1. At the start of the conversion, the on-board sample-  
and-hold switches from the sample to the hold mode.  
This is a true sample-and-hold with an acquisition time  
of 240ns, an aperture time of 110ns and a tracking rate  
of 2.5V/µs.  
4-BIT  
DAC  
2. The held input voltage is converted by the 4-bit MS-  
FlashADC. Thisgeneratestheupperormostsignificant  
4-bits of the 8-bit output.  
+
3. A 4-bit approximation, from the DAC output, is sub-  
tracted from the held input voltage.  
REMAINDER  
V
/16  
REF  
B3  
B2  
B1  
B0  
4. The LS-Flash ADC converts the difference between the  
held input voltage and the DAC approximation. This  
generates the lower or least significant (LS) 4-bits of  
the 8-bit output. The LS-Flash reference is one six-  
teenth of the MS-Flash reference. This effectively mul-  
tiplies the difference by 16.  
LS  
4-BIT  
FLASH  
1099 F05  
Figure 5. 8-Bit 2-Step Semiflash A/D  
5. Upon the completion of the LS 4-bit flash the eight  
outputlatchesareupdatedsimultaneously. Atthesame  
time, the sample-and-hold is switched from the hold  
mode to the acquire mode in preparation for the next  
conversion.  
accomplishthisfunctioninasimple, althoughnotstraight  
forward, manner.  
Figure 6 shows the six input switched capacitor compara-  
tor. Intuitively, the comparator is easy to understand by  
notingthatthecommonconnectionbetweenthetwoinput  
capacitors, C1 and C2, acts like a virtual ground. In  
operational amplifier circuits, current is summed at the  
virtual ground node. Input voltage is converted to current  
by the input resistors. In the switched capacitor compara-  
tor, input voltage is converted to charge by the input  
capacitors and these charges are summed at the virtual  
ground node.  
The advantage of this approach is the reduction in the  
amount of hardware required. A full flash converter re-  
quires 255 comparators while this approach requires only  
31. The price paid for this reduction in hardware is an  
increase in conversion time. A full flash converter requires  
only one comparison cycle while this approach requires  
two comparison cycles, hence 2-step flash.  
This architecture is further simplified in the LTC1099 by  
reusing the MS-Flash hardware to do the LS-Flash. This  
reduces the number of comparators from 31 to 16. This is  
possible because the MS and LS conversions are done at  
different times.  
A major advantage of this technique is that the switch-on  
impedance has no affect on accuracy as long as sufficient  
time exists to fully charge and discharge the capacitors.  
During the first time period the T+ and TZ switches are  
closed. This forces the common node between C1 and C2  
to an arbitrary bias voltage. Since the capacitors subtract  
out this voltage, it may be considered, for the sake of this  
discussion, to be exactly zero (i.e., virtual ground). Note  
TotakethesimpleblockdiagramofFigure5andreconfigure  
it to reuse the MS-Flash to do the LS-Flash is conceptually  
simple, but from a hardware point of view is not practical.  
A new six input switched capacitor comparator is used to  
7
LTC1099  
U
U
U
FUNCTIONAL DESCRIPTIO  
T+  
T
–2  
T
–1  
T
Z
T
Z
(+)  
V
IN  
C1  
(–)  
(–)  
(+)  
(–)  
(–)  
MS TAP  
DAC  
VIRTUAL  
GROUND  
0.5 LSB  
C2  
C1 = C2  
HOLD  
0V  
LS TAP  
T
SAMPLE  
SAMPLE  
Z
T+  
T
–1  
T
–2  
STROBE  
1099 F06  
Figure 6. Six Input Switched Capacitor Comparator  
also that variations in the bias voltage with time and  
temperature will also be rejected. In this state, C1 charges  
to VIN. When TZ opens, VIN is held on C1.  
ThisholdstheDACoutputconstantforthenextstepthe  
LS conversion. The LS conversion is started when T–1 is  
opened and T–2 is closed. Capacitor C1 subtracts the 4-bit  
DAC approximation from VIN and inputs the difference  
charge to the virtual ground node. The equation for each  
comparator is:  
The next step is the first comparison — the MS-Flash. TZ  
andT+areopenedandT–1 isclosed. Theequationforeach  
comparator is:  
VIN + 0.5LSB – VDAC – LSTAP = 0V  
VIN + 0.5LSB – MSTAP = 0V  
The 4-bit DAC approximation is input to all 16 compara-  
tors. The LS tap voltages are converted to charge by  
capacitorC2. LStapsvaryfromVREF/16Vto0Vin16equal  
steps of VREF/256. The comparators look at the net charge  
on the virtual ground node to perform the LS-Flash con-  
version. When this conversion is complete, the four LSBs  
along with the four MSBs are transferred to the output  
latches. In this way, all eight outputs will change  
simultaneously.  
There are 16 identical comparators each tied to the tap on  
a 16 resistor ladder. The MS tap voltages vary from VREF  
to 0V in 16 equal steps of VREF/16.  
Notice that capacitor C2 adds 0.5LSB to VIN. This offsets  
the converter transfer function by 0.5LSB, equally distrib-  
uting the 1LSB quantization error to ±0.5LSB.  
Theoutputsofthe16comparatorsaretemporarilylatched  
and drive the 4-bit DAC directly without need of decoding.  
8
LTC1099  
U
DIGITAL I TERFACE  
When RD goes low, with CS low, the result of the previous  
conversion is output. This data stays there until the  
ongoing conversion is complete (INT goes low). At this  
time the outputs are updated with new data.  
The digital interface to the LTC1099 entails either control-  
ling the conversion timing or reading data. There are two  
basic modes for controlling and reading the A/D — the  
Write-Read(WR-RD) mode and the Read (RD) mode.  
As long as CS and RD stay low long enough, the receiving  
device will get the right data. Remember, the receiving  
device reads data in on the rising edge of RD. The RDY  
output facilitates making RD long enough.  
WR-RD Mode (Pin 7 = High)  
In the WR-RD mode, a conversion sequence starts on the  
falling edge of WR with CS low (Figures 3a and 3b). This  
is an edge-sensitive control function. The width of the WR  
input is not important. All timing functions are internal to  
the A/D.  
In the RD mode, the WR input becomes the RDY output.  
On the falling edge of RD, the RDY goes low. It is an open  
drain output to allow a wired OR function so it requires a  
pull-up resistor. At the end of conversion, the active pull-  
down is released and RDY goes high.  
The first thing to happen after the falling edge of WR is the  
internal S/H is switched to hold. This typically takes 110ns  
after WR falls and is the aperture time of the S/H.  
The RDY output is designed to interface to the Ready In  
(RDYIN) function on many popular processors. RDYIN  
allows these processors to work with slow memory by  
stretching the RD strobe coming from the processor. RD  
will remain low as long as RDY is low. In the case of the  
LTC1099, RDY stays low until the conversion is complete  
and new data is available on the outputs. This greatly  
simplifies the programmers task. Each time data is re-  
quired from the A/D a simple read is executed. The  
hardware interface makes sure the RD strobe is long  
enough.  
Next, the A/D conversion takes place. The conversion time  
is internally set at 2.5µs, but is user adjustable (see  
Adjusting the Conversion Time). The end of conversion is  
signaled by the high to low transition of INT. The S/H is  
switched back to the acquire state as soon as the conver-  
sion is complete.  
After the conversion is complete, the 8-bit result is avail-  
ableonthethree-stateoutputs.Theoutputsareactivewith  
RD and CS low. Output data is latched and, if no new  
conversion is initiated, is available indefinitely as long as  
the power is not turned off.  
Adjusting the Conversion Time  
The WR-RD mode is also used for stand-alone operation.  
By tying CS and RD low the data outputs will be continu-  
ously active (Figure 4). The falling edge of WR starts the  
conversion sequence and when done new data will appear  
ontheoutputs.Alloutputswillbeupdatedsimultaneously.  
In stand-alone operation, the outputs will never be in a  
high impedance state.  
The conversion time of the LTC1099 is internally set at  
2.5µs. If desired, it can be adjusted by forcing a voltage on  
Pin 19. With Pin 19 left open, the conversion time runs  
2.5µs. A convenient way to force the voltage is with the  
circuit shown in Figure 7. To preset the conversion time to  
a fixed amount, a resistor may be tied from Pin 19 to VCC  
or GND. Tying it to VCC slows down the conversion and  
tying it to GND will speed it up (see Typical Performance  
RD Mode (Pin 7 = Low)  
Characteristics).  
5V  
In the RD mode, a conversion sequence is initiated by the  
falling edge of RD when CS is low (Figure 2). The S/H is  
switched to the hold state 110ns after the falling edge of  
RD. It is switched back to the acquire state at the end of  
conversion.  
1
2
20  
19  
10k  
1099 F07  
Figure 7. Adjusting the Conversion Time  
9
LTC1099  
U
U
ANALOG INTERFACE  
The inclusion of a high quality sample-and-hold (S/H)  
simplifies the analog interface to the LTC1099. All of the  
error terms normally associated with an S/H (hold step,  
offset, gain and droop errors) are included in the error  
specifications for the A/D. This makes it easy for the  
designer since all the error terms need not be taken into  
account individually.  
excellentamplifierinthisregard.Italsoworkswithasingle  
supply which fits nicely with the LTC1099.  
Reference Inputs  
Sixteen equal valued resistors are internally connected  
between REF+ and REF. Each resistor is nominally 200Ω  
giving a total resistance of 3.2k between the reference  
terminals. When VIN equals REF+, the output code will be  
all ones. When VIN equals REF, the output code will be all  
zeros.  
Although it is most common to connect REF+ to a 5V  
reference and REFto ground, any voltages can be used.  
The only restrictions are REF+ >REFand REF+ and REF–  
must be within the supply rails. As the reference voltage is  
reduced the A/D will eventually lose accuracy. Accuracy is  
quite good for references down to 1V.  
S/H Timing  
AfallingedgeontheRDorWRinputswitchestheS/Hfrom  
acquire to hold and starts the conversion. The aperture  
time is the delay from the falling edge to the actual instant  
when the S/H switches to hold. It is typically 110ns.  
As soon as a conversion is complete (2.5µs typ), the S/H  
switches back to the sample mode. Even though the  
acquisition time is only 240ns, a new conversion cannot  
be started for (700ns typ) after a conversion is completed.  
Even though the reference drives a resistive ladder, a lot of  
capacitive switching is taking place internally. For this  
reason, driving the reference has the same characteristics  
as driving VIN. A fast low impedance source is necessary.  
The reference has the additional problem of presenting a  
DC load to the driving source. This requires the DC as well  
as the AC source impedance to be low.  
Analog Input  
The input to the A/D looks like a 60pF capacitor in series  
with 550(Figure 8).  
550  
V
TO A/D  
60pF  
IN  
1099 F08  
Good Grounding  
Figure 8. Equivalent Input Circuit  
As with any precise analog system care must be taken to  
followgoodgroundingpracticeswhenusingtheLTC1099.  
The most noise free environment is obtained by using a  
ground plane with GND (Pin 10) and REF(Pin 11) tied to  
it. Bypass capacitors from REF+ (Pin 12) and VCC (Pin 20)  
with short leads are also required to prevent spurious  
switching noise from affecting the conversion accuracy.  
With this high input capacitance care must be taken when  
driving the inputs from a source amplifier. When the input  
switch closes, an instantaneous capacitive load is applied  
to the amplifier output. This acts like an impulse into the  
amplifier and if it has poor phase margin the resulting  
ringing can cause a considerable loss of accuracy. If the  
amplifier is too slow the resulting settling tail will also  
cause a loss of accuracy. The amplifier should also have  
low open circuit output impedance. The LT1006 is an  
If a ground plane is not practical, single point grounding  
techniques should be used. Ground for the A/D should not  
be mixed in with other noisy grounds.  
10  
LTC1099  
U
U
ANALOG INTERFACE  
APPLICATIONS  
Note that since this is only a two quadrant multiplier, a  
carrier component (the input to the LTC1099) will appear  
in the output spectrum. Figure 11 shows the frequency  
spectrum of a 42.5kHz sine wave multiplied by a 5kHz sine  
wave. The depth of modulation is about 30dB. Figure 12  
shows a 42.375kHz sine wave multiplied by a 30.875kHz  
sinewave. Notethatatthesehigherfrequencies, thedepth  
ofmodulationisstillabout30dB. Thecarrierfeed-through  
is seen in Figure 12.  
Analog Multiplier  
The schematic Figure 9 shows the LTC1099 configured  
with a DAC to form a two quadrant analog multiplier. An  
input waveform is applied to the LTC1099 where it is  
digitized at a 300kHz rate. The digitized signal is fed to the  
DACinflow-throughmodewhereanothersignalisinput  
to the DAC reference input. In this way, the two analog  
signalsaremultipliedtoproduceadoublesidebandampli-  
tude modulated output. Figure 10 shows a 3kHz sine wave  
multiplied by a 100Hz triangle.  
(V ) 0V TO 5V  
IN1  
(V ) +10V TO –10V  
IN2  
ANALOG  
INPUT  
ANALOG  
INPUT  
12V  
MICROLINEAR  
4
MP1208 DAC  
CS AND RD LOW  
DB0-DB3  
8
8
5V  
1
CS  
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
N/C  
5V  
CC  
4
LTC1099  
DB0  
BYTE 1/  
BYTE 2  
WR2  
XFER  
DI6  
DB4-DB7  
WR1  
3
10µF  
10µF  
3MHz  
OSC  
3
GND  
4
DB1  
DB2  
DB3  
4
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
DI5  
5
DB7  
DB6  
CLK  
N/C  
5
DI4  
6
74LS90  
÷ 10 = 300kHz  
6
DI7  
DI3  
7
WR/RDY DB5  
7
DI8  
DI2  
8
MODE  
RD  
DB4  
CS  
50k  
OFFSET NULL  
8
DI9  
4.7µF  
DI1  
9
5V  
9
+
DI10  
DI11  
15V  
DI0  
10  
INT  
REF  
N/C  
8
10  
1
V
GND  
REF  
REF  
15V  
0.01µF  
5
11  
I
RFB  
12  
+
OUT2  
I
OUT1  
LT1056  
–15V  
5V  
REF  
LT1019-5  
= ANALOG GROUND  
= DIGITAL GROUND  
OUT  
10pF  
15V  
IN  
IN  
25k  
TRIM  
GND  
AGND  
Figure 9  
V
IN1  
0V TO 5V  
TRIANGLE INTO LTC1099  
~100Hz  
V
±4.8V SINE  
IN2  
INTO DAC ~ 3kHz  
1099 F10  
Figure 10  
11  
LTC1099  
U
U
ANALOG INTERFACE  
0
–70  
32.5  
34.5  
36.5  
38.5  
40.5  
42.5  
44.5  
46.5  
48.5  
50.5  
52.5  
1099 F11  
37500Hz  
42500Hz  
47500Hz  
Figure 11. Two Quadrant Multiplier Output Spectrum with 0V to  
4.5V at 42.5kHz into LTC1099 and ±2V at 5kHz into DAC  
0
–70  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
1099 F12  
11500Hz  
30875Hz 42375Hz  
73250Hz  
Figure 12. Two Quadrant Multiplier Output Spectrum with 0V to  
4.5V at 42.375kHz into LTC1099 and ±2V at 30.875kHz into DAC  
12  
LTC1099  
U
TYPICAL APPLICATIONS  
TMS320C25 Interface Using RD Mode  
5V  
(A10, B11, H2, L6)  
(B1, K11, L2)  
74AS138  
(K1)  
(K2)  
(L3)  
(J11)  
(K3)  
V
V
SS  
CC  
A
V
CC  
A0  
A1  
A2  
IS  
B
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
C
G2A  
G2B  
G1  
Y7  
GND  
A3  
5V  
TMS320C25  
(D1)  
(C2)  
(C1)  
(B2)  
D4  
D5  
D6  
D7  
LTC1099  
ANALOG  
INPUT  
VOLTAGE  
V
V
IN  
CC  
(F1)  
(E2)  
(E1)  
(D2)  
+
DB0  
TC  
D0  
D1  
D2  
D3  
C1  
C2  
DB1  
OFL  
DB7  
DB6  
DB5  
DB4  
CS  
DB2  
DB3  
MSC  
READY  
STRB  
WR/RDY  
MODE  
RD  
(B8)  
(C10)  
(H10)  
+
INT  
REF  
5V  
C2  
(4)  
(5)  
(1)  
(2)  
(6)  
(3)  
GND  
REF  
+
C1  
10k  
1/2 74AS00  
C1 = 4.7µF TANTALUM  
C2 = 0.1µF CERAMIC  
1099 TA03  
5V  
TMS320C25 Assembly Code for RD Mode Interface to LTC1099  
0001 0000  
0002 0032  
AORG >32  
DINT  
0003 0032 CE01  
0004 0033 C800  
Disable Interrupts  
LDPK >00 Data Page Pointer Is 0  
0005 0034 8064 LOOP IN 100,PAO Input 1099 Data to Address 100  
0006 0035 CB13  
0007 0036 5500  
0008 0037 FF80  
RPTK  
NOP  
B
12  
Repeat Next Instruction 12 Times  
Don’t Convert Again Too Soon  
LOOP Go for Another Conversion  
13  
LTC1099  
U
TYPICAL APPLICATIONS  
TMS320C25 Interface Using WR/RD Mode  
5V  
(A10, B11, H2, L6)  
(K1)  
74F138  
V
V
SS  
CC  
A
V
CC  
A0  
A1  
A2  
IS  
(K2)  
(L3)  
(J11)  
(K3)  
+
C5  
0.1µF  
B
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
C7  
C6  
C
G2A  
G2B  
G1  
Y7  
GND  
A3  
5V  
TMS320C25  
LTC1099  
ANALOG  
INPUT  
VOLTAGE  
V
V
5V  
C4  
IN  
CC  
(F1)  
(E2)  
(E1)  
(D2)  
+
DB0  
T
C
D0  
D1  
D2  
D3  
C3  
DB1  
OFL  
DB7  
DB6  
DB5  
DB4  
CS  
DB2  
D7(B2)  
D6(C1)  
D5(C2)  
D4(D1)  
DB3  
WR/RDY  
MODE  
RD  
5V  
+
INT  
REF  
5V  
C2  
+
C1  
GND  
REF  
MSC  
(C10)  
READY  
(B8)  
R/W  
(H11)  
STRB  
(H10)  
74F00  
IN1  
V
5V  
CC  
C8  
0.1µF  
IN1  
IN4  
IN4  
OUT1  
IN2  
OUT4  
IN3  
1N2  
OUT2  
GND  
IN3  
OUT3  
C1, C3, C6 = 4.7µF TANTALUM  
C2, C4, C5, C7, C8 = 0.1µF CERAMIC  
1099 TA04  
TMS320C25 Assembly Code for WR/RD Mode Interface to  
LTC1099  
0001 0032  
AORG >32  
DINT  
0002 0032 CE01  
0003 0033 C800  
Disable Interrupts  
LDPK  
>0  
Data Page Pointer Is 0  
0004 0034 E064 LOOP OUT >64.PAO Start LTC1099 Conversion  
0005 0035 CB20  
0006 0036 5500  
0007 0037 8064  
0008 0038 FF80  
RPTK >12 Wait for Conversion to Finish  
NOP  
IN >64.PAO Read LTC1099 Data; Store in >64  
B
LOOP Do Again  
14  
LTC1099  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
20-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.040*  
(26.416)  
MAX  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0.255 ± 0.015*  
(6.477 ± 0.381)  
3
4
5
6
7
8
9
1
2
0.300 – 0.325  
0.045 – 0.065  
0.130 ± 0.005  
(7.620 – 8.255)  
(1.143 – 1.651)  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.325  
0.005  
(0.127)  
MIN  
0.100  
(2.54)  
BSC  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N20 1098  
SW Package  
20-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.496 – 0.512*  
(12.598 – 13.005)  
19 18  
16  
14 13 12 11  
20  
17  
15  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.291 – 0.299**  
(7.391 – 7.595)  
2
3
5
7
8
9
10  
1
4
6
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
BSC  
0.004 – 0.012  
0.009 – 0.013  
(0.102 – 0.305)  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.406 – 1.270)  
S20 (WIDE) 1098  
(0.356 – 0.482)  
TYP  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1099  
U
TYPICAL APPLICATIO S  
Cascading for 9-Bit Resolution  
20  
1
CS  
13  
LTC1099  
5V  
5V  
CS  
V
CC  
WR  
RD  
8
V
WR/RDY  
V
IN  
IN  
6
RD  
7
B0  
B1  
2
3
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
MODE  
12  
+
5V  
V
REF  
REF  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
OFL  
4
µP  
BUS  
4.7µF  
5
14  
15  
16  
17  
11  
10  
V
4.7µF  
1k  
18  
OFL  
GND  
5k  
1k  
LTC1099  
13  
8
20  
1
5V  
5V  
CS  
V
CC  
WR/RDY  
V
IN  
6
RD  
2
3
7
MODE  
12  
+
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
OFL  
V
REF  
REF  
4
5
4.7µF  
14  
15  
16  
17  
18  
11  
10  
V
GND  
1099 TA02  
RELATED PARTS  
PART NUMBER  
LTC1274/LTC1277  
LTC1279  
DESCRIPTION  
COMMENTS  
12-Bit, 100ksps Parallel/2-Byte ADC  
12-Bit, 600ksps Parallel ADC  
8-Bit, 20Msps Parallel ADC  
5V or ± 5V, 10mW with 1µA Shutdown  
5V, 60mW, 70dB SINAD  
LTC1406  
5V, 150mW, 48.5dB SINAD  
±5V, 80mW, 72.5dB SINAD  
±5V, 150mW, 81.5dB SINAD  
LTC1409  
12-Bit, 800ksps Parallel ADC  
14-Bit, 800ksps Parallel ADC  
LTC1419  
sn1099 1099fas LT/TP 1100 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1989  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1099I

High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold
Linear

LTC1099IJ

High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold
Linear

LTC1099IN

High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold
Linear

LTC1099M

High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold
Linear

LTC1099MJ

High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold
Linear

LTC1100

Precision, Chopper-Stabilized Instrumentation Amplifier
Linear

LTC1100AC

Precision, Chopper-Stabilized Instrumentation Amplifier
Linear

LTC1100ACJ

IC INSTRUMENTATION AMPLIFIER, 10 uV OFFSET-MAX, 0.018 MHz BAND WIDTH, CDIP8, CERAMIC, DIP-8, Instrumentation Amplifier
Linear

LTC1100ACJ8

IC INSTRUMENTATION AMPLIFIER, 10 uV OFFSET-MAX, 0.018 MHz BAND WIDTH, CDIP8, CERDIP-8, Instrumentation Amplifier
Linear

LTC1100ACN

IC INSTRUMENTATION AMPLIFIER, 10 uV OFFSET-MAX, 0.018 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Instrumentation Amplifier
Linear

LTC1100ACN8

Precision, Chopper-Stabilized Instrumentation Amplifier
Linear

LTC1100ACS

Precision, Chopper-Stabilized Instrumentation Amplifier
Linear