LTC1150CJ [Linear]

IC OP-AMP, 5 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, CDIP14, CERDIP-14, Operational Amplifier;
LTC1150CJ
型号: LTC1150CJ
厂家: Linear    Linear
描述:

IC OP-AMP, 5 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, CDIP14, CERDIP-14, Operational Amplifier

运算放大器
文件: 总16页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1150  
±15V Zero-Drift  
Operational Amplifier with  
Internal Capacitors  
U
FEATURES  
DESCRIPTIO  
The LTC®1150 is a high-voltage, high-performance  
zero-drift operational amplifier. The two sample-and-hold  
capacitors usually required externally by other chopper  
amplifiers are integrated on-chip. Further, LTC’s propri-  
etary high-voltage CMOS structures allow the LTC1150 to  
operate at up to 32V total supply voltage.  
High Voltage Operation: ±16V  
No External Components Required  
Maximum Offset Voltage: 10µV  
Maximum Offset Voltage Drift: 0.05µV/°C  
Low Noise 1.8µVP-P (0.1Hz to 10Hz)  
Minimum Voltage Gain: 135dB  
Minimum PSRR: 120dB  
The LTC1150 has an offset voltage of 0.5µV, drift of  
0.01µV/°C, 0.1Hz to 10Hz input noise voltage of 1.8µVP-P  
and a typical voltage gain of 180dB. The slew rate of 3V/µs  
andagainbandwidthproductof2.5MHzareachievedwith  
0.8mA of supply current. Overload recovery times from  
positive and negative saturation conditions are 3ms and  
20ms, respectively.  
Minimum CMRR: 110dB  
Low Supply Current: 0.8mA  
Single Supply Operation: 4.75V to 32V  
Input Common Mode Range Includes Ground  
200µA Supply Current with Pin 1 Grounded  
Typical Overload Recovery Time 20ms  
U
For applications demanding low power consumption,  
Pin 1 can be used to program the supply current. Pin 5 is  
an optional AC-coupled clock input, useful for  
synchronization.  
APPLICATIO S  
Strain Gauge Amplifiers  
Electronic Scales  
Medical Instrumentation  
The LTC1150 is available in standard 8-lead, plastic dual-  
in-line package, as well as an 8-lead SO package. The  
LTC1150 can be a plug-in replacement for most standard  
bipolar op amps with significant improvement in DC  
Thermocouple Amplifiers  
High Resolution Data Acquisition  
performance.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Single Supply Instrumentation Amplifier  
Noise Spectrum  
160  
1k  
140  
120  
100  
80  
1M  
+
V
+
V
1M  
2
3
7
1k  
6
2
3
7
LTC1150  
60  
6
–V  
LTC1150  
V
+
IN  
OUT  
GAIN = 1000V/V  
4
40  
V
+
IN  
4
OUTPUT OFFSET 5mV  
TOTAL SUPPLY CURRENT  
DECREASES TO 400µA  
WHEN BOTH PIN 1s ARE  
GROUNDED  
20  
0
10  
100  
1k  
10k  
100k  
LTC1150 •TA01  
FREQUENCY (Hz)  
LTC1150 •TA02  
1150fb  
1
LTC1150  
W W  
U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) ............................... 32V  
Input Voltage (Note 2) .............. (V+ 0.3V) to (V0.3V)  
Output Short Circuit Duration .......................... Indefinite  
Burn-In Voltage ....................................................... 32V  
Operating Temperature Range  
LTC1150M (OBSOLETE).....................–55°C to 125°C  
LTC1150C .......................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
I
1
2
3
4
CLOCK OUT  
8
7
6
5
SUPPLY  
IN  
NUMBER  
TOP VIEW  
+
V
LTC1150CN8  
LTC1150CS8  
I
1
2
3
4
8
7
6
5
CLOCK OUT  
SUPPLY  
IN  
+IN  
OUT  
EXT CLOCK  
IN  
+
V
+
V
+IN  
OUT  
N8 PACKAGE  
8-LEAD PDIP  
EXT CLOCK  
IN  
V
S8 PART  
MARKING  
T
= 110°C, θ = 130°C/W  
JMAX  
JA  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 110°C, θ = 200°C/W  
JA  
J8 PACKAGE  
8-LEAD CERDIP  
LTC1150MJ8  
LTC1150CJ8  
T
JMAX  
1150  
OBSOLETE PACKAGE  
Consider the N8 or S8 Package as an Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range otherwise specifications are at TA = 25°C. VS = ±15V, Pin 1 = Open, unless otherwise noted.  
LTC1150M  
TYP  
LTC1150C  
TYP MAX UNITS  
PARAMETER  
CONDITIONS  
(Note 3)  
MIN  
MAX  
MIN  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
±0.5  
±10  
±0.5  
±10  
µV  
µV/°C  
(Note 3)  
±0.01 ±0.05  
±0.01 ±0.05  
50  
50  
nV/mo  
±20  
±60  
±1.5  
±20  
±200  
±0.5  
pA  
nA  
Input Bias Current  
Input Noise Voltage  
±10  
±50  
±2.5  
±10  
±100  
±1.0  
pA  
nA  
RS = 100, 0.1Hz to 10Hz, TC2  
RS = 100, 0.1Hz to 1Hz, TC2  
f = 10Hz (Note 4)  
1.8  
0.6  
1.8  
0.6  
µVP-P  
Input Noise Current  
1.8  
1.8  
fA/Hz  
dB  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
VCM = Vto 12V  
110  
120  
135  
130  
145  
180  
110  
120  
135  
130  
145  
180  
VS = ±2.375V to ±16V  
RL = 10k, VOUT = ±10V  
RL = 10kΩ  
dB  
dB  
±13.5 ±14.5  
±13.5 ±14.5  
V
RL = 10kΩ  
10.5/  
–13.5  
10.5/  
–13.5  
RL = 100kΩ  
±14.95  
±14.95  
1150fb  
2
LTC1150  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, Pin 1 = Open, unless otherwise noted.  
LTC1150M  
TYP  
LTC1150C  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX UNITS  
V/µs  
Slew Rate  
RL = 10k, CL = 50pF  
3
3
Gain Bandwidth Product  
Supply Current  
2.5  
2.5  
MHz  
No Load  
0.8  
0.2  
1.5  
2
0.8  
0.2  
1.5  
2
mA  
No Load, Pin 1 = V–  
No Load  
Internal Sampling Frequency  
550  
550  
Hz  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = 5V, Pin 1 = Open, unless otherwise noted.  
LTC1150M  
TYP  
LTC1150C  
TYP MAX UNITS  
PARAMETER  
CONDITIONS  
(Note 3)  
MIN  
MAX  
MIN  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
±0.5  
±10  
±0.05  
±10  
µV  
µV/°C  
µV/mo  
pA  
(Note 3)  
±0.01 ±0.05  
±0.01 ±0.05  
50  
50  
±10  
±5  
±60  
±30  
±10  
±5  
±60  
±30  
pA  
Input Noise Voltage  
RS = 100, 0.1Hz to 10Hz, TC2  
RS = 100, 0.1Hz to 1Hz, TC2  
2.0  
0.7  
2.0  
0.7  
µVP-P  
Input Noise Current  
f = 10Hz (Note 4)  
1.3  
130  
145  
180  
1.3  
130  
145  
180  
fA/Hz  
dB  
Common Mode Rejection Ratio VCM = 0V to 2.7V  
106  
120  
115  
106  
120  
115  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
VS = ±2.375V to ±16V  
dB  
RL = 10k, VOUT = 0.3V to 4.5V  
dB  
Maximum Output Voltage Swing RL = 10kΩ  
RL = 100kΩ  
0.15 to 4.85  
0.02 to 4.97  
0.15 to 4.85  
0.02 to 4.97  
V
Slew Rate  
RL = 10k, CL = 50pF  
1.5  
1.8  
0.4  
1.5  
1.8  
0.4  
V/µs  
MHz  
mA  
Gain Bandwidth Product  
Supply Current  
No Load  
1
1
1.5  
1.5  
Internal Sampling Frequency  
300  
300  
Hz  
Note 1: Absolute Maximum Ratings are those values beyond which life of  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high-speed automatic test  
the device may be impaired.  
+
systems. V is measured to a limit determined by test equipment  
Note 2: Connecting any terminal to voltages greater than V or less than  
OS  
capability.  
V may cause destructive latch-up. It is recommended that no sources  
operating from external supplies be applied prior to power-up of the  
Note 4: Current Noise is calculated from the formula:  
LTC1150.  
I = (2q • I )  
where q = 1.6 • 10  
N
b
–19  
Coulomb.  
1150fb  
3
LTC1150  
TEST CIRCUITS  
Offset Voltage Test Circuit  
DC-10Hz Noise Test Circuit  
475k  
1M  
+
100k  
V
1k  
0.1µF  
2
3
7
6
10  
LTC1150  
OUTPUT  
158k  
316k  
475k  
+
LTC1150  
R
4
L
TO X-Y  
RECORDER  
LT1012  
+
V
0.1µF  
0.1µF  
+
LTC1150 •TC01  
FOR 1Hz NOISE BW, INCREASE ALL THE CAPACITORS BY A FACTOR OF 10  
LTC1150 •TC02  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Gain/Phase vs Frequency  
1400  
1200  
1000  
800  
120  
100  
80  
60  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
V
= ± 15V  
V
C
= ± 15V  
T
= 25°C  
S
S
L
A
= 100pF  
80  
PHASE  
100  
120  
140  
160  
180  
200  
GAIN  
60  
40  
20  
600  
0
400  
–20  
–40  
200  
220  
55  
5
35  
65  
95  
125  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
20 24  
25  
4
8
12 16  
28 32 36  
+
AMBIENT TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
LTC1150 • TPC02  
LTC1150 • TPC01  
LTC1150 • TPC03  
Output Short-Circuit Current vs  
Supply Voltage  
Supply Current vs RSET  
Gain/Phase vs Frequency  
1200  
1000  
800  
600  
400  
200  
0
120  
100  
80  
60  
6
4
V
T
= ± 15V  
= 25°C  
T
= 25°C  
V
S
= ± 15V  
S
A
A
V
= V  
OUT  
C
L
= 100pF  
80  
I
SOURCE  
PIN 1 = –15V  
PIN 1 = OPEN  
100  
120  
140  
160  
180  
200  
220  
2
PHASE  
PIN 1 = V  
60  
0
GAIN  
–3  
–6  
–9  
–12  
–15  
40  
20  
PIN 1 = V  
+
V
= V  
0
OUT  
I
SINK  
–20  
–40  
PIN 1 = OPEN  
1k  
10k  
100k  
1M  
20 24  
+
4
8
12 16  
28 32 36  
100  
1k  
10k  
100k  
1M  
10M  
R
, PIN 1 TO V ()  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
SET  
LTC1150 • TPC04  
LTC1150 • TPC05  
LTC1150 • TPC06  
1150fb  
4
LTC1150  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs Supply  
Voltage  
Undistorted Output Swing vs  
Frequency  
Gain/Phase vs Frequency  
30  
120  
100  
80  
60  
12  
10  
8
V
C
= ±2.5V  
= 100pF  
T
= 25°C  
CM  
S
L
A
V
= OV  
80  
25  
20  
PHASE  
PIN 1 = V  
L
100  
120  
140  
160  
180  
200  
220  
R
= 10k  
GAIN  
60  
6
40  
15  
10  
PIN 1 = FLOATING  
= 100k  
R
20  
L
4
0
2
5
0
–20  
–40  
0
±10 ±12  
0
± 2 ± 4 ± 6 ± 8  
±14 ±16  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LTC1150 • TPC07  
LTC1150 • TPC09  
LTC1150 • TPC08  
Input Bias Current vs Input  
Common Mode Voltage  
Common Mode Input Range vs  
Supply Voltage  
Input Bias Current vs Temperature  
–1000  
–100  
15  
10  
5
40  
30  
20  
10  
V
S
A
= ± 15V  
= 25°C  
V
V
= 0  
CM  
= ± 15V  
S
T
= 25°C  
A
T
–I  
B
0
0
–I  
B
+I  
B
–10  
–10  
–5  
–10  
–15  
+I  
B
–20  
–30  
–40  
–1  
–50 –25  
0
25  
50  
75 100 125  
0
±5  
±7.5 ±10 ±12.5 ±15  
±2.5  
5
–15 –10  
–5  
10  
15  
0
SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
LTC1150 • TPC11  
LTC1150 • TPC12  
LTC1150 • TPC10  
Offset Voltage vs  
Sampling Frequency  
CMRR vs Frequency  
PSRR vs Frequency  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
10  
V
T
= ± 15V  
= 25°C  
POSITIVE SUPPLY, PIN 1 = OPEN  
A
A
8
6
PIN 1 = V  
POSITIVE SUPPLY,  
PIN 1 = V  
4
60  
60  
NEGATIVE SUPPLY,  
PIN 1 = OPEN  
PIN 1 = OPEN  
40  
40  
2
0
NEGATIVE SUPPLY, PIN 1 = V  
20  
20  
0
0
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
0
2k  
SAMPLING FREQUENCY, f (Hz)  
3k  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
S
LTC1150 • TPC13  
LTC1150 • TPC14  
LTC1150 • TPC15  
1150fb  
5
LTC1150  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Offset Voltage Drift vs Sampling  
Frequency  
10Hz p-p Noise vs Sampling  
Frequency  
Sampling Frequency vs  
Temperature  
900  
800  
700  
600  
500  
400  
300  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
1
0
V
= ± 15V  
V
= ± 15V  
V
= ± 15V  
= 25°C  
S
S
S
A
T
PIN 1 = OPEN  
–55  
5
35  
65  
95  
125  
100  
1k  
SAMPLING FREQUENCY, f (Hz)  
10k  
–25  
100  
1k  
SAMPLING FREQUENCY, f (Hz)  
10k  
AMBIENT TEMPERATURE (°C)  
S
S
LTC1150 • TPC16  
LTC1150 • TPC18  
LTC1150 • TPC17  
Large-Signal Transient Response,  
Pin 1 = V–  
Large-Signal Transient Response  
Small-Signal Transient Response  
VS = ±15V, AV = 1, CL = 100pF, RL = 10k  
VS = ±15V, AV = 1, CL = 100pF, PIN 1 = V–  
VS = ±15V, AV = 1, CL = 100pF, RL = 10kΩ  
Small-Signal Transient Response,  
Pin 1 = V–  
Overload Recovery from Negative  
Saturation  
Overload Recovery from Positive  
Saturation  
VS = ±15V, AV = 1, CL = 100pF, RL = 10k,  
VS = ±15V, AV = –100, 2ms/DIV  
VS = ±15V, AV = –100, 2ms/DIV  
PIN 1 = V–  
1150fb  
6
LTC1150  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.1Hz to 10Hz Noise, V = ±15V, TA = 25°C, Internal Clock  
2.0µV  
P-P  
1µV  
10s  
LTC1150 • TPC25  
1s  
0.1Hz to 10Hz Noise, V = ±15V, TA = 25°C, fS = 1800Hz  
1.0µV  
P-P  
1µV  
10s  
LTC1150 • TPC26  
1s  
0.1Hz to 1Hz Noise, V = ±15V, TA = 25°C, Internal Clock  
700nV  
P-P  
500nV  
100s  
LTC1150 • TPC27  
10s  
1150fb  
7
LTC1150  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
0.1Hz to 1Hz Noise, V = ±15V, TA = 25°C, fS = 1800Hz  
300nV  
P-P  
500nV  
100s  
LTC1150 • TPC28  
10s  
U
U
PI DESCRIPTIO S 8-Pin Packages  
ISUPPLY (Pin 1): Supply Current Programming. The sup-  
ply current can be programmed through Pin 1. When  
Pin 1 is left open or tied to V+, the supply current defaults  
to 800µA. Tying a resistor between Pin 1 and Pin 4, the  
negative supply pin, will reduce the supply current. The  
supply current, as a function of the resistor value, is  
shown in Typical Performance Characteristics.  
simplified interface requirements. The amplitude of the  
clock input signal needs to be greater than 2V and the  
voltage level has to be within the supply voltage range.  
Duty cycle is not critical. The internal chopping frequency  
is the external clock frequency divided by four. When  
frequency of the external clock falls below 100Hz (internal  
chopping at 25Hz), the internal oscillator takes over and  
the circuit chops at 550Hz.  
–IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
V(Pin 4): Negative Supply.  
OUT (Pin 6): Output.  
V+ (Pin 7): Positive Supply.  
CLOCK OUT (Pin 8): Clock Output. The signal coming out  
of this pin is at the internal oscillator frequency of about  
2.2kHz (four times the chopping frequency) and has  
voltage levels at VH = VS and VL = VS 4.6. If the circuit is  
driven by an external clock, Pin 8 is pulled up to VS.  
EXTCLOCKIN(Pin5):OptionalExternalClockInput. The  
LTC1150 has an internal oscillator to control the circuit  
operation of the amplifier if Pin 5 is left open or biased at  
any DC voltage in the supply voltage range. When an  
external clock is desirable, it can be applied to Pin 5. The  
applied clock is AC-coupled to the internal circuitry to  
1150fb  
8
LTC1150  
W U U  
APPLICATIO S I FOR ATIO  
U
ACHIEVING PICOAMPERE/MICROVOLT  
PERFORMANCE  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches, and relays where  
possible. In instances where this is not possible, attempt  
to balance the number and type of junctions so that  
differential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
junctions.  
Picoamperes  
In order to realize the picoampere level of accuracy of the  
LTC1150, proper care must be exercised. Leakage cur-  
rentsincircuitryexternaltotheamplifiercansignificantly  
degrade performance. High quality insulation should be  
used (e.g., Teflon, Kel-F); cleaning of all insulating sur-  
faces to remove fluxes and other residues will probably  
be necessary–particularly for high temperature perfor-  
mance. Surface coating may be necessary to provide a  
moisture barrier in high humidity environments.  
Figure 1 is an example of the introduction of an unneces-  
sary resistor to promote differential thermal balance.  
Maintaining compensating junctions in close physical  
proximity will keep them at the same temperature and  
reduce thermal EMF errors.  
NOMINALLY UNNECESSARY  
Board leakage can be minimized by encircling the input  
connections with a guard ring operated at a potential  
close to that of the inputs: in inverting configurations the  
guard ring should be tied to ground; in noninverting  
connections to the inverting input. Guarding both sides  
of the printed circuit board is required. Bulk leakage  
reduction depends on the guard ring width.  
LEAD WIRE/SOLDER  
RESISTOR USED TO  
THERMALLY BALANCE  
OTHER INPUT RESISTOR  
COPPER TRACE JUNCTION  
+
LTC1150  
OUTPUT  
RESISTOR LEAD, SOLDER,  
COPPER TRACE JUNCTION  
Microvolts  
ThermocoupleeffectsmustbeconsiderediftheLTC1150’s  
ultralow drift is to be fully utilized. Any connection of  
dissimilarmetalsformsathermoelectricjunctionproduc-  
ing an electric potential which varies with temperature  
(Seebeckeffect).Astemperaturesensors,thermocouples  
exploit this phenomenon to produce useful information.  
Inlowdriftamplifiercircuitstheeffectisaprimarysource  
of error.  
LTC1150 •AI01  
Figure 1. Extra Resistors Cancel Thermal EMF  
When connectors, switches, relays and/or sockets are  
necessary, they should be selected for low thermal EMF  
activity. The same techniques of thermally-balancing and  
coupling the matching junctions are effective in reducing  
the thermal EMF errors of these components.  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for  
thermal EMF generation. Junctions of copper wire from  
different manufacturers can generate thermal EMFs of  
200nV/°C—four times the maximum drift specification  
oftheLTC1150.Thecopper/kovarjunction,formedwhen  
wire or printed circuit traces contact a package lead, has  
athermalEMFofapproximately35µV/°C—700timesthe  
maximum drift specification of the LTC1150.  
Resistors are another source of thermal EMF errors.  
Table 1 shows the thermal EMF generated for different  
resistors. The temperature gradient across the resistor is  
important, not the ambient temperature. There are two  
junctions formed at each end of the resistor and if these  
junctions are at the same temperature, their thermal EMFs  
will cancel each other. The thermal EMF numbers are  
approximate and vary with resistor value. High values give  
higher thermal EMF.  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
1150fb  
9
LTC1150  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. Resistor Thermal EMF  
LEVEL SHIFTING THE CLOCK  
RESISTOR TYPE  
Tin Oxide  
THERMAL EMF/°C GRADIENT  
Level shifting is needed if the clock output of the LTC1150  
in ±15V operation must interface to regular 5V logic  
circuits. Figures 2 and 3 show some typical level shifting  
circuits.  
~mV/°C  
~450µV/°C  
~20µV/°C  
Carbon Composition  
Metal Film  
WireWound  
Evenohm  
Manganin  
When operated from single 5V or ±5V supplies, the  
LTC1150 clock output at Pin 8 can interface to TTL or  
CMOS inputs directly.  
~2µV/°C  
~2µV/°C  
PACKAGE-INDUCED OFFSET VOLTAGE  
LOW SUPPLY OPERATION  
Package-induced thermal EMF effects are another impor-  
tant source of errors. It arises at the copper/kovar  
junctions formed when wire or printed circuit traces  
contact a package lead. Like all the previously mentioned  
thermal EMF effects, it is outside the LTC1150’s offset  
nulling loop and cannot be cancelled. Metal can  
H packages exhibit the worst warm-up drift. The input  
offset voltage specification of the LTC1150 is actually set  
by the package-induced warm-up drift rather than by the  
circuit itself. The thermal time constant ranges from 0.5 to  
3 minutes, depending on package type.  
The minimum supply for proper operation of the LTC1150  
is typically below 4.0V (±2.0V). In single supply applica-  
tions, PSRR is guaranteed down to 4.7V (±2.35V)  
to ensure proper operation down to the minimum TTL  
specified voltage of 4.75V.  
15V  
10k  
7
5V  
2
3
8
6
LTC1150  
ALIASING  
LOGIC  
CIRCUIT  
+
4
Like all sampled data systems, the LTC1150 exhibits  
aliasing behavior at input frequencies near the sampling  
frequency. The LTC1150 includes a high-frequency  
correction loop which minimizes this effect; as a result,  
aliasing is not a problem for most applications.  
10k  
–15V  
LTC1150 • AI02  
Figure 2. Output Level Shift (Option 1)  
For a complete discussion of the correction circuitry and  
aliasing behavior, please refer to the LTC1051/53 data  
sheet.  
5V  
5V  
15V  
100pF  
6
10k  
SYNCHRONIZATION OF MULTIPLE LTC115O’S  
7
2
3
LOGIC  
CIRCUIT  
8
When synchronization of several LTC1150’s is required,  
one of the LTC1150’s can be used to provide the “master”  
clock to control over 100 “slave” LTC1150’s. The master  
clock, coming from Pin 8 of the master LTC1150, can  
directlydrivePin5oftheslaves.NotethatPin8oftheslave  
LTC1150’s will be pulled up to VS.  
LTC1150  
+
4
10k  
–15V  
LTC1150 • AI03  
GND  
Figure 3. Output Level Shift (Option 2)  
IfalltheLTC1150’saretobesynchronizedwithanexternal  
clock, then the external clock should drive Pin 5 of all the  
LTC1150’s.  
1150fb  
10  
LTC1150  
U
TYPICAL APPLICATIO S  
Low Level Photodetector  
15pF  
1M  
10  
+
HP 5082-4204  
V
10k  
7
2
3
6
9
OUTPUT = I • 10 Ω  
P
LTC1150  
I
P
+
4
LTC1150 • TA03  
Ground Force Reference  
1k  
15V  
15V  
1000pF  
7
2
3
6
LTC1150  
LT1010  
+
4
SINGLE  
POINT  
FORCED  
GROUND  
–15V  
–15V  
SENSE  
GROUND  
LTC1150 • TA04  
APPLICATION: TO FORCE TWO GROUND POINTS IN A SYSTEM WITHIN 5µV  
1150fb  
11  
LTC1150  
U
TYPICAL APPLICATIO S  
Paralleling to Improve Noise  
CLK IN  
10k  
MEASURED NOISE  
V
= 1.1µV  
OS  
10  
10Ω  
10Ω  
CLK  
FREE  
RUN  
10Hz = 700nV  
1Hz = 200nV  
P-P  
P-P  
10k  
LTC1150  
V
= 10µV  
OS  
CLK  
DRIVEN  
1800Hz  
+
10Hz = 360nV  
1Hz = 160nV  
P-P  
P-P  
10k  
10k  
10k  
10k  
25k  
LTC1150  
+
10k  
LTC1150  
V
= 10k V  
IN  
OUT  
LTC1150  
+
+
IN  
10k  
10Ω  
LTC1150  
+
LTC1150 • TA05  
Battery Discharge Monitor  
OPEN AT t = 0  
C
+
R2  
2
6
LTC1150  
3
+
–IR1  
V
=
t
OUT  
R2C  
5µV 30pA R2  
ERROR ≤  
+
I
IR1  
I
R1  
R1  
LOAD  
LTC1150 • TA06  
1150fb  
12  
LTC1150  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1150fb  
13  
LTC1150  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1150fb  
14  
LTC1150  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
N
7
5
8
6
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
3
2
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
1150fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1150  
U
TYPICAL APPLICATIO  
DC Stabilized, Low Noise Amplifier  
15V  
3
2
7
INPUT  
+
6
LTC1150  
4
–15V  
0.01µF  
15V  
130Ω  
68Ω  
1
15V  
3
7
+
8
6
LT1028  
OUTPUT  
100k  
2
4
10k  
–15V  
(A = 1000)  
10Ω  
LTC1150 • TA07  
1150fb  
LW/TP 1202 1K REV B • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LTC1150CJ8

+-15V Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1150CMS8

IC OP-AMP, PDSO8, PLASTIC, SO-8, Operational Amplifier
Linear

LTC1150CN

IC OP-AMP, 5 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14, Operational Amplifier
Linear

LTC1150CN8

+-15V Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1150CS8

+-15V Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1150CS8#TR

LTC1150 - ±15V Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1150CS8#TRPBF

LTC1150 - ±15V Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1150IH

IC OP-AMP, MBCY8, METAL CAN, TO-5, 8 PIN, Operational Amplifier
Linear

LTC1150IN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LTC1150M

+-15V Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1150MH

Chopper-Stabilized Operational Amplifier
ETC

LTC1150MJ

IC OP-AMP, 5 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, CDIP14, CERDIP-14, Operational Amplifier
Linear