LTC1164-6CN#PBF [Linear]

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0°C to 70°C;
LTC1164-6CN#PBF
型号: LTC1164-6CN#PBF
厂家: Linear    Linear
描述:

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0°C to 70°C

文件: 总12页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1164-6  
Low Power 8th Order  
Pin Selectable Elliptic or  
Linear Phase Lowpass Filter  
U
DESCRIPTIO  
EATURE  
S
F
The LTC1164-6 is a monolithic 8th order elliptic lowpass  
filter featuring clock-tunable cutoff frequency and low  
power supply current. Low power operation is achieved  
without compromising noise or distortion performance.  
At ±5V supplies the LTC1164-6 uses only 4mA supply  
8th Order Pin Selectable Elliptic or Bessel Filter in a  
14-Pin Package  
4mA Supply Current with ±5V Supplies  
64dB Attenuation at 1.44 fCUTOFF (Elliptic Response)  
fCUTOFF up to 30kHz (50:1 fCLK to fCUTOFF Ratio)  
110µVRMS Wideband Noise with ±5V Supplies  
Operates at Single 5V Supply with 1VRMS  
Input Range  
Operates up to ±8V Supplies  
TTL/CMOS Compatible Clock Input  
No External Components  
current while keeping wideband noise below 110µVRMS  
.
With a single 5V supply, the LTC1164-6 can provide up to  
10kHz cutoff frequency and 80dB signal-to-noise ratio  
while consuming only 2.5mA.  
The LTC1164-6 provides an elliptic lowpass rolloff with  
stopband attenuation of 64dB at 1.44 fCUTOFF and an fCLK  
-
to-fCUTOFF ratioof100:1(pin10toV).Foraratioof100:1,  
fCUTOFF can be clock-tuned up to 10kHz. For a fCLK-to-  
fCUTOFF ratio of 50:1 (pin 10 to V+), the LTC1164-6  
provides an elliptic lowpass filter with fCUTOFF frequencies  
up to 20kHz. When pin 10 is connected to ground, the  
LTC1164-6 approximates an 8th order linear phase re-  
sponse with 65dB attenuation at 4.5 f3dB and fCLK/f3dB  
ratio of 160:1. The LTC1164-6 is pin compatible with the  
LTC1064-1.  
O U  
PPLICATI  
S
A
Anti-Aliasing Filters  
Battery-Operated Instruments  
Telecommunication Filters  
U
O
TYPICAL APPLICATI  
10kHz Anti-Aliasing Elliptic Filter  
Frequency Response  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
IN  
NC  
–8V  
LTC1164-6  
CLK = 1MHz  
8V  
–8V  
V
OUT  
8
1164-6 TA01  
WIDEBAND NOISE = 115µV  
RMS  
NOTE: THE CONNECTION FROM PIN 7 TO PIN 14 SHOULD BE MADE  
UNDER THE PACKAGE. THE POWER SUPPLIES SHOULD BE BYPASSED  
BY A 0.1µF CAPACITOR AS CLOSE TO THE PACKAGE AS POSSIBLE.  
1
10  
100  
FREQUENCY (kHz)  
1164-6 TA02  
1
LTC1164-6  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 16V  
Input Voltage (Note 2) ......... (V++ 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration......................... Indefinite  
Power Dissipation............................................. 400mW  
Burn-In Voltage ...................................................... 16V  
Operating Temperature Range  
LTC1164-6C ...................................... 40°C to 85°C  
LTC1164-6M ................................... – 55°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
NC  
CONNECT 2  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
CONNECT 2  
NC  
14  
13  
12  
11  
10  
9
NC  
V
V
IN  
IN  
GND  
V
V
GND  
LTC1164-6CN  
LTC1164-6CJ  
LTC1164-6MJ  
LTC1164-6CS  
+
+
V
NC  
CLK  
V
GND  
NC  
CLK  
ELL/BESS  
GND  
LP6  
ELL/BESS  
NC  
V
OUT  
LP6  
NC  
8
CONNECT 1  
CONNECT 1  
V
OUT  
J PACKAGE  
N PACKAGE  
14-LEAD CERAMIC DIP 14-LEAD PLASTIC DIP  
S PACKAGE  
16-LEAD PLASTIC SOL  
TJMAX = 150°C, θJA = 65°C/W (J)  
TJMAX = 110°C, θJA = 85°C/W  
T
JMAX = 110°C, θJA = 65°C/W (N)  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, TA = 25°C, fCLK = 400kHz, TTL or CMOS level (maximum clock rise or fall time 1µs) and all gain  
measurements are referenced to passband gain, unless otherwise specified. (fCLK/fCUTOFF) = 4kHz at 100:1 and 8kHz at 50:1.  
PARAMETER  
CONDITIONS  
= 1kHz, (f /f ) = 100:1  
MIN  
TYP  
– 0.15  
MAX  
UNITS  
dB  
Passband Gain 0.1Hz to 0.25 f  
(Note 4)  
f
0.50  
0.25  
CUTOFF  
IN  
CLK C  
Passband Ripple with V = Single 5V  
1Hz to 0.8 f (Table 2)  
0.1 to – 0.3  
0.10  
– 0.30  
dB  
dB  
dB  
dB  
S
C
Gain at 0.50 f  
Gain at 0.90 f  
Gain at 0.95 f  
(Note 3)  
(Note 3)  
(Note 3)  
f
f
f
= 2kHz, (f /f ) = 100:1  
0.45  
0.75  
–1.40  
0.10  
0.10  
– 0.40  
CUTOFF  
CUTOFF  
CUTOFF  
IN  
IN  
IN  
CLK C  
= 3.6kHz, (f /f ) = 100:1  
CLK  
C
= 3.8kHz, (f /f ) = 100:1  
– 0.70  
CLK  
C
Gain at f  
(Note 3)  
f
f
= 4kHz, (f /f ) = 100:1  
3.50  
3.00  
2.70  
2.10  
2.30  
1.50  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 8kHz, (f /f ) = 50:1  
CLK  
C
Gain at 1.44 f  
(Note 3)  
(Note 3)  
= 20kHz  
f
f
f
= 5.76kHz, (f /f ) = 100:1  
= 8kHz, (f /f ) = 100:1  
CLK C  
–69  
69  
3.50  
64  
64  
2.70  
58  
58  
2.30  
dB  
dB  
dB  
CUTOFF  
IN  
IN  
IN  
CLK C  
Gain at 2.0 f  
CUTOFF  
Gain with f  
= 200Hz, (f /f ) = 100:1  
CLK  
CLK C  
Gain with V = ±2.375V  
f
f
= 400kHz, f = 2kHz, (f /f ) = 100:1  
0.50  
3.30  
0.10  
2.50  
0.30  
2.00  
dB  
dB  
S
IN  
IN  
IN  
CLK C  
= 400kHz, f = 4kHz, (f /f ) = 100:1  
IN  
CLK C  
Input Frequency Range (Tables 3, 4)  
(f /f ) = 100:1  
0 – <f /2  
kHz  
kHz  
CLK  
C
CLK  
(f /f ) = 50:1  
0 – <f  
CLK  
C
CLK  
Maximum f  
(Table 3)  
V ≥ ±7.5V  
1.5  
1.0  
1.0  
MHz  
MHz  
MHz  
CLK  
S
V ≤ ±5V  
S
V = Single 5V, AGND = 2V  
S
2
LTC1164-6  
ELECTRICAL CHARACTERISTICS  
VS = ±7.5V, RL = 10k, TA = 25°C, fCLK = 400kHz, TTL or CMOS level (maximum clock rise or fall time 1µs) and all gain  
measurements are referenced to passband gain, unless otherwise specified. (fCLK/fCUTOFF) = 4kHz at 100:1 and 8kHz at 50:1.  
PARAMETER  
Clock Feedthrough  
CONDITIONS  
Input at GND, f = f , Square Wave  
MIN  
TYP  
MAX  
UNITS  
CLK  
V = ±7.5V, (f /f ) = 100:1  
500  
200  
µV  
µV  
S
CLK  
C
RMS  
RMS  
V = ±5V, (f /f ) = 50:1  
S
CLK C  
Wideband Noise  
Input at GND, 1Hz f < f  
CLK  
V = ±7.5V  
115 ± 5%  
100 ± 5%  
µV  
µV  
S
RMS  
RMS  
kΩ  
V = ±2.5V  
S
Input Impedance  
30  
40  
70  
Output DC Voltage Swing  
V = ±2.375V  
±1.25  
±3.70  
±5.40  
±1.50  
±4.10  
±5.90  
V
V
V
S
V = ±5V  
S
V = ±7.5V  
S
Output DC Offset  
Output DC Offset TempCo  
Power Supply Current  
V = ±5V, (f /f ) = 100:1  
±100  
±100  
2.5  
±160  
mV  
µV/°C  
mA  
mA  
mA  
mA  
S
CLK C  
V = ±5V, (f /f ) = 100:1  
S
CLK C  
V = ±2.375V, T > 25°C  
4.0  
4.5  
7.0  
8.0  
11.0  
12.5  
S
A
V = ±5V, T > 25°C  
4.5  
7.0  
S
A
V = ±7.5V, T > 25°C  
mA  
mA  
S
A
Power Supply Range  
±2.375  
±8  
V
The  
denotes specifications which apply over the full operating  
may cause latch-up. It is recommended that no sources operating from  
external supplies be applied prior to power-up of the LTC1164-6.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which life of  
Note 3: All gains are measured relative to passband gain.  
Note 4: The cutoff frequency of the filter is abbreviated as f  
the device may be impaired.  
or f .  
C
CUTOFF  
+
Note 2: Connecting any pin to voltages greater than V or less than V  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Stopband Gain vs Frequency  
(Elliptic Response)  
Stopband Gain vs Frequency  
(Elliptic Response)  
10  
10  
0
V
f
= ±5V  
V
f
C
= ±5V  
CLK  
= 5kHz  
S
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 250kHz  
= 500kHz  
CLK  
(f /f ) = 50:1  
CLK  
f
C
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
+
(PIN 10 AT V )  
= 25°C  
(f /f ) = 100:1  
CLK  
C
T
(PIN 10 AT V )  
= 25°C  
A
WITH EXTERNAL  
SINGLE POLE LOW-  
PASS RC FILTER  
T
A
(f  
= 10kHz)  
– 3dB  
6
8
10 12 14 16  
18  
20  
22  
2
4
6
8
10 12 14 16  
18 22  
20  
2
4
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G01  
1164-6 G02  
3
LTC1164-6  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Stopband Gain vs Frequency  
(Linear Phase Response)  
Passband Gain and Phase  
vs Frequency  
2.0  
0
10  
0
A. RESPONSE WITHOUT  
EXTERNAL RC FILTER  
V
= ±5V  
S
1.5  
1.0  
–45  
f
f
= 800kHz  
CLK  
C
B. RESPONSE WITH AN  
EXTERNAL SINGLE  
= 5kHz  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
(f /f ) = 160:1  
CLK  
C
POLE LOWPASS RC  
0.5  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
(PIN 10 AT GND)  
FILTER (fAT 10kHz)  
– 3dB  
T
= 25°C  
A
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
V
= ±5V  
S
f
f
= 500kHz  
CLK  
C
A
B
= 5kHz  
(f /f ) = 100:1  
CLK  
C
(PIN 10 AT V )  
= 25°C  
T
A
2
6
10  
14 18 22 26 30  
FREQUENCY (kHz)  
34  
38  
42  
1
2
3
4
5
FREQUENCY (kHz)  
1164-6 G03  
1164-6 G04  
Maximum Passband over  
Temperature  
Passband Gain and Phase vs  
Frequency (Linear Phase Response)  
Passband Gain vs Frequency  
0.4  
0.2  
3
2
0
A
0.8  
0.4  
–30  
B
C
0
1
–60  
PHASE  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
0
–90  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
A. T = 125°C  
A
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–120  
–150  
–180  
–210  
–240  
–270  
–300  
B. T = 85°C  
A
GAIN  
D. T = –40°C  
A
V
= ±5V  
S
f
f
= 500kHz  
CLK  
C
V
= ±5V  
S
= 5kHz  
V
= ±5V  
S
f
f
= 800kHz  
CLK  
C
(f /f ) = 100:1  
CLK  
C
f
f
= 1MHz  
CLK  
C
= 5kHz  
(PIN 10 AT V )  
= 25°C  
= 10kHz  
(f /f ) = 160:1  
CLK  
C
T
A
(f /f ) = 100:1  
CLK  
C
(PIN 10 AT GND)  
= 25°C  
(10 REPRESENTA-  
TIVE UNITS)  
(PIN 10 AT V )  
T
A
1
5
10  
1
2
3
4
5
0.4  
1.0  
2.2  
2.8  
3.4  
4.0  
1.6  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G07  
1164-6 G11  
1164-6 G05  
Passband Gain and Phase vs  
Frequency and fCLK  
Passband vs Frequency and fCLK  
0
3
2
2.0  
1.5  
A. RESPONSE WITHOUT  
EXTERNAL SINGLE  
POLE RC FILTER  
A. f  
B. f  
C. f  
D. f  
= 400kHz  
CUTOFF  
CLK  
V
= ±5V  
S
–45  
f
= 4kHz  
(f /f ) = 100:1  
CLK  
C
–90  
= 600kHz  
1
A
B
CLK  
(PIN 10 AT V )  
= 25°C  
1.0  
B. RESPONSE WITH AN  
EXTERNAL SINGLE  
f
= 6kHz  
CUTOFF  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
–495  
–540  
0
T
A
= 800kHz  
0.5  
CLK  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
POLE LOWPASS RC  
f
= 8kHz  
CUTOFF  
PHASE  
A
FILTER (fAT 10kHz)  
– 3dB  
0
= 1MHz  
f = 10kHz  
CUTOFF  
CLK  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
3.0  
B
V
= ±5V  
S
f
f
= 250kHz  
CLK  
C
= 5kHz  
(f /f ) = 50:1  
CLK  
C
A
(PIN 10 AT V )  
T
B
C
D
= 25°C  
A
1
2
3
4
5
1
5
10  
FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1164-6 G06  
1164-6 G08  
4
LTC1164-6  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Passband over  
Temperature  
Passband vs Frequency and fCLK  
2.0  
1.5  
2.0  
1.5  
A. f  
B. f  
C. f  
= 250kHz  
CUTOFF  
CLK  
f
= 5kHz  
= 500kHz  
CLK  
1.0  
1.0  
f
= 10kHz  
= 20kHz  
CUTOFF  
= 1MHz  
T
= 70°C  
A
0.5  
CLK  
0.5  
f
CUTOFF  
0
0
T
= –40°C  
A
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
A
C
B
V
= SINGLE 5V  
S
(f /f ) = 50:1  
CLK  
C
GND = 2V WITH  
V
= ±8V  
S
–2.0 EXTERNAL RC  
(f /f ) = 50:1  
CLK  
C
+
LOWPASS FILTER  
(f  
(PIN 10 AT V )  
= 25°C  
–2.5  
= 40kHz)  
T
– 3dB  
4
A
–3.0  
1
10  
FREQUENCY (kHz)  
30  
10 12 14 16  
2
6
8
18  
20  
22  
FREQUENCY (kHz)  
1164-6 G09  
1164-6 G10  
Group Delay vs Frequency  
(Linear Phase Response)  
Group Delay vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Elliptic Response)  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
700  
600  
500  
400  
300  
200  
250  
200  
150  
100  
50  
A.  
f
= 250kHz, (f /f ) = 50:1  
V = ±5V, V = 1V  
S IN RMS  
CLK  
CLK  
C
f
= 800kHz  
CLK  
WITH EXTERNAL RC LOWPASS  
(20k RESISTOR PIN 14 TO V )  
= 500kHz, f = 5kHz  
(f /f ) = 160:1  
CLK  
C
FILTER= 1(f0kHz)  
f
CLK  
C
C
f
= 5kHz  
C
A
B
B.  
f
= 500kHz  
(f /f ) = 100:1, T = 25°C  
CLK C A  
CLK  
(f/f ) = 100:1  
(5 REPRESENTATIVE UNITS)  
CLK  
C
V
f
= ±5V  
= 5kHz  
= 25°C  
S
100  
C
T
A
0
0
1
2
3
4
5
1
2
3
4
5
1
3
4
5
7
8
9
10 11  
2
6
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G13  
1164-6 G12  
1164-6 G22  
THD + Noise vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Linear Phase Response)  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
V
V
f
= ±5V  
= 1V  
CLK  
= 5kHz  
V
f
= ±5V, V = 1V  
,
V
f
= SINGLE 5V, V = 0.7V  
IN RMS  
S
IN  
S
IN  
RMS  
S
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
= 500kHz, f = 10kHz,  
= 500kHz, f = 5kHz,  
RMS  
CLK  
C
CLK  
C
= 800kHz  
(f /f ) = 50:1, T = 25°C,  
(f /f ) = 100:1, T = 25°C  
CLK C A  
CLK  
C
A
f
WITH EXTERNAL RC LOWPASS  
FILTER (f = 20kHz)  
(5 REPRESENTATIVE UNITS)  
C
(f /f ) = 160:1  
CLK  
C
– 3dB  
T
= 25°C  
(5 REPRESENTATIVE UNITS)  
A
0.5  
1
5
1
5
10  
1
2
3
4
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G14  
1164-6 G23  
1164-6 G16  
5
LTC1164-6  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Power Supply Current vs Power  
Supply Voltage  
THD + Noise vs RMS Input  
(Elliptic Response)  
THD + Noise vs RMS Input for  
Single 5V (Elliptic Response)  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
12  
11  
10  
9
(f /f ) = 100:1 OR 50:1  
CLK  
C
(f /f ) = 100:1 OR 50:1  
CLK  
IN  
C
f
= 1kHz, T = 25°C  
A
–55°C  
IN  
f
= 1kHz, T = 25°C  
A
A
B
25°C  
8
125°C  
7
V
= ±5V  
S
6
5
4
3
V
)
= ±7.5V  
S
2
A. GND = 2.5V  
B. GND = 2V  
1
0
0.1  
1
2
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
5
+
INPUT (V  
POWER SUPPLY (V OR V )  
INPUT (V  
)
RMS  
RMS  
1164-6 G17  
1164-6 G18  
1164-6 G19  
Transient Response  
Transient Response  
1164-6 G21  
1164-6 G20  
1ms/DIV  
1ms/DIV  
VS = ±7.5V, VIN = ±3V 100Hz SQUARE WAVE  
fCLK = 800kHz, (fCLK/fC) = 160:1, fCUTOFF = 5kHz  
LINEAR PHASE RESPONSE  
VS = ±7.5V, VIN = ±3V 100Hz SQUARE WAVE  
fCLK = 500kHz, (fCLK/fC) = 100:1, fCUTOFF = 5kHz  
ELLIPTIC RESPONSE  
U
U
U
(14-Lead Dual-In-Line Package)  
PI FU CTIO S  
Power Supply Pins (4, 12)  
1 and 2 show typical connections for dual and single  
supply operation.  
TheV+ (pin4)andtheV (pin12)shouldbebypassedwith  
a 0.1µF capacitor to an adequate analog ground. The  
filter’s power supplies should be isolated from other  
digital or high voltage analog supplies. A low noise linear  
supply is recommended. Using a switching power supply  
will lower the signal-to-noise ratio of the filter. The supply  
during power-up should have a slew rate less than 1V/µs.  
When V+ is applied before Vand Vcould go above  
ground, a signal diode must be used to clamp V. Figures  
Clock Input Pin (11)  
Any TTL or CMOS clock source with a square-wave output  
and 50% duty cycle (±10%) is an adequate clock source  
for the device. The power supply for the clock source  
should not be the filter’s power supply. The analog ground  
for the filter should be connected to clock’s ground at a  
single point only. Table 1 shows the clock’s low and high  
6
LTC1164-6  
U
U
U
PI FU CTIO S  
(14-Lead Dual-In-Line Package)  
Analog Ground Pins (3, 5)  
level threshold value for a dual or single supply operation.  
A pulse generator can be used as a clock source provided  
thehighlevelONtimeisgreaterthan0.5µs.Sinewavesare  
not recommended for clock input frequencies less than  
100kHz, since excessively slow clock rise or fall times  
generate internal clock jitter (maximum clock rise or fall  
time 1µs). The clock signal should be routed from the  
rightsideoftheICpackagetoavoidcouplingintoanyinput  
or output analog signal path. A 1k resistor between clock  
source and pin 11 will slow down the rise and fall times of  
the clock to further reduce charge coupling, Figures 1  
and 2.  
The filter performance depends on the quality of the  
analog signal ground. For either dual or single supply  
operation, an analog ground plane surrounding the pack-  
age is recommended. The analog ground plane should be  
connected to any digital ground at a single point. For dual  
supply operation, pins 3 and 5 should be connected to the  
analog ground plane. For single supply operation pins 3  
and 5 should be biased at 1/2 supply and they should be  
bypassed to the analog ground plane with at least a 1µF  
capacitor(Figure2). Forsingle5Voperationatthehighest  
f
CLK of 1MHz, pins 3 and 5 should be biased at 2V. This  
V
minimizes passband gain and phase variations (see Typi-  
cal Performance Characteristics curves: Maximum Pass-  
band for Single 5V, 50:1; and THD + Noise vs RMS Input  
for Single 5V, 50:1).  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
*
V
V
0.1µF  
IN  
1k  
+
CLOCK SOURCE  
LTC1164-6  
Elliptic/Linear Phase Select Pin (10)  
0.1µF  
+
GND  
8
The DC level at this pin selects the desired filter response,  
ellipticorlinearphaseanddeterminestheratiooftheclock  
frequency to the cutoff frequency of the filter. Pin 10  
connected to Vprovides an elliptic lowpass filter with  
clock-to-fCUTOFF ratio of 100:1. Pin 10 connected to  
analog ground provides a linear phase lowpass filter with  
a clock- to-f–3dB ratio of 160:1 and a transient response  
overshoot of 1%. When pin 10 is connected to V+ the  
clock-to-fCUTOFF ratio is 50:1 and the filter response is  
elliptic. Bypassing pin 10 to analog ground reduces the  
output DC offsets. If the DC level at pin 10 is switched  
mechanically or electrically at slew rates greater than 1V/  
µs while the device is operating, a 10k resistor should be  
connected between pin 10 and the DC source.  
DIGITAL SUPPLY  
* OPTIONAL  
V
OUT  
1164-6 F01  
Figure 1. Dual Supply Operation for fCLK/fCUTOFF = 100:1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
1k  
+
V
LTC1164-6  
CLOCK SOURCE  
0.1µF  
+
GND  
DIGITAL SUPPLY  
10k  
10k  
8
+
1µF  
Filter Input Pin (2)  
V
OUT  
1164-6 F02  
The input pin is connected internally through a 50k resis-  
tor tied to the inverting input of an op amp.  
Figure 2. Single Supply Operation for fCLK/fCUTOFF = 100:1  
Table 1. Clock Source High and Low Threshold Levels  
Filter Output Pins (9, 6)  
POWER SUPPLY  
HIGH LEVEL  
2.18V  
1.45V  
0.73V  
7.80V  
1.45V  
LOW LEVEL  
0.5V  
0.5V  
2.0V  
6.5V  
0.5V  
Pin 9 is the specified output of the filter; it can typically  
source or sink 1mA. Driving coaxial cables or resistive  
loads less than 20k will degrade the total harmonic distor-  
tionofthefilter. Whenevaluatingthedevice’sdistortionan  
output buffer is required. A noninverting buffer, Figure 3,  
Dual Supply = ±7.5V  
Dual Supply = ±5V  
Dual Supply = ±2.5V  
Single Supply = 12V  
Single Supply = 5V  
7
LTC1164-6  
U
U
U
(14-Lead Dual-In-Line Package)  
PI FU CTIO S  
can be used provided that its input common-mode range  
is well within the filter’s output swing. Pin 6 is an interme-  
diate filter output providing an unspecified 6th order  
lowpass filter. Pin 6 should not be loaded.  
External Connection Pins (7, 14)  
Pins 7 and 14 should be connected together. In a printed  
circuit board the connection should be done under the IC  
package through a short trace surrounded by the analog  
ground plane.  
NC Pin (1, 8, 13)  
1k  
+
Pins 1, 8, and 13 are not connected to any internal circuit  
point on the device and should preferably be tied to analog  
ground.  
LT1006, f < 5kHz  
C
LT1200, f > 5kHz  
C
1164-6 F03  
Figure 3. Buffer for Filter Output  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
The gain peaking can approximate a sin χ/χ correction for  
someapplications.(SeeTypicalPerformanceCharacteris-  
tics curve, Passband vs Frequency and fCLK at fCLK/fC =  
50:1.)  
Passband Response  
The passband response of the LTC1164-6 is optimized for  
a fCLK/fCUTOFF ratio of 100:1. Minimum passband ripple  
occursfrom1Hzto80%offCUTOFF. Athoughthepassband  
of the LTC1164-6 is optimized for ratio fCLK/fCUTOFF of  
100:1, if a ratio of 50:1 is desired, connect a single pole  
lowpass RC (f–3dB = 2 fCUTOFF) at the output of the filter.  
TheRCwillmakethepassbandgainresponseasflatasthe  
100:1 case. If the RC is omitted, and clock frequencies are  
below 500kHz the passband gain will peak by 0.4dB at  
When the LTC1164-6 operates with a single 5V supply and  
its cutoff frequency is clock-tuned to 10kHz, an output  
single pole RC filter can also help maintain outstanding  
passband flatness from 0°C to 70°C. Table 2 shows  
details.  
Clock Feedthrough  
90% fCUTOFF  
.
Clockfeedthroughisdefinedas,theRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pin (9). The clock feedthrough is tested with the  
input pin (2) grounded and, it depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques the values of the clock feedthrough are shown  
in Table 3.  
Table 2. Typical Passband Ripple with Single 5V Supply  
(fCLK/fC) = 100:1, GND = 2V, 30kHz, Fixed Single Pole, Lowpass  
RC Filter at Pin 9 (See Typical Applications)  
PASSBAND  
FREQUENCY  
PASSBAND GAIN  
(REFERENCED TO 0dB)  
f
= 1kHz  
f
= 10kHz  
CUTOFF  
CUTOFF  
T = 25°C  
A
T = 0°C  
A
T = 25°C  
A
T = 70°C  
A
% of f  
(dB)  
0.00  
(dB)  
0.00  
0.00  
(dB)  
0.00  
0.01  
0.01  
0.02  
0.01  
0.01  
(dB)  
0.00  
0.01  
0.01  
0.02  
0.03  
0.05  
0.07  
0.02  
CUTOFF  
10  
20  
30  
40  
50  
60  
70  
80  
Table 3. Clock Feedthrough  
0.02  
0.05  
0.10  
0.13  
0.15  
0.18  
0.25  
0.39  
2.68  
V
50:1  
60µV  
100µV  
150µV  
100:1  
60µV  
S
– 0.01  
– 0.02  
– 0.03  
– 0.01  
– 0.01  
– 0.08  
– 0.23  
– 2.79  
±2.5V  
±5V  
±7.5V  
RMS  
RMS  
200µV  
500µV  
RMS  
RMS  
RMS  
RMS  
0.01  
Note: The clock feedthrough at ±2.5V supplies is imbedded in the wideband  
noise of the filter. (The clock signal is a square wave.)  
0.05  
0.18  
2.74  
90  
– 0.05  
– 2.68  
f
CUTOFF  
8
LTC1164-6  
O U  
W
U
PPLICATI  
S I FOR ATIO  
A
Table 4. Maximum VIN vs VS and fCLK  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple R/C lowpass network at the output of  
the filter pin (9). This R/C will completely eliminate any  
switching transient.  
POWER SUPPLY  
MAXIMUM f  
MAXIMUM V  
IN  
CLK  
±7.5V  
1.5MHz  
1MHz  
1V  
3V  
0.7V  
(f > 35kHz)  
RMS IN  
(f > 25kHz)  
RMS IN  
1MHz  
(f > 250kHz)  
RMS IN  
±5V  
1MHz  
1MHz  
2.5V  
0.5V  
(f > 25kHz)  
RMS IN  
(f > 100kHz)  
RMS IN  
Single 5V  
1MHz  
1MHz  
0.7V  
0.5V  
(f > 25kHz)  
RMS IN  
(f > 100kHz)  
RMS IN  
Table 5. Aliasing (fCLK = 100kHz)  
INPUT FREQUENCY OUTPUT LEVEL  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
Wideband Noise  
(V = 1V  
)
(Relative to Input)  
(dB)  
IN  
RMS  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering. For instance, the  
(kHz)  
/f = 100:1, f = 1kHz  
CUTOFF  
f
CLK  
C
96 (or 104)  
97 (or 103)  
98 (or 102)  
98.5 (or 101.5)  
99 (or 101)  
–75.0  
68.0  
65.0  
60.0  
3.2  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
LTC1164-6widebandnoiseat ±2.5Vsupplyis100µVRMS  
,
90µVRMS of which have frequency contents from DC up to  
the filter’s cutoff frequency. The total wideband noise  
(µVRMS) is nearly independent of the value of the clock.  
The clock feedthrough specifications are not part of the  
wideband noise.  
99.5 (or 100.5)  
– 0.5  
f
/f = 50:1, f = 2kHz  
CUTOFF  
CLK  
C
192 (or 208)  
194 (or 206)  
196 (or 204)  
198 (or 202)  
199 (or 201)  
199.5(or 200.5)  
76.0  
68.0  
63.0  
3.4  
1.3  
0.9  
8.0  
6.0  
4.0  
2.0  
1.0  
0.5  
Speed Limitations  
The LTC1164-6 optimizes AC performance versus power  
consumption. To avoid op amp slew rate limiting at  
maximum clock frequencies, the signal amplitude should  
be kept below a specified level as shown on Table 4.  
Table 6. Transient Response of LTC Lowpass Filters  
DELAY  
TIME*  
(SEC)  
RISE  
SETTLING OVER-  
TIME** TIME*** SHOOT  
Aliasing  
LOWPASS FILTER  
(SEC)  
(SEC)  
(%)  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs when input frequencies close to the  
sampling frequency are applied. For the LTC1164-6 case,  
an input signal whose frequency is in the range of fCLK  
±4%, will be aliased back into the filter’s passband. If, for  
instance, an LTC1164-6 operating with a 100kHz clock  
and 1kHz cutoff frequency receives a 98.5kHz, 10mVRMS  
input signal, a 1.5kHz, 10µVRMS alias signal will appear at  
itsoutput. WhentheLTC1164-6operateswithaclock-to-  
cutoff frequency of 50:1, aliasing occurs at twice the clock  
frequency. Table 5 shows details.  
LTC1064-3 Bessel  
0.50/f  
0.34/f  
0.34/f  
0.34/f  
0.80/f  
0.85/f  
0.5  
0
C
C
C
C
C
C
C
LTC1164-5 Linear Phase  
LTC1164-6 Linear Phase  
0.43/f  
C
0.43/f  
1.15/f  
1
C
LTC1264-7 Linear Phase  
LTC1164-7 Linear Phase  
LTC1064-7 Linear Phase  
1.15/f  
1.20/f  
1.20/f  
0.36/f  
0.39/f  
0.39/f  
2.05/f  
2.20/f  
2.20/f  
5
5
5
C
C
C
C
C
C
C
C
C
LTC1164-5 Butterworth  
0.80/f  
0.48/f  
2.40/f  
11  
C
C
C
LTC1164-6 Elliptic  
LTC1064-4 Elliptic  
LTC1064-1 Elliptic  
0.85/f  
0.90/f  
0.85/f  
0.54/f  
0.54/f  
0.54/f  
4.30/f  
4.50/f  
18  
20  
20  
C
C
C
C
C
C
C
C
6.50/f  
C
* To 50% ±5%, ** 10% to 90% ±5%, *** To 1% ±0.5%  
9
LTC1164-6  
U
O
TYPICAL APPLICATI S  
8th Order Elliptic Lowpass Filter  
(fCLK/fC) = 50:1  
1
2
14  
13  
12  
11  
10  
9
V
+
IN  
+
V
NOTES:  
3
4
5
6
7
1. OPTIONAL OUTPUT BUFFER  
V
1/2πRC = 2 × f  
.
CUTOFF  
0.1µF  
LTC1164-6  
f
V
+
CLK  
+
2. PINS 1, 8, 13 CAN BE GROUNDED  
OR LEFT FLOATING.  
0.1µF  
LT1006  
V
R
V
OUT  
1164-6 TA06  
8
C
V
8th Order Elliptic Lowpass Filter  
(fCLK/fC) = 100:1  
8th Order Linear Phase Lowpass Filter  
(fCLK/fC) = 160:1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
V
IN  
IN  
V
V
+
+
LTC1164-6  
0.1µF  
f
LTC1164-6  
0.1µF  
f
CLK  
V
CLK  
0.1µF  
0.1µF  
V
V
OUT  
OUT  
8
8
1164-6 TA07  
1164-6 TA08  
8th Order 20kHz Cutoff, Elliptic Filter Operating  
with a Single 5V Supply and Driving 1k, 1000pF Load  
1
2
3
4
5
6
7
14  
5V  
5V  
13  
12  
11  
10  
9
V
IN  
NOTES:  
1. TOTAL SUPPLY CURRENT I = 4mA  
S
(EXCLUDING OUTPUT LOAD CURRENT).  
2. FLAT PASSBAND UP TO 18kHz,  
1k  
5V  
7
2
3
f
CLK  
LTC1164-6  
5V  
0.1µF  
51.1k  
+
= 1MHz  
f
= 20kHz.  
–3dB  
V
LT1200  
4
OUT  
10k  
10k  
3. THD + NOISE –70dB,  
1V V 3V , f = 1kHz.  
P-P  
IN  
P-P IN  
1k  
8
1000pF  
510pF  
1164-6 TA09  
0.1µF  
6.65k  
10  
LTC1164-6  
U
O
TYPICAL APPLICATI S  
8th Order Low Power, Clock-Tunable Elliptic Filter with  
Active RC Input Anti-Aliasing Filter and Output Smoothing Filter  
C2  
0.022µF  
R1  
1.15k  
R2  
76.8k  
R3  
5.62k  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
+
IN  
1/2  
C3  
0.001µF  
C1  
LT1013  
0.1µF  
V
0.1µF  
+
LTC1164-6  
f
V
CLK  
f
= 1kHz  
1/2  
C
0.1µF  
V
V
OUT  
ATTENUATION AT 10kHz = –48dB  
LT1013  
+
NOTES:  
C2  
0.001µF  
R2  
97.6k  
8
R1  
C1  
1. CLOCK-TUNABLE OVER ONE DECADE  
OF CUTOFF FREQUENCY.  
16.9k  
0.0047µF  
2. BOTH INPUT AND OUTPUT RC ACTIVE  
FILTERS ARE 0.1dB CHEBYSHEV FILTERS  
WITH 1kHz RIPPLE BANDWIDTH.  
100Hz f 1kHz  
C
10kHz f  
100kHz  
CLK  
f = 1kHz  
C
ATTENUATION AT 10kHz = 30dB  
1164-6 TA10  
Single 5V, 16th Order Lowpass Filter  
fCUTOFF = 10kHz  
R1  
789Ω  
V
IN  
C1  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
0.01µF  
13  
12  
11  
10  
9
LTC1164-6  
IC1  
LTC1164-6  
IC2  
5V  
5V  
0.1µF  
0.1µF  
15k  
10k  
5V  
5V  
V
OUT  
+
8
8
R2  
7.89k  
C2  
1µF  
0.001µF  
1k  
f
1164-6 TA03  
CLK  
V
= SINGLE 5V, I = 5mA TYP  
S
S
16TH ORDER LOWPASS FILTER  
FIXED f  
, f  
= 540kHz  
CUTOFF CLK  
f
= 10kHz  
CUTOFF  
(f /f ) = 54:1  
CLK  
C
1/2πR1C1 = 1/2πR2C2 = 2f  
CUTOFF  
THD + Noise vs Frequency  
Gain vs Frequency  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
10  
0
V
= SINGLE 5V  
IS = 5mA, 16TH ORDER  
ELLIPTIC LOWPASS  
S
–10  
–20  
–30  
–40  
–50  
V
= 0.5V  
CLK  
= 10kHz  
IN  
RMS  
f
f
= 540kHz  
C
V
S
= SINGLE 5V  
S
–60  
I
= 5mA, 16TH ORDER  
ELLIPTIC LOWPASS  
–70  
–80  
–90  
f
f
= 540kHz  
= 10kHz  
CLK  
CUTOFF  
1
10  
FREQUENCY (kHz)  
30  
1
5
10  
FREQUENCY (kHz)  
1164-6 TA05  
1164-6 TA04  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1164-6  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
J Package  
14-Lead Ceramic DIP  
0.785  
0.200  
(5.080)  
MAX  
(19.939)  
MAX  
0.005  
(0.127)  
MIN  
0.290 – 0.320  
(7.366 – 8.128)  
14  
13  
12  
11  
10  
9
8
0.015 – 0.060  
(0.381 – 1.524)  
0.220 – 0.310  
0.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.460)  
2
3
4
5
6
1
7
0.098  
(2.489)  
MAX  
0.385 ± 0.025  
0.038 – 0.068  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.125  
(3.175)  
MIN  
(9.779 ± 0.635)  
(0.965 – 1.727)  
0.014 – 0.026  
J14 0392  
(0.360 – 0.660)  
N Package  
14-Lead Plastic DIP  
0.770  
0.065  
(19.558)  
MAX  
(1.651)  
TYP  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.015  
(0.380)  
MIN  
14  
13  
12  
11  
10  
9
8
7
0.130 ± 0.005  
(3.302 ± 0.127)  
0.260 ± 0.010  
(6.604 ± 0.254)  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
1
2
3
5
6
4
0.325  
–0.015  
0.075 ± 0.015  
(1.905 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.125  
(3.175)  
MIN  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
S Package  
16-Lead Plastic SOL  
0.398 – 0.413  
(10.109 – 10.490)  
0.291 – 0.299  
(7.391 – 7.595)  
15 14  
12  
10  
9
16  
13  
11  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.005  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
(0.127)  
RAD MIN  
0° – 8° TYP  
0.394 – 0.419  
(10.007 – 10.643)  
SEE NOTE  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
SEE NOTE  
0.014 – 0.019  
0.016 – 0.050  
(0.406 – 1.270)  
(0.356 – 0.482)  
TYP  
NOTE:  
PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2
3
5
7
8
1
4
6
SOL16 0392  
LT/GP 0293 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LTC1164-6CS

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CSW

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CSW#PBF

暂无描述
Linear

LTC1164-6CSW#TR

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6CSW#TRPBF

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6M

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6MJ

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6MJ#PBF

IC SWITCHED CAPACITOR FILTER, ELLIPTIC/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter
Linear

LTC1164-6MJ/883

LTC1164-6MJ/883
Linear

LTC1164-6MS

IC SWITCHED CAPACITOR FILTER, ELLIPTIC, LOWPASS, PDSO14, PLASTIC, SO-14, Active Filter
Linear

LTC1164-6_1

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-7

Low Power, Linear Phase 8th Order Lowpass Filter
Linear