LTC1174HVCS8#TR [Linear]

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1174HVCS8#TR
型号: LTC1174HVCS8#TR
厂家: Linear    Linear
描述:

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

文件: 总20页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1174  
LTC1174-3.3/LTC1174-5  
High Efficiency  
Step-Down and Inverting  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®1174 is a simple current mode DC/DC converter  
ideally suited for 9V to 5V, 5V to 3.3V or 5V to 5V  
operation. With an internal 0.9switch (at a supply  
voltage of 9V), the LTC1174 requires only four external  
components to construct a complete high efficiency  
DC/DC converter.  
High Efficiency: Up to 94%  
Peak Inductor Current Independent of  
Inductor Value  
Short-Circuit Protection  
Optimized for 5V to 5V Applications  
Wide VIN Range: 4V to 18.5V  
Low Dropout Operation  
UnderanoloadconditiontheLTC1174drawsonly130µA.  
In shutdown, it draws a mere 1µA making this converter  
ideal for current sensitive applications. In dropout, the  
internal P-channel MOSFET switch is turned on continu-  
ously allowing the user to maximize the life of the battery  
source.  
Low-Battery Detector  
Pin Selectable Current Limit  
Internal 0.9Power Switch: VIN = 9V  
Only Four External Components Required  
130µA Standby Current  
Active Low Micropower Shutdown  
The maximum inductor current of the LTC1174 family is  
pin selectable to either 340mA or 600mA, optimizing  
efficiency for a wide range of applications. Operation up to  
200kHz permits the use of small surface mount inductors  
and capacitors.  
U
APPLICATIO S  
Distributed Power Systems  
Step-Down Converters  
Inverting Converters  
For applications requiring higher output current or ultra-  
high efficiency, see the LTC1148 data sheet.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Memory Backup Supply  
Portable Instruments  
Battery-Powered Equipment  
U
TYPICAL APPLICATIO  
High Efficiency Step-Down Converter  
LTC1174-5 Efficiency  
100  
V
IN  
9V  
95  
15µF*  
25V  
+
6
V
= 6V  
IN  
V
IN  
×3  
3
2
8
1
5
90  
85  
80  
75  
70  
LB  
LB  
SHUTDOWN  
IN  
V
= 9V  
IN  
V
OUT  
OUT  
SW  
5V  
175mA  
7
I
PGM  
100µH†  
LTC1174-5  
+
100µF**  
10V  
1N5818  
GND  
4
L = 100µH  
V
= 5V  
= 0V  
OUT  
PGM  
1174 TA01  
I
(3) AVX TPSD156K025  
AVX TPSD107K010  
*
**  
1
10  
LOAD CURRENT (mA)  
100 200  
COILTRONICS CTX100-4  
1174 TA02  
1174fe  
1
LTC1174  
LTC1174-3.3/LTC1174-5  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
(Voltage Referred to GND Pin)  
Input Supply Voltage (Pin 6)  
LTC1174........................................... 0.3V to 13.5V  
LTC1174HV ...................................... 0.3V to 18.5V  
Switch Current (Pin 5) .............................................. 1A  
Switch Voltage (Pin 5)  
Operating Temperature Range  
LTC1174CX ............................................ 0°C to 70°C  
LTC1174IX ........................................ 40°C to 85°C  
Junction Temperature (Note 2)............................ 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LTC1174................................................. VIN – 13.5V  
LTC1174HV ............................................ VIN – 18.5V  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
V (V *)  
OUT FB  
1
2
3
4
8
7
6
5
SHUTDOWN  
V
(V *)  
OUT FB  
1
2
3
4
SHUTDOWN  
8
7
6
5
LB  
I
LB  
I
OUT  
PGM  
OUT  
PGM  
LB  
IN  
V
IN  
LB  
IN  
GND  
V
IN  
GND  
SW  
SW  
S8 PACKAGE  
8-LEAD PLASTIC SO  
N8 PACKAGE  
8-LEAD PDIP  
* ADJUSTABLE OUTPUT VERSION  
* ADJUSTABLE OUTPUT VERSION  
TJMAX = 125°C, θJA = 150°C/W  
TJMAX = 125°C, θJA = 110°C/W  
ORDER PART NUMBER  
ORDER PART NUMBER  
S8 PART MARKING  
LTC1174CN8  
LTC1174CS8  
1174  
LTC1174CN8-3.3  
LTC1174CN8-5  
LTC1174IN8  
LTC1174CS8-3.3  
LTC1174CS8-5  
LTC1174IS8  
117433  
117450  
1174I  
LTC1174HVCN8  
LTC1174HVCN8-3.3  
LTC1174HVCN8-5  
LTC1174HVCS8  
LTC1174HVCS8-3.3  
LTC1174HVCS8-5  
LTC1174HVIS8  
1174H  
1174H3  
1174H5  
1174HI  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
= V , I = 0V, unless otherwise noted.  
temperature range, otherwise specifications are at T = 25°C. V = 9V, V  
A
IN  
SHUTDOWN  
IN PGM  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
µA  
I
Feedback Current  
LTC1174/LTC1174HV  
LTC1174/LTC1174HV  
FB  
V
V
Feedback Voltage  
1.20  
1.25  
1.30  
V
FB  
Regulated Output Voltage  
LTC1174-3.3/LTC1174HV-3.3  
LTC1174-5/LTC1174V-5  
3.14  
4.75  
3.30  
5.00  
3.46  
5.25  
V
V
OUT  
V  
OUT  
Output Voltage Line Regulation  
V
= 6V to 12V, I  
= 100mA, I  
= V (Note 3)  
10  
70  
mV  
IN  
LOAD  
PGM  
IN  
1174fe  
2
LTC1174  
LTC1174-3.3/LTC1174-5  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 9V, V  
= V , I  
= 0V, unless otherwise noted.  
A
IN  
SHUTDOWN  
IN PGM  
SYMBOL PARAMETER  
Output Voltage Load Regulation  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LTC1174-3.3 (Note 3)  
20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
–45  
–70  
–70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
LTC1174-5 (Note 3)  
20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
–50  
–70  
–70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
I
Input DC Supply Current (Note 4)  
Active Mode  
Q
LTC1174: 4V < V < 12V, I  
= 0V  
PGM  
450  
450  
600  
600  
µA  
µA  
IN  
PGM  
LTC1174HV: 4V < V < 16V, I  
= 0V  
IN  
Sleep Mode  
LTC1174: 4V < V < 12V  
130  
130  
180  
180  
µA  
µA  
IN  
LTC1174HV: 4V < V < 16V  
IN  
SHUTDOWN (Note 4)  
LTC1174: V  
= 0V, 4V < V < 12V  
1
2
10  
25  
µA  
µA  
SHUTDOWN  
IN  
LTC1174HV: V  
= 0V, 4V < V < 16V  
IN  
SHUTDOWN  
V
Low-Battery Trip Point  
Current into Pin 3  
1.25  
1.4  
0.5  
V
LBTRIP  
I
I
µA  
mA  
mA  
LBIN  
Current Sunk by Pin 2  
LTC1174: V  
= 0.4V  
LBOUT  
LBOUT  
1.0  
0.6  
1.2  
0.8  
1.5  
1.5  
LBOUT  
LTC1174HV: V  
= 0.4V  
V
Comparator Hysteresis  
Current Limit  
LTC1174/LTC1174HV  
7.5  
15  
30  
mV  
HYST  
I
I
I
= V , V  
= 0V  
= 0V  
0.54  
0.27  
0.60  
0.34  
0.83  
0.53  
A
A
PEAK  
PGM  
PGM  
IN OUT  
= 0V, V  
OUT  
R
ON  
ON Resistance of Switch  
LTC1174  
LTC1174HV  
0.75  
0.90  
1.30  
1.55  
t
Switch Off-Time (Note 6)  
SHUTDOWN Pin High  
V
at Regulated Value  
3
4
5
µs  
V
OFF  
OUT  
V
V
Minimum Voltage at Pin 8 for Device to Be Active  
Maximum Voltage at Pin 8 for Device to Be in Shutdown  
LTC1174: V = 12V  
1.2  
IH  
IL  
SHUTDOWN Pin Low  
0.75  
V
I
SHUTDOWN Pin Input Current  
0.5  
2.0  
µA  
µA  
IH  
SHUTDOWN  
SHUTDOWN  
LTC1174HV: V  
= 16V  
I
SHUTDOWN Pin Input Current  
0 V  
0.8V  
SHUTDOWN  
0.5  
µA  
IL  
The  
denotes specifications which apply over the full operating temperature range,  
otherwise specifications are at 40°C T 85°C. LTC1174I and LTC1174HVI Only.  
A
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Feedback Voltage  
LTC1174I/LTC1174HVI  
1.18  
1.25  
1.31  
V
FB  
I
Current Sunk by Pin 2  
V
V
= 0.4V (LTC1174I)  
= 0.4V (LTC1174HVI)  
0.75  
0.50  
1.2  
0.8  
2.0  
1.6  
mA  
mA  
LBOUT  
LBOUT  
LBOUT  
I
Current Limit  
I
I
= V , V  
= 0V (LTC1174I)  
= 0V (LTC1174I)  
0.54  
0.60  
0.34  
0.84  
A
A
PEAK  
PGM  
PGM  
IN OUT  
OUT  
= 0V, V  
I
I
= V , V  
= 0V (LTC1174HVI)  
= 0V (LTC1174HVI)  
0.5  
0.60  
0.34  
0.86  
A
A
PGM  
PGM  
IN OUT  
= 0V, V  
OUT  
t
Switch Off-Time (Note 6)  
Switch On Resistance  
V
V
at Regulated Value (LTC1174I)  
at Regulated Value (LTC1174HVI)  
2.0  
1.8  
4
4
6.0  
6.2  
µs  
µs  
OFF  
OUT  
OUT  
R
LTC1174I/LTC1174HVI  
0.9  
1.7  
ON  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: T is calculated from the ambient temperature T and power  
J A  
dissipation P according to the following formulas:  
D
LTC1174CN8, LTC1174CN8-3.3, LTC1174CN8-5:  
T = T + (P × 110°C/W)  
J
A
D
LTC1174CS8, LTC1174CS8-3.3, LTC1174CS8-5:  
T = T + (P × 150°C/W)  
J
A
D
1174fe  
3
LTC1174  
LTC1174-3.3/LTC1174-5  
ELECTRICAL CHARACTERISTICS  
Note 3: Guaranteed by design.  
Note 5: Current into Pin 6 only, measured without electrolytic input  
capacitor.  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 6: The off-time is wafer-sort trimmed.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
V
= 6V  
IN  
V
= 6V  
IN  
V
= 6V  
IN  
V
= 9V  
IN  
V
= 9V  
IN  
V
= 9V  
IN  
L = 50µH  
L = 50µH  
L = 100µH  
V
PGM  
COIL = CTX50-4  
= 5V  
= 0V  
OUT  
V
PGM  
COIL = CTX50-4  
= 5V  
V
= 5V  
OUT  
OUT  
I
I
= V  
I
= V  
IN  
PGM IN  
COIL = CTX100-4  
1
10  
LOAD CURRENT (mA)  
100 200  
1
10  
100  
400  
1
10  
100  
500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1174 G01  
1174 G02  
1174 G03  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
= 5V  
IN  
V
= 5V  
V
V
IN  
= 5V  
IN  
V
= 9V  
= 9V  
V
= 9V  
IN  
IN  
IN  
L = 50µH  
V
L = 50µH  
L = 100µH  
= 3.3V  
V
= 3.3V  
V
= 3.3V  
OUT  
PGM  
OUT  
PGM  
COIL = CTX50-4  
OUT  
I
= 0V  
I
= V  
I
= V  
IN  
PGM IN  
COIL = CTX100-4  
COIL = CTX50-4  
1
10  
100  
300  
1
10  
100  
500  
1
10  
100 500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1174 G04  
1174 G05  
1174 G06  
1174fe  
4
LTC1174  
LTC1174-3.3/LTC1174-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Leakage Current  
vs Temperature  
Line Regulation  
Efficiency vs Input Voltage  
6
4
180  
160  
140  
120  
100  
80  
95  
V
= 13.5V  
I
I
= 100mA  
= 0V  
IN  
LOAD  
PGM  
94  
93  
2
0
L = 100µH  
92  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
L = 50µH  
91  
90  
60  
V
I
I
= 5V  
89  
88  
87  
OUT  
PGM  
LOAD  
40  
= 0V  
= 75mA  
20  
CORE = CTX (Kool Mµ®)  
0
0
4
6
8
10  
12  
14  
0
20  
40  
60  
100  
2
80  
9
5
7
10 11 12 13 14  
6
8
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
1174 G07  
1174 G08  
1174 G09  
DC Supply Current  
Supply Current in Shutdown  
Efficiency vs Input Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
95  
94  
93  
92  
91  
90  
89  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 0V  
PGM  
ACTIVE MODE  
V
= 5V  
OUT  
L = 100µH  
COIL = CTX100-4  
SHUTDOWN = 0V  
T
= 25°C  
A
I
= V  
IN  
PGM  
CURRENT INTO PIN 6 ONLY  
I = 100mA  
LOAD  
I = 0V  
PGM  
I
= 300mA  
LOAD  
I
= V  
PGM  
IN  
SLEEP MODE  
T
= 25°C  
A
0
0
4
6
8
10  
12  
14  
2
5
6
7
8
9
10 11 12 13 14  
0
4
6
8
10  
12  
14  
2
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
1174 G12  
1174 G10  
1174 G11  
Operating Frequency  
vs V – V  
Switch Resistance vs  
Input Voltage  
Off-Time vs Output Voltage  
IN  
OUT  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0
T = 25°C  
A
V
= 5V  
OUT  
T
= 25°C  
A
T
A
= 70°C  
LTC1174HV  
LTC1174  
LTC1174-5  
LTC1174HV-5  
LTC1174-3.3  
LTC1174HV-3.3  
5
7
0
2
3
6
8
9
4
6
10 12  
14 16 18 20  
INPUT VOLTAGE (V)  
0
1
3
4
5
1
4
8
2
(V – V ) VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
IN  
OUT  
1174 G13  
1174 G14  
1174 G15  
1174fe  
5
LTC1174  
LTC1174-3.3/LTC1174-5  
U
U
U
PI FU CTIO S  
SW(Pin5):DrainoftheP-ChannelMOSFETSwitch.Cathode  
V
OUT (VFB)(Pin1):FortheLTC1174,thispinconnectstothe  
of Schottky diode must be closely connected to this pin.  
main voltage comparator’s input. On the LTC1174-3.3 and  
LTC1174-5 this pin goes to an internal resistive divider  
which sets the output voltage.  
VIN (Pin 6): Input Supply Voltage. It must be decoupled  
close to ground Pin 4.  
LBOUT (Pin 2): Open Drain of an N-Channel Pull-Down. This  
pin will sink current when Pin 3 (LBIN) goes below 1.25V.  
During shutdown the state of this pin is indeterminate.  
IPGM (Pin 7): Selects the Current Limit of the P-Channel  
Switch. With IPGM = VIN, the current trip point is 600mA and  
with IPGM = 0V, the current trip value is reduced to 340mA.  
LBIN (Pin 3): The “–” Input of the Low-Battery Voltage  
Comparator. The “+” input is connected to a reference  
voltage of 1.25V.  
SHUTDOWN (Pin 8): Pulling this pin to ground keeps the  
internal switch off and puts the LTC1174 in micropower  
shutdown.  
GND (Pin 4): Ground Pin.  
U
U
W
FU CTIO AL DIAGRA  
(Pin 1 connection shown for LTC1174-3.3 and LTC1174-5, changes create LTC1174)  
V
IN  
6
V
V
LIM2  
LIM1  
+
I
PGM  
7
R
SENSE  
0.1  
A5  
SLEEP  
V
TH2  
+
A2  
+
A4  
RESET  
SET  
Q
C
g
V
FB  
T
m
V
(V )  
OUT FB  
V
TH1  
1
5
×
SW  
LB  
IN  
3
R1*  
LB  
OUT  
2
4
V
FB  
+
+
A1  
31.5k  
A3  
SHUTDOWN  
1.25V  
REFERENCE  
8
GND  
1174 BD  
* R1 = 51k FOR LTC1174-3.3  
R1 = 93.5k FOR LTC1174-5  
1174fe  
6
LTC1174  
LTC1174-3.3/LTC1174-5  
U
OPERATIO  
(Refer to Functional Diagram)  
The LTC1174 uses a constant off-time architecture to  
switch its internal P-channel power MOSFET. The off-time  
is set by an internal timing capacitor and the operating  
frequency is a function of VIN.  
In sleep mode, the LTC1174 is in standby and the load  
current is supplied by the output capacitor. All unused  
circuitry is shut off, reducing quiescent current from  
0.45mAto0.13mA.Whentheoutputcapacitordischarges  
by the amount of the hysteresis of the comparator A1, the  
P-channel switch turns on again and the process repeats  
itself.  
The output voltage is set by an internal resistive divider  
(LTC1174-3.3 and LTC1174-5) or an external divider re-  
turned to VFB Pin 1 (LTC1174). A voltage comparator A1  
compares the divided output voltage to a reference voltage  
of 1.25V.  
Operating Frequency and Inductor  
Since the LTC1174 utilizes a constant off-time architecture,  
itsoperatingfrequencyisdependentonthevalueofVIN.The  
frequency of operation can be expressed as:  
Tooptimizeefficiency, theLTC1174automaticallyswitches  
between continuous and Burst Mode® operation. The volt-  
age comparator is the primary control element when the  
device is in Burst Mode operation, while the current com-  
parator controls the output voltage in continuous mode.  
V V  
V + VD  
IN  
1
tOFF  
IN  
OUT  
f =  
Hz  
( )  
During the switch“ON” time, switch current flows through  
the 0.1sense resistor. When this current reaches the  
thresholdofthecurrentcomparatorA2,itsoutputsignalwill  
change state, setting the flip-flop and turning the switch off.  
The timing capacitor, CT, begins to discharge until its  
voltage goes below VTH1. Comparator A4 will then trip,  
which resets the flip-flop and causes the switch to turn on  
again. Also, the timing capacitor is recharged. The inductor  
current will again ramp up until the current comparator A2  
trips. The cycle then repeats.  
wheretOFF =4µsandVDisthevoltagedropacrossthediode.  
Note that the operating frequency is a function of the input  
and ouput voltage.  
Although the size of the inductor does not affect the fre-  
quency, it does affect the ripple current. The peak-to-peak  
ripple current is given by:  
V
OUT  
+ VD  
L
IRIPPLE = 4 106  
A
PP  
(
)
When the load is relatively light, the LTC1174 automatically  
goes into Burst Mode operation. The current mode loop is  
interrupted when the output voltage reaches the desired  
regulated value. The hysteretic voltage comparator A1 trips  
when VOUT is above the desired output voltage, shutting off  
the switch and causing the timing capacitor to discharge.  
This capacitor discharges past VTH1 until its voltage drops  
below VTH2. Comparator A5 then trips and a sleep signal is  
generated.  
By choosing a smaller inductor, a low ESR output filter  
capacitorhastobeused(seeCIN andCOUT).Moreover,core  
losswillalsoincrease(seeInductorCoreSelectionsection)  
due to higher ripple current.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
1174fe  
7
LTC1174  
LTC1174-3.3/LTC1174-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Inductor Core Selection  
a premium larger gauge wire can be used to reduce the wire  
resistance. This also prevents excessive heat dissipation.  
With the value of L selected, the type of inductor must be  
chosen. Basically there are two kinds of losses in an  
inductor, core and copper  
CIN  
In continuous mode the source current of the P-channel  
MOSFETisasquarewaveofdutycycleVOUT/VIN.Toprevent  
large voltage transients, a low ESR input capacitor sized for  
the maximum RMS current must be used. The CIN RMS  
current is given by:  
Core losses are dependent on the peak-to-peak ripple  
current and the core material. However it is independent of  
the physical size of the core. By increasing the inductance  
the inductor’s peak-to-peak ripple current will decrease,  
therefore reducing core loss. Utilizing low core loss mate-  
rial, such as molypermalloy or Kool Mµ will allow users to  
concentrate on reducing copper loss and preventing satu-  
ration.Figure1showstheeffectofdifferentcorematerialon  
the efficiency of the LTC1174. The CTX core is Kool Mµ and  
the CTXP core is powdered iron (material 52).  
1/2  
]
IOUT  
V
V V  
(
)
[
OUT IN OUT  
IRMS  
A
RMS  
(
)
V
IN  
This formula has a maximum at VIN = 2VOUT, where IRMS  
=
IOUT/2.Thissimpleworstcaseiscommonlyusedfordesign  
becauseevensignificantdeviationsdonotoffermuchrelief.  
Note that ripple current directly affects capacitor’s lifetime.  
DONOTUNDERSPECIFYTHISCOMPONENT.Anadditional  
0.1µF ceramic capacitor is also required on VIN for high  
frequency decoupling.  
Although higher inductance reduces core loss, it increases  
copperlossasitrequiresmorewindings.Whenspaceisnot  
100  
CTX100-4  
90  
COUT  
CTX100-4P  
80  
To avoid overheating, the output capacitor must be sized to  
handle the ripple current generated by the inductor. The  
worst case RMS ripple current in the output capacitor is  
given by:  
70  
V
V
PGM  
= 5V  
60  
50  
IN  
= 3.3V  
IN  
OUT  
I
= V  
IPEAK  
IRMS  
A
RMS  
(
)
1
10  
100  
500  
2
LOAD CURRENT (mA)  
= 170mA or 300mA  
100  
90  
80  
70  
60  
50  
Although the output voltage ripple is determined by the  
hysteresis of the voltage comparator, ESR of the output  
capacitor is also a concern. Too high of an ESR will create  
ahigherrippleoutputvoltageandatthesametimecausethe  
LTC1174 to sleep less often. This will affect the efficiency of  
the LTC1174. For a given technology, ESR is a direct  
function of the volume of the capacitor. Several small-sized  
capacitors can also be paralleled to obtain the same ESR as  
one large can. Manufacturers such as Nichicon, Chemicon  
and Sprague should be considered for high performance  
capacitors. The OS-CON semiconductor dielectric capaci-  
tor available from Sanyo has the lowest ESR for its size, at  
CTX50-4  
CTX50-4P  
V
= 5V  
IN  
V
= 3.3V  
IN  
OUT  
I
= V  
PGM  
1
10  
100  
500  
LOAD CURRENT (mA)  
1174 F01  
Figure 1. Efficiency Using Different Types of  
Inductor Core Material  
a higher price.  
1174fe  
8
LTC1174  
LTC1174-3.3/LTC1174-5  
U
W U U  
APPLICATIO S I FOR ATIO  
Catch Diode Selection  
comparedwitha1.25Vreferencevoltage. Withthecurrent  
going into Pin 3 being negligible, the following expression  
is used for setting the trip limit:  
Thecatchdiodecarriesloadcurrentduringtheoff-time.The  
average diode current is therefore dependent on the  
P-channel switch duty cycle. At high input voltages the  
diode conducts most of the time. As VIN approaches VOUT  
the diode conducts only a small fraction of the time. The  
most stressful condition for the diode is when the output is  
short-circuited. Under this condition the diode must safely  
handleIPEAKatcloseto100%dutycycle.Afastswitchingdiode  
must also be used to optimize efficiency. Schottky diodes are  
a good choice for low forward drop and fast switching times.  
Most LTC1174 circuits will be well served by either a 1N5818,  
a MBRS140T3 or a MBR0520L Schottky diode.  
R4⎞  
VLBTRIP = 1.25 1+  
R3  
When the LTC1174 is shut down, the low-battery detector  
is inactive.  
V
IN  
LTC1174  
R4  
R3  
3
+
1.25V  
REFERENCE  
Short-Circuit Protection  
1174 F03  
The LTC1174 is protected from output short by its internal  
current limit. Depending on the condition of IPGM pin, the  
limit is either set to 340mA or 600mA. In addition, the off-  
time of the switch is increased to allow the inductor’s  
current to decay far enough to prevent any current build-up  
(see Figure 2).  
Figure 3. Low-Battery Comparator  
LTC1174 Adjustable/Low Noise Applications  
The LTC1174 develops a 1.25V reference voltage between  
thefeedback(Pin1)terminalandground(seeFigure4).By  
selecting resistor R1, a constant current is caused to flow  
through R1 and R2 to set the overall output voltage. The  
regulated output voltage is determined by:  
IPGM = VIN  
2
R1  
R ⎞  
VOUT = 1.25 1+  
IPGM = 0  
For most applications, a 30k resistor is suggested for R1.  
To prevent stray pickup, a 100pF capacitor is suggested  
across R1 located close to the LTC1174. Alternatively, a  
capacitor across R2 can be used to increase the switching  
frequency for low noise operation.  
GND  
1174 F02  
L = 100µH  
VIN = 13.5V  
20µs/DIV  
Figure 2. Inductor's Current with Output Shorted  
Inverting Applications  
Low-Battery Detector  
The LTC1174 can easily be set up for a negative output  
voltage. If 5V is desired, the LTC1174-5 is ideal for this  
application as it requires the least components. Figure 5  
shows the schematic for this application. Note that the  
Thelow-batteryindicatorsensestheinputvoltagethrough  
anexternalresistivedivider. Thisdividedvoltageconnects  
to the “–” input of a voltage comparator (Pin 3) which is  
1174fe  
9
LTC1174  
LTC1174-3.3/LTC1174-5  
W U U  
U
APPLICATIO S I FOR ATIO  
V
OUT  
LTC1174-5 regulator and also to one or more loads in  
parallel with the the regulator’s VIN. If the battery is dis-  
connected while the LTC1174/LTC1174-3.3/LTC1174-5  
regulator is supplying a light load and one of the parallel  
circuitsisaheavyload,theinputcapacitoroftheLTC1174/  
LTC1174-3.3/LTC1174-5regulatorcouldbepulleddown  
faster than the output capacitor, causing the absolute  
maximum ratings to be exceeded. The result is often a  
latchup which can be destructive if VIN is reapplied. Bat-  
terydisconnectispossibleasaresultofmechanicalstress,  
bad battery contacts or use of a lithium-ion battery with  
a built-in internal disconnect. The user needs to assess  
his/her application to determine whether this situation  
could occur. If so, additional protection is necessary.  
6.8nF**  
R2  
R1  
1
LTC1174  
V
FB  
100pF*  
ADJUSTABLE APPLICATIONS  
LOW NOISE APPLICATIONS  
*
1174 F04  
**  
Figure 4. LTC1174 Adjustable Configuration  
INPUT VOLTAGE  
4V TO 12V  
47µF*  
+
6
16V  
0.1µF  
V
IN  
×2  
3
2
7
8
1
5
LB  
LB  
SHUTDOWN  
IN  
Prevention against latchup can be accomplished by sim-  
ply connecting a Schottky diode across the SW and VIN  
pins as shown in Figure 6. The diode will normally be  
reverse biased unless VIN is pulled below VOUT at which  
time the diode will clamp the (VOUT – VIN) potential to less  
than the 0.6V required for latchup. Note that a low leakage  
Schottky should be used to minimize the effect on no-load  
supplycurrent.SchottkydiodessuchasMBR0530,BAS85  
and BAT84 work well. Another more serious effect of the  
protection diode leakage is that at no load with nothing to  
provide a sink for this leakage current, the output voltage  
can potentially float above the maximum allowable toler-  
ance. To prevent this from occuring, a resistor must be  
connected between VOUT and ground with a value low  
enough to sink the maximum possible leakage current.  
V
OUT  
OUT  
SW  
I
PGM  
50µH**  
LTC1174HV-5  
GND  
+
47µF*  
16V  
×2  
MBRS140T3  
4
V
OUT  
–5V  
45mA  
1174 F05  
AVX TPSD476K016  
COILTRONICS CTX50-4  
*
**  
Figure 5. Positive-to-Negative 5V Converter  
output voltage is now taken off the GND pin. Therefore,  
the maximum input voltage is now determined by the  
differencebetweentheabsolutemaximumvoltagerating  
and the output voltage. A maximum of 12V is specified in  
Figure5,givingthecircuita1.5VofheadroomforVIN.Note  
that the circuit can operate from a minimum of 4V, making  
it ideal for a 4 NiCad cell application. For a higher output  
current circuit, please refer to the Typical Applications  
section.  
LATCHUP  
PROTECTION  
SCHOTTKY  
Absolute Maximum Ratings and Latchup Prevention  
V
V
SW  
LTC1174  
OUT  
IN  
TheabsolutemaximumratingsspecifythatSW(Pin5)can  
neverexceedVIN (Pin6)bymorethan0.3V.Normallythis  
situation should never occur. It could, however, if the  
output is held up while the supply is pulled down. A con-  
ditionwherethiscouldpotentiallyoccuriswhenabattery  
is supplying power to an LTC1174/LTC1174-3.3/  
+
LTC1174-3.3  
LTC1174-5  
1174 F06  
Figure 6. Preventing Absolute Maximum  
Ratings from Being Exceeded  
1174fe  
10  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
W U U  
APPLICATIO S I FOR ATIO  
Board Layout Checklist  
DESIGN EXAMPLE  
As a design example, assume VIN = 9V (nominal), VOUT  
5V, and IOUT = 350mA maximum. The LTC1174-5 is used  
forthisapplication,withIPGM (Pin7)connectedtoVIN.The  
minmum value of L is determined by assuming the  
LTC1174-5 is operating in continuous mode.  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
LTC1174. These items are also illustrated graphically in  
the layout diagram in Figure 7. Check the following in your  
layout:  
=
1. Is the Schottky catch diode closely connected between  
ground (Pin 4) and switch (Pin 5)?  
I
PEAK  
= I  
OUT  
AVG CURRENT  
2. Is the “+” plate of CIN closely connected to VIN (Pin 6)?  
This capacitor provides the AC current to the internal  
P-channel MOSFET.  
I
+ I  
V
PEAK  
2
=
I
V
= 350mA  
3. Is the 0.1µF VIN decoupling capacitor closely conected  
between VIN (Pin 6) and ground (Pin 4)? This capacitor  
carries the high frequency peak currents.  
TIME  
1174 F08  
Figure 8. Continuous Inductor Current  
4. Is the SHUTDOWN (Pin 8) actively pulled to VIN during  
normal operation? The SHUTDOWN pin is high imped-  
ance and must not be allowed to float.  
With IOUT = 350mA and IPEAK = 0.6A (IPGM = VIN), IV =  
0.1A.The peak-to-peak ripple inductor current, IRIPPLE, is  
0.5A and is also equal to:  
5. Is the IPGM (Pin 7) pulled either to VIN or ground? The  
IPGM pin is high impedance and must not be allowed  
to float.  
V
+ VD  
OUT  
IRIPPLE = 4 106  
A
PP  
(
)
L
8
1
2
3
V
OUT  
FB  
SHUTDOWN  
(V  
)
7
6
LB  
LB  
I
OUT  
OUTPUT DIVIDER  
REQUIRED WITH  
ADJUSTABLE  
PGM  
R1  
R2  
V
V
V
IN  
IN  
IN  
LTC1174  
+
0.1µF  
VERSION ONLY  
C
IN  
4
5
SW  
GND  
D
L
BOLD LINES INDICATE  
HIGH CURRENT PATH  
C
OUT  
+
OUT  
1174 F07  
Figure 7. LTC1174 Layout Diagram (See Board Layout Checklist)  
1174fe  
11  
LTC1174  
LTC1174-3.3/LTC1174-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Solving for L in the above equation and with VD = 0.6V,  
L = 44.8µH. The next higher standard value of L is 50µH  
(example:CoiltronicsCTX50-4). Theoperatingfrequency,  
neglecting voltage across diode VD is:  
NowallowVIN todropto6V.Atthisminimuminputvoltage  
the operating frequency will decrease. The new frequency  
is 42kHz.  
Table 1. Inductor Manufacturers  
MANUFACTURER  
PART NUMBER  
VOUT  
VIN  
f 2.5 105 1−  
Coilcraft  
DT3316 Series  
1102 Silver Lake Road  
Cary, IL 60013  
(708) 639-2361  
= 111kHz  
Coiltronics Inc.  
Econo-Pac  
Octa-Pac  
With the value of L determined, the requirements for CIN  
and COUT are calculated. For CIN, its RMS current rating  
should be at least:  
6000 Park of Commerce Blvd.  
Boca Raton, FL 33487  
(407) 241-7876  
Gowanda Electronics Corporation  
1 Industrial Place  
Gowanda, NY 14070  
GA10 Series  
1/2  
IOUT  
V
V V  
(
)
]
[
OUT IN OUT  
IRMS  
=
A
RMS  
(
)
(716) 532-2234  
V
IN  
Sumida Electric Co. Ltd.  
637 E. Golf Road, Suite 209  
Arlington Heights, IL 60005  
(708) 956-0666/7  
CD 54 Series  
CD 75 Series  
= 174mA  
For COUT, the RMS current rating should be at least:  
IPEAK  
Table 2. Capacitor Manufacturers  
MANUFACTURER  
AVX Corporation  
P.O. Box 887  
IRMS  
A
RMS  
(
)
PART NUMBER  
2
TPS Series  
TAJ Series  
= 300mA  
Myrtle Beach, SC 29578  
(803) 448-9411  
Nichicon America Corporation  
927 East State Parkway  
Schaberg, IL 60173  
PL Series  
(708) 843-7500  
Sanyo Video Components  
2001 Sanyo Avenue  
San Diego, CA 92173  
(619) 661-6385  
OS-CON Series  
Attn: Sales Dept.  
1174fe  
12  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
6V to 5V Step-Down Regulator with Low-Battery Detection  
INPUT VOLTAGE  
6V  
+
+
47µF**  
16V  
6
0.1µF  
4.7k  
LOW-BATTERY INDICATOR  
*
V
IN  
×2  
IS SET TO TRIP AT V = 5.5V  
IN  
*LOW-  
BATTERY  
8
1
5
7
2
3
I
SHUTDOWN  
PGM  
AVX TPSD476K016  
= MBRS140T3 (SURFACE MOUNT)  
1N5818  
**  
D1  
INDICATOR  
LB  
V
OUT  
OUT  
162k  
L1 SELECTION  
LTC1174-5  
V
OUT  
MANUFACTURER PART NO. TYPE  
SW  
5V  
LB  
IN  
L1†  
100µH  
COILTRONICS  
SUMIDA  
GOWANDA  
CTX100-4 SURFACE MOUNT  
CD75-101 SURFACE MOUNT  
GA10-103K THROUGH HOLE  
365mA  
47µF**  
16V  
×2  
GND  
4
47.5k  
D1  
1174 TA03  
High Efficiency 3.3V Regulator  
INPUT VOLTAGE  
4V TO 12.5V  
+
22µF*  
6
25V  
0.1µF  
V
IN  
×3  
8
1
7
3
I
SHUTDOWN  
PGM  
LB  
LB  
V
IN  
OUT  
50µH†  
LTC1174-3.3  
V
OUT  
2
5
SW  
3.3V  
OUT  
425mA  
47µF**  
16V  
×2  
+
GND  
4
AVX TPSD226K025  
*
1N5818  
AVX TPSD476K016  
**  
COILTRONICS CTX50-4  
1174 TA04  
1174fe  
13  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
Low Noise 3V Regulator  
INPUT VOLTAGE  
4V TO 12.5V  
+
22µF*  
6
25V  
0.1µF  
V
IN  
×3  
8
1
5
7
I
SHUTDOWN  
PGM  
3
LB  
IN  
V
FB  
50µH†  
V
6.8nF  
LTC1174  
OUT  
2
LB  
OUT  
3V  
SW  
450mA  
42k  
30k  
GND  
4
100µF**  
10V  
×2  
+
1N5818  
AVX TPSD226K025  
AVX TPSD105K010  
*
**  
1174 TA05  
COILTRONICS CTX50-4  
Positive-to-Negative (5V) Converter  
INPUT VOLTAGE  
4V TO 12.5V  
*LOW-BATTERY INDICATOR  
V
(V) I  
4
6
8
10  
(mA)  
IN  
OUT MAX  
110  
IS SET TO TRIP AT V = 4.4V  
IN  
+
+
10µF**  
35V  
6
**AVX TPSD106K035  
***AVX TPSD105K010  
D1= MBRS130LT3 (SURFACE MOUNT)  
1N5818  
0.1µF  
4.7K  
140  
V
IN  
×2  
170  
*LOW-  
BATTERY  
8
7
2
3
I
SHUTDOWN  
PGM  
200  
L1 SELECTION  
12.5  
235  
INDICATOR  
1
5
LB  
LB  
V
OUT  
OUT  
SW  
280k  
LTC1174HV-5  
MANUFACTURER  
PART NO.  
CTX50-3  
DT3316-473  
CD54-470  
GA10-472K  
TYPE  
IN  
COILTRONICS  
COILCRAFT  
SUMIDA  
SURFACE MOUNT  
SURFACE MOUNT  
SURFACE MOUNT  
THROUGH HOLE  
L1†  
50µH  
GND  
4
100µF***  
10V  
43k  
D1  
GOWANDA  
V
OUT  
–5V  
1174 TA06  
1174fe  
14  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
Positive-to-Negative (– 3.3V) Converter  
INPUT VOLTAGE  
4V TO 13.5V  
* LOW-BATTERY INDICATOR  
+
+
33µF**  
20V  
IS SET TO TRIP AT V = 4.4V  
6
IN  
V
(V) I  
4
5
6
7
(mA)  
IN  
OUT MAX  
175  
0.1µF  
4.7K  
** AVX TPSD336K020  
*** AVX TPSD105K010  
D1 = MBRS140T3 (SURFACE MOUNT)  
1N5818  
V
IN  
×2  
*LOW-  
BATTERY  
8
1
5
7
2
3
205  
I
SHUTDOWN  
PGM  
230  
255  
INDICATOR  
L1 SELECTION  
LB  
LB  
V
OUT  
OUT  
220k  
LTC1174HV-3.3  
SW  
MANUFACTURER  
PART NO.  
TYPE  
IN  
COILTRONICS  
COILCRAFT  
SUMIDA  
CTX50-3  
SURFACE MOUNT  
SURFACE MOUNT  
SURFACE MOUNT  
THROUGH HOLE  
L1†  
50µH  
100µF***  
10V  
×2  
DT3316-473  
CD54-470  
GA10-472K  
GND  
4
43k  
D1  
V
OUT  
GOWANDA  
–3.3V  
1174 TA07  
210mA  
Negative Boost Converter  
AVX TPSD336K020  
*
D1  
6
= MBRS140T3 (SURFACE MOUNT)  
1N5818  
V
IN  
310k  
50k  
L1 SELECTION  
8
7
2
3
I
SHUTDOWN  
PGM  
MANUFACTURER  
PART NO.  
TYPE  
+
33µF*  
20V  
1
5
0.1µF  
COILTRONICS  
COILCRAFT  
SUMIDA  
CTX50-3  
SURFACE MOUNT  
SURFACE MOUNT  
SURFACE MOUNT  
THROUGH HOLE  
LB  
OUT  
V
OUT  
DT3316-473  
CD54-470  
GA10-472K  
×2  
LTC1174-3.3  
SW  
LB  
IN  
GOWANDA  
+
33µF*  
16V  
×2  
0.1µF  
L1†  
50µH  
GND  
4
D1  
V
OUT  
–9V  
1174 TA08  
175mA  
INPUT VOLTAGE  
–5V  
1174fe  
15  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
9V to 5V Pre-Post Regulator  
INPUT  
VOLTAGE  
6V TO 12.5V  
+
6
100µF*  
16V  
0.1µF  
V
IN  
3
2
7
8
1
5
SANYO OS-CON  
*
**  
D1  
LB  
LB  
SHUTDOWN  
IN  
AVX TPSD476K016  
= MBRS140T3 (SURFACE MOUNT)  
1N5818  
V
OUT  
FB  
V
LTC1174  
L1 SELECTION  
OUT  
8
5
1
V
OUT  
LT®1121-5  
5V  
I
SW  
IN  
PGM  
L1†  
MANUFACTURER PART NO.  
TYPE  
SURFACE MOUNT  
DT3316-473 SURFACE MOUNT  
CD54-470 SURFACE MOUNT  
GA10-472K THROUGH HOLE  
150mA  
110k††  
30.1k††  
GND  
4
COILTRONICS  
COILCRAFT  
SUMIDA  
CTX50-3  
50µH  
+
+
1µF  
SOLID  
TANTALUM  
SHUTDOWN  
47µF**  
16V, ×2  
100pF  
0.1µF  
D1  
GND  
3
GOWANDA  
†† USE 1% METAL FILM RESISTORS  
1174 TA09  
LCD Display Power Supply  
INPUT  
V
IN  
(V)  
I
4
(mA)  
OUT MAX  
20  
VOLTAGE  
4V TO 12.5V  
5
6
25  
56.2k††  
6
30  
7
35  
V
IN  
8
43  
3
8
1
5
LB  
SHUTDOWN  
IN  
2N2222  
2N5210  
9
50  
10  
11  
12  
55  
7
2
50k††  
60  
I
PGM  
V
FB  
65  
LTC1174  
LB  
SW  
OUT  
AVX TAJE106K050  
AVX TPSD476K016  
= MBRS140T3 (SURFACE MOUNT)  
1N5818  
*
1N914  
GND  
4
998k††  
**  
Si9435  
D1  
D1  
0.1µF  
V
OUT  
L1 SELECTION  
–24V  
+
47µF**  
16V  
×2  
50mA AT  
MANUFACTURER PART NO.  
TYPE  
SURFACE MOUNT  
DT3316-104 SURFACE MOUNT  
CD75-101 SURFACE MOUNT  
GA10-103K THROUGH HOLE  
0.1µF  
V
IN  
= 9V  
10µF*  
50V  
L1†  
100µH  
COILTRONICS  
COILCRAFT  
SUMIDA  
CTX100-3  
+
×4  
GOWANDA  
1174 TA10  
††  
USE 1% METAL FILM RESISTORS  
1174fe  
16  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
9V to 5V, 5V Outputs  
INPUT VOLTAGE  
4V TO 12.5V  
SANYO OS-CON  
WIMA MKS2  
*
+
**  
6
100µF*  
COILTRONICS CTX100-4  
0.1µF  
0.1µF  
20V  
V
IN  
V
(V)  
I
(mA)  
8
1
5
7
IN  
OUT MAX  
75  
I
SHUTDOWN  
PGM  
4
6
100  
3
2
LB  
LB  
V
8
IN  
LTC1174HV-5  
OUT  
OUT  
125  
V
OUT  
3.3µF**  
10  
12  
13  
145  
5V  
135mA AT  
= 9V  
160  
SW  
L1A†  
100µH  
180  
V
IN  
GND  
4
L1B†  
100µH  
+
100µF*  
16V  
3
2
MBRS140T3  
MBRS140T3  
CTX100-4  
L1A  
L1B  
1
4
+
100µF*  
16V  
–V  
OUT  
–5V  
1174 TA11  
135mA AT  
V
IN  
= 9V  
9V to 12V, 12V Outputs  
INPUT VOLTAGE  
4V TO 12.5V  
* AVX TAJD226K035  
** WIMA MKS2  
+
22µF*  
6
3
2
COILTRONICS CTX100-4  
0.1µF  
35V  
V
†† USE 1% METAL FILM RESISTORS  
IN  
SHUTDOWN  
CTX100-4  
L1A  
×3  
L1B  
8
7
I
1
4
PGM  
V
IN  
(V)  
I
4
(mA)  
OUT MAX  
20  
1
5
3
2
LB  
LB  
V
IN  
FB  
3.3µF**  
5
6
25  
V
OUT  
LTC1174  
Si9430DY  
35  
12V  
SW  
OUT  
L1A†  
2
100µH  
7
45  
55mA AT  
IN  
1
50  
301k††  
34k††  
4
3
8
V
= 9V  
GND  
4
+
22µF*  
35V  
×2  
L1B†  
100µH  
9
55  
1N914  
10  
11  
12  
62  
MBRS140T3  
67  
73  
+
22µF*  
35V  
×2  
–V  
MBRS140T3  
OUT  
–12V  
1174 TA12  
55mA AT  
V
IN  
= 9V  
1174fe  
17  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO S  
Automatic Current Selection  
INPUT  
VOLTAGE  
6V TO 12.5V  
6
100k  
V
IN  
8
1
5
2
LB  
I
SHUTDOWN  
TPO610L  
OUT  
+
100µF*  
7
3
V
0.1µF  
PGM  
OUT  
20V  
V
50µH†  
OUT  
LTC1174-5  
5V  
LB  
SW  
IN  
0mA TO  
320mA  
GND  
4
100k  
100k  
+
100µF*  
16V  
1N5818  
36.5k  
SANYO OS-CON CAPACITOR  
*
1174 TA13  
COILTRONICS CTX50-4  
Buck-Boost Converter  
INPUT VOLTAGE  
4V TO 12V  
+
6
100µF*  
20V  
0.1µF  
V
IN  
8
1
5
7
I
SHUTDOWN  
PGM  
* SANYO OS-CON  
** WIMA MKS2  
3
2
COILTRONICS CTX100-4  
IN  
OUT  
SW  
LB  
LB  
V
3.3µF**  
V
LTC1174HV-5  
OUT  
5V  
160mA  
OUT  
L1A†  
100µH  
2
1
4
3
GND  
4
3
2
L2A†  
100µH  
+
CTX100-4  
L1A  
100µF*  
16V  
L1B  
1N5818  
1
4
1174 TA14  
1174fe  
18  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
.130 ± .005  
(3.302 ± 0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
8
1
7
6
5
.065  
(1.651)  
TYP  
.255 ± .015*  
(6.477 ± 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
4
3
.325  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
N8 1002  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1174fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1174  
LTC1174-3.3/LTC1174-5  
U
TYPICAL APPLICATIO  
Battery Charger  
INPUT VOLTAGE  
8V TO 12.5V  
V
(V)  
I
8
9
10  
11  
12  
(mA)  
IN  
OUT MAX  
320  
+
22µF*  
20V  
* AVX TAJD226K020  
** AVX TAJD107K010  
D1,D2 = MBRS140T3  
(SURFACE MOUNT)  
1N5818  
6
0.1µF  
325  
V
IN  
×2  
8
1
5
330  
7
I
SHUTDOWN  
PGM  
335  
335  
L1 SELECTION  
3
2
LB  
LB  
V
FB  
IN  
D2  
MANUFACTURER  
PART NO.  
TYPE  
LTC1174  
V
OUT  
TO  
SW  
COILTRONICS  
COILCRAFT  
SUMIDA  
CTX50-2P  
DT3316-473  
CD54-470  
GA10-472K  
SURFACE MOUNT  
SURFACE MOUNT  
SURFACE MOUNT  
THROUGH HOLE  
OUT  
4 NiCAD BATTERY  
L1†  
50µH  
150k  
GND  
4
+
100µF**  
10V  
GOWANDA  
D1  
33k  
1174 TA15  
RELATED PARTS  
PART NUMBER  
LT®1074/LT1076  
LTC1147  
DESCRIPTION  
Step-Down Switching Regulator  
High Efficiency Step-Down DC/DC Controller  
COMMENTS  
100kHz, 5A (LT1074) or 2A (LT1076) Monolithic  
8-Pin Controller  
LTC1265  
1.2A High Efficiency Step-Down DC/DC Regulator  
1.5A 500kHz Step-Down Switching Regulator  
High Efficiency Step-Down DC/DC Regulator  
Inverting 1.4MHz Switching Regulator in SOT-23  
1MHz Step-Down DC/DC Converter in SOT-23  
High Efficiency Synchronous Step-Down Regulator  
Burst Mode Operation, Monolithic  
High Frequency Small Inductor  
LTC1174 with Internal Schottky Diode  
LT1375/LT1376  
LTC1574  
LT1611  
5V at 150mA from 5V Input, 1mV Output Ripple, SOT-23 Package  
P-P  
LTC1701  
V
V
= 2.5V to 5.5V, I = 135µA, V  
= 5V to 1.25V  
OUT  
IN  
Q
LTC1707  
= 2.85 to 8.5V, Selectable Burst Mode Operation,  
IN  
600mA Output Current, SO-8 Package  
LTC1877  
High Efficiency Synchronous Step-Down Regulator  
600mA at V = 5V, 2.65V to 10V = V , I = 10µA  
IN  
IN Q  
1174fe  
LT 1006 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1174HVCS8#TRPBF

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1174HVCS8-3.3

High Efficiency Step-Down and Inverting DC/DC Converter
Linear

LTC1174HVCS8-3.3#TR

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1174HVCS8-3.3#TRPBF

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1174HVCS8-5

High Efficiency Step-Down and Inverting DC/DC Converter
Linear

LTC1174HVCS8-5#PBF

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1174HVCS8-5#TR

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1174HVIS8

High Efficiency Step-Down and Inverting DC/DC Converter
Linear

LTC1174HVIS8#PBF

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1174HVIS8#TR

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1174HVIS8#TRPBF

LTC1174 - High Efficiency Step-Down and Inverting DC/DC Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1174IN8

High Efficiency Step-Down and Inverting DC/DC Converter
Linear