LTC1315CG [Linear]

PCMCIA Switching Matrix with Built-In N-Channel VCC Switch Drivers; PCMCIA开关矩阵与内置N沟道VCC开关驱动器
LTC1315CG
型号: LTC1315CG
厂家: Linear    Linear
描述:

PCMCIA Switching Matrix with Built-In N-Channel VCC Switch Drivers
PCMCIA开关矩阵与内置N沟道VCC开关驱动器

驱动器 开关 PC
文件: 总12页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1314/LTC1315  
PCMCIA Switching Matrix  
with Built-In N-Channel  
VCC Switch Drivers  
U
DESCRIPTIO  
EATURE  
S
F
The LTC®1314/LTC1315 provide the power switching  
necessary to control Personal Computer Memory Card  
InternationalAssociation(PCMCIA)Release2.0cardslots.  
WhenusedinconjunctionwithaPCcardinterfacecontrol-  
ler, these devices form a complete minimum component  
count interface for palmtop, pen-based and notebook  
computers.  
Output Current Capability: 120mA  
External 12V Regulator Can Be Shut Down  
Built-In N-Channel VCC Switch Drivers  
Digital Selection of 0V, VCCIN, VPPIN or Hi-Z  
3.3V or 5V VCC Supply  
Break-Before-Make Switching  
0.1µA Quiescent Current in Hi-Z or 0V Mode  
No VPPOUT Overshoot  
The LTC1314/LTC1315 provide 0V, 3.3V, 5V, 12V and  
Hi-Z power output for flash VPP programming. A built-in  
charge pump produces 12V of gate drive for inexpensive  
N-channel 3.3V/5V VCC switching. The 12V regulator can  
be shut down when 12V is not required at VPPOUT. All  
digital inputs are TTL compatible and interface directly  
with industry standard PC card interface controllers.  
Logic Compatible with Standard PCMCIA Controllers  
O U  
PPLICATI  
S
A
Notebook Computers  
Palmtop Computers  
Pen-Based Computers  
Handi-Terminals  
The LTC1314 is available in 14-pin SO and the LTC1315 in  
24-pin SSOP.  
Bar-Code Readers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
Linear Technology PCMCIA Product Family  
TYPICAL APPLICATION  
DEVICE  
LT1312  
LT1313  
DESCRIPTION  
PACKAGE  
8-PIN SO  
SINGLE PCMCIA VPP DRIVER/REGULATOR  
Typical PCMCIA Single Slot Driver  
DUAL PCMCIA VPP DRIVER/REGULATOR  
LTC®1314 SINGLE PCMCIA SWITCH MATRIX  
16-PIN SO*  
14-PIN SO  
24-PIN SSOP  
8-PIN SO  
STEP-UP  
3.3V OR 5V  
V
V
IN  
REGULATOR  
LT®1301  
SHDN  
LTC1315 DUAL PCMCIA SWITCH MATRIX  
12V  
OUT  
+
LTC1470 PROTECTED V 5V/3.3V SWITCH MATRIX  
CC  
C
OUT  
LTC1472 PROTECTED V AND VPP SWITCH MATRIX 16-PIN SO*  
VPP  
CC  
IN  
5V  
V
SHDN  
VPP  
DD  
*NARROW BODY  
VPP1  
VPP2  
OUT  
5V  
LTC1314  
0.1µF  
LTC1314 Truth Table  
PCMCIA  
CARD SLOT  
CONTROLLER  
EN0  
EN1  
PCMCIA  
CARD SLOT  
DRV5  
EN0  
0
EN1  
0
VCC0  
X
VCC1  
X
VPPOUT  
GND  
VCCIN  
VPPIN  
Hi-Z  
X
DRV3  
DRV5  
V
CC  
V
CC0  
V
X
X
X
X
1
0
0
0
X
X
X
X
0
1
0
0
CCIN  
+
0
1
X
X
V
CC1  
DRV3  
1µF  
LTC1314 • TA01  
1
0
X
X
GND  
1
1
X
X
X
X
1
0
X
X
0
1
X
3.3V  
X
X
0
0
X
X
X
1
1
X
X = DON’T CARE  
1
LTC1314/LTC1315  
W W W  
U
ABSOLUTE AXI U RATI GS  
VPPIN to GND ........................................ 13.2V to 0.3V  
VDD to GND................................................. 7V to 0.3V  
VCCIN to GND .............................................. 7V to 0.3V  
VPPOUT to GND...................................... 13.2V to 0.3V  
Digital Input Voltage ................................... 7V to 0.3V  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
1
2
AV  
CCIN  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
AVPP  
NUMBER  
IN  
AVPP  
ASHDN  
AEN0  
OUT  
TOP VIEW  
3
GND  
LTC1315CG  
LTC1314CS  
VPP  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
4
V
CCIN  
AEN1  
DD  
NC  
SHDN  
EN0  
NC  
5
ADRV3  
ADRV5  
AV  
CC0  
AV  
CC1  
VPP  
OUT  
6
GND  
7
BV  
CCIN  
BVPP  
IN  
EN1  
V
DD  
8
BVPP  
BSHDN  
BEN0  
OUT  
V
CC0  
DRV3  
DRV5  
9
GND  
V
8
CC1  
10  
11  
12  
V
BEN1  
DD  
BDRV3  
BDRV5  
BV  
CC0  
CC1  
S PACKAGE  
14-LEAD PLASTIC SO  
BV  
T
JMAX = 125°C, θJA = 110°C/W  
G PACKAGE  
24-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 95°C/W  
Consult factory for Industrial and Military grade parts.  
V
DD = 5V, VCCIN = 5V, VPPIN = 12V, TA = 25°C unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
LTC1314/LTC1315  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3
TYP  
MAX  
5.5  
12.6  
5.5  
1
UNITS  
V
Input Voltage Range  
Input Voltage Range  
Supply Voltage Range  
V
V
CCIN  
VPP  
0
IN  
V
4.5  
V
µA  
DD  
I
I
V
Supply Current, No Load  
VPP  
= VPP , V , 0V or Hi-Z  
IN CCIN  
0.1  
CC  
CCIN  
OUT  
VPP Supply Current, No Load  
VPP  
VPP  
= VPP , V  
IN CCIN  
= 0V, Hi-Z  
15  
0.1  
40  
1
µA  
µA  
PP  
IN  
OUT  
OUT  
I
V
Supply Current, No Load  
VPP  
VPP  
VPP  
= VPP or V  
60  
0.1  
85  
120  
10  
200  
µA  
µA  
µA  
DD  
DD  
OUT  
OUT  
OUT  
IN  
CCIN  
= 0V or Hi-Z  
= 0V or Hi-Z, DRV3 or DRV5 On  
I
I
Input Current: EN0, EN1, V  
or V  
0V < V < V  
DD  
±1  
µA  
µA  
IN  
CC0  
CC1  
IN  
High Impedance Output Leakage Current  
EN0 = EN1 = 5V, 0V < VPP  
< 12V  
0.1  
10  
OUT  
OUT  
R
On Resistance, VPP  
On Resistance, VPP  
On Resistance, VPP  
= VPP  
VPP = 12V, I  
= 120mA  
0.55  
2
100  
1.2  
5
250  
ON  
OUT  
OUT  
OUT  
IN  
CCIN  
IN  
LOAD  
= V  
= GND  
V
V
= 5V, I  
= 5mA  
CCIN  
LOAD  
= 5V, I  
= 1mA  
DD  
SINK  
V
V
Input High Voltage, Digital Inputs  
Input Low Voltage, Digital Inputs  
2
V
V
INH  
INL  
0.8  
2
LTC1314/LTC1315  
VDD = 5V, VCCIN = 5V, VPPIN = 12V, TA = 25°C unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
LTC1314/LTC1315  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
SHDN Output High Voltage  
SHDN Output Low Voltage  
Gate Voltage Above Supply  
Turn-On Time, DRV3 and DRV5  
Turn-Off Time, DRV3 and DRV5  
Delay + Rise Time  
VPP  
VPP  
= V  
, 0V or Hi-Z, I = 400µA  
LOAD  
3.5  
OH  
OL  
OUT  
OUT  
CCIN  
= VPP , I  
= 400µA  
0.4  
13  
500  
30  
V
IN SINK  
DRV5  
V -V  
G
V
DRV3  
C
GATE  
C
GATE  
or V  
6
50  
3
7
150  
10  
15  
15  
15  
6
V
DD  
t
t
t
t
t
t
t
t
t
= 1000pF, Time for V  
= 1000pF, Time for V  
> V + 1V  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ON  
OFF  
1
GATE  
GATE  
DD  
< 0.5V  
VPP  
VPP  
VPP  
VPP  
VPP  
VPP  
VPP  
= GND to V  
, VPP = 0V, Note 1  
5
50  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
CCIN  
IN  
Delay + Rise Time  
= GND to VPP (Note 1)  
5
50  
2
IN  
Delay + Rise Time  
Delay + Fall Time  
= V  
to VPP (Note 1)  
5
2
50  
20  
3
CCIN  
IN  
= VPP to V (Note 3)  
CCIN  
4
IN  
Delay + Fall Time  
= VPP to GND (Note 2)  
15  
10  
5
50  
25  
15  
150  
100  
50  
5
IN  
Delay + Fall Time  
Output Turn-On Delay  
= V to GND, VPP = 0V (Note 2)  
CCIN IN  
6
= Hi-Z to VPP or V  
(Notes 1, 6)  
CCIN  
7
IN  
The  
denotes specifications which apply over the full operating  
Note 3: To 50% of the initial value, C  
= 0.1µF, R  
= 2.9k.  
OUT  
OUT  
temperature range.  
Note 1: To 90% of the final value, C  
Note 2: To 10% of the final value, C  
Note 4: Measured current data is per channel.  
Note 5: Input logic low equal to 0V, high equal to 5V.  
Note 6: VPP = 0V when switching from Hi-Z to V  
= 0.1µF, R  
= 0.1µF, R  
= 2.9k.  
= 2.9k.  
OUT  
OUT  
OUT  
OUT  
.
IN  
CCIN  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
DRV3/DRV5 Output Voltage vs  
Temperature  
Switch On Resistance vs  
Temperature  
Supply Current vs Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
13.0  
V
CC  
SWITCH  
VPP  
= VPP = 12V  
IN  
OUT  
VPP SWITCH  
VPP  
= V  
CCIN  
OUT  
IN  
VPP = 12V  
30  
50  
90  
–50 –30 –10 10  
30  
TEMPERATURE (°C)  
50  
70  
90  
–50  
–10 10  
30  
50  
70  
90  
–50  
–30  
–10 10  
70  
–30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1314/15 G02  
1314/15 G03  
1314/15 G01  
3
LTC1314/LTC1315  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
IPPIN vs VPPIN  
IDD vs VDD  
20  
18  
16  
14  
12  
10  
8
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V  
= 5V  
CCIN  
VPP = 12V  
IN  
DD  
T = 25°C  
V
= 5V  
CCIN  
T = 25°C  
VPP  
= VPP  
OUT  
IN  
VPP  
= VPP  
IN  
OUT  
VPP  
= V  
CCIN  
OUT  
6
VPP  
= V  
CCIN  
OUT  
4
VPP  
OR HI-Z  
= 0V  
VPP  
= 0V  
OUT  
2
OUT  
OR HI-Z  
14  
12  
0
5
0
1
2
3
4
6
0
4
6
8
10  
2
V
DD  
(V)  
VPP (V)  
IN  
1314/15 G04  
1314/15 G05  
U
U
U
PIN FUNCTIONS  
LTC1314  
VPPIN (Pin 1): 12V Power Input.  
NC (Pin 2): Not Connected.  
DRV5, DRV3 (Pins 8, 9): Gate driver outputs that control  
the external MOSFETs that switch the VCC pin of card slot  
to Hi-Z, 3.3V, or 5V.  
SHDN(Pin3):ShutdownOutput.Whentheoutputishigh,  
the external 12V regulator can be shut down to conserve  
power consumption.  
VDD (Pin10):PositiveSupply, 4.5V VDD 5.5V. Thispin  
supplies the power to the control logic and the charge  
pumps and must be continuously powered.  
EN0,EN1(Pins4,5):Logicinputsthatcontrolthevoltage  
output on VPPOUT. The input thresholds are compatible  
with TTL/CMOS levels. Refer to Truth Table.  
GND (Pin 11): Ground Connection.  
VPPOUT (Pin12):Switchedoutputthatprovides0V, 3.3V,  
5V, 12V, or Hi-Z to the VPP pin of the card slot. Refer to  
Truth Table.  
VCC0 (Pin 6): Logic input that controls the state of the  
MOSFET gate driver DRV3. ESD protection device limits  
input excursions to 0.6V below ground.  
NC (Pin 13): Not Connected.  
VCC1 (Pin 7): Logic input that controls the state of the  
MOSFET gate driver DRV5. ESD protection device limits  
input excursions to 0.6V below ground.  
VCCIN (Pin 14): 5V or 3.3V Power Input.  
4
LTC1314/LTC1315  
U
U
U
PIN FUNCTIONS  
LTC1315  
VPPIN (Pins 1, 7): 12V Power Inputs.  
DRV5, DRV3 (Pins 13, 14, 19, 20): Gate driver outputs  
that control the external MOSFETs that switch the VCC pin  
of card slot to Hi-Z, 3.3V, or 5V.  
SHDN (Pins 2, 8): Shutdown Outputs. When the output is  
high, the external 12V regulator can be shut down to  
conserve power consumption.  
VDD (Pins 15, 21): Positive Supplies, 4.5V VDD 5.5V.  
These pins supply the power to the control logic and the  
charge pumps and must be continuously powered.  
EN0, EN1 (Pins 3, 4, 9, 10): Logic inputs that control the  
voltage output on VPPOUT. The input thresholds are  
compatible with TTL/CMOS levels. Refer to the Truth  
Table.  
GND (Pins 16, 22): Ground Connections.  
VPPOUT (Pins 17, 23): Switched outputs that provide 0V,  
3.3V, 5V, 12V, orHi-ZtotheVPPpinofthecardslot. Refer  
to the Truth Table.  
VCC0 (Pins5,11):Logicinputsthatcontrolthestateofthe  
MOSFET gate driver DRV3. ESD protection device limits  
input excursions to 0.6V below ground.  
VCCIN (Pins 18, 24): 5V or 3.3V Power Inputs.  
VCC1 (Pins6,12):Logicinputsthatcontrolthestateofthe  
MOSFET gate driver DRV5. ESD protection device limits  
input excursions to 0.6V below ground.  
W
BLOCK DIAGRAM  
LTC1314 or 1/2 LTC1315  
SHDN  
VPP  
IN  
GATE CHARGE  
AND DISCHARGE  
CONTROL LOGIC  
CHARGE  
PUMP  
TTL TO CMOS  
CONVERTER  
EN0  
EN1  
BREAK-BEFORE-  
MAKE SWITCHES  
OSCILLATOR  
AND BIAS  
TTL TO CMOS  
CONVERTER  
V
CCIN  
GATE CHARGE  
AND DISCHARGE  
CONTROL LOGIC  
CHARGE  
PUMP  
VPP  
IN  
+
GATE CHARGE  
CONTROL LOGIC  
VPP  
OUT  
10V  
GND  
TTL TO CMOS  
CONVERTER  
V
V
DRV3  
DRV5  
CC0  
CC1  
GATE CHARGE  
AND DISCHARGE  
CONTROL LOGIC  
TTL TO CMOS  
CONVERTER  
OSCILLATOR AND  
CHARGE PUMP  
OUTPUT  
SWITCHES  
LTC1314 • BD  
5
LTC1314/LTC1315  
U
W
W
SWITCHI G TI E WAVEFOR S  
EN0  
EN1  
VPP  
VCC  
IN  
IN  
Hi-Z  
VPP  
OUT  
GND  
t
t
t
t
7
3
6
5
t
1
t
4
t
2
LTC1314 • SW  
NOTE: 1µF CAPACITOR CONNECTED ON BOTH VPP AND V  
PINS AT TIMING TEST  
CCIN  
IN  
U
W U U  
APPLICATIONS INFORMATION  
cally rated with an absolute maximum of 13.5V and VPP  
must be maintained at 12V ±5% under all possible load  
conditionsduringeraseandprogramcycles. Undervoltage  
can decrease specified flash memory reliability and over-  
voltage can damage the device.  
PCMCIA VPP control is easily accomplished using the  
LTC1314 or LTC1315 switching matrix. Two control bits  
(LTC1314) or four control bits (LTC1315) determine the  
outputvoltageandstandby/operatemodeconditions. Out-  
put voltages of 0V, VCCIN (3.3V or 5V), VPPIN, or a high  
impedancestateareavailable. Wheneitherthehighimped-  
anceorlowvoltage(0V)conditionsareselected,thedevice  
switches into “sleep” mode and draws 0.1µA of current  
from the VDD supply.  
VCC Switch Driver and VPP Switch Matrix  
Figures 1 and 2 show the approach that is very space and  
power efficient. The LTC1314/LTC1315 used in conjunc-  
tion with the LT1301 DC/DC converter, provide complete  
power management for a PCMCIA card slot. The LTC1314/  
LTC1315 and LT1301 combination provides a highly effi-  
cient, minimal parts count solution. These circuits are  
especially good for applications that are adding a PCMCIA  
socket to existing systems that currently have only 5V or  
3.3V available.  
The LTC1314/LTC1315 are low resistance power MOSFET  
switchingmatricesthatoperatefromthecomputersystem  
main power supply. Device power is obtained from VDD,  
which is 5V ±0.5V. The gate drives for the NFETs (both  
internal and external) are derived from internal charge  
pumps,thereforeVPPIN isonlyrequiredwhenit’sswitched  
to VPPOUT. Internal break-before-make switches deter-  
mine the output voltage and device mode.  
The LTC1314 drives three N-channel (LTC1315 six  
N-channel) MOSFETs that provide VCC pin power switch-  
ing. On-chip charge pumps provide the necessary voltage  
to fully enhance the switches. With the charge pumps on-  
chip, the MOSFET drive is available without the need for a  
12V supply. The LTC1314/LTC1315 provide a natural  
break-before-make action and smooth transitions due to  
Flash Memory Card VPP Power Considerations  
PCMCIA compatible flash memory cards require tight  
regulation of the 12V VPP programming supply to ensure  
that the internal flash memory circuits are never subjected  
to damaging conditions. Flash memory circuits are typi-  
6
LTC1314/LTC1315  
U
W U U  
APPLICATIONS INFORMATION  
D1  
MBRS130LT3  
L1  
22µH  
+
+
C1  
47µF  
C2  
33µF  
V
SW  
SENSE  
LT1301  
CC  
SELECT  
5V  
SHDN  
PGND  
I
NC  
LIM  
GND  
C1: AVX TPSD476M016R0150  
C2: AVX TPSD336M020R0200  
L1: SUMIDA CD75-220K  
V
DD  
SHDN  
VPP  
IN  
VPP1  
VPP2  
VPP  
LTC1314  
OUT  
5V  
0.1µF  
EN0  
EN1  
PC CARD  
SOCKET  
Q1A  
PCMCIA  
CONTROLLER  
DRV5  
1/2 Si9956DY  
V
V
CC0  
V
CC  
CCIN  
+
1µF  
LTC1314 • F01  
Q2A  
V
CC1  
DRV3  
GND  
Si9956DY  
Q2B  
3.3V  
Figure 1. LTC1314 Switch Matrix with the LT1301 Boost Regulator  
D1  
L1  
22µH  
MBRS130LT3  
+
+
C1  
47µF  
C2  
33µF  
V
SW  
CC  
SELECT  
SENSE  
LT1301  
SHDN  
PGND  
I
NC  
LIM  
GND  
C1: AVX TPSD476M016R0150  
C2: AVX TPSD336M020R0200  
L1: SUMIDA CD75-220K  
V
DD  
ASHDN  
BSHDN  
AVPP  
IN  
BVPP  
AVPP  
IN  
VPP1  
VPP2  
PC CARD  
OUT  
5V  
0.1µF  
AEN0  
AEN1  
Q1A  
1/2 Si9956DY  
ADRV5  
SOCKET  
#1  
V
CC  
AV  
AV  
CC0  
CCIN  
+
+
1µF  
Q2A  
AV  
ADRV3  
CC1  
Si9956DY  
Q2B  
LTC1315  
BVPP  
PCMCIA  
CONTROLLER  
3.3V  
5V  
VPP1  
VPP2  
PC CARD  
OUT  
0.1µF  
1µF  
BEN0  
BEN1  
Q1B  
1/2 Si9956DY  
BDRV5  
SOCKET  
#2  
V
CC  
BV  
BV  
CC0  
CCIN  
Q3A  
BV  
BDRV3  
CC1  
1314/15 F02  
Si9956DY  
GND  
Q3B  
3.3V  
Figure 2. Typical Two-Socket Application Using the LTC1315 and the LT1301  
7
LTC1314/LTC1315  
U
W U U  
APPLICATIONS INFORMATION  
the asymmetrical turn-on and turn-off of the MOSFETs.  
The LT1301 switching regulator is in shutdown mode and  
consumes only 10µA until the VPP pins require 12V.  
With Higher Voltage Supplies Available  
Often systems have an available supply voltage greater  
than 12V. The LTC1314/LTC1315 can be used in conjunc-  
tion with an LT1121 linear regulator to supply the PC card  
socket with all necessary voltages. Figures 3 and 4 show  
these circuits. The LTC1314/LTC1315 enable the LT1121  
linear regulator only when 12V is required at the VPP pins.  
In all other modes the LT1121 is in shutdown mode and  
consumes only 16µA. The LT1121 also provides thermal  
shutdown and current limiting features to protect the  
socket, the card and the system regulator.  
The VPP switching is accomplished by a combination of  
the LTC1314/LTC1315 and LT1301. The LT1301 is in  
shutdown mode to conserve power until the VPP pins  
require 12V. When the VPP pins require 12V, the LT1301  
isactivatedandtheLTC1314/LTC1315’sinternalswitches  
route the VPPIN pin to the VPPOUT pin. The LT1301 is  
capable of delivering 12V at 120mA maintaining high  
efficiency. The LTC1314/LTC1315’s break-before-make  
andslope-controlledswitchingwillensurethattheoutput  
voltage transition will be smooth, of moderate slope, and  
without overshoot. This is critical for flash memory prod-  
ucts to prevent damaging parts from overshoot and  
ringing exceeding the 13.5V device limit.  
Supply Bypassing  
For best results, bypass VCCIN and VPPIN at their inputs  
with1µFcapacitors. VPPOUT shouldhavea0.01µFto0.1µF  
capacitor for noise reduction and electrostatic discharge  
(ESD) damage prevention. Larger values of output capaci-  
tor will create large current spikes during transitions,  
requiring larger bypass capacitors on the VCCIN and VPPIN  
pins.  
13V TO 20V  
(MAY BE FROM  
AUXILLARY  
V
V
OUT  
IN  
+
+
121k  
1%  
10µF  
1µF  
LT1121  
5V  
200pF  
WINDING)  
SHDN  
PGND  
ADJ  
GND  
5V  
56.2k  
1%  
100k  
2N7002  
V
DD  
SHDN  
VPP  
IN  
VPP1  
VPP2  
VPP  
LTC1314  
OUT  
5V  
0.1µF  
1µF  
EN0  
EN1  
PC CARD  
SOCKET  
Q1A  
PCMCIA  
CONTROLLER  
DRV5  
1/2 Si9956DY  
V
CC  
V
V
CCIN  
CC0  
+
1314/15 F03  
Q2A  
V
DRV3  
CC1  
GND  
Si9956DY  
Q2B  
3.3V  
Figure 3. LTC1314 with the LT1121 Linear Regulator  
8
LTC1314/LTC1315  
U
W U U  
APPLICATIONS INFORMATION  
(12V)  
121k  
13V TO 20V  
V
V
OUT  
(MAY BE FROM  
IN  
+
+
AUXILIARY WINDING)  
1µF  
10µF  
200pF  
LT1121  
5V  
SHDN  
PGND  
ADJ  
GND  
56.2k  
V
DD  
ASHDN  
BSHDN  
AVPP  
IN  
BVPP  
AVPP  
IN  
VPP1  
VPP2  
OUT  
5V  
0.1µF  
1µF  
AEN0  
AEN1  
PC CARD  
SOCKET  
#1  
Q1A  
ADRV5  
1/2 Si9956DY  
V
CC  
AV  
AV  
CCIN  
CC0  
+
+
Q2A  
AV  
CC1  
ADRV3  
Si9956DY  
Q2B  
LTC1315  
PCMCIA  
CONTROLLER  
3.3V  
5V  
VPP1  
VPP2  
BVPP  
OUT  
0.1µF  
1µF  
BEN0  
BEN1  
PC CARD  
SOCKET  
#2  
Q1B  
1/2 Si9956DY  
BDRV5  
V
CC  
BV  
CC0  
BV  
CCIN  
Q3A  
BV  
CC1  
BDRV3  
1314/15 F04  
Si9956DY  
GND  
Q3B  
3.3V  
Figure 4. Typical Two-Socket Application Using the LTC1315 and the LT1121  
U
TYPICAL APPLICATIONS N  
Single Slot Interface to CL-PD6710  
12V  
FROM LT1301  
5V  
V
VPP  
IN  
DD  
VPP_PGM  
EN0  
EN1  
VPP1  
VPP2  
VPP  
OUT  
5V  
0.1µF  
1µF  
VPP_V  
CC  
LTC1314  
1/2 Si9956DY  
OR  
PCMCIA  
CARD SLOT  
CIRRUS LOGIC  
CL-PD6710  
DRV5  
1/2 MMDF3N02HD  
V
V
_5  
_3  
V
CC0  
V
V
CC  
CC  
CC  
CCIN  
+
V
DRV3  
CC1  
LTC1314 • TA02  
Si9956DY  
OR  
MMDF3N02HD  
GND  
NOTE: CL-PD6710 HAS ACTIVE-LOW V DRIVE  
CC  
3.3V  
9
LTC1314/LTC1315  
U
TYPICAL APPLICATIONS N  
Dual Slot Interface to CL-PD6720  
12V  
5V  
V
DD  
VPP  
IN  
A_VPP_PGM  
AEN0  
AEN1  
BEN0  
BEN1  
VPP1  
VPP2  
PCMCIA  
AVPP  
OUT  
5V  
A_VPP_V  
CC  
0.1µF  
1µF  
B_VPP_PGM  
1/2 Si9956DY  
Si9956DY  
ADRV5  
CARD SLOT  
#1  
B_VPP_V  
CC  
AV  
CCIN  
V
CC  
+
+
ADRV3  
CIRRUS LOGIC  
CL-PD6720  
LTC1315  
3.3V  
5V  
A_V _5  
CC  
AV  
VPP1  
VPP2  
PCMCIA  
BVPP  
CC0  
CC1  
CC0  
CC1  
OUT  
A_V _3  
AV  
BV  
BV  
CC  
0.1µF  
1µF  
B_V _5  
CC  
1/2 Si9956DY  
BDRV5  
CARD SLOT  
#2  
B_V _3  
CC  
BV  
V
CC  
CCIN  
BDRV3  
LTC1315 • TA02  
Si9956DY  
GND  
3.3V  
NOTE: CL-PD6720 HAS ACTIVE-LOW V DRIVE  
CC  
Single Slot Interface to “365” Type Controller  
12V  
FROM LT1301  
5V  
V
VPP  
IN  
DD  
A_VPP_EN0  
A_VPP_EN1  
EN0  
EN1  
VPP1  
VPP2  
VPP  
OUT  
5V  
0.1µF  
1µF  
LTC1314  
1/2 Si9956DY  
OR  
PCMCIA  
CARD SLOT  
“365” TYPE  
CONTROLLER  
DRV5  
1/2 MMDF3N02HD  
A_V _EN0  
CC  
V
CC1  
V
V
CC  
CCIN  
+
A_V _EN1  
CC  
V
DRV3  
CC0  
LTC1314 • TA03  
Si9956DY  
OR  
MMDF3N02HD  
GND  
NOTE: “365” TYPE CONTROLLERS HAVE  
ACTIVE-HIGH V DRIVE  
3.3V  
CC  
10  
LTC1314/LTC1315  
U
TYPICAL APPLICATIONS N  
Dual Slot Interfae to “365” Type Controller  
12V  
VPP  
5V  
V
DD  
IN  
A_VPP_EN0  
A_VPP_EN1  
B_VPP_EN0  
B_VPP_EN1  
AEN0  
AEN1  
BEN0  
BEN1  
VPP1  
VPP2  
AVPP  
OUT  
5V  
0.1µF  
1µF  
PCMCIA  
CARD SLOT  
#1  
1/2 Si9956DY  
Si9956DY  
ADRV5  
AV  
V
CC  
CCIN  
+
+
ADRV3  
“365” TYPE  
CONTROLLER  
LTC1315  
3.3V  
5V  
A_V _EN0  
CC  
AV  
VPP1  
VPP2  
BVPP  
CC1  
CC0  
CC1  
CC0  
OUT  
A_V _EN1  
AV  
BV  
BV  
CC  
0.1µF  
1µF  
PCMCIA  
CARD SLOT  
#2  
B_V _EN0  
CC  
1/2 Si9956DY  
BDRV5  
B_V _EN1  
CC  
BV  
CCIN  
V
CC  
BDRV3  
LTC1315 • TA03  
Si9956DY  
GND  
3.3V  
NOTE: “365” TYPE CONTROLLERS  
HAVE ACTIVE-HIGH V DRIVE  
CC  
Typical PCMCIA Dual Slot Driver  
3.3V OR 5V  
V
V
STEP-UP  
REGULATOR  
LT1301  
IN  
12V  
OUT  
SHDN  
+
C
OUT  
BVPP  
AVPP  
IN  
IN  
ASHDN  
BSHDN  
5V  
V
DD  
DD  
VPP1  
VPP2  
LTC1315 Truth Table  
AVPP  
V
OUT  
5V  
0.1µF  
1µF  
AEN0  
AEN1  
PCMCIA  
CARD SLOT  
EN0  
EN1  
0
VCC0  
X
VCC1  
X
VPPOUT  
GND  
VCCIN  
VPPIN  
Hi-Z  
X
DRV3  
DRV5  
ADRV5  
0
0
1
1
X
X
X
X
X
X
X
X
1
0
0
0
X
X
X
X
0
1
0
0
#1  
V
AV  
AV  
CCIN  
CC  
CC0  
CC1  
1
X
X
+
+
AV  
ADRV3  
0
X
X
1
X
X
PCMCIA  
CARD SLOT  
CONTROLLER  
LTC1315  
X
1
0
X
0
1
X
3.3V  
5V  
X
0
0
X
VPP1  
VPP2  
PCMCIA  
CARD SLOT  
BVPP  
OUT  
X
1
1
X
0.1µF  
1µF  
BEN0  
BEN1  
X = DON’T CARE  
BDRV5  
#2  
V
BV  
BV  
CCIN  
CC  
CC0  
BV  
BDRV3  
CC1  
LTC1315 • TA01  
GND  
3.3V  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1314/LTC1315  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
G Package  
24-Lead Plastic SSOP  
0.318 – 0.328*  
(8.04 – 8.33)  
24 23 22 21 20 19 18 17 16 15 14  
13  
0.301 – 0.311  
(7.65 – 7.90)  
5
7
8
1
2
3
4
6
9
10 11 12  
0.205 – 0.212*  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
0° – 8°  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
(0.13 – 0.22)  
0.022 – 0.037  
(0.55 – 0.95)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
24SSOP 0694  
S Package  
14-Lead Plastic SOIC  
0.337 – 0.344*  
(8.560 – 8.738)  
13  
12  
11  
10  
9
8
14  
0.228 – 0.244  
0.150 – 0.157*  
(5.791 – 6.197)  
(3.810 – 3.988)  
1
2
3
4
5
6
7
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.008 – 0.010  
(0.203 – 0.254)  
0.004 – 0.010  
(0.101 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.016 – 0.050  
0.406 – 1.270  
0.014 – 0.019  
(0.355 – 0.483)  
SO14 0294  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
RELATED PARTS  
See PCMCIA Product Family table on the first page of this data sheet.  
LT/GP 0195 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

LTC1315CG#PBF

LTC1315 - PCMCIA Switching Matrixwith Built-In N-Channel VCC Switch Drivers; Package: SSOP; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1315CG#TR

LTC1315 - PCMCIA Switching Matrixwith Built-In N-Channel VCC Switch Drivers; Package: SSOP; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1315CG#TRPBF

LTC1315 - PCMCIA Switching Matrixwith Built-In N-Channel VCC Switch Drivers; Package: SSOP; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1318

Single 5V RS232/RS422/AppleTalk DCE Transceiver
Linear

LTC1318CS

IC LINE TRANSCEIVER, PDSO24, PLASTIC, SOL-24, Line Driver or Receiver
Linear

LTC1318CSW

Single 5V RS232/RS422/AppleTalk DCE Transceiver
Linear

LTC1318CSW#PBF

IC LINE TRANSCEIVER, PDSO24, 0.300 INCH, PLASTIC, SO-24, Line Driver or Receiver
Linear

LTC1320

AppleTalk Transceiver
Linear

LTC1320CS

AppleTalk Transceiver
Linear

LTC1321

RS232/EIA562/RS485 Transceivers
Linear

LTC1321C

RS232/EIA562/RS485 Transceivers
Linear

LTC1321CN

RS232/EIA562/RS485 Transceivers
Linear