LTC1323CSW [Linear]

Single 5V AppleTalk Transceiver; 单5V的AppleTalk收发器
LTC1323CSW
型号: LTC1323CSW
厂家: Linear    Linear
描述:

Single 5V AppleTalk Transceiver
单5V的AppleTalk收发器

驱动器 接口集成电路 光电二极管
文件: 总12页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1323  
Single 5V  
AppleTalk® Transceiver  
U
DESCRIPTIO  
EATURE  
S
F
Single Chip Provides Complete  
TheLTC®1323isamulti-protocollinetransceiverdesigned  
to operate on AppleTalk or EIA562-compatible single-  
ended networks while operating from a single 5V supply.  
TherearetwoversionsoftheLTC1323available:a16-pin  
version designed to connect to an AppleTalk network,  
and a 24-pin version which also includes the additional  
single-ended drivers and receivers necessary to create  
an Apple-compatible serial port. An on-board charge  
pump generates a 5V supply which can be used to  
powerexternaldevices.Additionally,the24-pinLTC1323  
features a micropower keep-alive mode during which  
oneofthesingle-endedreceiversiskeptactivetomonitor  
externalwake-upsignals.TheLTC1323drawsonly2.4mA  
quiescent current when active, 65µA in receiver keep-  
alive mode, and 0.5µA in shutdown, making it ideal for  
useinbattery-poweredsystems.  
LocalTalk®/AppleTalk Port  
Operates From a Single 5V Supply  
ESD Protection to ±10kV on Receiver Inputs  
and Driver Outputs  
Low Power: ICC = 2.4mA Typ  
Shutdown Pin Reduces ICC to 0.5µA Typ  
Receiver Keep-Alive Function: ICC = 65µA Typ  
Differential Driver Drives Either Differential  
AppleTalk or Single-Ended EIA562 Loads  
Drivers Maintain High Impedance in Three-State or  
with Power Off  
Thermal Shutdown Protection  
Drivers are Short-Circuit Protected  
O U  
PPLICATI  
A
S
ThedifferentialdrivercandriveeitherdifferentialAppleTalk  
loads or conventional single-ended loads. The driver  
outputs three-state when disabled, during shutdown, in  
receiver keep-alive mode, or when the power is off. The  
driver outputs will maintain high impedance even with  
output common-mode voltages beyond the power supply  
rails. Both the driver outputs and receiver inputs are  
protectedagainstESDdamageto±10kV.  
LocalTalk Peripherals  
Notebook/Palmtop Computers  
Battery-Powered Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
AppleTalk and LocalTalk are registered trademarks of Apple Computer, Inc.  
U
O
TYPICAL APPLICATI  
LTC1323  
5V  
1µF  
+
24  
23  
1
CHARGE PUMP  
0.33µF  
2
5TO 10Ω  
5TO 10Ω  
=
0.33µF  
EMI FILTER  
EMI FILTER  
CPEN  
TXD  
3
4
5
6
7
8
9
22  
21  
1µF  
+
100pF  
DX  
DX  
TXI  
20 TXD  
19 TXD  
18 TXO  
17 RXI  
16 RXI  
+
TXDEN  
SHDN  
RXEN  
RXO  
EMI FILTER  
EMI FILTER  
EMI FILTER  
EMI FILTER  
EMI FILTER  
EMI FILTER  
8
5
7
6
RX  
RX  
RX  
4
3
+
RXO 10  
RXDO 11  
12  
15 RXD  
14 RXD  
13  
2
1
LTC1323 • TA01  
1
LTC1323  
W W W  
U
ABSOLUTE AXI U RATI GS  
Supply Voltage (VCC) ................................................ 7V  
Input Voltage  
Logic Inputs .............................. 0.3V to VCC + 0.3V  
Receiver Inputs ................................................ ±15V  
Driver Output Voltage (Forced) ............................. ±15V  
Driver Short-Circuit Duration .......................... Indefinite  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
+
NUMBER  
C1  
C2  
1
2
3
4
5
6
7
8
9
28  
V
CC  
+
27 C2  
26 C2  
TOP VIEW  
LTC1323CG  
LTC1323CS  
CPEN  
TXD  
+
C1  
C1  
1
2
3
4
5
6
7
8
16  
V
CC  
+
25 NC  
24 NC  
15 C2  
TXI  
TXD  
TXDEN  
SHDN  
RXEN  
RXDO  
GND  
14  
13  
12  
11  
10  
9
C2  
TXDEN  
SHDN  
RXEN  
RXO  
23  
V
EE  
V
EE  
+
22 TXD  
21 TXD  
20 TXO  
19 RXI  
18 RXI  
+
TXD  
TXD  
RXD  
RXD  
RXO 10  
RXDO 11  
NC 12  
+
+
S PACKAGE  
16-LEAD PLASTIC SO  
17 RXD  
16 RXD  
NC 13  
TJMAX = 125°C, θJA = 85°C/W  
GND 14  
15 PGND  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 96°C/W  
TOP VIEW  
ORDER PART  
NUMBER  
+
C1  
C1  
1
2
3
4
5
6
7
8
9
24  
V
CC  
+
23 C2  
22 C2  
LTC1323CSW  
CPEN  
TXD  
21  
V
EE  
+
TXI  
20 TXD  
19 TXD  
18 TXO  
17 RXI  
16 RXI  
TXDEN  
SHDN  
RXEN  
RXO  
+
RXO 10  
RXDO 11  
GND 12  
15 RXD  
14 RXD  
13 PGND  
SW PACKAGE  
24-LEAD PLASTIC SO WIDE  
TJMAX = 125°C, θJA = 85°C/W  
Consult factory for Industrial and Military grade parts.  
2
LTC1323  
ELECTRICAL CHARACTERISTICS  
VCC = 5V ±10%, TA = 0°C to 70°C (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supplies  
I
Normal Operation Supply Current  
Receiver Keep-Alive Supply Current  
Shutdown Supply Current  
No Load, SHDN = 0V, CPEN = 0V, TXDEN = 0V,  
RXEN = 0V  
2.4  
65  
4
mA  
µA  
µA  
V
CC  
No Load, SHDN = 0V, CPEN = V , TXDEN = 0V,  
100  
10  
CC  
RXEN = 0V  
No Load, SHDN = V , CPEN = X, TXDEN = X,  
0.5  
–5  
CC  
RXEN = 0V  
V
Negative Supply Output Voltage  
I
10mA (Note 4),  
LOAD  
5.5  
4.5  
EE  
V
= 5V, R = 100(Figure 1),  
CC  
L
TXI = V , R  
= 3k (Figure 5)  
CC TXO  
f
Charge Pump Oscillator Frequency  
200  
kHz  
OSC  
Differential Driver  
V
Differential Output Voltage  
No Load  
R = 100(Figure 1)  
±8  
±2  
V
V
OD  
L
V  
Change in Magnitude of Differential  
Output Voltage  
R = 100(Figure 1)  
L
0.2  
3
OD  
Differential Driver  
V
V
V
Differential Common-Mode  
Output Voltage  
R = 100Ω  
L
V
OC  
Single-Ended Output Voltage  
No Load  
R = 3k to GND  
L
±4.0  
±3.7  
V
V
OS  
Common-Mode Range  
Short-Circuit Current  
SHDN = V or CPEN = V or Power Off  
±10  
500  
V
mA  
µA  
CMR  
CC  
CC  
I
I
5V V 5V  
35  
120  
SS  
OZ  
O
Three-State Output Current  
SHDN = V or CPEN = V or Power Off,  
±2  
±200  
CC  
CC  
10V V 10V  
O
Single-Ended Driver (Note 5)  
V
OS  
Single-Ended Output Voltage  
No Load  
R = 3k to GND  
L
±4.5  
±3.7  
V
V
V
Common-Mode Range  
SHDN = V or CPEN = V or TXDEN = V  
or Power Off  
±10  
V
CMR  
CC  
CC  
CC  
CC  
I
I
Short-Circuit Current  
5V V 5V  
35  
220  
500  
mA  
SS  
OZ  
O
Three-State Output Current  
SHDN = V or CPEN = V or TXDEN = V  
±2  
±200  
µA  
CC  
CC  
or Power Off, 10V V 10V  
O
Receivers  
R
Input Resistance  
7V V 7V  
12  
kΩ  
mV  
mV  
V
IN  
IN  
Differential Receiver Threshold Voltage  
Differential Receiver Input Hysteresis  
Single-Ended Input, Low Voltage  
Single-Ended Input, High Voltage  
Output High Voltage  
7V V 7V  
200  
200  
0.8  
CM  
7V V 7V  
70  
CM  
(Note 5)  
(Note 5)  
2
V
V
V
I = 4mA  
O
3.5  
V
OH  
Output Low Voltage  
I = 4mA  
O
0.4  
85  
V
OL  
I
I
Output Short-Circuit Current  
Output Three-State Current  
5V V 5V  
7
mA  
µA  
SS  
OZ  
O
5V V 5V, RXEN = V  
±2  
±100  
O
CC  
3
LTC1323  
ELECTRICAL CHARACTERISTICS VCC = 5V ±10%, TA = 0°C to 70°C (Notes 2 and 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Inputs  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
All Logic Input Pins  
All Logic Input Pins  
All Logic Input Pins  
2.0  
V
V
IH  
IL  
0.8  
I
±1.0  
±20  
µA  
C
Switching Characteristics  
t
, t  
Differential Driver Propagation Delay  
R = 100, C = 100pF (Figures 2, 7)  
40  
120  
180  
ns  
ns  
PLH PHL  
L
L
Differential Driver Propagation Delay  
with Single-Ended Load  
R = 3k, C = 100pF (Figures 3, 9)  
120  
L
L
Single-Ended Driver Propagation Delay  
R = 3k, C = 100pF, (Figures 5, 10) (Note 5)  
40  
70  
70  
120  
160  
160  
ns  
ns  
ns  
L
L
Differential Receiver Propagation Delay C = 15pF (Figures 2, 11)  
L
Single-Ended Receiver  
Propagation Delay  
C = 15pF (Figures 6, 12) (Note 5)  
L
Inverting Receiver Propagation Delay  
in Keep-Alive Mode,  
C = 15pF (Figures 6, 12) (Note 5)  
L
150  
600  
ns  
SHDN = 0V, CPEN = V  
CC  
t
Differential Driver Output to Output  
Differential Driver Rise/Fall Time  
R = 100, C = 100pF (Figures 2, 7)  
10  
50  
50  
50  
ns  
ns  
ns  
SKEW  
L
L
t , t  
R = 100, C = 100pF (Figures 2, 7)  
150  
150  
r
f
L
L
Differential Driver Rise/Fall Time  
with Single-Ended Load  
R = 3k, C = 100pF (Figures 3, 9)  
L L  
Single-Ended Driver Rise/Fall Time  
R = 3k, C = 100pF (Figures 5, 10) (Note 5)  
15  
80  
ns  
ns  
L
L
t
t
, t  
Differential Driver Output Active  
to Disable  
C = 15pF (Figures 4, 8)  
L
180  
250  
HDIS LDIS  
Any Receiver Output Active to Disable  
C = 15pF (Figures 4, 13)  
30  
100  
250  
ns  
ns  
L
, t  
Differential Driver  
Enable to Output Active  
C = 15pF (Figures 4, 8)  
L
180  
ENH ENL  
Any Receiver, Enable to Output Active  
C = 15pF (Figures 4, 13)  
30  
100  
ns  
L
V
EER  
Supply Rise Time from Shutdown  
or Receiver Keep-Alive  
C1 = C2 = 0.33µF, C  
= 1µF  
VEE  
0.2  
ms  
The  
denotes specifications which apply over the full operating  
Note 3: All typicals are given at V = 5V, T = 25°C.  
CC A  
temperature range.  
Note 4: I  
is an external current being sunk into the V pin.  
EE  
LOAD  
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: These specifications apply to the 24-pin SO Wide package only.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
4
LTC1323  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Single-Ended Driver Swing  
vs Load Resistance  
Charge Pump Output Voltage  
vs Load Current  
Differential Driver Swing  
vs Load Resistance  
5
4
5
4
–2.0  
–2.5  
–3.0  
–3.5  
T
= 25°C  
= 5V  
A
S
V
T
= 25°C  
= 5V  
A
R
R
V
= 100Ω  
L(SE)  
= 5V  
V
L(DIFF)  
= 3k TO GND  
TXI  
S
3
3
2
2
1
1
0
0
4.0  
4.5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
5.0  
–5.5  
6.0  
T
= 25°C  
= 5V  
A
S
V
5
10  
20  
50 100 200 300 500 1k 2k 3k 5k 10k  
50 100 200 300 500 1k 2k 3k 5k 10k  
0
25  
30  
15  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
LOAD CURRENT (mA)  
LTC1323 • TPC01  
LTC1323 • TPC02  
LTC1323 • TPC03  
Differential Driver Swing  
vs Temperature  
Single-Ended Driver Swing  
vs Temperature  
Supply Current vs Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3.50  
V
= 5V  
V
= 5V  
S
S
V
= 5V  
= 3k TO GND  
R
= 100Ω  
L
S
L
NO LOAD  
3.25  
3.00  
R
3
2
2.75  
2.50  
2.25  
2.00  
1.75  
1
0
–1  
–2  
–3  
–4  
–5  
1.50  
–25  
0
50  
75 100 125  
–50  
25  
50  
50  
TEMPERATURE (°C)  
125  
–50  
0
25  
75 100 125  
–50  
0
25  
75 100  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (˚C)  
LTC1323 • TPC04  
LTC1323 • TPC05  
LTC1323 • TPC06  
5
LTC1323  
U
U
U
PI FU CTIO S  
LTC1323CS  
LTC1323CSW  
LTC1323CG  
+
+
+
C1  
C1  
1
2
3
4
5
6
7
8
16  
V
C1  
C1  
1
2
24  
V
C1  
C1  
1
2
28 V  
CC  
+
CC  
CC  
CHARGE PUMP  
CHARGE PUMP  
CHARGE PUMP  
+
+
15 C2  
14 C2  
23 C2  
22 C2  
27 C2  
26 C2  
TXD  
TXDEN  
SHDN  
RXEN  
RXDO  
GND  
CPEN  
TXD  
3
3
CPEN  
TXD  
DX  
DX  
DX  
DX  
13  
V
4
21 V  
EE  
4
25 NC  
24 NC  
EE  
+
DX  
RX  
12 TXD  
11 TXD  
5
20 TXD  
19 TXD  
18 TXO  
17 RXI  
16 RXI  
TXI  
TXI  
5
+
TXDEN  
SHDN  
RXEN  
RXO  
6
TXDEN  
SHDN  
RXEN  
RXO  
6
23  
22  
21  
20  
V
EE  
+
10 RXD  
7
TXD  
TXD  
TXO  
7
+
9
RXD  
8
8
RX  
RX  
RX  
9
9
+
RX  
10  
11  
12  
15 RXD  
14 RXD  
10  
11  
19 RXI  
18  
RX0  
RX0  
RXI  
RXDO  
GND  
RXDO  
+
RX  
RX  
13 PGND  
17 RXD  
16 RXD  
NC 12  
NC  
13  
GND 14  
15  
PGND  
C1+: C1 Positive Input. Connect a 0.33µF capacitor be-  
RXEN: Receiver Enable (TTL compatible). A high level  
on this pin disables the receivers and three-states the  
logic outputs; a low level allows normal operation.  
tween C1+ and C1.  
C1: C1 Negative Input. Connect a 0.33µF capacitor be-  
tween C1+ and C1.  
RXO: Inverting Single-Ended Receiver Output. Remains  
active in the receiver keep-alive mode.  
CPEN: TTL Level Charge Pump Enable Input. With CPEN  
held low, the charge pump is enabled and the chip oper-  
ates normally. When CPEN is pulled high, the charge  
pump is disabled as well as both drivers, the noninverting  
single-ended receiver, and the differential receiver. The  
inverting single-ended receiver (RXI) is kept alive to  
monitor the control line and ICC drops to 65µA. To turn  
off the receiver and drop ICC to 0.5µA, pull the SHDN pin  
high.  
RXO: Noninverting Single-Ended Receiver Output.  
RXDO: Differential Receiver Output.  
GND: Signal Ground. Connect to PGND with 24-pin  
package.  
PGND:Powergroundisconnectedinternallytothecharge  
pump and differential driver. Connect to the GND pin.  
RXD+: Differential Receiver Noninverting Input. When this  
pin is 200mV above RXD, RXDO will be high; when this  
pin is 200mV below RXD, RXDO will be low.  
RXD: Differential Receiver Inverting Input.  
TXD: Differential Driver Input (TTL compatible).  
TXI: Single-Ended Driver Input (TTL compatible).  
TXDEN: Differential Driver Output Enable (TTL compat-  
ible). A high level on this pin forces the differential driver  
into three-state; a low level enables the driver. This input  
does not affect the single-ended driver.  
RXI: Noninverting Receiver Input. This input controls the  
RXO output.  
RXI: Inverting Receiver Input. This input controls the RXO  
output. In receiver keep-alive mode (CPEN high, SHDN  
low), this receiver can be used to monitor a wake-up  
control signal.  
SHDN: Shutdown Input (TTL compatible). When this pin  
is high, the chip is shut down. All driver and receiver  
outputsarethree-state,thechargepumpturnsoff,andthe  
supply current drops to 0.5µA. A low level on this pin  
allows normal operation.  
6
LTC1323  
U
U
U
PI FU CTIO S  
TXO: Single-Ended Driver Output.  
C2: C2 Negative Input. Connect a 0.33µF capacitor  
between C2+ and C2.  
TXD+: Differential Driver Noninverting Output.  
TXD: Differential Driver Inverting Output.  
C2+: C2 Positive Input. Connect a 0.33µF capacitor  
between C2+ and C2.  
VEE: Negative Supply Charge Pump Output. Requires a  
1µF bypass capacitor to ground. If an external load is  
connected to the VEE pin, the bypass capacitor value  
should be increased to 4.7µF.  
VCC: Positive Supply Input. 4.5V VCC 5.5V. Requires a  
1µF bypass capacitor to ground.  
TEST CIRCUITS  
+
TXD  
R
+
C
+
+
L
L
TXD  
V
RXD  
RXD  
OD  
RXDO  
TXI  
TXI  
R
L
R
C
L
TXD  
RXD  
L
V
C
OC  
TXD  
R
15pF  
R
L
C
L
LTC1323 • F03  
TXD  
LTC1323 • F01  
LTC1323 • F02  
Figure 1  
Figure 2  
Figure 3  
V
CC  
S1  
TXI  
TXO  
RXI  
RXO  
RXI  
RXO  
500Ω  
OUTPUT  
R
L
C
L
C
C
L
L
C
L
S2  
LTC1323 • F04  
LTC1323 • F05  
LTC1323 • F06  
Figure 4  
Figure 5  
Figure 6  
U
W
SWITCHI G WAVEFOR S  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
TXD  
1.5V  
0V  
t
t
PHL  
PLH  
V
O
+
90%  
90%  
V
DIFF  
= V(TXD ) – V(TXD )  
50%  
10%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
TXD  
V
O
+
TXD  
t
t
SKEW  
LTC1323 • F07  
SKEW  
Figure 7. Differential Driver  
7
LTC1323  
U
W
SWITCHI G WAVEFOR S  
3V  
1.5V  
1.5V  
TXDEN  
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
t
ZL  
t
LZ  
5V  
+
TXD , TXD  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
t
t
HZ  
ZH  
V
OH  
0.5V  
+
TXD , TXD  
2.3V  
0V  
LTC1323 • F08  
Figure 8. Differential Driver Enable and Disable  
3V  
0V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
TXD  
t
t
PLH  
PHL  
V
OH  
TXD  
0V  
0V  
V
OL  
V
+
OH  
90%  
90%  
0V  
10%  
0V  
10%  
TXD  
V
OL  
t
r
t
f
LTC1323 • F09  
Figure 9. Differential Driver With Single-Ended Load  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
TXI  
0V  
t
t
PLH  
PHL  
V
OH  
90%  
90%  
LTC1323 • F10  
TXO  
0V  
10%  
0V  
10%  
V
OL  
t
r
t
r
Figure 10. Single-Ended Driver  
V
OD2  
f = 1MHz: t 10ns: t 10ns  
r
f
+
0V  
0V  
(RXD ) – (RXD )  
–V  
OD2  
t
t
PLH  
PHL  
V
OH  
1.5V  
RXDO  
1.5V  
V
OL  
LTC1323 • F11  
Figure 11. Differential Receiver  
8
LTC1323  
U
W
SWITCHI G WAVEFOR S  
V
IH  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
RXI, RXI  
V
IL  
t
t
PLH  
PHL  
V
OH  
2.4V  
1.5V  
RXI  
0.8V  
1.5V  
V
OL  
V
IH  
V
RXI  
LTC1323 • F12  
Figure 12. Single-Ended Receiver  
3V  
1.5V  
1.5V  
RXEN  
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
5V  
t
t
LZ  
ZL  
RXO, RXO, RXDO  
2.3V  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
t
ZH  
t
HZ  
V
OH  
0.5V  
RXO, RXO, RXDO  
0V  
LTC1323 • F13  
Figure 13. Receiver Enable and Disable  
U U  
W
U
APPLICATIO S I FOR ATIO  
Functional Description  
to improve lifetime in battery-powered devices. The 24-  
pin SO Wide version also includes a receiver keep-alive  
mode for monitoring external signals while drawing 65µA  
typically.  
The “serial port” on the back of an Apple-compatible  
computer or peripheral is a fairly versatile “multi-protocol”  
connector. It must be able to connect to a wide bandwidth  
LAN (an AppleTalk/LocalTalk network), which requires a The LTC1323 includes an RS422-compatible differential  
high speed differential transceiver to meet the AppleTalk driver/receiver pair for data transmission, with the driver  
specification, and it must also be able to connect directly to specified to drive 2V into the 100primary of a typical  
a printer or modem through a short RS232 style link. The LocalTalk interface transformer/RFI interference network.  
LTC1323isdesignedtoprovideallthefunctionsnecessary EitheroutputofthedifferentialRS422drivercanalsoactas  
to implement such a port on a single chip. Two versions of an single-ended driver, allowing the LTC1323 to commu-  
the LTC1323 are available: a 16-pin SO version which nicate over a standard serial connection. The 24-pin SO  
provides the minimum solution for interfacing to an Wide LTC1323 also includes an extra single ended only  
AppleTalknetworkinasmallerpackage,andalarger24-pin driver and two extra RS232-compatible single-ended re-  
SO Wide version which additionally includes all the hand- ceivers for handshaking lines. All versions include an on-  
shaking lines required to implement a complete AppleTalk/ board charge pump to provide a regulated 5V supply  
modem/printer serial port. All LTC1323s run from a single required for the single-ended drivers. The charge pump  
5V power supply while providing true single-ended com- can also provide up to 10mA of external load current to  
patibility, and include a 0.5µA low power shutdown mode  
power other circuitry.  
9
LTC1323  
U U  
W
U
APPLICATIO S I FOR ATIO  
Driving Differential AppleTalk or Single-Ended Loads  
Power Shutdown  
ThepowershutdownfeatureoftheLTC1323isdesigned  
for battery-powered systems. When SHDN is forced  
high the part enters shutdown mode. In shutdown the  
supply current typically drops from 2.4mA to 0.5µA , the  
charge pump turns off, and the driver and receiver  
outputs are three-stated.  
The differential driver is able to drive either an AppleTalk  
load or a single-ended load such as a printer or modem.  
With a differential AppleTalk load, TXD+ and TXDwill  
typically swing between 1.2V and 3.5V (Figure 14a). With  
a single-ended 3k load such as a printer, either TXD+ or  
TXDwill meet the single-ended voltage swing require-  
mentof±3.7V(Figure14b). Anautomaticswitchingcircuit  
preventsthedifferentialdriverfromoverloadingthecharge  
pump if the outputs are shorted to ground while driving  
single-ended signals. This allows the second single-ended  
driver to continue to operate normally when the first is  
shorted,andallowsexternalcircuitryattachedtothecharge  
pump output to continue to operate even if there are faults  
at the driver outputs.  
Receiver Keep-Alive Mode (24-Pin SO Wide Only)  
The 24-pin SO Wide version of the LTC1323 also features  
a power saving receiver keep-alive mode. When CPEN is  
pulled high the charge pump is turned off and the outputs  
of both drivers, the noninverting single-ended receiver and  
the differential receiver are forced into three-state. The  
inverting single-ended receiver (RXI) is kept alive with ICC  
dropping to 65µA and the receiver delay time increasing to  
a maximum of 400ns. The receiver can then be used to  
monitor a wake-up control signal.  
V
= 5V  
CC  
+
24  
1µF  
C1  
V
CC  
12  
13  
EXTERNAL  
CHIP  
GND  
LTC1323  
21  
Charge Pump Capacitors and Supply Bypassing  
V
EE  
The LTC1323 requires two external 0.33µF capacitors for  
the charge pump to operate: one from C1+ to C1and one  
from C2+ to C2. These capacitors should be low ESR  
types and should be mounted as close as possible to the  
LTC1323. Monolithic ceramic capacitors work well in this  
application. Do not use capacitors greater than 2µF at the  
charge pump pins or internal peak currents can rise to  
destructivelevels.TheLTC1323alsorequiresthatbothVCC  
and VEE be well bypassed to ensure proper charge pump  
operation and prevent data errors. A 1µF capacitor from  
VCC togroundisadequate. A1µFcapacitorisrequiredfrom  
VEE to ground and should be increased to 4.7µF if an  
external load is connected to the VEE pin. Ceramic or  
tantalum capacitors are adequate for power supply by-  
passing; aluminum electrolytic capacitors should only be  
used if their ESR is low enough for proper charge pump  
operation. Inadequate bypass or charge pump capacitors  
will cause the charge pump output to go out of regulation  
prematurely, degrading the output swing at the SINGLE-  
ENDED driver outputs.  
I
VEE  
4.7µF  
–5.5V V –4.5V  
EE  
+
I
10mA  
VEE  
LTC1323 • F15  
Figure 14  
Thermal Shutdown Protection  
The LTC1323 includes a thermal shutdown circuit which  
protects against prolonged shorts at the driver outputs. If  
adriveroutputisshortedtoanotheroutputortothepower  
supply, the current will be initially limited to a maximum of  
500mA. When the die temperature rises above 150°C, the  
thermal shutdown circuit disables the driver outputs.  
When the die cools to about 130°C, the outputs are re-  
enabled. If the short still exists, the part will heat again and  
the cycle will repeat. This oscillation occurs at about 10Hz  
and prevents the part from being damaged by excessive  
powerdissipation.Whentheshortisremoved,thepartwill  
return to normal operation.  
10  
LTC1323  
U U  
W
U
APPLICATIO S I FOR ATIO  
Driving an External Load from VEE  
the LTC1323 uses a single supply differential driver, the  
resistor values should be reduced to 5to 10to guaran-  
tee adequate voltage swing on the cable (Figure 16a). In  
mostapplications, removingtheresistorscompletelydoes  
not cause an increase in EMI as long as a shielded connec-  
tor and cable are used (Figure 16b). With the resistors  
removed the only DC load is the primary resistance of the  
LocalTalk transformer. This will increase the DC standby  
current when the driver outputs are active, but does not  
adversely affect the drivers because they can handle a  
direct indefinite short circuits without damage. Trans-  
formerprimaryresistanceshouldbeabove15tokeepthe  
LTC1323 operating normally and prevent it from entering  
thermal shutdown. For maximum swing and EMI immu-  
nity, a ferrite bead and capacitor T network can be used  
(Figure 16c).  
An external load may be connected between ground and  
the VEE pin as shown in Figure 15. The LTC1323 VEE pin  
will sink up to a maximum of 10mA while maintaining the  
pin voltage between 4.5V and 5.5V. If an external load  
is connected, the VEE bypass capacitor should be in-  
creased to 4.7µF. Both LTC1323 and the external chip  
should have separate VCC bypass capacitors but can  
share the VEE capacitor.  
EMI Filter  
Most LocalTalk applications use an electromagnetic inter-  
ference (EMI) filter consisting of a resistor-capacitor T  
network between each driver and receiver and the connec-  
tor. Unfortunately, the resistors significantly attenuate the  
driversoutputsignalsbeforetheyreachthecable. Because  
FERRITE BEAD FERRITE BEAD  
5TO 10Ω  
5TO 10Ω  
V
= 5V  
CC  
100pF  
100pF  
100pF  
+
24  
1µF  
C1  
V
CC  
12  
13  
(a)  
(b)  
(c)  
LTC1323 • F16  
EXTERNAL  
CHIP  
GND  
LTC1323  
21  
Figure 16. EMI Filters  
V
EE  
I
VEE  
4.7µF  
–5.5V V –4.5V  
EE  
+
I
10mA  
VEE  
LTC1323 • F15  
Figure 15  
U
TYPICAL APPLICATIONS N  
Typical LocalTalk Connection  
5V  
+
1µF  
16  
1
2
15  
0.33µF  
0.33µF  
CHARGE PUMP  
14  
13  
1µF  
+
LTC1323CS  
TX  
100pF  
LocalTalk  
TRANSFORMER  
12  
11  
3
DATA IN  
4
5
6
TX ENABLE  
120Ω  
100pF  
100pF  
SHDN  
RX ENABLE  
10  
9
7
DATA OUT  
RX  
8
LTC1323 • TA02  
100pF  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1323  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
0.397 – 0.407*  
(10.07 – 10.33)  
0.205 – 0.212**  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0° – 8°  
0.301 – 0.311  
(7.65 – 7.90)  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
0.022 – 0.037  
(0.55 – 0.95)  
(0.13 – 0.22)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
5
7
1
2
3
4
6
8
9
10 11 12 13 14  
G28 SSOP 0694  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.004 – 0.010  
(0.101 – 0.254)  
0.053 – 0.069  
(1.346 – 1.752)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S16 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
SW Package  
24-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.598 – 0.614*  
(15.190 – 15.600)  
0.291 – 0.299**  
(7.391 – 7.595)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.009 – 0.013  
0.004 – 0.012  
(0.102 – 0.305)  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
(0.356 – 0.482)  
0.016 – 0.050  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2
3
5
7
8
9
10  
1
4
6
11 12  
S24 (WIDE) 0695  
LT/GP 1194 10K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
LINEAR TECHNOLOGY CORPORATION 1994  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LTC1323CSW#PBF

LTC1323 - Single 5V AppleTalk® Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1323CSW#TRPBF

LTC1323 - Single 5V AppleTalk® Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1323CSW-16

IC LINE TRANSCEIVER, PDSO16, 0.300 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1323GS

Transceiver
ETC

LTC1324

Single Supply LocalTalk Transceiver
Linear

LTC1324CN

Single Supply LocalTalk Transceiver
Linear

LTC1324CN#PBF

IC LINE TRANSCEIVER, PDIP16, PLASTIC, DIP-16, Line Driver or Receiver
Linear

LTC1324CS

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CS#PBF

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CS#TR

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CS#TRPBF

IC LINE TRANSCEIVER, PDSO16, 0.150 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC1324CSW

Single Supply LocalTalk Transceiver
Linear