LTC1340 [Linear]

Low Noise, Voltage-Boosted Varactor Driver; 低噪声,电压升压变容二极管驱动器
LTC1340
型号: LTC1340
厂家: Linear    Linear
描述:

Low Noise, Voltage-Boosted Varactor Driver
低噪声,电压升压变容二极管驱动器

驱动器 二极管 变容二极管
文件: 总8页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1340  
Low Noise, Voltage-Boosted  
Varactor Driver  
U
FEATURES  
DESCRIPTION  
TheLTC®1340isavaractordiodedriverdesignedtogenerate  
5V varactor drive from a single 3V or higher voltage supply.  
It includes a low noise amplifier with an internal gain of 2.3  
and a self-contained charge pump to generate output volt-  
ages above the input supply. The amplifier input stage  
includesabuilt-inoffsetvoltagethatallowstheoutputvoltage  
to swing to ground without requiring OV on the input. This  
featuremaintains thephasedetectorwithinits linearrangeof  
operation. The LTC1340 requires only three external surface  
mount capacitors to implement a complete varactor driver  
module.  
Generates 5V Varactor Drive from a 3V Supply  
Wide Supply Voltage Range: 2.7V to 6V  
Requires Only Three External Components  
Micropower Operation: 400µA at 3V Supply  
Shutdown Mode Drops Supply Current Below 1µA  
Low Output Noise: 15µVRMS  
Amplifier Gain: 2.3  
Up to 500kHz Signal Bandwidth  
MS8 and SO-8 Packages  
Very Low Input Bias Current: 10nA Max  
Amplifier Offset Maintains Phase Detector  
in Linear Region  
The LTC1340 features output referred noise of 15µVRMS  
,
minimizing frequency deviation in PLL frequency synthe-  
sizer systems. Supply current is 400µA typically with a 3V  
supply,anddropsto1µAinshutdown,maximizingoperating  
lifeinbattery-poweredsystems.Amplifierbandwidthisuser-  
adjustable from 10kHz up to 500kHz and the output typically  
sinks or sources 20µA, allowing fast output signal changes  
with a typical varactor load. The amplifier input features rail-  
to-rail input common mode range, allowing it  
to interface with the output of virtually any phase detector  
circuit.  
U
APPLICATIONS  
5V Varactor Drive from a Single Li-Ion Cell  
5V Varactor Drive from Three NiCd/NiMH Cells  
Cellular Telephones  
Portable RF Equipment  
Radio Modems  
Wireless Data Transmission  
The LTC1340 is available in MS8 and SO-8 packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Spectral Plot of VCO Output Driven by LTC1340  
Resolution Bandwidth = 300Hz  
Low Voltage Frequency Synthesizer  
3V  
0dB  
1
8
2
0.1µF  
0.1µF  
V
CC  
CP  
LTC1340  
AV  
CC  
VCO  
0V TO 5V  
OUT  
7
5
IN  
PHASE  
DETECTOR  
A
V
= 2.3  
270pF  
LOOP  
FILTER  
SHDN PGND AGND  
4
3
6
1340 TA01  
SHUTDOWN  
900MHz  
FREQUENCY (120kHz/DIV)  
1340 TA02  
1
LTC1340  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (VCC) ................................................. 7V  
Input Voltage (AVCC) ............................................... 14V  
Input Voltage (SHDN, IN) ............... 0.3V to VCC + 0.3V  
Output Voltage (CP, OUT)............ 0.3V to AVCC + 0.3V  
Output Short-Circuit Duration .......................... Indefinite  
Commercial Temperature Range ................. 0°C to 70°C  
Extended Commercial Operating  
Temperature Range (Note 1) ............. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
CP  
1
2
3
4
8
7
6
5
AV  
CC  
CP  
1
2
3
4
8 AV  
CC  
V
CC  
7 OUT  
6 AGND  
5 IN  
V
CC  
OUT  
AGND  
IN  
SHDN  
LTC1340CS8  
LTC1340CMS8  
SHDN  
PGND  
PGND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
LTBM  
S8 PART MARKING  
1340  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 200°C/ W  
TJMAX = 125°C, θJA = 130°C/ W  
Consult factory for Industrial and Military grade parts.  
T = 25°C, unless otherwise noted. (Note 1)  
A
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Supply Voltage  
Supply Current  
2.7  
6
V
CC  
I
I
= 0, 2.7V V 6V  
500  
1
900  
10  
µA  
µA  
CC  
OUT  
CC  
Shutdown, 2.7V V 6V  
CC  
V
Low Output Voltage Swing  
High Output Voltage Swing  
V
V
= 2.7V, 6V,  
= 2.7V, 6V,  
I = 0µA  
OUT  
0.25  
0.6  
V
V
OL  
OH  
CC  
CC  
I
= 14µA  
OUT  
V
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7V,  
= 6V,  
= 2.7V,  
= 6V,  
I
= 0µA  
OUT  
4.6  
10.5  
4.25  
9.75  
±14  
V
V
V
V
I
= 0µA  
= 14µA  
= 14µA  
OUT  
I
OUT  
OUT  
I
I
t
Output Sink/Source Current  
0.6V V  
0.6V V  
4.25V, V = 2.7V  
9.75V, V = 6V  
±20  
±20  
±35  
±35  
µA  
µA  
OUT  
OUT  
OUT  
OUT  
CC  
±14  
CC  
Output Transition Time  
Input Voltage Range  
Input Bias Current  
C
OUT  
= 1nF, V  
= ±4V  
OUT  
200  
285  
µs  
V
IN  
0
V
CC  
V
I
0.1V V V  
CC  
±0.01  
±1  
±10  
nA  
nA  
B
IN  
V
OS  
Input Offset Voltage  
Amplifier Gain  
0.15  
2.1  
0.35  
2.3  
0.60  
2.5  
V
A
V
V
IN  
= 1V, AV = 5V  
V/V  
CC  
g
m
Amplifier Transconductance  
V
OUT  
V
OUT  
= 2.5V, AV = 5V  
1200  
800  
1800  
2300  
3200  
µmho  
µmho  
CC  
= 2.5V, AV = 5V  
CC  
R
Output Impedance  
V
= 1/2AV  
CC  
1
15  
MΩ  
OUT  
OUT  
e
n
Output Noise Voltage  
1kHz to 100kHz, C  
= 1nF  
= 1nF  
25  
µV  
RMS  
OUT  
BW  
3dB Signal Bandwidth  
Power Supply Rejection Ratio  
Shutdown Logic Input Current  
C
OUT  
= 1nF  
125  
90  
kHz  
PSRR  
AV = 4V to 6V, C  
60  
dB  
CC  
OUT  
I
0.1V V  
V  
CC  
±0.01  
±1  
µA  
SHDN  
SHDN  
2
LTC1340  
TA = 25°C, unless otherwise noted. (Note 1)  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
1.2  
200  
4
MAX  
UNITS  
t
Charge Pump Start-Up Time  
Charge Pump Output Ripple at C  
Charge Pump Frequency  
C
C
= 0.1µF, V = 2.7V, I = 0  
OUT  
5
ms  
START  
CP  
CP  
CC  
V
= C  
= 0.1µF, V = 2.7V, I  
= 0 (Note 2)  
µV  
P-P  
RIPPLE  
P
VCC  
CC  
OUT  
f
(Note 3)  
2.5  
MHz  
CP  
The  
range.  
denotes specifications which apply over the specified temperature  
Note 2: The charge pump output ripple is not tested but is correlated with  
a PCB ground plane and high quality, low ESR, low ESL metalized  
polyester 0.1µF capacitors.  
Note 3: The internal oscillator typically runs at 2MHz, but the charge pump  
refreshes the output on both phases of the clock, resulting in an effective  
4MHz operating frequency.  
Note 1: C grade device specifications are guaranteed over the 0°C to 70°C  
temperature range. In addition, C grade device specifications are assured  
over the 40°C to 85°C temperature range by design or correlation, but  
are not production tested.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Offset Voltage vs  
Temperature  
Gain and Phase Shift vs  
DC Transfer Curve  
Frequency  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
12  
11  
10  
9
20  
10  
180  
144  
108  
72  
V
= 6V  
CC  
GAIN  
V
C
V
= 2.7V TO 6V  
= 1nF  
T
= 25°C  
CC  
OUT  
A
C
I
= 1nF  
OUT  
0
= V  
= 0  
SHDN  
CC  
OUT  
V
= V  
V
= 5V  
SHDN  
CC  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
CC  
8
36  
7
0
6
PHASE  
V
= 2.7V  
–36  
–72  
–108  
–144  
–180  
–216  
CC  
5
4
3
V
T
= 2.7V  
CC  
A
2
= 25°C  
1
C
= 1nF  
OUT  
0
0
2
3
4
5
6
1
1
10  
100  
1000  
–50 –25  
25  
50  
75  
100 125  
0
INPUT VOLTAGE (V)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1340 G01  
1340 G03  
1340 G02  
Output High Voltage vs  
Temperature  
Transconductance vs  
Supply Voltage  
Output Low Voltage vs  
Temperature  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2100  
2050  
2000  
1950  
1900  
1850  
1800  
V
C
V
V
= 2.7V OR 5V  
= 1nF  
T
V
V
= 25°C  
CC  
OUT  
IN  
A
I
= 0, V = 5V  
CC  
OH  
= 1/2AV  
OUT  
CC  
= 0V  
= V  
SHDN  
CC  
I
= 14µA, V = 5V  
CC  
OH  
= V  
CC  
SHDN  
I
= 14µA  
OL  
C
V
= 1nF  
SHDN  
OUT  
IN  
= V  
= V  
CC  
I
= 0, V = 2.7V  
CC  
OH  
I
= 0  
OL  
I
= 14µA, V = 2.7V  
CC  
OH  
5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5  
6.5  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1340 G04  
1340 G06  
1340 G05  
3
LTC1340  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Transconductance vs  
Temperature  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
3000  
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
700  
650  
600  
550  
500  
450  
400  
350  
300  
V
V
= 1/2AV  
= V  
V
= V  
CC  
T
= 25°C  
SHDN  
OUT  
SHDN  
CC  
SHDN  
A
V
= V  
CC  
CC  
V
= 6V  
= 5V  
CC  
CC  
V
= 6V  
CC  
V
V
= 5V  
CC  
V
= 2.7V  
CC  
V
CC  
= 2.7V  
–50 –25  
0
25  
50  
75  
100 125  
5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5  
6.5  
–50 –25  
25  
50  
75  
100 125  
0
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1340 G07  
1340 G08  
1340 G09  
GSM 900 MS Spectrum Due to  
Modulation  
Output Voltage Noise vs  
Temperature  
Input Bias Current vs  
Temperature  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.50  
5.0  
10000  
1000  
100  
10  
10  
0
V
= V = V = 5V  
SHDN CC  
AV = 5V  
CC  
IN  
C
OUT  
= 1nF  
MEASUREMENT  
BANDWIDTH  
100kHz  
–10  
–20  
–30  
–40  
–50  
–60  
MEASUREMENT  
BANDWIDTH  
30kHz  
DATA TAKEN ON  
LTC DEMO BOARD DC152  
–66  
–70  
LTC1340  
1.50  
0
–80  
–90  
1
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
25  
50  
75  
100 125  
0
0
1200  
3000 6000  
1800  
200 400 600  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY FROM THE CARRIER(kHz)  
1340 G12  
1340 G11  
1340 G10  
Rail-to-Rail Step Response at  
VCC = 2.7V  
Shutdown Input Threshold vs  
Temperature  
Rail-to-Rail Step Response at  
CC = 6V  
V
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
V
= 6V  
= 5V  
= 4V  
CC  
V
V
V
CC  
CC  
CC  
= 3V  
0V  
0V  
V
= 2.7V  
CC  
VIN = 0.3V TO 2.6V  
VIN = 0.3V TO 6V  
OUT = 1nF  
COUT = 1nF  
1340 G15  
C
1340 G14  
–50 –25  
25  
50  
75  
100 125  
0
TEMPERATURE (°C)  
1340 G13  
4
LTC1340  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Charge Pump Frequency vs  
Temperature  
Small-Signal Response  
Large-Signal Response  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
V
= V  
CC  
SHDN  
C
OUT = 0pF  
V
= 6V  
CC  
COUT = 220pF  
COUT = 470pF  
V
CC  
= 5V  
V
CC  
= 2.7V  
0V  
COUT = 1nF  
VIN = 0.5V TO 2V  
1340 G18  
V
CC = 2.7V  
COUT = 1nF  
1340 G17  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
1340 G16  
U
U
U
PIN FUNCTIONS  
CP (Pin 1): Charge Pump Output. This is the output of the  
internalchargepump. ThevoltageatCPisnominallytwice  
the VCC input voltage. Connect CP to an external 0.1µF  
filter capacitor and AVCC.  
IN (Pin 5): Signal Input. The internal amplifier amplifies  
the signal input at this pin typically by 2.3 to the OUT pin.  
IN accepts signals from GND to VCC without phase rever-  
salorunusualbehavior,allowingadirectconnectiontothe  
output of virtually any phase detector or loop filter pow-  
ered from VCC.  
VCC (Pin 2): Supply Input. This is the input supply to the  
charge pump. VCC can range from 2.7V to 6V and requires  
a 0.1µF bypass capacitor to PGND.  
AGND (Pin 6): Signal Ground. Connect AGND to the  
ground plane in close proximity to the VCO ground. There  
is an internal parasitic resistance of 50between AGND  
and PGND.  
SHDN (Pin 3) Shutdown. If SHDN is high (>VCC – 0.5V),  
the LTC1340 operates normally. If SHDN is pulled low  
(<0.5V), the LTC1340 enters shutdown mode and the  
supply current drops to less than 1µA typically. In shut-  
down, the charge pump output voltage collapses and the  
OUT pin enters a high impedance state. If SHDN returns  
high, the charge pump output requires 1.2ms typically to  
resume full voltage.  
OUT (Pin 7): Driver Output. OUT is the output of the  
internal gm amplifier and the internal feedback network. It  
swings from GND to AVCC, and drives a varactor load  
directly. The OUT pin requires an external capacitor  
(220pF) to AGND to ensure stability. OUT typically sinks  
or sources 20µA.  
PGND (Pin 4): Power Ground. This is the charge pump  
ground. Connect PGND to the system power supply  
return.  
AVCC (Pin 8): Amplifier Supply. LTC recommends a direct  
connectionfromAVCC toCPandalsorecommendsa0.1µF  
filter capacitor from CP to PGND.  
5
LTC1340  
W
BLOCK DIAGRAM  
C
CP  
AV  
0.1µF  
CP  
CC  
(EXTERNAL)  
47.9pF  
1.5M  
LTC1340  
PGND  
DOUBLER  
CHARGE  
PUMP WITH  
INTERNAL  
FLYING  
V
CC  
+
0.1µF  
OUT  
±20µA  
SHDN  
1.15M  
62.3pF  
CAPACITOR  
C
OUT  
V
+
S
(EXTERNAL)  
0.62V  
50Ω  
AGND  
1340 BD  
PGND  
IN  
U
W U U  
APPLICATIONS INFORMATION  
tionallowsittoreplaceseveralpowersupplyandregulator  
components in a typical PLL synthesizer. This results in  
significant space and complexity savings.  
Overview  
The LTC1340 is a monolithic IC that combines a charge  
pumpandalownoiseamplifiertoprovidea0Vto5Vswing  
to drive a varactor diode-based PLL system from a single  
3V supply. Traditional PLL frequency synthesizers used in  
cellularphonesandotherportableRFsystemsusevaractor  
diodes as the voltage variable element in the VCO. Typical  
varactordiodesrequireatleast4Vofcontrolvoltageswing  
toobtaintheirfullrangeofcapacitanceadjustment. Newer  
battery-powered systems, operating from low voltage  
power supplies, have trouble providing this bias voltage  
without an additional step-up circuit.  
Charge Pump  
The LTC1340 features a self-contained doubling charge  
pump with internal flying capacitors. The charge pump  
refreshes the output on each phase of the internal 2MHz  
clock, giving an effective 4MHz switching frequency. An  
external 0.1µF capacitor at the CP pin acts as a charge  
reservoir and provides filtering to minimize clock  
feedthrough to the amplifier section. The CP pin can be  
connected directly to the amplifier power supply at AVCC.  
Inaddition,itcanbefilteredwithanRCorLCnetworkprior  
to its connection to AVCC. The LTC1340 minimizes inter-  
actionbetweenthechargepumpandtheamplifierthrough  
careful internal shielding.  
The LTC1340 design provides a 5V signal swing suitable  
for biasing such a varactor diode when powered from a 3V  
or higher voltage supply. The internal op amp and feed-  
back network with built-in offset provide a gain of 2.3 so  
that a 0.35V to 2.5V swing at the noninverting input  
provides a 0V to 5V swing at the output. The onboard  
charge pump provides the boosted voltage necessary to  
drive the varactor and requires only a single 0.1µF output  
filter capacitor to complete the boost circuit. The amplifier  
requires one capacitor (typically 1nF) at its output to set  
amplifier noise bandwidth and to ensure amplifier stabil-  
ity. The performance characteristics of the LTC1340 are  
designed to meet the requirements of GSM and similar  
cellular phone transceivers without requiring additional  
circuitry. The LTC1340’s high level of functional integra-  
Amplifier  
The LTC1340 includes an internal gm amplifier with an on-  
chip feedback network to amplify the input signal to the  
gained output level. The amplifier requires an external  
capacitor from its output to AGND to provide closed-loop  
stability, noise bandwidth limiting and to further reduce  
charge pump feedthrough. The 3dB signal bandwidth of  
the amplifier is given by the following equation:  
BW–3dB = gm/(2π)( COUT)(AV)  
6
LTC1340  
U
W U U  
APPLICATIONS INFORMATION  
Amplifiertransconductanceistypically1800µmho. Witha  
1nF external capacitor at the amplifier output, the band-  
width is 125kHz. The amplifier transconductance varies  
with temperature and process. The minimum recom-  
mendedCOUT is220pFwithatypicalbandwidthof566kHz.  
should require no additional filtering. Additional filtering  
to reduce feedthrough noise is possible by inserting a  
resistor or a ferrite bead between OUT and COUT  
.
Hookup  
The two sections of the LTC1340 are carefully shielded  
from each other inside the chip, but care must also be  
taken in the external hookup to minimize noise at the  
amplifier output. The two halves of the chip should only  
meet electrically where the CP and AVCC pins connect  
together and at the common point of AGND and PGND.  
Separate PGND and AGND as much as possible. AGND is  
the amplifier ground. Connect it to a ground plane and as  
close to the VCO ground as possible. Bypass VCC and CP  
to PGND with a 0.1µF capacitor. Select high quality, low  
ESR and low ESL surface mount ceramic capacitors for  
both the CP and the VCC bypass capacitors. Poor grade  
capacitors will result in unacceptable ripple amplitude or  
ringing characteristics. Connect both terminals of the  
bypass capacitors as close to the chip as possible to  
minimizechargepumpoutputrippleamplitudeandground  
currents in the rest of the system. Keep IN and OUT away  
from VCC, CP and AVCC as much as possible. Crosstalk  
from VCC, CP and AVCC PCB traces to IN and OUT PCB  
traces can be minimized by routing AGND PCB traces as  
shieldasshowninFigures1and2. Connectthe1nFoutput  
capacitor close to the varactor diode and return it to the  
AGNDplane. TheSHDNandINpins, shouldnotbeallowed  
to go below PGND potential as the ESD diode forms an  
NPN and bleeds the charge pump output.  
The slew rate of the amplifier is:  
SR = IOUT/COUT  
The amplifier typically sinks or sources 20µA, allowing it  
to slew a 1nF output capacitance at 20V/ms, or 5V in  
250µs.  
Theon-chipamplifierfeedbacknetworkissetforaDCgain  
of 2.3 with an input offset of 0.35V as shown in the typical  
curves. The amplifier allows a rail-to-rail input swing with  
a 3V supply and provides a 5V swing at the output. The  
output swings to within millivolts of the AVCC voltage and  
to about 100mV above AGND. The input stage of the  
amplifier is powered from AVCC and accepts full GND to  
VCC rail-to-rail input signals without exceeding the input  
common mode range. The output noise of the amplifier is  
typically 15µVRMS at frequencies between 1kHz and  
100kHz.  
TherearetwofeedthroughsignalsattheamplifierOUTpin  
from the charge pump, the main component at 4MHz and  
the second harmonic signal at 8MHz. The 4MHz  
feedthroughistypicallybelow50µVwithCOUTequalto1nF  
and CCP equal to 0.1µF. The feedthrough signal decreases  
in amplitude when larger COUT is used. Most systems  
LTC1340CS8  
PIN 1  
0.1µF  
0.1µF  
VARACTOR  
DIODE  
1nF  
1340 F01  
Figure 1. Suggested Surface Mount PCB Layout for LTC1340CS8  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1340  
U
W U U  
APPLICATIONS INFORMATION  
0.1µF  
PIN 1  
0.1µF  
VARACTOR  
DIODE  
1nF  
LTC1340CMS8  
1340 F02  
Figure 2. Suggested Surface Mount PCB Layout for LTC1340CMS8  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.10)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.006 ± 0.004  
(0.15 ± 0.10)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.10)  
0.192 ± 0.004  
(4.88 ± 0.10)  
SEATING  
PLANE  
0.021 ± 0.004  
(0.53 ± 0.01)  
0.012  
(0.30)  
0.025  
(0.65)  
TYP  
1
2
3
4
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
MSOP08 0596  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
0.189 – 0.197*  
(4.801 – 5.004)  
(LTC DWG # 05-08-1610)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
SO8 0695  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1261, LTC1429,  
LTC1550, LTC1551  
GaAs FET Bias Generators  
Regulated negative voltage generator from a single positive supply  
1340f LT/TP 0697 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
8
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1997  

相关型号:

LTC1340CMS8

Low Noise, Voltage-Boosted Varactor Driver
Linear

LTC1340CS8

Low Noise, Voltage-Boosted Varactor Driver
Linear

LTC1340CS8#TR

IC SPECIALTY TELECOM CIRCUIT, PDSO8, 0.150 INCH, PLASTIC, SOP-8, Telecom IC:Other
Linear

LTC1343

Software-Selectable Multiprotocol Transceiver
Linear

LTC1343C

Software-Selectable Multiprotocol Transceiver
Linear

LTC1343CGW

Software-Selectable Multiprotocol Transceiver
Linear

LTC1343CGW#PBF

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1343CGW#TR

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1343CGW#TRPBF

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1343I

Software-Selectable Multiprotocol Transceiver
Linear

LTC1343IGW

Software-Selectable Multiprotocol Transceiver
Linear

LTC1343IGW#PBF

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: -40&deg;C to 85&deg;C
Linear