LTC1346ACSW#PBF [Linear]

LTC1346A - 10Mbps DCE/DTE V.35 Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C;
LTC1346ACSW#PBF
型号: LTC1346ACSW#PBF
厂家: Linear    Linear
描述:

LTC1346A - 10Mbps DCE/DTE V.35 Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C

文件: 总12页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1346A  
10Mbps DCE/DTE  
V.35 Transceiver  
U
DESCRIPTIO  
EATURE  
S
F
The LTC®1346A is a single chip transceiver that provides  
the differential clock and data signals for a V.35 interface  
from ±5V supplies. Combined with an external resistor  
termination network and an LT®1134A RS232 transceiver  
forthecontrolsignals,theLTC1346Aformsacompletelow  
power DTE or DCE V.35 interface port.  
Single Chip Provides Complete Differential Signal  
Interface for V.35 Port  
Drivers and Receivers Will Withstand Repeated  
±10kV ESD Pulses  
10Mbaud Transmission Rate  
Meets CCITT V.35 Specification  
Operates from ±5V Supplies  
Shutdown Mode Reduces ICC to Below 1µA  
Selectable Transmitter and Receiver Configurations  
Independent Driver/Receiver Enables  
Transmitter Maintains High Impedance When  
Disabled, Shut Down or with Power Off  
Transmitters Are Short-Circuit Protected  
The LTC1346A features three current output differential  
transmitters and three differential receivers. The trans-  
ceiver can be configured for DTE or DCE operation or  
shutdown using three Select pins. In the shutdown mode,  
the supply current is reduced to below 1µA.  
The LTC1346A transceiver operates up to 10Mbaud. All  
transmittersfeatureshort-circuitprotection.Boththetrans-  
mitter outputs and the receiver outputs can be forced into  
a high impedance state. The transmitter outputs and re-  
ceiver inputs feature ±10kV ESD protection.  
O U  
PPLICATI  
Modems  
Telecommunications  
Data Routers  
S
A
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Clock and Data Signals for V.35 Interface  
1
1
2
V
EE1  
V
DTE  
DCE  
EE2  
–5V  
5V  
+
0.1µF  
2
+
V
0.1µF  
V
CC2  
5V  
CC1  
5V  
LTC1346A  
DX  
BI  
BI  
LTC1346A  
+
0.1µF  
+
627T500/1250  
627T500/1250  
0.1µF  
TXD (103)  
24  
1
12 16  
4
5
10  
11  
4
T
T
T
T
T
T
T
T
T
T
RX  
RX  
DX  
DX  
DX  
23  
22  
11 15  
10 14  
2
3
SCTE (113)  
TXC (114)  
RXC (115)  
RXD (104)  
DX  
21  
9
1
13  
24  
4
18 14  
9
RX  
RX  
RX  
17  
2
3
23  
22  
13  
16 12  
5
10  
15  
4
5
21  
20  
11  
14 10  
50Ω  
50Ω  
125Ω  
6
7
8
11  
7
=
T
13  
3
6
19  
3
9
V
CC2  
GND (102)  
8
8
7
8
7
V
BI TECHNOLOGIES  
627T500/1250 (SOIC)  
CC1  
12  
12  
LTC1346 • TA01  
1
LTC1346A  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
ORDER PART  
Supply Voltage  
TOP VIEW  
NUMBER  
VCC .................................................................... 6.5V  
VEE................................................................... 6.5V  
Input Voltage  
V
V
1
2
3
4
5
6
7
8
9
24 Y1  
23 Z1  
22 Y2  
21 Z2  
20 Y3  
19 Z3  
18 A3  
17 B3  
16 A2  
15 B2  
14 A1  
13 B1  
EE  
CC  
LTC1346ACSW  
LTC1346AISW  
GND  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
S0, S1, S2 ............................... 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters .......................................... 18V to 18V  
Receivers................................ 0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
Transmitter Output ..................................... Indefinite  
Receiver Output .......................................... Indefinite  
Operating Temperature Range  
T1  
T2  
T3  
S1  
S2  
R3  
R2 10  
R1 11  
S0 12  
SW PACKAGE  
24-LEAD PLASTIC SO WIDE  
LTC1346AC ............................................ 0°C to 70°C  
LTC1346AI ........................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TJMAX = 150°C, θJA = 85°C/W  
Consult factory for Military grade parts.  
DC ELECTRICAL CHARACTERISTICS VCC = 5V ±5%, VEE = 5V ±5% (Note 2)  
SYMBOL PARAMETER  
CONDITIONS  
4V V 4V (Figure 1)  
MIN  
0.44  
0.6  
12.6  
9.4  
TYP  
0.55  
0
MAX  
0.66  
0.6  
UNITS  
V
V
Transmitter Differential Output Voltage  
Transmitter Common Mode Output Voltage  
Transmitter Output High Current  
V
V
OD  
OC  
OS  
V
V
V
= 0V (Figure 1)  
= 0V  
= 0V  
OS  
I
I
I
11  
11  
9.4  
12.6  
mA  
mA  
OH  
Y, Z  
Y, Z  
Transmitter Output Low Current  
OL  
OZ  
Transmitter Output Leakage Current  
5V V 5V, S1 = S2 = 0V  
±1  
±20  
±100  
µA  
µA  
Y, Z  
R
Transmitter Output Impedance  
Differential Receiver Input Threshold Voltage  
Receiver Input Hysterisis  
2V V 2V  
100  
25  
50  
kΩ  
mV  
mV  
mA  
kΩ  
V
O
Y, Z  
V
TH  
7V (V + V )/2 12V  
200  
0.7  
A
B
V  
7V (V + V )/2 12V  
TH  
A
B
I
Receiver Input Current (A, B)  
Receiver Input Impedance  
7V V  
7V V  
12V  
IN  
A, B  
A, B  
R
V
V
12V  
17.5  
3
30  
4.5  
0.2  
40  
IN  
Receiver Output High Voltage  
Receiver Output Low Voltage  
Receiver Output Short-Circuit Current  
Receiver Three-State Output Current  
Logic Input High Voltage  
I = 4mA, V  
O
= 0.2V  
OH  
OL  
A, B  
A, B  
I = 4mA, V  
O
= 0.2V  
0.4  
85  
±10  
V
I
I
0V V V  
CC  
7
2
mA  
µA  
V
OSR  
OZR  
O
S0 = V , 0V V V  
CC  
O
CC  
V
V
T, S0, S1, S2  
T, S0, S1, S2  
T, S0, S1, S2  
IH  
IL  
Logic Input Low Voltage  
0.8  
V
I
Logic Input Current  
±10  
µA  
IN  
2
LTC1346A  
VCC = 5V ±5%, VEE = 5V ±5% (Note 2)  
AC ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
= 0V, S0 = Low, S1 = S2 = High (Figure 1)  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current  
V
OS  
40  
6
0.1  
50  
9
100  
mA  
mA  
µA  
CC  
CC  
No Load, S0 = Low, S1 = S2 = High  
Shutdown, S0 = V , S1 = S2 = 0V  
CC  
I
V
Supply Current  
V
= 0V, S0 = Low, S1 = S2 = High (Figure 1)  
40  
–6  
0.1  
50  
–9  
100  
mA  
mA  
µA  
EE  
EE  
OS  
No Load, S0 = Low, S1 = S2 = High  
Shutdown, S0 = V , S1 = S2 = 0V  
CC  
t , t  
Transmitter Rise or Fall Time  
Transmitter Input to Output  
Transmitter Input to Output  
Transmitter Output to Output  
Receiver Input to Output  
V
V
V
V
V
V
V
= 0V (Figures 1, 3)  
= 0V (Figures 1, 3)  
= 0V (Figures 1, 3)  
= 0V (Figures 1, 3)  
= 0V (Figures 1, 4)  
= 0V (Figures 1, 4)  
= 0V (Figures 1, 4)  
7
40  
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
r
f
OS  
OS  
OS  
OS  
OS  
OS  
OS  
t
25  
30  
5
PLH  
PHL  
SKEW  
PLH  
PHL  
SKEW  
ZL  
t
t
t
t
t
t
50  
55  
5
100  
100  
Receiver Input to Output  
Differential Receiver Skew, t  
– t  
PHL  
PLH  
Receiver Enable to Output Low (Active Mode) C = 15pF, SW1 Closed (Figures 2, 5)  
Receiver Enable to Output Low  
(from Shutdown, Note 3)  
40  
2
70  
70  
L
C = 15pF, SW1 Closed (Figures 2, 5)  
L
t
Receiver Enable to Output High (Active Mode) C = 15pF, SW2 Closed (Figures 2, 5)  
35  
2
ns  
ZH  
L
Receiver Enable to Output High  
(from Shutdown, Note 3)  
C = 15pF, SW2 Closed (Figures 2, 5)  
µs  
L
t
t
Receiver Disable from Low  
Receiver Disable from High  
C = 15pF, SW1 Closed (Figures 2, 5)  
30  
35  
70  
70  
ns  
ns  
LZ  
L
C = 15pF, SW2 Closed (Figures 2, 5)  
L
HZ  
The  
denotes specifications which apply over the full operating  
Note 2: All currents into device pins are positive; all currents out of device  
pins are termed negative. All voltages are referenced to device ground  
unless otherwise specified.  
temperature range.  
Note 1: The Absolute Maximum Ratings are those values beyond which  
the life of a device may be impaired.  
Note 3: Receiver enable to output valid high or low from shutdown is  
typically 2µs.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transmitter Output Current  
vs Temperature  
Transmitter Output Current  
vs Output Voltage  
Transmitter Output Skew  
vs Temperature  
13  
12  
20  
15  
13  
12  
11  
10  
9
V
= 5V  
= –5V  
V
CC  
V
EE  
= 5V  
= –5V  
T
V
V
= 25°C  
A
CC  
EE  
V
= 5V  
CC  
= –5V  
EE  
11  
10  
9
10  
5
0
–25  
0
50  
75 100 125  
–50  
25  
0
0.5  
–2.0 –1.5 –1.0 –0.5  
1.0 1.5 2.0  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (˚C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (˚C)  
1346A G01  
1346A G02  
1346A G03  
3
LTC1346A  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver tPLH – tPHL  
vs Temperature  
ICC Supply Current vs Temperature  
IEE Supply Current vs Temperature  
–25  
–30  
–5.0  
–5.5  
45  
40  
7.5  
7.0  
20  
15  
V
CC  
V
EE  
= 5V  
= –5V  
V
CC  
V
EE  
= 5V  
= –5V  
V
CC  
V
EE  
= 5V  
= –5V  
LOADED  
NO LOAD  
–35  
–40  
–45  
–6.0  
–6.5  
–7.0  
35  
30  
25  
6.5  
6.0  
5.5  
10  
5
NO LOAD  
LOADED  
0
–25  
0
50  
75 100 125  
–50  
25  
–25  
0
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
–50  
25  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
1346A G06  
1346A G05  
1346A G04  
Receiver Enable from Shutdown  
Transmitter Output Waveforms  
Receiver Output Waveforms  
INPUT A–B  
1V/DIV  
INPUT  
5V/DIV  
INPUT  
0.2V/DIV  
INPUT S0  
5V/DIV  
OUTPUT  
0.2V/DIV  
OUTPUT  
5V/DIV  
OUTPUT  
5V/DIV  
1346A G07  
1346A G08  
1346A G09  
U
U
U
PIN FUNCTIONS  
VEE (Pin 1): Negative Supply, 4.75V VEE 5.25V  
VCC (Pin 2): Positive Supply, 4.75V VCC 5.25V  
GND (Pin 3): Ground  
B1 (Pin 13): Receiver 1 Inverting Input  
A1 (Pin 14): Receiver 1 Noninverting Input  
B2 (Pin 15): Receiver 2 Inverting Input  
T1 (Pin 4): Transmitter 1 Input, TTL Compatible  
T2 (Pin 5): Transmitter 2 Input, TTL Compatible  
T3 (Pin 6): Transmitter 3 Input, TTL Compatible  
S1 (Pin 7): Select Input 1, TTL Compatible  
S2 (Pin 8): Select Input 2, TTL Compatible  
R3 (Pin 9): Receiver 3 Output, TTL Compatible  
R2 (Pin 10): Receiver 2 Output, TTL Compatible  
R1 (Pin 11): Receiver 1 Output, TTL Compatible  
S0 (Pin 12): Select Input 0, TTL Compatible  
A2 (Pin 16): Receiver 2 Noninverting Input  
B3 (Pin 17): Receiver 3 Inverting Input  
A3 (Pin 18): Receiver 3 Noninverting Input  
Z3 (Pin 19): Transmitter 3 Inverting Output  
Y3 (Pin 20): Transmitter 3 Noninverting Output  
Z2 (Pin 21): Transmitter 2 Inverting Output  
Y2 (Pin 22): Transmitter 2 Noninverting Output  
Z1 (Pin 23): Transmitter 1 Inverting Output  
Y1 (Pin 24): Transmitter 1 Noninverting Output  
4
LTC1346A  
U
U
FU CTIO TABLES  
Transmitter and Receiver Configuration  
Transmitter  
S0  
0
1
0
1
0
1
0
1
S1  
0
0
1
1
0
0
1
1
S2  
0
0
0
0
1
1
1
1
DX ON RX ON Description  
INPUTS  
CONFIGURATION S0 S1 S2  
OUTPUTS  
1, 2, 3 All RX ON, All DX OFF  
T
X
X
0
1
0
1
Y1 AND Y2 Z1 AND Z2 Y3 Z3  
1, 2  
All OFF, Shutdown  
DCE Mode  
DCE Mode, All RX OFF  
All OFF  
0
1
X
X
X
X
0
0
1
1
0
0
0
0
X
X
1
1
Z
Z
0
1
0
1
Z
Z
1
0
1
0
Z
Z
0
1
Z
Z
Z
Z
1
0
Z
Z
1, 2, 3  
1, 2, 3  
1, 2  
Shutdown  
DCE or All ON  
DCE or All ON  
DTE  
1, 2, 3 DTE Mode  
1, 2  
DTE Mode, All RX OFF  
1, 2, 3  
1, 2, 3  
1, 2, 3 All ON  
All DX ON, All RX OFF  
DTE  
Receiver  
INPUTS  
CONFIGURATION S0 S1 S2  
OUTPUTS  
A – B  
R1 AND R2  
R3  
All Rx ON  
All Rx ON  
Shutdown  
DCE  
0
0
0
0
1
1
1
X
X
X
0
0
0
0
0
0
1
1
1
0.2V  
0.2V  
X
0
1
Z
0
1
Z
0
1
Z
0
1
Z
Z
Z
Z
0
1
Z
0
1
0
0
1
0
0
1
0.2V  
0.2V  
X
DCE  
Disabled  
DTE or All ON  
DTE or All ON  
Disabled  
0.2V  
0.2V  
X
TEST CIRCUITS  
Y
50Ω  
50Ω  
V
OS  
Y
A
B
125Ω  
125Ω  
R
T
V
OD  
Z
S0  
15pF  
50Ω  
50Ω  
V
OC  
= (V + V )/2  
Y Z  
LTC1346A • F01  
Z
Figure 1. V.35 Transmitter/Receiver Test Circuit  
V
CC  
SW1  
1k  
RECEIVER  
OUTPUT  
SW2  
C
L
LTC1346A • F02  
Figure 2. Receiver Output Enable and Disable Timing Test Load  
5
LTC1346A  
U W  
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz: t 10ns: t 10ns  
r
f
1.5V  
1.5V  
T
0V  
t
t
PLH  
PHL  
V
O
90%  
90%  
V
= V(Y) – V(Z)  
DIFF  
Y – Z  
–V  
50%  
10%  
50%  
10%  
O
1/2 V  
O
t
t
f
r
Z
V
O
Y
t
t
SKEW  
LTC1346A • F03  
SKEW  
Figure 3. V.35 Transmitter Propagation Delays  
V /2  
OD  
f = 1MHz: t 10ns: t 10ns  
INPUT  
r
f
0V  
t
0V  
t
A – B  
–V /2  
OD  
PLH  
PHL  
V
OH  
OUTPUT  
R
1.5V  
1.5V  
V
OL  
LTC1346A • F04  
Figure 4. V.35 Receiver Propagation Delays  
3V  
1.5V  
1.5V  
S0  
R
f = 1MHz: t 10ns: t 10ns  
r
f
0V  
5V  
t
t
LZ  
ZL  
1.5V  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
t
t
ZH  
HZ  
V
OH  
0.5V  
R
0V  
LTC1346A • F05  
Figure 5. Receiver Enable and Disable Times  
6
LTC1346A  
U
W U U  
APPLICATIONS INFORMATION  
Review of CCITT Recommendation V.35  
10. No data errors should occur with ±2V common  
mode change at either the transmitter/receiver or  
±4V ground potential difference between transmit-  
ter and receiver.  
Electrical Specifications  
V.35 is a CCITT recommendation for synchronous data  
transmission via modems. Appendix 2 of the recommen-  
dation describes the electrical specifications which are  
summarized below:  
Cable Termination  
Each end of the cable connected to an LTC1346A must be  
terminated by an external Y- or -resistor network for  
proper operation. The Y-termination has two series con-  
nected 50resistors and a 125resistor connected  
betweengroundandthecentertapofthetwo50resistors  
as shown in Figure 6.  
1. The interface cable is a balanced twisted pair with 80Ω  
to 120impedance.  
2. The transmitter’s source impedance is between 50Ω  
and 150.  
3. The transmitter’s resistance between shorted termi-  
nals and ground is 150Ω ±15.  
The alternative -termination has a 120resistor across  
the twisted wires and two 300resistors between each  
wire and ground. Standard 1/8W, 5% surface mount  
resistors can be used for the termination network. To  
maintain the proper differential output swing, the resistor  
tolerance must be 5% or better. A termination network  
that combines all the resistors into an SO-14 package is  
available from:  
4. When terminated by a 100resistive load, the termi-  
nal-to-terminal voltage should be 0.55V ±20%.  
5. The transmitter’s rise time should be less than 1% of  
the signal pulse or 40ns, whichever is greater.  
6. Thecommonmodevoltageatthetransmitteroutput  
should not exceed 0.6V.  
BI Technologies (Formerly Beckman Industrial)  
Resistor Networks  
4200 Bonita Place  
7. The receiver impedance is 100Ω ±10.  
8. The receiver impedance to ground is 150Ω ±15.  
9. The transmitter or receiver should not be damaged  
by connection to earth ground, short-circuiting or  
cross connection to other lines.  
Fullerton, CA 92635  
Phone: (714) 447-2357  
FAX: (714) 447-2500  
Part #: BI Technologies 627T500/1250 (SOIC)  
899TR50/125 (DIP)  
50Ω  
125Ω  
50Ω  
Y
300Ω  
120Ω  
300Ω  
LTC1346A • F06  
Figure 6. Y- and -Termination Networks  
7
LTC1346A  
U
W U U  
APPLICATIONS INFORMATION  
CHIP  
BOUNDARY  
V
CC  
11mA  
Y
Z
50Ω  
50Ω  
125Ω  
T
11mA  
V
EE  
LTC1346A • F07  
Figure 7. Simplified Transmitter Schematic  
receivers are OFF, all outputs are forced into high imped-  
Theory of Operation  
ance. The S0 pin can be used as receiver output enable.  
In shutdown mode, ICC drops to 1µA with all transmitters  
and receivers OFF. When the LTC1346A is enabled from  
shutdown the transmitters and receivers require 2µs to  
stabilize.  
The transmitter outputs consist of complementary  
switched-current sources as shown in Figure 7.  
With a logic zero at the transmitter input, the inverting  
output Z sources 11mA and the noninverting output Y  
sinks 11mA. The differential transmitter output voltage is  
then set by the termination resistors. With two differential  
50resistors at each end of the cable, the voltage is set to  
(50)(11mA) = 0.55V. With a logic 1 at the transmitter  
input, output Z sinks 11mA and Y sources 11mA. The  
common mode voltage of Y and Z is 0V when both current  
sources are matched and there is no ground potential  
difference between the cable terminations. The transmitter  
currentsourceshaveacommonmoderangeof±2V,which  
allows for a ground difference between cable terminations  
of ±4V.  
Complete V.35 Port  
Figure 8 shows the schematic of a complete surface  
mounted, ±5V DTE and DCE V.35 port using only three ICs  
and six capacitors per port. The LTC1346A is used to  
transmit the clock and data signals and the LT1134A to  
transmit the control signals. If test signals 140, 141 and  
142 are not used, the transmitter inputs should be tied  
to VCC.  
RS422/RS485 Applications  
Each receiver input has a 30k resistance to ground and  
requiresexternalterminationtomeettheV.35inputimped-  
ance specification. The receivers have an input hysteresis  
of 50mV to improve noise immunity.  
The receivers on the LTC1346A can be used for RS422  
and RS485 applications. Using the test circuit in Figure 9,  
the LTC1346A receivers are able to successfully extract  
thedatastreamfromthecommonmodevoltage, meeting  
RS422 and RS485 requirements as shown in Figures 10  
and 11.  
Three Select pins, S0, S1 and S2, configure the chip as  
described in Function Tables. When the transmitters and  
8
LTC1346A  
U
W U U  
APPLICATIONS INFORMATION  
50Ω  
50Ω  
DTE  
DCE  
125Ω  
=
T
V
V
EE1  
–5V  
V
V
CC1  
EE2  
CC2  
5V  
–5V  
5V  
2
1
1
0.1µF  
16  
2
BI  
BI  
627T500/  
1250  
627T500/  
1250  
0.1µF  
0.1µF  
0.1µF  
LTC1346A  
DX  
LTC1346A  
RX  
TXD (103)  
(SOIC)  
(SOIC)  
24  
1
P
P
12  
4
5
10  
T
T
T
T
T
T
T
T
T
T
23  
22  
11  
10  
15  
14  
2
3
S
U
S
U
SCTE (113)  
TXC (114)  
RXC (115)  
RXD (104)  
11  
4
DX  
RX  
DX  
DX  
DX  
21  
18  
9
1
13  
24  
4
W
W
AA  
AA  
14  
9
RX  
RX  
RX  
17  
16  
2
3
23  
22  
13  
12  
Y
X
Y
X
5
6
10  
11  
V
T
V
T
15  
14  
4
5
21  
20  
11  
10  
13  
3
6
7
19  
3
9
7
R
R
GND (102)  
B
A
B
A
8
8
12  
8
7
7
8
12  
CABLE SHIELD  
V
V
CC2  
CC1  
1µF  
1µF  
+
1µF  
1µF  
+
+
+
4
3
22 23  
4
3
22  
23  
24  
1
24  
1
+
+
LT1134A  
LT1134A  
1µF  
1µF  
1µF  
1µF  
+
+
2
DTR (108)  
RTS (105)  
DSR (107)  
CTS (106)  
DCD (109)  
H
C
H
C
21  
19  
20  
18  
16  
14  
17  
15  
5
6
8
5
7
9
20  
18  
21  
19  
17  
15  
16  
14  
DX  
DX  
RX  
RX  
RX  
RX  
DX  
DX  
RX  
RX  
DX  
DX  
DX  
DX  
RX  
RX  
7
E
E
6
D
F
D
F
8
10  
12  
9
TM (142)  
RDL (140)  
LLB (141)  
NN  
N
L
NN  
N
L
11  
10  
12  
11  
13  
13  
ISO 2593  
34-PIN DTE/DCE  
ISO 2593  
34-PIN DTE/DCE  
LTC1346A • TA08  
INTERFACE CONNECTOR INTERFACE CONNECTOR  
Figure 8. Complete Single ±5V V.35 Interface  
9
LTC1346A  
APPLICATIONS INFORMATION  
U
W U U  
V
V
CC2  
5V  
CC1  
5V  
A
A
TTL  
OUT  
LTC485  
100Ω  
100LTC1346A  
B
B
GND  
GND  
+
V
TTL  
IN  
EE  
–5V  
7V TO 7V  
GND POTENTIAL DIFFERENCE  
LTC1346A • F09  
Figure 9. RS422/RS485 Receiver Interface  
RECEIVER  
INPUT  
5V/DIV  
5V  
0V  
A
B
15V  
10V  
5V  
RECEIVER  
OUTPUT  
5V/DIV  
0V  
0V  
–5V  
RECEIVER  
B
A
INPUT  
5V  
0V  
–10V  
RECEIVER  
OUTPUT  
5V/DIV  
5V/DIV  
LTC1346 • F10  
LTC1346 • F11  
Figure 10. 7V Common Mode  
Figure 11. 12V Common Mode  
Multiprotocol Application  
The LTC1346A driver will not be damaged or load the  
shared lines when disabled. The LTC1346A receiver can  
receiveV.35, RS232andRS422signalsasshowninFigure  
12b. The LTC1346A receiver is directly compatible with  
V.35 and RS422. For RS232 signal, the noninverting input  
of the receiver should be grounded. Because the line  
termination for each of the protocols is different, some  
form of termination switching should be included, either  
the connector (as shown in Figures 12a and 12b) or on the  
PCB.  
The LTC1346A can be used in multiprotocol applications  
where V.35, RS232 and RS422 (used in RS530, RS449  
among others) signals may appear at the same port. The  
LTC1346A switched current source driver is not compat-  
ible with RS232 or RS422. However, the outputs when  
disabled can share lines with RS232 drivers with a shut-  
down feature such as the LT1030 and RS422 drivers with  
a disable feature such as the LTC486/LTC487 (Figure 12a).  
10  
LTC1346A  
U
W U U  
APPLICATIONS INFORMATION  
LT1030  
V.35 DIFFERENTIAL  
CONNECTION WITH  
TERMINATION  
RS422  
DIFFERENTIAL  
CONNECTION  
RS232  
CONNECTION  
LTC487  
NO CONNECTION  
50Ω  
125Ω  
LT1346A  
50Ω  
LOGIC  
INPUT  
1346A F12a  
Figure 12a. Multiprotocol Transmitter  
RS232  
CONNECTION WITH  
TERMINATION  
V.35 DIFFERENTIAL  
CONNECTION WITH  
TERMINATION  
RS422 DIFFERENTIAL  
CONNECTION WITH  
TERMINATION  
50Ω  
LT1346A  
125Ω  
LOGIC  
OUTPUT  
100Ω  
5k  
50Ω  
1346A F12b  
Figure 12b. Multiprotocol Receiver  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1346A  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
SW Package  
24-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.598 – 0.614*  
(15.190 – 15.600)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
0.291 – 0.299**  
(7.391 – 7.595)  
2
3
5
7
8
9
10  
1
4
6
11 12  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
S24 (WIDE) 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1134A  
5V Only, 4-Driver/4-Receiver RS232 Transceiver  
5V Only, Configurable RS232/RS485 Transceiver  
Single Supply V.35 Transceiver  
Forms Complete V.35 Interface with LTC1346A  
Includes On-Chip Charge Pump  
LTC1334  
LTC1345  
Single 5V Only, Includes On-Chip Charge Pump  
LT/GP 0296 10K • PRINTED IN USA  
12 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

LTC1346ACSW#TR

LTC1346A - 10Mbps DCE/DTE V.35 Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1346ACSW#TRPBF

LTC1346A - 10Mbps DCE/DTE V.35 Transceiver; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1346AI

10Mbps DCE/DTE V.35 Transceiver
Linear

LTC1346AISW

10Mbps DCE/DTE V.35 Transceiver
Linear

LTC1346CSW

Transceiver
ETC

LTC1346ISW

Transceiver
ETC

LTC1347

5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown
Linear

LTC1347CG

5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown
Linear

LTC1347CG#PBF

LTC1347 - 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1347CG#TR

LTC1347 - 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1347CG#TRPBF

LTC1347 - 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1347CN

5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in Shutdown
Linear