LTC1392IN8 [Linear]

Micropower Temperature, Power Supply and Differential Voltage Monitor; 微功耗温度,电源和差分电压监控器
LTC1392IN8
型号: LTC1392IN8
厂家: Linear    Linear
描述:

Micropower Temperature, Power Supply and Differential Voltage Monitor
微功耗温度,电源和差分电压监控器

模拟IC 信号电路 光电二极管 监控
文件: 总12页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1392  
MicropowerTemperature,  
Power Supply and  
DifferentialVoltageMonitor  
U
DESCRIPTIO  
EATURE  
S
F
The LTC®1392 is a micropower data acquisition system  
designed to measure temperature, on-chip supply voltage  
and a differential voltage. The differential inputs feature  
rail-to-railcommonmodeinputvoltagerange.TheLTC1392  
containsatemperaturesensor,a10-bitA/Dconverterwith  
sample-and-hold, a high accuracy bandgap reference and  
a 3-wire half-duplex serial interface.  
Complete Ambient Temperature Sensor Onboard  
System Power Supply Monitor  
10-Bit Resolution Rail-to-Rail Common-Mode  
Differential Voltage Input  
Available in 8-Pin SO and PDIP  
0.2µA Supply Current When Idle  
700µA Supply Current When Sampling at  
Maximum Rate  
Single Supply Voltage: 4.5V to 6V  
3-Wire Half-Duplex Serial I/O  
Communicates with Most MPU Serial Ports and All  
The LTC1392 can be programmed to measure ambient  
temperature, power supply voltage and an external volt-  
age at the differential input pins, that can also be used for  
current measurement using an external sense resistor.  
When measuring temperature, the output code of the A/D  
converter is linearly proportional to the temperature in °C.  
Production trimming achieves ±2°C initial accuracy at  
room temperature and ±4°C over the full 40°C to 85°C  
temperature range.  
MPU Parallel I/O O PoU rts  
PPLICATI  
S
A
Temperature Measurement  
Power Supply Measurement  
Current Measurement  
Remote Data Acquisition  
Environment Monitoring  
The on-chip serial port allows efficient data transfer to a  
wide range of MPUs over three or four wires. This,  
coupled with low power consumption, makes remote  
location sensing possible and facilitates transmitting  
data through isolation barriers.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Output Temperature Error  
Complete Temperature, Supply Voltage and  
Supply Current Monitor  
5
LTC1392C  
GUARANTEED  
4
LIMIT  
1µF  
5V  
3
+
LTC1392I  
GUARANTEED  
LIMIT  
2
1
LTC1392  
TYPICAL  
1
2
3
4
8
7
6
5
0
P1.4  
D
D
V
CC  
IN  
R
SENSE  
MPU  
–1  
–2  
–3  
–4  
–5  
–V  
+V  
OUT  
IN  
IN  
(e.g., 68HC11)  
P1.3  
I
CLK  
CS  
LOAD  
P1.2  
GND  
LTC1392 • TA01  
–40  
0
20  
40  
60  
80 100  
–20  
TEMPERATURE (°C)  
LTC1392 • TA02  
1
LTC1392  
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
ORDER PART  
Supply Voltage (VCC) ................................................ 7V  
Input Voltage ................................. 0.3V to VCC + 0.3V  
Output Voltage............................... 0.3V to VCC + 0.3V  
Operating Temperature Range  
LTC1392C............................................... 0°C to 70°C  
LTC1392I........................................... 40°C to 85°C  
Junction Temperature.......................................... 125°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
NUMBER  
D
1
2
3
4
V
CC  
8
7
6
5
IN  
LTC1392CN8  
LTC1392CS8  
LTC1392IN8  
LTC1392IS8  
D
–V  
+V  
OUT  
IN  
CLK  
CS  
IN  
GND  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
TJMAX = 125°C, θJA = 100°C/ W (N8)  
TJMAX = 125°C, θJA = 130°C/ W (S8)  
1392  
1392I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS (Note 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply To Digital Conversion  
Resolution  
V
V
= 4.5V to 6V  
= 4.5V to 6V  
10  
Bit  
CC  
CC  
Total Absolute Error  
±8  
LSB  
Differential Voltage to Digital  
Conversion (Full-Scale Input = 1V)  
Resolution  
10  
±1  
Bit  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error (Note 5)  
Differential Linearity Error  
Offset Error  
±0.5  
±0.5  
±1  
±4  
Full-Scale Error  
±15  
Differential Voltage to Digital  
Conversion (Full-Scale Input = 0.5V)  
Resolution  
10  
±2  
Bit  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error (Note 5)  
Differential Linearity Error  
Offset Error  
±0.5  
±0.5  
±1  
±8  
Full-Scale Error  
±25  
Temperature to Digital Conversion  
Accuracy  
T = 25°C (Note 7)  
±2  
±4  
°C  
°C  
A
T = T  
or T  
(Note 7)  
A
MAX  
MIN  
Nonlinearity  
T
T T  
(Note 4)  
±1  
°C  
MIN  
A
MAX  
2
LTC1392  
ELECTRICAL CHARACTERISTICS  
(Note 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
±1  
UNITS  
µA  
µA  
V
I
I
On-Channel Leakage Current (Note 6)  
Off-Channel Leakage Current (Note 6)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
ON LEAKAGE  
OFF LEAKAGE  
±1  
V
V
V
V
V
V
= 5.25V  
= 4.75V  
2
IH  
IL  
CC  
CC  
IN  
0.8  
5
V
I
I
= V  
µA  
µA  
IH  
IL  
CC  
= 0V  
–5  
IN  
V
V
V
= 4.75V, I  
= 4.75V, I  
= 10µA  
= 360µA  
4.5  
2.4  
4.74  
4.72  
V
V
OH  
CC  
CC  
OUT  
OUT  
V
Low Level Output Voltage  
Hi-Z Output Current  
Output Source Current  
Output Sink Current  
Supply Current  
V
= 4.75V, I  
= 1.6mA  
0.4  
V
µA  
OL  
CC  
OUT  
I
I
I
I
CS = High  
±5  
OZ  
V
V
= 0V  
25  
45  
mA  
mA  
SOURCE  
SINK  
CC  
OUT  
OUT  
= V  
CC  
CS = High  
CS = Low, V = 5V  
0.1  
0.7  
5
1
µA  
mA  
CC  
t
t
t
t
t
t
t
t
Analog Input Sample Time  
Conversion Time  
See Figure 1  
See Figure 1  
1.5  
10  
CLK Cycles  
SMPL  
CONV  
dDO  
en  
CLK Cycles  
Delay Time, CLKto D  
Delay Time, CLKto D  
Data Valid  
Data Enabled  
Hi-Z  
C
C
= 100pF  
= 100pF  
150  
60  
300  
150  
450  
ns  
ns  
ns  
ns  
ns  
ns  
OUT  
OUT  
OUT  
LOAD  
LOAD  
Delay Time, CS to D  
170  
30  
dis  
Time Output Data Remains Valid After CLK↓  
C
C
C
= 100pF  
= 100pF  
= 100pF  
hDO  
f
LOAD  
LOAD  
LOAD  
D
D
Fall Time  
70  
250  
100  
OUT  
OUT  
Rise Time  
25  
r
C
Input Capacitance  
Analog Input On-Channel  
Analog Input Off-Channel  
30  
5
pF  
pF  
IN  
5
pF  
W W U  
U Digital Input  
U
U
RECOM ENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
6
UNITS  
V
V
Supply Voltage  
Clock Frequency  
Total Cycle Time  
CC  
CLK  
CYC  
f
t
V
= 5V  
150  
250  
350  
kHz  
CC  
f
= 250kHz  
74  
144  
µs  
µs  
CLK  
Temperature Conversion Only  
t
t
t
Hold Time, D After CLK↑  
V
V
V
= 5V  
= 5V  
= 5V  
150  
2
ns  
hDI  
IN  
CC  
CC  
CC  
Setup Time CSBefore First CLK(See Figure 1)  
Wakeup Time CSBefore Start Bit(See Figure 1)  
µs  
suCS  
10  
80  
µs  
µs  
WAKEUP  
Temperature Conversion Only  
t
t
t
t
t
Setup Time, D Stable Before CLK↑  
V
V
V
V
V
= 5V  
150  
1.6  
2
ns  
µs  
µs  
µs  
suDI  
IN  
CC  
CC  
CC  
CC  
CC  
Clock High Time  
= 5V  
WHCLK  
WLCLK  
WHCS  
WLCS  
Clock Low Time  
= 5V  
CS High Time Between Data Transfer Cycles  
CS Low Time During Data Transfer  
= 5V, f  
= 250kHz  
= 250kHz  
2
CLK  
CLK  
= 5V, f  
72  
142  
µs  
µs  
Temperature Conversion Only  
3
LTC1392  
W W U  
U
U
U
RECOM ENDED OPERATING CONDITIONS  
The  
denotes specifications which apply over the operating temperature  
Note 4: Temperature integral nonlinearity is defined as the deviation of the  
A/D code versus temperature curve from the best-fit straight line over the  
device’s rated temperature range.  
range (0°C T 70°C for commercial grade and 40°C T 85°C for  
A
A
industrial grade).  
Note 1: Absolute maximum ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: All voltage values are with respect to GND.  
Note 5: Voltage integral nonlinearity is defined as the deviation of a code  
from a straight line passing through the actual end points of the transfer  
curve.  
Note 6: Channel leakage current is measured after the channel selection.  
Note 3: Testing done at V = 5V, CLK = 250kHz and T = 25°C unless  
CC  
A
otherwise specified.  
Note 7: See guaranteed temperature limit curves vs temperature range on  
the first page of this data sheet.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Nonlinearity  
Power Supply Voltage Mode  
Integral Nonlinearity  
Power Supply Voltage Mode  
Differential Nonlinearity  
1.0  
0.5  
0
1.0  
0.5  
0
1.0  
0.5  
0
f
= 250kHz  
Full Scale = 1V  
f
= 250kHz  
CLK  
A
CLK  
A
T
= 25°C  
f
= 250kHz  
T
= 25°C  
CLK  
T
= 25°C  
CC  
A
V
= 5V  
–0.5  
–0.5  
–0.5  
–1.0  
–1.0  
–1.0  
256 320 384 448 512 576 640 704 768 832  
0
128 256 384 512 640 768 896 1024  
256 320 384 448 512 576 640 704 768 832  
CODE  
CODE  
CODE  
1392 G02  
1392 G03  
1392 G01  
Integral Nonlinearity  
Differential Nonlinearity  
Integral Nonlinearity  
1.0  
0.5  
0
1.0  
0.5  
0
1.0  
0.5  
0
Full Scale = 0.5V  
Full Scale = 1V  
Full Scale = 0.5V  
= 250kHz  
f
= 250kHz  
f
= 250kHz  
f
CLK  
A
CC  
CLK  
= 25°C  
CC  
CLK  
A
CC  
T
= 25°C  
T
T
= 25°C  
A
V
= 5V  
V
= 5V  
V
= 5V  
–0.5  
–0.5  
–0.5  
–1.0  
–1.0  
–1.0  
0
128 256 384 512 640 768 896 1024  
0
128 256 384 512 640 768 896 1024  
0
128 256 384 512 640 768 896 1024  
CODE  
CODE  
CODE  
1392 G06  
1392 G05  
1392 G04  
4
LTC1392  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Thermal Response in Stirred  
Oil Bath  
Supply Current vs Sample Rate  
Thermal Response in Still Air  
1000  
100  
10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
V
CC  
= 5V  
V
= 5V  
CC  
CS LOW BETWEEN SAMPLES  
CS HIGH BETWEEN  
SAMPLES  
N8  
N8  
1
S8  
V
= 5V  
CC  
S8  
f
= 250kHz  
CLK  
T
= 25°C  
A
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
0
5
15  
TIME (SEC)  
20  
25  
30  
0
50  
150  
TIME (SEC)  
200  
250  
300  
10  
100  
SAMPLE FREQUENCY (Hz)  
1392 G09  
1392 G07  
1392 G08  
U
U
U
PIN FUNCTIONS  
DIN (Pin 1): Digital Input. The A/D configuration word is  
shifted into this input.  
GND (Pin 5): Ground Pin. GND should be tied directly to  
an analog ground plane.  
DOUT (Pin 2): Digital Output. The A/D result is shifted out  
of this output.  
+VIN (Pin 6): Positive Analog Differential Input. The pin  
can be used as a single-ended input by grounding VIN.  
CLK(Pin3):ShiftClock. Thisclocksynchronizestheserial  
data.  
VIN (Pin 7): Negative Analog Differential Input. The input  
must be free from noise.  
CS (Pin 4): Chip Select Input. A logic low on this input  
enables the LTC1392.  
VCC (Pin8): Positive Supply. This supply must be kept free  
from noise and ripple by bypassing directly to the ground  
plane.  
W
BLOCK DIAGRAM  
3
CLK  
V
V
V
= 2.42V  
= 1V  
REF  
REF  
REF  
INPUT  
1
D
IN  
SHIFT  
BANDGAP  
= 0.5V  
REGISTER  
2
D
OUT  
SERIAL  
PORT  
10-BIT  
CAPACITIVE DAC  
10  
BITS  
TEMPERATURE  
SENSOR  
+
GND  
+
+
COMP  
10-BIT  
SAR  
ANALOG  
INPUT  
MUX  
V
CC  
V
REF  
6
7
C
SAMPLE  
+V  
IN  
–V  
IN  
4
CONTROL  
AND TIMING  
CS  
8
CC  
5
GND  
LTC1392 • BD  
V
5
LTC1392  
TEST CIRCUITS  
Voltage Waveforms for DOUT Delay Time, tdDO  
Load Circuit for tdDO, tr and tf  
1.4V  
CLK  
V
IL  
3k  
t
dDO  
D
TEST POINT  
OUT  
V
OH  
100pF  
D
OUT  
V
OL  
LTC1392 • TC02  
LTC1392 • TC03  
Voltage Waveforms for DOUT Rise and Fall Times, tr and tf  
Voltage Waveforms for tdis  
V
OH  
D
OUT  
V
OL  
2.0V  
CS  
t
t
f
1392 TC04  
r
D
OUT  
90%  
10%  
WAVEFORM 1  
(SEE NOTE 1)  
Load Circuit for tdis and ten  
t
dis  
D
OUT  
TEST POINT  
WAVEFORM 2  
(SEE NOTE 2)  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNTIL DISABLED BY THE OUTPUT CONTROL.  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS LOW UNTIL DISABLED BY THE OUTPUT CONTROL.  
5V t WAVEFORM 2, t  
dis  
en  
3k  
D
OUT  
t
WAVEFORM 1  
dis  
LTC1392 • TC06  
100pF  
LTC1392 • TC05  
U
W U U  
APPLICATIONS INFORMATION  
The LTC1392 is a micropower data acquisition system  
designed to measure temperature, an on-chip power  
supplyvoltageandadifferentialinputvoltage.TheLTC1392  
contains the following functional blocks:  
DIGITAL CONSIDERATIONS  
Serial Interface  
The LTC1392 communicates with microprocessors and  
other external circuitry via a synchronous, half-duplex,  
3-wire serial interface (see Figure 1). The clock (CLK)  
synchronizes the data transfer with each bit being trans-  
mitted on the falling CLK edge and captured on the rising  
CLK edge in both transmitting and receiving systems. The  
input data is first received and then the A/D conversion  
result is transmitted (half-duplex). Half-duplex operation  
allows DIN and DOUT to be tied together allowing transmis-  
sion over three wires: CS, CLK and DATA (DIN/DOUT). Data  
transferisinitiatedbyafallingchipselect(CS)signal.After  
the falling CS is recognized, an 80µs delay is needed for  
1. On-chip temperature sensor  
2. 10-bit successive approximation capacitive ADC  
3. Bandgap reference  
4. Analog multiplexer (MUX)  
5. Sample-and-hold (S/H)  
6. Synchronous, half-duplex serial interface  
7. Control and timing logic  
6
LTC1392  
U
W U U  
APPLICATIONS INFORMATION  
MSB-First Data (MSBF = 1)  
t
CYC  
CS  
t
suCS  
CLK  
t
WAKEUP  
SEL1 SEL0  
D
IN  
START  
Hi-Z  
MSBF  
Hi-Z  
B9 B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
D
B0  
OUT  
FILLED WITH ZEROS  
t
SMPL  
t
CONV  
t
CYC  
CS  
t
suCS  
CLK  
t
WAKEUP  
SEL1 SEL0  
D
IN  
START  
Hi-Z  
MSBF  
SMPL  
Hi-Z  
B9 B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
D
B0 B1  
B2 B3  
B4  
B5  
B6  
B7 B8  
B9  
OUT  
FILLED WITH ZEROS  
t
CONV  
t
LTC1392 • F01  
Figure 1  
temperature measurement or a 10µs delay for other mea-  
surements, followed by a 4-bit input word which config-  
ures the LTC1392 for the current conversion. This data  
wordisshiftedintotheDIN input. DIN isthendisabledfrom  
shifting in any data and the DOUT pin is configured from  
three-state to an output pin. A null bit and the result of the  
current conversion are serially transmitted on the falling  
CLK edge onto the DOUT line. The format of the A/D result  
can be either MSB-first sequence or MSB-first sequence  
followed by an LSB-first sequence. This provides easy  
interface to MSB- or LSB-first serial ports. Bringing CS  
high resets the LTC1392 for the next data exchange.  
DIN input which configures the LTC1392 and starts the  
conversion. Further inputs on the DIN input are then  
ignored until the next CS cycle. The four bits of the input  
word are defined as follows:  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Start  
Select 1  
Select 0  
MSBF  
Start Bit  
The first “logic one” clocked into the DIN input after CS  
goes low is the Start Bit. The Start Bit initiates the data  
transfer and all leading zeros which precede this logical  
one will be ignored. After the Start Bit is received the  
remaining bits of the input word will be clocked in. Further  
input on the DIN pin are then ignored until the next CS  
cycle.  
INPUT DATA WORD  
Datatransferisinitiatedbyafallingchipselect(CS)signal.  
After CS falls, the LTC1392 looks for a start bit. Once the  
start bit is received, the next three bits are shifted into the  
7
LTC1392  
U
W U U  
APPLICATIONS INFORMATION  
Measurement Mode Selections  
tures outside these specified temperature ranges is not  
guaranteedanderrorsmaybegreaterthanthoseshownin  
the Electrical Characteristics table.  
ThetwobitsoftheinputwordfollowingtheStartBitassign  
the measurement mode for the requested conversion.  
Table 1 shows the mode selections. Whenever there is a  
mode change from another mode to temperature mea-  
surement, atemperaturemodeinitializingcycleisneeded.  
The first temperature data measurement after a mode  
change should be ignored.  
Table 2. Codes for Temperature Conversion  
OUTPUT CODE  
1111111111  
1111111110  
...  
TEMPERATURE (°C)  
125.75  
125.50  
...  
1001101101  
1001101100  
1001101011  
...  
25.25  
25.00  
24.75  
...  
Table 1. Measurement Mode Selections  
SELECT  
1
SELECT  
0
MEASUREMENT MODE  
Temperature  
0
0
1
1
0
1
0
1
Power Supply Voltage  
0000000001  
0000000000  
129.75  
130.00  
Differential Input, 1V Full Scale  
Differential Input, 0.5V Full Scale  
Voltage Supply (VCC) Monitor  
MSB-First/LSB-First (MSBF)  
The LTC1392 measures supply voltage through the on-  
chip VCC supply line. The VCC reading is provided in a  
10-bit, unipolar format. Table 3 describes the exact rela-  
tionship of output data to measured VCC or equation (2)  
can be used to calculate the measured VCC.  
The output data of the LTC1392 is programmed for  
MSB-firstorLSB-firstsequenceusingtheMSBFbit.When  
the MSBF bit is a logical one, data will appear on the DOUT  
line in MSB-first format. Logical zeros will be filled in  
indefinitely following the last data bit to accommodate  
longer word lengths required by some microprocessors.  
When the MSBF bit is a logical zero, LSB-first data will  
follow the normal MSB-first data on the DOUT line.  
Measured VCC  
=
[(Output Code) • 4.84/1024] + 2.42  
(2)  
Theguaranteedsupplyvoltagemonitorrangeisfrom4.5V  
to 6V. Typical parts are able to maintain measurement  
accuracy with VCC as low as 3.25V. The typical INL and  
DNL error plots shown on page 4 are measured with VCC  
from 3.63V to 6.353V.  
CONVERSIONS  
Temperature Conversion  
Table 3. Codes for Voltage Supply Conversion  
TheLTC1392measurestemperaturethroughtheuseofan  
on-chip,proprietarytemperaturemeasurementtechnique.  
The temperature reading is provided in a 10-bit, unipolar  
format. Table 2 describes the exact relationship of output  
data to measured temperature or equation 1 can be used  
to calculate the temperature.  
OUTPUT CODE  
1011110110  
1011110101  
...  
Supply Voltage (V )  
CC  
6.003V  
5.998V  
...  
1000100010  
...  
5.001V  
...  
Temperature (°C) = Output Code/4 – 130  
(1)  
0110111001  
0110111000  
4.504V  
4.500V  
Note that the LTC1392C is only specified for operation  
over the 0°C to 70°C temperature range and the LTC1392I  
over the 40°C to 85°C range. Performance at tempera-  
8
LTC1392  
U
W U U  
APPLICATIONS INFORMATION  
Thermal Coupling/Airflow  
Differential Voltage Conversion  
The supply current of the LTC1392 is 700µA typically  
whenrunningatthemaximumconversionrate.Theequiva-  
lent power dissipation of 3.5mW causes a temperature  
rise of 0.455°C in the SO8 and 0.35°C in PDIP packages  
duetoself-heatingeffects. Atsamplingrateslessthan400  
samplespersecond, lessthan20µAcurrentisdrawnfrom  
the supply (see Typical Performance Characteristics) and  
the die self-heating effect is negligible. This LTC1392 can  
be attached to a surface (such as microprocessor chip or  
a heat sink) for precision temperature monitoring. The  
package leads are the principal path to carry the heat into  
the device; thus any wiring leaving the device should be  
held at the same temperature as the surface. The easiest  
way to do this is to cover up the wires with a bead of epoxy  
which will ensure that the leads and wires are at the same  
temperature as the surface. The thermal time constant of  
the LTC1392 in still air is about 22 seconds (see the graph  
in the Typical Performance Charateristics section). At-  
taching an LTC1392 to a small metal fin (which also  
provides a small thermal mass) will help reduce thermal  
time constant, speed up the response and give the steadi-  
est reading in slow moving air.  
The LTC1392 measures the differential input voltage  
through pins +VIN and VIN. Input ranges of 0.5V or 1V  
full scale are available for differential voltage measure-  
mentwithresolutionsof10bits.Tables4aand4bdescribe  
the exact relationship of output data to measured differen-  
tial input voltage in the 1V and 0.5V input range. Equations  
(3) and (4) can be used to calculate the differential voltage  
in the 1V and 0.5V input voltage range respectively. The  
output code is in unipolar format.  
Differential Voltage = 1V • (10-bit code)/1024  
Differential Voltage = 0.5V • (10-bit code)/1024  
(3)  
(4)  
Table 4a. Codes for 1V Differential Voltage Range  
OUTPUT  
CODE  
INPUT  
VOLTAGE  
INPUT  
RANGE = 1V  
REMARKS  
1111111111  
1111111110  
...  
1V – 1LSB  
1V – 2LSB  
...  
999.0mV  
998.0mV  
...  
0000000001  
0000000000  
1LSB  
0.977mV  
0.00mV  
1LSB = 1/1024  
0LSB  
Table 4b. Codes for 0.5V Differential Voltage Range  
OUTPUT  
CODE  
INPUT  
VOLTAGE  
INPUT  
RANGE = 0.5V  
REMARKS  
1111111111  
1111111110  
...  
0.5V – 1LSB  
0.5V – 2LSB  
...  
499.5mV  
499.0mV  
...  
0000000001  
0000000000  
1LSB  
0.488mV  
0.00mV  
1LSB = 0.5/1024  
0LSB  
9
LTC1392  
TYPICAL APPLICATIONS  
U
System Monitor for Two Supply Voltages and Ambient Temperature  
5V  
1N4148  
22Ω  
220µF  
10V  
×4  
+
0.1µF  
+
+V  
IN  
10µF  
16V  
0.1µF  
V
OUT  
3.3V  
LTC1392  
V
PV  
+
2.5µH  
CC  
CC  
M2  
M1  
8
7
6
5
1
2
3
4
10µF  
15A  
G1  
P1.4  
V
D
CC  
IN  
0.1µF  
MPU  
(e.g., 8051)  
G2  
FB  
C
O
+
–V  
D
OUT  
M3  
100k  
33k  
330µF  
6.3V  
×6  
IN  
LTC1430  
COMP SHDN  
GND  
SHDN  
P1.3  
P1.2  
+V  
CLK  
CS  
IN  
R
C
0.1µF  
C1  
220pF  
7.5k  
–V  
100pF  
GND  
IN  
C
C
4700pF  
LTC1392 • TA03  
M1, M2, M3:  
MOTOROLA MTD20N03HL  
10k  
12k  
10k  
TRIMMED TO  
V
= 3.3V  
OUT  
System Monitor for Relative Humidity, Supply Voltage and Ambient Temperature  
0.01µF  
1/4 LTC1043  
7
8
16  
5V  
0.1µF  
5V  
470Ω  
5V  
11  
–5V  
17  
0.1µF  
0.1µF  
0.1µF  
100pF  
5V  
1k  
1%  
5V  
LTC1392  
1/4 LTC1043  
8
7
6
5
1
V
500Ω  
90%  
RH TRIM  
P1.4  
D
CC  
IN  
2
7
OUTPUT  
0V TO 1V =  
0% TO 100%  
6
13  
14  
0.1µF  
+
2
3
4
10k  
6
3
–V  
+V  
MPU  
(e.g., 8051)  
P1.3  
D
LT®1056  
4
IN  
1µF  
OUT  
+
3
LM301A  
CLK  
CS  
IN  
2
8
LT1004-1.2  
1
GND  
P1.2  
12  
0.1µF  
100pF  
5V  
1µF  
SENSOR: PANAMETRICS #RHS  
500pF AT RH = 76%  
1.7pF/%RH  
22M  
SENSOR  
10k  
5%  
RH TRIM  
0.1µF  
9k*  
1k*  
* 1% FILM RESISTOR  
–5V  
33k  
1392 TA04  
10  
LTC1392  
U
PACKAGE DESCRIPTION Dimemsions in inches (millimeters) unless otherwise noted.  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.015  
+0.025  
–0.015  
(0.380)  
MIN  
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1392  
U
O
TYPICAL APPLICATI  
Measuring a Secondary Temperature with an External Thermistor  
ERT-D2FHL103S DIVIDER OUTPUT VOLTAGE  
VS TEMPERATURE  
1.5  
1.4  
1.3  
IDEAL OUTPUT (V) =  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–11.15mV/°C • TEMPERATURE + 1.371  
ACTUAL  
DIVIDER  
OUTPUT  
60  
20  
30  
40  
50  
70  
V
80  
TEMPERATURE (°C)  
5V  
R1*  
6.8k  
5V  
LTC1392  
8
7
6
5
1
2
3
4
P1.4  
D
CC  
IN  
R2*  
1.8k  
–V  
MPU  
(e.g., 8051)  
P1.3  
D
IN  
IN  
OUT  
+V  
CLK  
CS  
IDEAL OUTPUT (V) =  
LT1004-1.2  
–11.15mV/°C • TEMPERATURE + 1.371  
GND  
P1.2  
TEMPERATURE RANGE: 38°C TO 80°C ±4°C  
R
= ERT – D2FHL103S  
T
ASSUMING 3% β AND  
10% R TOLERANCES  
TO  
1392 TA05  
* 1% FILM RESISTOR  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENT  
LT1025  
Micropower Thermocouple Cold Junction Compensator  
Compatible with Standard Thermocouples (E, J, K, R, S, T)  
Differential or 2-Channel Multiplexed, Single Supply  
Differential or 2-Channel Multiplexed, Single Supply  
LTC1285/LTC1288 3V Micropower 12-Bit ADCs with Auto Shutdown  
LTC1286/LTC1298 Micropower 12-Bit ADCs with Auto Shutdown  
LTC1391  
LM334  
Low Power, Precision 8-to-1 Analog Multiplexer  
Constant Current Source and Temperature Sensor  
SPI, QSPI Compatible, Single 5V or 3V, Low R , Low Charge Injection  
ON  
3 Pins, Current Out Pin  
1392f LT/TP 0497 7K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1995  
12 Linear Technology Corporation  
1630McCarthyBlvd., Milpitas, CA95035-7417 (408)432-1900  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LTC1392IS8

Micropower Temperature, Power Supply and Differential Voltage Monitor
Linear

LTC1392IS8#PBF

LTC1392 - Micropower Temperature, Power Supply and Differential Voltage Monitor; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1392IS8#TR

LTC1392 - Micropower Temperature, Power Supply and Differential Voltage Monitor; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1393

Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface
Linear

LTC1393C

Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface
Linear

LTC1393CGN

Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface
Linear

LTC1393CGN#PBF

LTC1393 - Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1393CS

Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface
Linear

LTC1393CS#PBF

LTC1393 - Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1393CS#TR

LTC1393 - Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1393CS#TRPBF

LTC1393 - Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1393I

Single-Ended 8-Channel/ Differential 4-Channel Analog Multiplexer with SMBus Interface
Linear