LTC1404CS8#TR [Linear]

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1404CS8#TR
型号: LTC1404CS8#TR
厂家: Linear    Linear
描述:

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总24页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1404  
Complete SO-8, 12-Bit,  
600ksps ADC with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1404 is a complete 600ksps, 12-bit A/D con-  
verter which draws only 75mW from 5V or ± 5V supplies.  
This easy-to-use device comes complete with a 160ns  
sample-and-hold and a precision reference. Unipolar and  
bipolar conversion modes add to the flexibility of the ADC.  
The LTC1404 has two power saving modes: Nap and  
Sleep. In Nap mode, it consumes only 7.5mW of power  
and can wake up and convert immediately. In the Sleep  
mode, itconsumes60µWofpowertypically. Uponpower-  
up from Sleep mode, a reference ready (REFRDY) signal  
is available in the serial data word to indicate that the  
reference has settled and the chip is ready to convert.  
Complete 12-Bit ADC in SO-8  
Single Supply 5V or ±5V Operation  
Sample Rate: 600ksps  
Power Dissipation: 75mW (Typ)  
72dB S/(N + D) and 80dB THD at Nyquist  
No Missing Codes over Temperature  
Nap Mode with Instant Wake-Up: 7.5mW  
Sleep Mode: 60µW  
High Impedance Analog Input  
Input Range (1mV/LSB): 0V to 4.096V or ± 2.048V  
Internal Reference Can Be Overdriven Externally  
3-Wire Interface to DSPs and Processors (SPI and  
MICROWIRETM Compatible)  
The LTC1404 converts 0V to 4.096V unipolar inputs from  
a single 5V supply and ±2.048V bipolar inputs from ±5V  
supplies. Maximum DC specs include ±1LSB INL, ± 1LSB  
DNL and 45ppm/°C full-scale drift over temperature.  
Guaranteed AC performance includes 69dB S/(N + D)  
and 76dB THD at an input frequency of 100kHz over  
temperature.  
U
APPLICATIO S  
High Speed Data Acquisition  
Digital Signal Processing  
Multiplexed Data Acquisition Systems  
Audio and Telecom Processing  
Digital Radio  
Spectrum Analysis  
Low Power and Battery-Operated Systems  
Handheld or Portable Instruments  
The 3-wire serial port allows compact and efficient data  
transfertoawiderangeofmicroprocessors,microcontrollers  
and DSPs.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Power Consumption vs Sample Rate  
Single 5V Supply, 600kHz, 12-Bit Sampling A/D Converter  
100  
5V  
NORMAL CONVERSION  
V
V
SS  
CC  
10  
+
NAP MODE  
BETWEEN CONVERSION  
10µF*  
0.1µF  
MPU  
P1.4  
LTC1404  
1
ANALOG INPUT  
(0V TO 4.096V)  
A
V
CONV  
CLK  
IN  
SLEEP MODE  
BETWEEN CONVERSION  
REF  
2.43V  
10µF  
OUT  
0.1  
P1.3  
P1.2  
REF  
+
GND  
D
OUT  
0.1µF  
SERIAL  
DATA LINK  
0.01  
9.6MHz CLOCK  
*AVX TPSD106M035R0300  
LTC1404 • TA01  
0.001  
0.01 0.1  
100  
SAMPLE RATE (Hz)  
1
10  
1k 10k 100k 1M  
LTC1404 • TA02  
1404fa  
1
LTC1404  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (VCC) ................................................. 7V  
Negative Supply Voltage (VSS) ................... 6V to GND  
Total Supply Voltage (VCC to VSS)  
Bipolar Operation Only ........................................ 12V  
Analog Input Voltage (Note 3)  
V
V
SS  
1
2
3
4
8
7
6
5
CC  
A
CONV  
CLK  
IN  
V
REF  
GND  
D
OUT  
Unipolar Operation .................. 0.3V to (VCC + 0.3V)  
Bipolar Operation........... (VSS – 0.3V) to (VCC + 0.3V)  
Digital Input Voltage (Note 4)  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 130°C/W  
Unipolar Operation ................................0.3V to 12V  
Bipolar Operation.........................(VSS – 0.3V) to 12V  
Digital Output Voltage  
Unipolar Operation .................. 0.3V to (VCC + 0.3V)  
Bipolar Operation........... (VSS – 0.3V) to (VCC + 0.3V)  
Power Dissipation.............................................. 300mW  
Operating Ambient Temperature Range  
S8 PART MARKING  
ORDER PART NUMBER  
LTC1404CS8  
LTC1404IS8  
1404  
1404I  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
LTC1404C ............................................... 0°C to 70°C  
LTC1404I............................................ 40°C to 85°C  
Junction Temperature.......................................... 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
W
POWER REQUIRE E TS The  
denotes specifications which apply over the full operating temperature range,  
unless otherwise noted specifications are at T = 25°C. V = 5V, f  
= 600kHz, t = t = 5ns, unless otherwise specified.  
r f  
A
CC  
SAMPLE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
Positive Supply Voltage  
Unipolar  
Bipolar  
4.75  
4.75  
5.25  
5.25  
V
V
V
Negative Supply Voltage  
Positive Supply Current  
Bipolar Only  
2.45  
5.25  
V
SS  
I
I
f
= 600ksps  
15  
30  
3.0  
20.0  
0.6  
0.5  
10  
160  
20  
150  
mA  
mA  
µA  
mA  
mA  
µA  
mW  
mW  
µW  
CC  
SAMPLE  
Nap Mode  
1.3  
8.0  
Sleep Mode  
Negative Supply Current  
Power Dissipation  
f
= 600ksps, V = 5V  
0.2  
0.2  
4
75  
7.5  
60  
SS  
SAMPLE  
SS  
Nap Mode  
Sleep Mode  
P
D
f
= 600ksps  
SAMPLE  
Nap Mode  
Sleep Mode  
U
U
The  
denotes specifications which apply over the full operating temperature range, unless otherwise  
A ALOG I PUT  
noted specifications are at T = 25°C. V = 5V, f  
= 600kHz, t = t = 5ns, unless otherwise specified.  
r f  
A
CC  
SAMPLE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Input Range  
4.75V V 5.25V (Unipolar)  
0 to 4.096  
0 to ±2.048  
V
V
IN  
CC  
4.75V V 5.25V, 5.25V V 2.45V (Bipolar)  
CC  
SS  
I
Analog Input Leakage Current  
Analog Input Capacitance  
During Conversions (Hold Mode)  
±1  
µA  
pF  
pF  
IN  
C
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
45  
5
IN  
1404fa  
2
LTC1404  
U
The  
denotes specifications which apply over the full operating temperature  
CO VERTER  
CHARACTERISTICS  
range, unless otherwise noted specifications are at T = 25°C. With internal reference V = 5V, f  
otherwise specified (Note 6).  
= 600kHz, t = t = 5ns, unless  
A
CC  
SAMPLE  
r
f
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
12  
(Note 7)  
(Note 8)  
±1  
±1  
±6  
±8  
LSB  
LSB  
LSB  
LSB  
Full-Scale Error  
± 15  
± 45  
LSB  
Full-Scale Tempco  
I
= 0  
± 10  
ppm/°C  
OUT(REF)  
W
U
The  
denotes specifications which apply over the full operating temperature range, unless  
= 600kHz.  
DY  
A IC  
ACCURACY  
A
otherwise noted specifications are at T = 25°C. V = 5V, V = –5V, f  
SAMPLE  
CC  
SS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N + D) Signal-to-Noise  
100kHz Input Signal  
300kHz Input Signal  
69  
72  
72  
dB  
dB  
THD  
IMD  
Total Harmonic Distortion  
100kHz Input Signal  
300kHz Input Signal  
82  
80  
76  
76  
dB  
dB  
Up to 5th Harmonic  
Peak Harmonic or  
Spurious Noise  
100kHz Input Signal  
300kHz Input Signal  
84  
82  
dB  
dB  
Intermodulation Distortion  
f
f
= 99.17kHz, f = 102.69kHz  
82  
70  
dB  
dB  
IN1  
IN1  
IN2  
= 298.68kHz, f = 304.83kHz  
IN2  
Full Power Bandwidth  
5
1
MHz  
MHz  
Full Linear Bandwidth (S/(N + D) 68dB)  
U U  
U
I TER AL REFERE CE CHARACTERISTICS The  
denotes specifications which apply over the full  
operating temperature range, unless otherwise noted specifications are at T = 25°C. V = 5V, f  
= 600kHz, t = t = 5ns, unless  
r f  
A
CC  
SAMPLE  
otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.430  
±10  
MAX  
2.450  
±45  
UNITS  
V
V
REF  
V
REF  
V
REF  
Output Voltage  
Output Tempco  
Line Regulation  
I
I
= 0  
= 0  
2.410  
OUT  
OUT  
ppm/°C  
4.75V V 5.25V  
0.5  
0.01  
LSB/V  
LSB/V  
CC  
5.25V V 0V  
SS  
V
V
Load Regulation  
0 ≤  
I
1mA  
1
LSB/mA  
ms  
REF  
OUT  
Wake-Up Time from Sleep Mode  
C
= 10µF  
2.5  
REF  
VREF  
U
U
DIGITAL I PUTS AND OUTPUTS The  
denotes specifications which apply over the full operating temperature  
= 600kHz, t = t = 5ns, unless otherwise specified.  
range, unless otherwise noted specifications are at T = 25°C. V = 5V, f  
A
CC  
SAMPLE  
r
f
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.0  
V
V
IH  
IL  
CC  
CC  
IN  
0.8  
I
± 10  
µA  
pF  
IN  
CC  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
V
= 4.75V, I = 10µA  
= 4.75V, I = 200µA  
= 4.75V, I = 160µA  
= 4.75V, I = 1.6mA  
4.7  
V
V
OH  
CC  
CC  
O
O
4.0  
V
Low Level Output Voltage  
V
V
0.05  
0.10  
V
V
OL  
CC  
CC  
O
O
0.4  
1404fa  
3
LTC1404  
U
U
The  
CC  
denotes specifications which apply over the full operating temperature  
= 600kHz, t = t = 5ns, unless otherwise specified.  
DIGITAL I PUTS AND OUTPUTS  
range, unless otherwise noted specifications are at T = 25°C. V = 5V, f  
A
SAMPLE  
r
f
SYMBOL PARAMETER  
Hi-Z Output Leakage D  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
I
V
= 0V to V  
± 10  
OZ  
OUT  
OUT  
CC  
C
Hi-Z Output Capacitance D  
Output Source Current  
Output Sink Current  
15  
10  
10  
pF  
OZ  
OUT  
I
I
V
V
= 0V  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
= V  
CC  
W U  
TI I G CHARACTERISTICS  
The  
CC  
denotes specifications which apply over the full operating temperature range,  
unless otherwise noted specifications are at T = 25°C. V = 5V, f  
= 600kHz, t = t = 5ns, unless otherwise specified. See Figures  
A
SAMPLE  
r
f
12, 13, 14.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
f
t
t
Maximum Sampling Frequency  
Conversion Time  
600  
SAMPLE(MAX)  
CONV  
f
= 9.6MHz  
1.36  
µs  
CLK  
Acquisition Time (Unipolar Mode)  
(Bipolar Mode V = 5V)  
200  
160  
ns  
ns  
ACQ  
SS  
f
t
t
t
t
t
t
t
t
t
CLK Frequency  
0.1  
40  
9.6  
MHz  
ns  
ns  
ns  
ns  
ns  
CLK  
CLK Pulse Width  
(Notes 5 and 10)  
CLK  
Time to Wake Up from Nap Mode  
350  
WK(NAP)  
CLK Pulse Width to Return to Active Mode  
CONVto CLKSetup Time  
40  
70  
0
1
2
3
4
5
6
7
CONVAfter Leading CLK↑  
CONV Pulse Width  
(Note 9)  
40  
ns  
ns  
ns  
Time from CLKto Sample Mode  
Aperture Delay of Sample-and-Hold  
60  
40  
Jitter < 50ps  
(Note 5)  
Minimum Delay Between Conversion (Unipolar Mode)  
(Bipolar Mode V = 5V)  
220  
180  
310  
300  
ns  
ns  
SS  
t
t
t
t
Delay Time, CLKto D  
Valid  
Hi-Z  
C
C
C
= 20pF  
= 20pF  
= 20pF  
40  
40  
30  
70  
70  
ns  
ns  
ns  
ns  
8
OUT  
OUT  
LOAD  
LOAD  
LOAD  
Delay Time, CLKto D  
9
Time from Previous Data Remains Valid After CLK↑  
10  
50  
10  
11  
Minimum Time Between Nap/Sleep Request to Wake Up Request (Notes 5 and 10)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Linearity, offset and full-scale specifications apply for unipolar and  
bipolar modes.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 2: All voltage values are with respect to GND.  
Note 3: When these pin voltages are taken below V (ground for unipolar  
Note 8: Bipolar offset is the offset voltage measured from 0.5LSB when  
the output code flickers between 0000 0000 0000 and 1111 1111 1111.  
SS  
mode) or above V , they will be clamped by internal diodes. This product  
CC  
can handle input currents greater than 60mA without latch-up if the pin is  
Note 9: The rising edge of CONV starts a conversion. If CONV returns low  
at a bit decision point during the conversion, it can create small errors. For  
best performance, ensure that CONV returns low either within 100ns after  
the conversion starts (i.e., before the first bit decision) or after the 14  
clock cycles. (Figure 13 Timing Diagram).  
Note 10: If this timing specification is not met, the device may not respond  
to a request for a conversion. To recover from this condition a NAP  
request is required.  
driven below V (ground for unipolar mode) or above V  
.
CC  
SS  
Note 4: When these pin voltages are taken below V (ground for unipolar  
SS  
mode), they will be clamped by internal diodes. This product can handle  
input currents greater than 60mA without latch-up if the pin is driven  
below V (ground for unipolar mode). These pins are not clamped to V  
.
CC  
SS  
Note 5: Guaranteed by design, not subject to test.  
1404fa  
4
LTC1404  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Unipolar Mode Differential  
Nonlinearity vs Output Code  
Unipolar Mode Integral  
Bipolar Mode Differential  
Nonlinearity vs Output Code  
Nonlinearity vs Output Code  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
f
= 600kHz  
SAMPLE  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
0
–2048  
–1024  
1024  
2048  
2048 2560  
2048 2560  
0
512 1024 1536  
3072 3584 4096  
0
512 1024 1536  
3072 3584 4096  
1536  
–1536  
–512  
512  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
1404 G02  
1404 G01  
1404 G03  
Unipolar Mode 4096 Nonaverage  
FFT with 100kHz Signal  
Unipolar Mode 4096 Nonaverage  
FFT with 300kHz Signal  
Bipolar Mode Integral  
Nonlinearity vs Output Code  
0
–10  
0
–10  
1.00  
0.75  
0.50  
0.25  
0
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
60  
–70  
60  
–70  
–0.25  
–0.50  
–0.75  
–1.00  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
–2048  
–1024  
1024  
2048  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (kHz)  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (kHz)  
1536  
–1536  
–512  
512  
OUTPUT CODE  
1404 G04  
1404 G05  
1404 G06  
Unipolar Mode  
Unipolar Mode  
Signal-to-Noise Ratio (Without  
Harmonics) vs Input Frequency  
Bipolar Mode  
Signal-to-Noise Ratio (Without  
Harmonics) vs Input Frequency  
ENOB and Signal/(Noise +  
Distortion) vs Input Frequency  
74  
68  
62  
56  
50  
12  
11  
10  
9
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
NYQUIST  
FREQUENCY  
8
7
6
5
4
3
2
1
f
= 600kHz  
SAMPLE  
f
= 600kHz  
f
= 600kHz  
SAMPLE  
SAMPLE  
0
10  
100  
INPUT FREQUENCY (kHz)  
1000  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
1404 G07  
1404 G08  
1404 G09  
1404fa  
5
LTC1404  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Unipolar Mode  
Unipolar Mode Intermodulation  
Distortion Plot at 100kHz  
Distortion vs Input Frequency  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f
= 600kHz  
SAMPLE  
–10  
–20  
–30  
–40  
–50  
60  
–70  
2fa  
–80  
2ND HARMONIC  
2fa – fb  
–90  
THD  
–100  
–110  
–120  
3RD HARMONIC  
100  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (kHz)  
10  
1000  
INPUT FREQUENCY (kHz)  
1404 G10  
1404 G11  
Unipolar Mode Intermodulation Distortion Plot at 300kHz  
0
–10  
fa  
fb  
–20  
–30  
–40  
2fa + fb  
3fa  
–50  
60  
–70  
2fb – fa  
2fa  
fa + fb  
2fb  
3fb  
–80  
–90  
–100  
–110  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
FREQUENCY (kHz)  
1404 G12  
Bipolar Mode Intermodulation Distortion Plot at 300kHz  
0
–10  
fa  
–20  
–30  
–40  
–50  
60  
–70  
fb – fa  
–80  
–90  
–100  
–110  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
FREQUENCY (kHz)  
1404 G12  
1404fa  
6
LTC1404  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Unipolar Mode Peak Harmonic or  
Spurious Noise vs Input Frequency  
Bipolar Mode S/(N + D) vs Input  
Frequency and Amplitude  
Unipolar Mode S/(N + D) vs Input  
Frequency and Amplitude  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 0dB  
V
V
= 0dB  
f
= 600kHz  
IN  
IN  
IN  
IN  
SAMPLE  
= –20dB  
= –20dB  
V
= –60dB  
V
f
= –60dB  
IN  
IN  
f
= 600kHz  
= 600kHz  
SAMPLE  
SAMPLE  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
1404 G16  
1404 G14  
1404 G15  
Bipolar Mode Power Supply  
Feedthrough vs Ripple Frequency  
Unipolar Mode Power Supply  
Feedthrough vs Ripple Frequency  
Bipolar Mode Peak Harmonic or  
Spurious Noise vs Input Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0
A
A
f
= 0dB  
A
A
f
= 0dB  
f
= 600kHz  
IN  
IN  
IN  
IN  
SAMPLE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FREQUENCY = 100kHz  
= 600kHz  
FREQUENCY = 100kHz  
= 600kHz  
SAMPLE  
SAMPLE  
V
(V = 1mV)  
RIPPLE  
CC  
V
(V = 10mV)  
RIPPLE  
SS  
V
(V  
= 1mV)  
RIPPLE  
CC  
10  
100  
INPUT FREQUENCY (kHz)  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
RIPPLE FREQUENCY (kHz)  
RIPPLE FREQUENCY (kHz)  
1404 G19  
1404 G18  
1404 G17  
Reference Voltage vs  
Load Current  
Acquisition Time vs  
Source Impedance  
Reference Voltage vs Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.440  
2.438  
2.436  
2.434  
2.432  
2.430  
2.428  
2.426  
2.424  
2.422  
2.420  
2.45  
2.44  
2.43  
2.42  
2.41  
2.40  
2.39  
T
= 25°C  
A
10  
100  
1k  
10k  
–50 –25  
0
25  
50  
75 100 125  
–8 –7 –6 –5 –4 –3 –2 –1  
LOAD CURRENT (mA)  
0
1
TEMPERATURE (°C)  
SOURCE RESISTANCE ()  
1404 G22  
1404 G20  
1404 G21  
1404fa  
7
LTC1404  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Unipolar Mode V Supply Current  
Bipolar Mode Supply Current  
vs Temperature  
CC  
vs Temperature  
15.0  
12.5  
10.0  
7.5  
5.0  
2.5  
0
300  
250  
200  
150  
100  
50  
20  
15  
10  
5
V
CURRENT  
CURRENT  
CC  
V
SS  
f
= 600kHz  
SAMPLE  
f
= 600kHz  
SAMPLE  
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1404 G23  
1404 G24  
U
U
U
PIN FUNCTIONS  
CLK (Pin 6): Clock. This clock synchronizes the serial data  
transfer. A minimum CLK pulse of 40ns signals the ADC to  
wake up from Nap or Sleep mode.  
VCC (Pin 1): Positive Supply, 5V. Bypass to GND (10µF  
tantalum in parallel with 0.1µF ceramic).  
AIN (Pin2):AnalogInput.0Vto4.096V(Unipolar),±2.048V  
(Bipolar).  
CONV (Pin 7): Conversion Start Signal. This active high  
signal starts a conversion on its rising edge. Keeping CLK  
lowandpulsingCONVtwo/fourtimeswillputtheADCinto  
Nap/Sleep mode.  
VREF (Pin 3): 2.43V Reference Output. Bypass to GND  
(10µF tantalum in parallel with 0.1µF ceramic).  
GND (Pin 4): Ground. GND should be tied directly to an  
analog ground plane.  
VSS (Pin 8): Negative Supply. 5V for bipolar operation.  
Bypass to GND with 10µF tantalum in parallel with 0.1µF  
ceramic. VSS shouldbetiedtoGNDforunipolaroperation.  
DOUT (Pin5):TheA/Dconversionresultisshiftedoutfrom  
this pin.  
1404fa  
8
LTC1404  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
ZEROING SWITCH  
SAMPLE  
V
CC  
A
IN  
GND  
V
SS  
V
REF  
2.43V REF  
12-BIT CAPACITIVE DAC  
COMP  
CLK  
12  
CONTROL  
LOGIC  
CONV  
SUCCESSIVE APPROXIMATION  
REGISTER/PARALLEL TO  
SERIAL CONVERTER  
D
OUT  
1404 BD  
TEST CIRCUITS  
5V  
3k  
D
OUT  
D
OUT  
3k  
C
LOAD  
C
LOAD  
Hi-Z TO V  
OH  
Hi-Z TO V  
OL  
V
OL  
OH  
TO V  
OH  
V
OH  
OL  
TO V  
OL  
V
TO Hi-Z  
V
TO Hi-Z  
1404 TC01  
1404fa  
9
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
Conversion Details  
Dynamic Performance  
The LTC1404 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 12-bit serial output based on a precision  
internal reference. The control logic provides easy inter-  
face to microprocessors and DSPs through 3-wire con-  
nections.  
The LTC1404 has excellent high speed sampling capabil-  
ity. FFT (Fast Fourier Transform) test techniques are used  
totesttheADC’sfrequencyresponse, distortionandnoise  
at the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 2a shows a  
typical LTC1404 FFT plot.  
ArisingedgeontheCONVinputstartsaconversion. Atthe  
start of a conversion the successive approximation regis-  
ter (SAR) is reset. Once a conversion cycle has begun, it  
cannot be restarted.  
0
–10  
–20  
During conversion, the internal 12-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, the AIN input connects to the sample-and-hold  
capacitor during the acquired phase and the comparator  
offset is nulled by the feedback switch. In this acquire  
phase, it typically takes 160ns for the sample-and-hold  
capacitor to acquire the analog signal. During the convert  
phase, the comparator feedback switch opens, putting the  
comparator into the compare mode. The input switches  
connect CSAMPLE to ground, injecting the analog input  
charge onto the summing junction. This input charge is  
successively compared with the binary-weighted charges  
supplied by the capacitive DAC. Bit decisions are made by  
the high speed comparator. At the end of a conversion, the  
DAC output balances the AIN input charge. The SAR  
contents (a 12-bit data word) which represent the input  
–30  
–40  
–50  
60  
–70  
–80  
–90  
–100  
–110  
–120  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (kHz)  
1404 F02a  
Figure 2a. LTC1404 Nonaveraged, 4096 Point FFT  
Plot with 100kHz Input Frequency in Bipolar Mode  
0
–10  
–20  
voltage, are presented through the serial pin DOUT  
.
–30  
–40  
–50  
SAMPLE  
S1  
60  
–70  
–80  
C
SAMPLE  
DAC  
SAMPLE  
HOLD  
+
–90  
A
IN  
–100  
–110  
–120  
COMP  
0
30 60 90 120 150 180 210 240 270 300  
FREQUENCY (kHz)  
C
V
DAC  
S
A
R
1404 F02b  
DAC  
Figure 2b. LTC1404 Nonaveraged, 4096 Point FFT  
Plot with 300kHz Input Frequency in Bipolar Mode  
D
OUT  
1404 F01  
Figure 1. A Input  
IN  
1404fa  
10  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
Total Harmonic Distortion  
Signal-to-Noise Ratio  
Total harmonic distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half of the sampling frequency. THD  
is expressed as:  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
to frequencies from DC to half the sampling frequency.  
Figure 2a shows a typical spectral content with a 600kHz  
sampling rate and a 100kHz input. The dynamic perfor-  
mance is excellent for input frequencies up to the Nyquist  
limit of 300kHz as shown in Figure 2b.  
2
2
2
2
V2 + V3 + V4 + …Vn  
THD = 20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
second through nth harmonics. THD vs input frequency is  
shown in Figure 4. The LTC1404 has good distortion  
performance up to the Nyquist frequency and beyond.  
Effective Number of Bits  
The effective number of bits (ENOBs) is a measurement of  
the effective resolution of an ADC and is directly related to  
the S/(N + D) by the equation:  
S/ N + D – 1.76  
(
)
0
N =  
f
= 600kHz  
SAMPLE  
6.02  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
where N is the effective number of bits of resolution and  
S/(N + D) is expressed in dB. At the maximum sampling  
rate of 600kHz, the LTC1404 maintains very good ENOBs  
up to the Nyquist input frequency of 300kHz (refer to  
Figure 3).  
THD  
3RD HARMONIC  
2ND HARMONIC  
12  
11  
10  
9
74  
68  
62  
56  
50  
NYQUIST  
FREQUENCY  
10k  
100k  
INPUT FREQUENCY (Hz)  
1M  
1404 F04  
8
7
Figure 4. Distortion vs Input Frequency in  
Bipolar Mode  
6
5
4
3
2
Intermodulation Distortion  
1
f
= 600kHz  
SAMPLE  
0
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
1404 F03  
Figure 3. Effective Bits and Signal-to-Noise +  
Distortion vs Input Frequency in Bipolar Mode  
1404fa  
11  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at sum and difference  
frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3, etc.  
Forexample, the2ndorderIMDtermsinclude(fa+fb)and  
(fa – fb) while the 3rd order IMD terms includes (2fa + fb),  
(2fa – fb), (fa + 2fb) and (fa – 2fb). If the two input sine  
wavesareequalinmagnitude,thevalue(indecibels)ofthe  
2ndorderIMDproductscanbeexpressedbythefollowing  
formula.  
LTC1404 has been designed to optimize input bandwidth,  
allowing the ADC to undersample input signals with fre-  
quencies above the converter’s Nyquist Frequency. The  
noise floor stays very low at high frequencies; S/(N + D)  
becomes dominated by distortion at frequencies far be-  
yond Nyquist.  
Driving the Analog Input  
The analog input of the LTC1404 is easy to drive. It draws  
only one small current spike while charging the sample-  
and-hold capacitor at the end of a conversion. During  
conversion, the analog input draws only a small leakage  
current. The only requirement is that the amplifier driving  
the analog input must settle after the small current spike  
before the next conversion starts. Any op amp that settles  
in 160ns to small load current transient will allow maxi-  
mum speed operation. If a slower op amp is used, more  
settling time can be provided by increasing the time  
between conversions. Suitable devices capable of driving  
the ADC’s AIN input include the LT®1360 and the LT1363  
op amps.  
Amplitude at (fa ± fb)  
IMD fa ± fb = 20log  
(
)
Amplitude at fa  
Figure 5 shows the IMD performance at a 100kHz input.  
0
–10  
–20  
–30  
–40  
–50  
60  
–70  
2fb + fa  
–80  
TheLTC1404comeswithabuilt-inunipolar/bipolardetec-  
tion circuit. If the VSS potential is forced below GND, the  
internalcircuitrywillautomaticallyswitchtobipolarmode.  
–90  
–100  
–110  
–120  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300  
The following list is a summary of the op amps that are  
suitable for driving the LTC1404, more detailed informa-  
tion is available in the Linear Technology databooks or the  
Linear Technology Web site.  
FREQUENCY (kHz)  
1404 F05  
Figure 5. Intermodulation Distortion Plot in Bipolar Mode  
LT 1215/LT1216: Dual and quad 23MHz, 50V/µs single  
supply op amps. Single 5V to ±15V supplies, 6.6mA  
specifications, 90ns settling to 0.5LSB.  
Peak Harmonic or Spurious Noise  
The peak harmonic or spurious noise is the largest spec-  
tral component excluding the input signal and DC. This  
value is expressed in decibels relative to the RMS value of  
a full-scale input signal.  
LT1223: 100MHz video current feedback amplifier. ±5V  
to±15V supplies, 6mA supply current. Low distortion up  
to and above 600kHz. Low noise. Good for AC applica-  
tions.  
Full Power and Full Linear Bandwidth  
LT1227: 140MHz video current feedback amplifier. ±5V  
to ±15V supplies, 10mA supply current. Lowest distor-  
tion at frequencies above 600kHz. Low noise. Best for AC  
applications.  
The full power bandwidth is the input frequency at which  
the amplitude of the reconstructed fundamental is re-  
duced by 3dB for a full-scale input signal.  
The full linear bandwidth is the input frequency at which  
the S/(N + D) has dropped to 68dB (11 effective bits). The  
1404fa  
12  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
5V  
LT1229/LT1230:Dualandquad100MHzcurrentfeedback  
amplifiers. ±2V to ±15V supplies, 6mA supply current  
each amplifier. Low noise. Good AC specs.  
INPUT RANGE ±4.215V  
(= ±0.843 • V  
V
CC  
A
V
IN  
)
REF  
10V  
LTC1404  
V
IN  
LT1360: 37MHz voltage feedback amplifier. ±5V to ±15V  
supplies. 3.8mA supply current. Good AC and DC specs.  
70ns settling to 0.5LSB.  
V
REF  
OUT  
3  
10µF  
LT1019A-5  
GND  
GND  
LT1363:50MHz,450V/µsopamps.±5Vto±15Vsupplies.  
6.3mA supply current. Good AC and DC specs. 60ns  
settling to 0.5LSB.  
V
SS  
1404 F07  
–5V  
LT1364/LT1365:Dualandquad50MHz,450V/µsopamps.  
±5Vto±15Vsupplies,6.3mAsupplycurrentperamplifier.  
60ns settling to 0.5LSB.  
Figure 7. Supplying a 5V Reference Voltage to the  
LTC1404 with the LT1019A-5  
Internal Reference  
drift (equal to the maximum 5ppm/°C of the LT1019A-5)  
and a ±4.215V full scale. If VREF is forced lower than  
2.43V, the REFRDY bit in the serial data output will be  
forced to low.  
The LTC1404 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
trimmedto2.43V. ItisinternallyconnectedtotheDACand  
is available at Pin 3 to provide up to 1mA of current to an  
external load. For minimum code transition noise, the  
reference output should be decoupled with a capacitor to  
filter wideband noise from the reference (10µF tantalum in  
parallel with a 0.1µF ceramic). The VREF pin can be driven  
with a DAC or other means to provide input span adjust-  
ment in bipolar mode. The VREF pin must be driven to at  
least 2.46V to prevent conflict with the internal reference.  
The reference should not be driven to more than 5V.  
Figure 6 shows an LT1360 op amp driving the reference  
pin. Figure 7 shows a typical reference, the LT1019A-5  
connected to the LTC1404. This will provide an improved  
UNIPOLAR / BIPOLAR OPERATION AND ADJUSTMENT  
Figure 8 shows the ideal input/output characteristics for  
theLTC1404. Thecodetransitionsoccurmidwaybetween  
successive integer LSB values (i.e., 0.5LSB, 1.5LSB,  
2.5LSB, … FS – 1.5LSB). The output code is straight  
binary with 1LSB = 4.096V/4096 = 1mV. Figure 9 shows  
the input/output transfer characteristics for the bipolar  
mode in two’s complement format.  
Unipolar Offset and Full-Scale Error Adjustments  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero. Figure  
10a shows the extra components required for full-scale  
error adjustment. Figure 10b shows offset and full-scale  
adjustment. Offset error must be adjusted before full-  
scaleerror.Zerooffsetisachievedbyapplying0.5mV(i.e.,  
0.5LSB) at the input and adjusting the offset trim until the  
LTC1404 output code flickers between 0000 0000 0000  
and 0000 0000 0001. For zero full-scale error, apply an  
analog input of 4.0945V (FS – 1.5LSB or last code transi-  
tion) at the input and adjust R5 until the LTC1404 output  
code flickers between 1111 1111 1110 and 1111 1111  
1111.  
5V  
INPUT RANGE  
V
CC  
A
V
IN  
±0.843 • V  
REF(OUT)  
+
LTC1404  
REF  
V
2.46V  
3Ω  
REF(OUT)  
LT1360  
10µF  
GND  
V
SS  
1404 F06  
–5V  
Figure 6. Driving the V  
with the LT1360 Op Amp  
REF  
1404fa  
13  
LTC1404  
APPLICATIONS INFORMATION  
U
W U U  
R1  
FS  
4.096  
4096  
ANALOG  
INPUT  
1LSB =  
=
10k  
111...111  
111...110  
111...101  
111...100  
4096  
+
0V TO 4.096V  
A
A1  
IN  
R2  
10k  
10k  
R4  
100k  
5V  
R9  
20Ω  
LTC1404  
R5  
4.3k  
UNIPOLAR  
ZERO  
FULL-SCALE  
ADJUST  
000...011  
000...010  
000...001  
000...000  
5V  
R3  
R7  
R8  
10k  
100k  
100k  
0V  
1
LSB  
OFFSET  
ADJUST  
FS – 1LSB  
R6  
400Ω  
INPUT VOLTAGE (V)  
1404 F08  
1404 F10b  
Figure 8. LTC1404 Unipolar Transfer Characteristics  
Figure 10b. LTC1404 Offset and Full-Scale Adjust Circuit  
R1  
10k  
ANALOG  
INPUT  
±2.048V  
+
011...111  
R2  
10k  
BIPOLAR  
ZERO  
011...110  
A1  
A
IN  
R4  
100k  
000...001  
000...000  
111...111  
111...110  
LTC1404  
R5  
4.3k  
FULL-SCALE  
ADJUST  
100...001  
100...000  
5V  
R8  
R3  
R7  
100k  
100k  
20k  
OFFSET  
ADJUST  
–1 0V  
1
R6  
200Ω  
–FS/2  
FS/2 – 1LSB  
LSB  
LSB  
–5V  
INPUT VOLTAGE (V)  
1404 F10c  
1404 F09  
Figure 9. LTC1404 Bipolar Transfer Characteristics  
Figure 10c. LTC1404 Bipolar Offset and Full-Scale Adjust Circuit  
R1  
50  
+
V
IN  
Bipolar Offset and Full-Scale Error Adjustments  
A1  
A
IN  
Bipolaroffsetandfull-scaleerrorsareadjustedinasimilar  
fashion to the unipolar case. Bipolar offset error adjust-  
ment is achieved by applying an input voltage of 0.5mV  
(0.5LSB) to the input in Figure 10c and adjusting the op  
ampuntiltheADCoutputcodeflickersbetween00000000  
0000 and 1111 1111 1111. For full-scale adjustment, an  
input voltage of 2.0465V (FS – 1.5LSBs) is applied to the  
input and R5 is adjusted until the output code flickers  
between 0111 1111 1110 and 0111 1111 1111.  
R4  
R2  
100Ω  
10k  
LTC1404  
R3  
10k  
FULL-SCALE  
ADJUST  
GND  
ADDITIONAL PINS OMITTED FOR CLARITY  
1404 F10a  
±20LSB TRIM RANGE  
Figure 10a. LTC1404 Full-Scale Adjust Circuit  
1404fa  
14  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
BOARD LAYOUT AND BYPASSING  
Figure 11 shows the recommended system ground con-  
nections. All analog circuitry grounds should be termi-  
natedattheLTC1404GNDpin.Thegroundreturnfromthe  
LTC1404 Pin 4 to the power supply should be low imped-  
ance for noise free operation. Digital circuitry grounds  
must be connected to the digital supply common. As an  
alternative,insteadofadirectshortbetweenthedigitaland  
analog circuitry, a 10or a ferrite bead jumper helps  
reduce the digital noise.  
To obtain the best performance from the LTC1404, a  
printed circuit board is required. Layout for the printed  
circuit board should ensure that digital and analog signal  
linesareseparatedasmuchaspossible. Inparticular, care  
should be taken not to run any digital traces alongside an  
analog signal trace or underneath the ADC. The analog  
input should be screened by GND.  
High quality 10µF surface mount AVX capacitor with a  
0.1µF ceramic should be used at the VCC, VSS and VREF  
pins.Forbetterresults,another10µFAVXcapacitorcanbe  
added to the VCC pin. At 600ksps, the CLK frequency can  
be as high as 9.6MHz. A poor quality capacitor can lose  
more than 80% of its capacitance at this frequency range.  
Therefore, it is important to consult the manufacturer’s  
data sheet before the capacitor is used. For the LTC1404,  
at 600ksps, every bit decision must be determined within  
104ns (9.6MHz). During this short time interval, the  
supply disturbance due to a CLK transition needs to settle.  
The ADC must update its DAC, make a comparator deci-  
sion based on sub-mV overdrive, latch the new DAC  
information and output the serial data. This ADC provides  
one power supply, VCC, which is connected to both the  
internal analog and digital circuitry. Any ringing due to  
poor supply or reference bypassing, inductive trace runs,  
CLK and CONV over- or undershoot, or unnecessary DOUT  
loading can cause ADC errors. Therefore, the bypass  
capacitorsmustbelocatedasclosetothepinsaspossible.  
The traces connecting the pins and the bypass capacitors  
must be kept short and should be made as wide as  
possible. In unipolar mode operation, VSS must be con-  
nected to the GND pin directly.  
ANALOG SUPPLY  
GND  
DIGITAL SUPPLY  
–5V  
5V  
GND  
5V  
+
+
+
V
GND  
V
GND  
V
CC  
SS  
CC  
LTC1404  
DIGITAL CIRCUITRY  
1404 F11  
Figure 11. Power Supply Connection  
In applications where the ADC data outputs and control  
signals are connected to a continuously active micropro-  
cessor bus, it is possible to get errors in the conversion  
results. These errors are due to feedthrough from the  
microprocessor to the successive approximation com-  
parator. The problem can be eliminated by forcing the  
microprocessor into a Wait state during conversion or by  
using three-state buffers to isolate the ADC data bus.  
Input signal leads to AIN and signal return leads from GND  
(Pin 4) should be kept as short as possible to minimize  
noise coupling. In applications where this is not possible,  
a shielded cable between the analog input signal and the  
ADC is recommended. Also, any potential difference in  
grounds between the analog signal and the ADC appears  
as an error voltage in series with the analog input signal.  
Attention should be paid to reducing the ground circuit  
impedance as much as possible.  
Power-Down Mode  
Upon power-up, the LTC1404 is initialized to the active  
stateandisreadyforconversion.However,thechipcanbe  
easily placed into Nap or Sleep mode by exercising the  
right combination of CLK and CONV signals. In Nap mode,  
all power is off except for the internal reference, which is  
still active and provides 2.43V output voltage to the other  
circuitry. In this mode, the ADC draws only 7.5mW of  
power instead of 75mW (for minimum power, the logic  
1404fa  
15  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
version will result in an all-zero output code, including the  
REFRDY bit. If no conversion is attempted, the DOUT pin  
remains in a high impedance state. If the ADC wakes from  
Sleep mode, this can be determined by monitoring the  
state of the REFRDY bit at the DOUT pin.  
inputs must be within 500mV of the supply rails). In Sleep  
mode, power consumption is reduced to 60µW by cutting  
off power to all internal circuitry including the reference.  
Figure 12 illustrates power-down modes for the LTC1404.  
The chip enters Nap mode by keeping the CLK signal low  
and pulsing the CONV signal twice. For Sleep mode  
operation, the CONV signal should be pulsed four times  
while CLK is kept low. Nap and Sleep modes are activated  
on the falling edge of the CONV pulse.  
DIGITAL INTERFACE  
The digital interface requires only three digital lines. CLK  
and CONV are both inputs, and the DOUT output provides  
the conversion result in serial form.  
The LTC1404 returns to active mode easily. The rising  
edge of CLK wakes up the LTC1404. From Nap mode,  
wake-up occurs within 350ns. During the transition from  
Sleepmodetoactivemode,theVREF voltageramp-uptime  
is a function of its loading conditions. With a 10µF bypass  
capacitor, the wake-up time from Sleep mode is typically  
2.5ms. A REFRDY signal is activated once the reference  
has settled and is ready for an A/D conversion. This  
REFRDY bit is sent to the DOUT pin as the first bit followed  
by the 12-bit data word (refer to Figure 13). To save power  
during wake-up from Sleep mode, the chip is designed to  
enter Nap mode automatically until the reference is ready.  
Once REFRDY goes high, the comparator powers up  
immediately and is ready for a conversion. During the Nap  
interval, any attempt to perform an analog-to-digital con-  
Figure13showsthedigitaltimingdiagramoftheLTC1404  
during the A/D conversion. The CONV rising edge starts  
the conversion. Once initiated, it can not be restarted until  
the conversion is completed. If the time from CONV signal  
to CLK rising edge is less than t2, the digital output will be  
delayed by one clock cycle.  
The digital output data is updated on the rising edge of the  
CLK line. The digital output data consists of a REFRDY bit  
followed by a valid 12-bit data word. DOUT data should be  
captured by the receiving system on the rising CLK edge.  
Data remains valid for a minimum time of t10 after the  
rising CLK edge to allow capture to occur.  
t
t
1
1
CLK  
t
t
11  
11  
CONV  
NAP  
SLEEP  
V
REF  
REFRDY  
REFRDY = 1  
REFRDY = 0  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
ALL ZERO  
1
0
1
11 10  
D
OUT  
REFRDY BIT+12-BIT  
DATA WORD  
REFRDY BIT  
+12-BIT  
DATA WORD  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS.  
REFRDY APPEARS AS THE FIRST BIT IN THE D  
WORD  
OUT  
1404 F12  
Figure 12. Nap Mode and Sleep Mode Waveforms  
1404fa  
16  
LTC1404  
U
W U U  
APPLICATIONS INFORMATION  
t
2
t
7
t
3
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
1
2
14  
CLK  
t
4
t
5
CONV  
t
6
t
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
8
Hi-Z  
Hi-Z  
D
OUT  
REFRDY D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REFRDY  
REFRDY BIT + 12-BIT DATA WORD  
t
CONV  
1404 F13  
t
SAMPLE  
Figure 13. ADC Digital Timing Diagram  
CLK  
CLK  
V
V
IH  
IH  
t
8
t
9
t
10  
V
V
90%  
10%  
OH  
OL  
D
D
OUT  
OUT  
1404 F14  
Figure 14. CLK to D  
Delay  
OUT  
1404fa  
17  
LTC1404  
U
TYPICAL APPLICATIONS  
Hardware Interface to the TMS320C50’s TDM Serial Port (Frame Sync is Generated from TFSX)  
7.8MHz  
TMS320C50-40MHZ  
EXTERNAL CLOCK  
5V  
TCLKX  
TCLKR  
TFSX  
1
2
6
V
A
CLK  
CC  
7
UNIPOLAR  
INPUT  
+
CONV  
TFSR  
IN  
0.1µF  
10µF  
LTC1404  
5
3
TDR  
V
V
D
REF  
OUT  
+
GND  
4
SS  
8
0.1µF  
10µF  
1404 TA04a  
Logic Analyzer Waveforms Show 2.05µs Throughput Rate (Input Voltage = 1.606V, Output Code = 0110 0100 0110 = 1606 )  
10  
1404T A04B  
NOTE: THE TMS320C50-40MHz HAS A LIMITED SERIAL PORT CLOCK SPEED OF 7.8MHz. TO ALLOW THE LTC1404 TO RUN AT  
ITS MAXIMUM SPEED OF 9.6MHz, THE TMS320C50-57 OR TMS320C50-80MHz IS NEEDED  
Data from the LTC1404 Loaded into the TMS320C50’s TRCV Register  
X
D10 D9  
D7 D6 D5 D4 D3  
D2  
D1 D0  
X
X
RDY D11  
D8  
1404 TA04c  
Data Stored in the TMS320C50’s Memory (in Right Justified Format)  
0
RDY D11 D9 D8 D7 D6 D5  
D10  
D4  
D3 D2 D1 D0  
0
0
1404 TA04d  
1404fa  
18  
LTC1404  
U
TYPICAL APPLICATIONS  
TMS320C50 Code for Circuit  
THIS PROGRAM DEMONSTRATES THE LTC1404 INTERFACE TO THE  
TMS320C50. FRAME SYNC PULSE IS GENERATED FROM TFSX.  
DATA SHIFT CLOCK IS EXTERNALLY GENERATED.  
*Start Serial Communication*  
SACL TDXR  
SPLK #040h, IMR  
CLRC INTM  
; Generate frame sync pulse  
; Turn on TRNT receiver interrupt  
; Enable interrupt  
*Initialization*  
CLRC SXM  
; For Unipolar input, set for right shift  
.mmregs  
; Defines global symbolic names  
; with no sign extension  
;- - Initialized data memory to zero  
MAR *, AR7  
LAR AR7, #0F00h  
; Load the auxiliary register pointer with seven  
.ds  
0F00h  
; Initialize data to zero  
; Load the auxiliary register seven with #0F00h  
DATA0 .word  
DATA1 .word  
DATA2 .word  
DATA3 .word  
DATA4 .word  
DATA5 .word  
0
0
0
0
0
0
; Begin sample data location  
; as the begin address for data storage  
; .  
WAIT:  
NOP  
NOP  
; Wait for a receive interrupt  
; Location of data  
;
;
; .  
; .  
NOP  
SACL TDXR  
B
; !! Regenerate the frame sync pulse  
;
; End sample data location  
WAIT  
;- - Set up the ISR vector  
; - - - - - - - end of main program - - - - - - - - - - ;  
.ps  
B
080Ah  
; Serial ports interrupts  
rint :  
xint :  
trnt :  
txnt :  
RECEIVE  
TRANSMIT  
TREC  
; 0A;  
; 0C;  
; 0E;  
; 10;  
*Receiver Interrupt Service Routine*  
TREC:  
B
B
B
LAMM TRCV  
SFR  
; Load the data received from LTC1404  
TTRANX  
; Shift right two times  
;- - Setup the reset vector  
.ps 0A00h  
.entry  
START:  
SFR  
;
AND #1FFFh, 0  
; ANDed with #1FFFh  
; For converting the data to right  
; justified format  
;
*TMS320C50 Initialization*  
SETC INTM  
SACL *+, 0  
; Write to data memory pointed by AR7 and  
; increase the memory address by one  
;
; Temporarily disable all interrupts  
; Set data page pointer to zero  
LDP #0  
LACC AR7  
SUB #0F05h,0  
OPL #0834h, PMST ; Set up the PMST status and control register  
LACC #0  
; Compare to end sample address #0F05h  
BCND END_TRCV, GEQ ; If the end sample address has exceeded jump  
SAMMCWSR  
SAMMPDWSR  
; Set software wait state to 0  
;
to END_TRCV  
;
; Else Re-enable the TRNT receive interrupt  
; Return to main program and enable interrupt  
*Configure Serial Port*  
SPLK #040h, IMR  
RETE  
SPLK #0028h, TSPC ; Set TDM Serial Port  
; TDM = 0 Stand Alone mode  
*After Obtained the Data from LTC1404, Program Jump to END_TRCV*  
END_TRCV:  
; DLB=0 Not loop back  
; FO=0 16 Bits  
SPLK #002h, IMR  
CLRC INTM  
; Enable INT2 for program to halt  
; FSM=1 Burst Mode  
; MCM=0 CLKR is generated externally  
; TXM=1 FSX as output pin  
; Put serial port into reset  
SUCCESS:  
B
SUCCESS  
; (XRST=RRST=0)  
*Fill the Unused Interrupt with RETE, to avoid program get “lost”*  
SPLK #00E8h, TSPC ; Take Serial Port out of reset  
; (XRST=RRST=1)  
TTRANX:  
RETE  
RECEIVE:  
RETE  
TRANSMIT:  
RETE  
SPLK #0FFFFh, IFR  
; Clear all the pending interrupts  
INT2:  
B halt  
; Halts the running CPU  
1404fa  
19  
LTC1404  
TYPICAL APPLICATIONS  
U
LTC1404 Interface to the ADSP2181’s SPORT0 (Frame Sync is Generated from RFS0)  
9.6MHz  
EXTERNAL CLOCK  
ADSP2181  
SCLKO  
5V  
1
2
6
7
CLK  
V
A
CC  
IN  
UNIPOLAR  
INPUT  
+
CONV  
RFSO  
DR0  
10µF  
0.1µF  
LTC1404  
3
5
V
V
D
REF  
OUT  
+
GND  
SS  
8
0.1µF  
10µF  
4
1404 TA05a  
Logic Analyzer Waveforms Show 1.67µs Throughput Rate (Input Voltage = 1.604V, Output Code = 0110 0100 0100 = 1604 )  
10  
1404 TA05b  
NOTE: WITHOUT THE EXTERNAL CLOCKING SIGNAL, THE ADSP2181 SCLK0 CAN BE PROGRAMMED TO RUN AT 8.3MHz  
Data from the LTC1404 (Normal Mode)  
X
D10 D9  
D7 D6 D5 D4 D3  
D2  
D1 D0  
X
X
RDY D11  
D8  
1404 TA05c  
Data Stored in the ADSP2181’s Memory (Normal Mode, SLEN = D)  
0
RDY D11  
D10  
D9 D8 D7 D6 D5  
D4  
D3 D2 D1  
D0  
0
0
1404 TA05d  
1404fa  
20  
LTC1404  
U
TYPICAL APPLICATIONS  
ADSP2181 Code for Circuit  
THIS PROGRAM DEMONSTRATES THE LTC1404 INTERFACE TO  
THE ADSP-2181. FRAME SYNC PULSE IS GENERATED FROM RFS.  
DATA SHIFT CLOCK IS EXTERNALLY GENERATED.  
/*Section 3: configure CLKDIV and RFSDIV, setup interrupts*/  
/*Using an external clock source=9.6MHz*/  
/*Does not need to configure CLKDIV*/  
/*to Configure RFSDIV*/  
/*Section 1: Initialization*/  
ax0 = 15;  
/*set the RFSDIV reg = 15*/  
/*=> the frame sync pulse for every 16 SCLK*/  
/*if frame sync pulse in every 15 SCLK, ax0=14*/  
.module/ram/abs = 0 adspltc; /*define the program module*/  
jump start;  
/*jump over interrupt vectors*/  
nop; nop; nop;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
ax0 = rx0;  
dm(0x3FF4) =ax0;  
/*to setup interrupt*/  
ifc= 0x0066;  
/*code vectors here upon IRQ2 int*/  
/*code vectors here upon IRQL1 int*/  
/*code vectors here upon IRQL0 int*/  
/*code vectors here upon SPORT0 TX int*/  
/*Section 5*/  
/*clear any extraneous SPORT interrupts*/  
/*IRQXB = level sensitivity*/  
icntl= 0;  
/*disable nesting interrupt*/  
imask= 0x0020;  
/*bit 0 = timer int = 0*/  
dm (0x2000) = ax0; /*begin of SPORT0 receive interrupt*/  
/*bit 1 = SPORT1 or IRQ0B int = 0*/  
/*bit 2 = SPORT1 or IRQ1B int = 0*/  
/*bit 3 = BDMA int = 0*/  
rti;  
/* */  
/* */  
/*end of SPORT0 receive interrupt*/  
/*code vectors here upon /IRQE int*/  
/*code vectors here upon BDMA interrupt*/  
/*code vectors here upon SPORT1 TX (IRQ1) int*/  
/*code vectors here upon SPORT1 RX (IRQ0) int*/  
/*code vectors here upon TIMER int*/  
/*code vectors here upon POWER DOWN int*/  
/*bit 4 = IRQEB int = 0*/  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
rti; rti; rti; rti;  
/*bit 5 = SPORT0 receive int = 1*/  
/*bit 6 = SPORT0 transmit int = 0*/  
/*bit 7 = IRQ2B int = 0*/  
/*enable SPORT0 receive interrupt*/  
/*Section 4: Configure System Control Register and Start Communication*/  
/*to configure system control reg*/  
/*Section 2: Configure SPORT0*/  
start:  
/*to configure SPORT0 control reg*/  
ax0 = dm(0x3FFF);  
ay0 = 0xFFF0;  
/*read the system control reg*/  
ar = ax0 AND ay0;  
ay0 = 0x1000;  
/*set wait state to zero*/  
/*SPORT0 address = 0X3FF6*/  
/*RFS is used for frame sync generation*/  
/*RFS is internal, TFS is not used*/  
/*bit 0-3 = Slen*/  
ar = ar OR ay0;  
dm(0x3FFF) = ar;  
/*bit 12 = 1, enable SPORT0*/  
/*frame sync pulse regenerated automatically*/  
/*F = 15 = 1111*/  
cntr = 5000;  
/*E = 14 = 1110*/  
do waitloop until ce;  
/*D = 13 = 1101*/  
nop;  
nop;  
/*bit 4,5 data type right justified zero filled MSB*/  
/*bit 6 INVRFS = 0*/  
nop;  
/*bit 7 INVTFS = 0*/  
nop;  
/*bit 8 IRFS=1 receive internal frame sync*/  
/*bit 9,10,11 are for TFS (don’t care)*/  
/*bit 12 RFSW=0 receive is Normal mode*/  
/*bit 13 RTFS=1 receive is framed mode*/  
/*bit 14 ISCLK=0 SCLK is external */  
/*bit 15 multichannel mode = 0*/  
/*normal mode, bit 12=0*/  
nop;  
nop;  
waitloop: nop;  
rts;  
.endmod;  
ax0 = 0x2F0D;  
/*if alternate mode bit 12=1, ax0=0x3F0E*/  
dm (0x3FF6) =ax0;  
1404fa  
21  
LTC1404  
TYPICAL APPLICATIONS  
U
Quick Look Circuit for Converting Data to Parallel Format  
5V  
1
8
V
V
CC  
SS  
5V  
+
CONV  
10µF  
0.1µF  
10  
SRCLR  
LTC1404  
7
6
5
12  
11  
14  
13  
15  
1
2
3
4
5
6
7
9
CONV  
CLK  
QA  
QB  
QC  
QD  
QE  
RCK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
ANALOG INPUT  
(0V TO 4.096V)  
2
3
A
V
IN  
2.43V  
REFERENCE  
OUTPUT  
SRCK  
74HC595  
REF  
+
4
GND  
D
OUT  
SER  
10µF  
0.1µF  
QF  
G
QG  
QH  
QH'  
3-WIRE SERIAL  
INTERFACE LINK  
10  
SRCLR  
12  
11  
14  
13  
15  
1
2
3
4
5
6
7
9
RCK  
QA  
QB  
QC  
QD  
QE  
D8  
D9  
D10  
D11  
REFRDY  
SRCK  
74HC595  
CLK  
SER  
QF  
G
QG  
QH  
QH'  
1404 TA03  
1404fa  
22  
LTC1404  
U
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1404fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1404  
TYPICAL APPLICATIONS  
U
LTC1404 Interface to TMS320C50 Running at 5MHz without External Clock  
TMS320C50  
5V  
TCLKX  
TCLKR  
TFSX  
1
2
6
7
V
A
CLK  
CC  
UNIPOLAR  
INPUT  
+
CONV  
LTC1404  
TFSR  
IN  
0.1µF  
10µF  
5
3
TDR  
V
V
D
OUT  
REF  
+
GND  
4
SS  
8
0.1µF  
10µF  
1404 TA07  
LTC1404 Interface to ADSP2181 Running at 8.3MHz without External Clock  
ADSP2181  
5V  
1
2
6
7
SCLKO  
CLK  
V
A
CC  
IN  
(8.3MHz)  
UNIPOLAR  
INPUT  
+
CONV  
LTC1404  
RFSO  
10µF  
0.1µF  
3
5
DR0  
V
V
D
REF  
OUT  
+
GND  
SS  
8
0.1µF  
10µF  
4
1404 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1285/LTC1288  
LTC1286/LTC1298  
LTC1290  
12-Bit, 3V, 7.5/6.6ksps, Micropower Serial ADCs  
0.48mW, 1-/2-Channel Input, SO-8  
12-Bit, 5V, 12.5/11.16ksps, Micropower Serial ADCs  
12-Bit, 50ksps 8-Channel Serial ADC  
12-Bit, 46.5ksps 8-Channel Serial ADC  
12-/14-Bit 2.8Msps Serial ADCs  
1.25mW, 1-/2-Channel Input, SO-8  
5V or ±5V Input Range, 30mW, Full-Duplex  
5V or ±5V Input Range, 30mW, Half-Duplex  
3V, 15mW, MSOP-10 Package, Unipolar Input  
3V, 15mW, MSOP-10 Package, Bipolar Input  
3V, 14mW, 2-Channel Unipolar Differential Inputs, MSOP-10  
3V, 14mW, 2-Channel Bipolar Differential Inputs, MSOP-10  
5V or ±5V, 20mW, Internal Reference, SSOP-16  
5V, Configurable Bipolar or Unipolar Inputs to ±10V  
1.22mW, 1-/2-Channel Input, MSOP-8 and SO-8  
4.25mW, 1-/2-Channel Input, MSOP-8 and SO-8  
1.22mW, 1-/2-Channel Input, MSOP-8 and SO-8  
4.25mW, 1-/2-Channel Input, MSOP-8 and SO-8  
LTC1296  
LTC1403/LTC1403A  
LTC1403-1/LTC1403A-1  
LTC1407/LTC1407A  
LTC1407-1/LTC1407A-1  
LTC1417  
12-/14-Bit, 2.8Msps Serial ADCs  
12-/14-Bit, 3Msps Simultaneous Sampling ADCs  
12-/14-Bit, 3Msps Simultaneous Sampling ADCs  
14-Bit, 400ksps Serial ADC  
LTC1609  
16-Bit, 200ksps Serial ADC  
LTC1860L/LTC1861L  
LTC1860/LTC1861  
LTC1864L/LTC1865L  
LTC1864/LTC1865  
12-Bit, 3V, 150ksps Serial ADCs  
12-Bit, 5V, 250ksps Serial ADCs  
16-Bit, 3V, 150ksps Serial ADCs  
16-Bit, 5V, 250ksps Serial ADCs  
1404fa  
LT 0506 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 1998  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1404CS8#TRPBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1404I

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404IS8

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404IS8#PBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1404IS8#TR

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1404IS8#TRPBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1405

12-Bit, 5Msps, Sampling ADC
Linear

LTC1405C

12-Bit, 5Msps, Sampling ADC
Linear

LTC1405CGN

12-Bit, 5Msps, Sampling ADC
Linear

LTC1405CGN#PBF

LTC1405 - 12-Bit, 5Msps, Sampling ADC; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1405CGN#TR

LTC1405 - 12-Bit, 5Msps, Sampling ADC; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1405CGN#TRPBF

LTC1405 - 12-Bit, 5Msps, Sampling ADC; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear