LTC1414CGN#TRPBF [Linear]

LTC1414 - 14-Bit, 2.2 Msps,Sampling A/D Converter; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C;
LTC1414CGN#TRPBF
型号: LTC1414CGN#TRPBF
厂家: Linear    Linear
描述:

LTC1414 - 14-Bit, 2.2 Msps,Sampling A/D Converter; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总20页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1414  
14-Bit, 2.2Msps,  
Sampling A/D Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®1414 is a 14-bit, 2.2Msps, sampling A/D con-  
verter which draws only 175mW from ±5V supplies. This  
high performance ADC includes a high dynamic range  
sample-and-hold, a precision reference and requires no  
external components.  
Sample Rate: 2.2Msps  
Outstanding Spectral Purity:  
80dB S/(N + D) and 95dB SFDR at 100kHz  
78dB S/(N + D) and 84dB SFDR at Nyquist  
Ultralow Distortion with Single-Ended or  
Differential Inputs  
The LTC1414’s high performance sample-and-hold has a  
full-scale input range of ±2.5V. Outstanding AC perfor-  
mance includes 80dB S/(N + D) and 95dB SFDR with a  
100kHzinput.TheperformanceremainshighattheNyquist  
input frequency of 1.1MHz with 78dB S/(N + D) and 84dB  
SFDR.  
±2.5V Bipolar Input Range Eliminates Level Shifting  
and Rail-to-Rail Op Amp Requirements  
Easy Hookup for External or Internal Reference  
No Pipeline Delay  
Power Dissipation: 175mW on ±5V Supplies  
28-Pin Narrow SSOP Package  
Theuniquedifferentialinputsample-and-holdcanacquire  
single-ended or differential input signals up to its 40MHz  
bandwidth. The 70dB common mode rejection can elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signal differentially from the source  
U
APPLICATIO S  
Telecommunications  
Digital Signal Processing  
Multiplexed Data Acquisition Systems  
High Speed Data Acquisition  
Spectrum Analysis  
Imaging Systems  
The ADC has a microprocessor compatible, 14-bit parallel  
output port. There is no pipline delay in the conversion  
results.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
OPTIONAL 3V  
LOGIC SUPPLY  
5V  
Effective Bits and Signal-to-Noise + Distortion  
vs Input Frequency  
10µF  
14  
13  
12  
11  
10  
9
86  
80  
74  
68  
AV  
DV  
OV  
DD  
DD  
DD  
LTC1414  
S/H  
+
A
A
D13 (MSB)  
D0 (LSB)  
IN  
14  
OUTPUT  
BUFFERS  
14-BIT ADC  
8
IN  
7
4.0625V  
BUFFER  
6
COMP  
5
10µF  
4
2k  
BUSY  
3
f
= 2.2MHz  
2.5V  
REFERENCE  
TIMING AND  
LOGIC  
SAMPLE  
V
REF  
2
CONVST  
1k  
10k  
100k  
1M  
10M  
1µF  
INPUT FREQUENCY (Hz)  
V
SS  
AGND  
OGND  
DGND  
1414 TA02  
1414 TA01  
10µF  
5V  
1
LTC1414  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
AVDD = OVDD = DVDD = VDD (Notes 1, 2)  
TOP VIEW  
ORDER PART  
Supply Voltage (VDD)................................................. 6V  
Negative Supply Voltage (VSS) ................................ 6V  
Total Supply Voltage (VDD to VSS) .......................... 12V  
Analog Input Voltage  
(Note 3) ......................... (VSS – 0.3V) to (VDD + 0.3V)  
Digital Input Voltage (Note 4) ..........(VSS – 0.3V) to 10V  
Digital Output Voltage........ (VSS – 0.3V) to (VDD + 0.3V)  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1414C ............................................... 0°C to 70°C  
LTC1414I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
+
NUMBER  
1
2
AV  
DD  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A
A
IN  
IN  
AGND  
LTC1414CGN  
LTC1414IGN  
3
V
V
SS  
REF  
4
BUSY  
REFCOMP  
AGND  
D13 (MSB)  
D12  
5
CONVST  
DGND  
6
7
DV  
DD  
8
OV  
DD  
D11  
9
D0  
D1  
D2  
D3  
D10  
10  
11  
12  
13  
14  
D9  
D8  
D7  
16 D4  
D5  
D6  
15  
OGND  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 110°C, θJA = 110°C/ W  
Consult factory for Industrial, Military and A grade parts.  
U
(Notes 5, 6)  
CO VERTER  
CHARACTERISTICS  
LTC1414  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
13  
(Note 7)  
(Note 8)  
±0.75  
±0.75  
±5  
±2.0  
LSB  
±1.75  
LSB  
±20  
±24  
LSB  
LSB  
Full-Scale Error  
Internal Reference  
External Reference = 2.5V  
±10  
±5  
±60  
±25  
LSB  
LSB  
Full-Scale Tempco  
Internal Reference  
External Reference = 2.5V  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
(Note 5)  
A ALOG I PUT  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Input Range  
4.75V V 5.25V, 5.25V V 4.75V  
±2.5  
IN  
DD  
SS  
I
Analog Input Leakage Current  
Analog Input Capacitance  
Between Conversions  
±1  
µA  
IN  
C
Between Conversions  
During Conversions  
8
4
pF  
pF  
IN  
t
t
t
Sample-and-Hold Acquisition Time  
40  
–1  
3
100  
ns  
ns  
ACQ  
AP  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
ps  
jitter  
RMS  
+
CMRR  
2.5V < (A = A ) < 2.5V  
70  
dB  
IN  
IN  
2
LTC1414  
W
U
(Note 5)  
DY  
A IC  
ACCURACY  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
100kHz Input Signal  
1.1MHz Input Signal  
80  
78  
dB  
dB  
THD  
SFDR  
IMD  
Total Harmonic Distortion  
100kHz Input Signal, First 5 Harmonics  
1.1MHz Input Signal, First 5 Harmonics  
95  
83  
dB  
dB  
Spurious Free Dynamic Range  
100kHz Input Signal, First 5 Harmonics  
1.1MHz Input Signal, First 5 Harmonics  
95  
84  
dB  
dB  
Intermodulation Distortion  
Full Power Bandwidth  
Full Linear Bandwidth  
f
= 29.37kHz, f = 32.446kHz  
86  
40  
3
dB  
MHz  
MHz  
IN1  
IN2  
S/(N + D) 74dB  
U U  
U
(Note 5)  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.500  
±15  
MAX  
UNITS  
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
I
I
= 0  
= 0  
2.480  
2.520  
REF  
REF  
REF  
OUT  
OUT  
ppm/°C  
4.75V V 5.25V  
5.25V V 4.75V  
0.01  
0.01  
LSB/V  
LSB/V  
DD  
SS  
V
Output Resistance  
I
0.1mA  
OUT  
2
kΩ  
REF  
COMP Output Voltage  
I
= 0  
4.06  
V
OUT  
U
U
(Note 5)  
DIGITAL I PUTS AND OUTPUTS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
1.2  
IN  
V
V
= 4.75V, I = 10µA  
= 4.75V, I = 200µA  
4.74  
V
V
OH  
DD  
DD  
O
O
4.0  
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160µA  
= 4.75V, I = 1.6mA  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
O
0.4  
I
I
Output Source Current  
Output Sink Current  
V
V
= 0V  
10  
10  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
= V  
DD  
U
W
(Note 5)  
POWER REQUIRE E TS  
SYMBOL PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
TYP  
MAX  
UNITS  
V
V
DD  
V
SS  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
4.75  
5.25  
5.25  
16  
(Note 9)  
4.75  
V
I
I
CS High  
12  
23  
mA  
mA  
mW  
DD  
SS  
CS High  
30  
P
D
175  
230  
3
LTC1414  
W U  
(Note 5)  
TI I G CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.2  
TYP  
MAX  
UNITS  
MHz  
ns  
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SAMPLE(MAX)  
220  
330  
40  
400  
100  
454  
CONV  
Acquisition Time  
ns  
ACQ  
Throughput Time (Acquisition + Conversion)  
CONVST to BUSY Delay  
Data Ready Before BUSY↑  
Delay Between Conversions  
CONVST Low Time  
370  
10  
ns  
THROUGHPUT  
C = 25pF  
L
ns  
1
2
3
4
5
6
±20  
ns  
(Note 9)  
100  
40  
ns  
(Note 10)  
(Note 10)  
ns  
CONVST High Time  
40  
ns  
Aperture Delay of Sample-and-Hold  
–1  
ns  
Note 6: Linearity, offset and full-scale specifications apply for a single-  
The  
denotes specifications which apply over the full operating  
+
ended A input with A grounded.  
temperature range; all other limits and typicals T = 25°C.  
IN  
IN  
A
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with DGND and  
Note 8: Bipolar offset is the offset voltage measured from 0.5LSB  
when the output code flickers between 0000 0000 0000 00 and  
1111 1111 1111 11.  
AGND wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below V or above V , they  
will be clamped by internal diodes. This product can handle input currents  
SS  
DD  
Note 9: Recommended operating conditions.  
greater than 100mA below V or above V without latchup.  
SS  
DD  
Note 10: The falling CONVST edge starts a conversion. If CONVST returns  
high at a critical point during the conversion it can create small errors. For  
best results ensure that CONVST returns high either within 225ns after the  
start of the conversion or after BUSY rises.  
Note 4: When these pin voltages are taken below V , they will be clamped  
by internal diodes. This product can handle input currents greater than  
SS  
100mA below V without latchup. These pins are not clamped to V  
.
SS  
DD  
Note 5: V = 5V, V = 5V, f  
= 2.2MHz and t = t = 5ns unless  
r f  
DD  
SS  
SAMPLE  
otherwise specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Signal-to-Noise Ratio vs Input  
Frequency  
S/(N + D) vs Input Frequency  
Distortion vs Input Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
14  
13  
12  
11  
10  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
86  
80  
74  
68  
8
THD  
7
6
5
3rd  
4
2nd  
3
f
= 2.2MHz  
10k  
SAMPLE  
2
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
1k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1414 TA02  
1414 G03  
1414 G02  
4
LTC1414  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Spurious-Free Dynamic Range vs  
Differential Nonlinearity vs  
Output Code  
Input Frequency  
Intermodulation Distortion Plot  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2.0  
1.0  
0
–20  
f
f
f
= 2.2MHz  
= 80.566kHz  
= 97.753kHz  
SAMPLE  
IN1  
IN2  
–40  
0
–60  
–80  
–1.0  
–2.0  
–100  
–120  
10k  
100k  
1M  
10M  
0
4096  
8192  
OUTPUT CODE  
12288  
16384  
0
200  
400  
600  
800  
1000  
INPUT FREQUENCY (Hz)  
FREQUENCY (kHz)  
1414 G04  
1414 G06  
1414 F05a  
Integral Nonlinearity vs Output  
Code  
Power Supply Feedthrough vs  
Ripple Frequency  
Input Common Mode Rejection vs  
Input Frequency  
2.0  
1.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
V
V
(V  
= 0.02V)  
= 0.2V)  
SS RIPPLE  
(V  
DD RIPPLE  
OGND (V  
DD RIPPLE  
= 0.5V)  
= 0.5V)  
RIPPLE  
OV (V  
–40  
0
–60  
–80  
–1.0  
–2.0  
–100  
–120  
0
4096  
8192  
12288  
16384  
1k  
10k  
100k  
1M  
10M  
0
2M  
4M  
6M  
8M  
10M  
INPUT FREQUENCY (Hz)  
OUTPUT CODE  
RIPPLE FREQUENCY (Hz)  
1414 G07  
LTC1414 • F12  
1414 G08  
U
U
U
PIN FUNCTIONS  
+
AIN (Pin 1): Positive Analog Input. ±2.5V input range  
OGND (Pin 14): Digital Ground for the Output Drivers. Tie  
to AGND  
whenAINisgrounded. ±2.5VdifferentialifAINisdriven  
+
differentially with AIN  
.
D5 to D0 (Pins 15 to 20): Data Outputs.  
AIN (Pin 2): Negative Analog Input. Can be grounded or  
OVDD (Pin21):PositiveSupplyfortheOutputDrivers. Tie  
toPin28whendriving5Vlogic. For3Vlogic, tietosupply  
of the logic being driven.  
+
driven differentially with AIN  
.
VREF (Pin 3): 2.5V Reference Output.  
REFCOMP (Pin 4): 4.06V Reference Bypass Pin.  
Bypass to AGND with 10µF ceramic or 10µF tantalum in  
parallel with 0.1µF ceramic.  
DVDD (Pin 22): 5V Positive Supply. Tie to Pin 28.  
DGND (Pin 23): Digital Ground. Tie to AGND.  
CONVST(Pin24):ConversionStartSignal.Thisactivelow  
signal starts a conversion on its falling edge.  
AGND (Pin 5): Analog Ground.  
D13 to D6 (Pins 6 to 13): Data Outputs.  
5
LTC1414  
U
U
U
PIN FUNCTIONS  
BUSY (Pin 25): The BUSY Output Shows the Converter  
AGND (Pin 27): Analog Ground.  
Status. It is low when a conversion is in progress.  
AVDD (Pin 28): 5V Positive Supply. Bypass to AGND with  
10µF ceramic or 10µF tantalum in parallel with 0.1µF  
ceramic.  
V
SS (Pin 26): 5V Negative Supply. Bypass to AGND with  
10µF ceramic or 10µF tantalum in parallel with 0.1µF  
ceramic.  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
C
SAMPLE  
+
A
IN  
AV  
DD  
SAMPLE  
DV  
DD  
A
IN  
V
SS  
2k  
ZEROING SWITCHES  
V
2.5V REF  
REF  
+
REF AMP  
COMP  
14-BIT CAPACITIVE DAC  
REFCOMP  
(4.06V)  
OV  
DD  
14  
D13  
SUCCESSIVE APPROXIMATION  
REGISTER  
OUTPUT  
LATCHES  
D0  
AGND  
DGND  
OGND  
INTERNAL  
CLOCK  
CONTROL LOGIC  
CONVST  
1414 BD  
BUSY  
W U  
W
TI I G DIAGRA  
t
CONV  
t
t
5
4
CONVST  
BUSY  
t
t
1
3
t
2
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
DATA  
1414 TD  
6
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
CONVERSION DETAILS  
+
C
SAMPLE  
SAMPLE  
SAMPLE  
+
A
A
IN  
ZEROING SWITCHES  
The LTC1414 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 14-bit parallel output. The ADC is  
complete with a precision reference and an internal clock.  
The device is easy to interface with microprocessors and  
DSPs. (Please refer to the Digital Interface section for the  
data format.)  
HOLD  
C
SAMPLE  
HOLD  
HOLD  
IN  
HOLD  
+
C
DAC  
+
C
DAC  
COMP  
+
V
DAC  
Conversion start is controlled by the CONVST input. At the  
start of the conversion the successive approximation  
register(SAR)isreset. Onceaconversioncyclehasbegun  
it cannot be restarted.  
14  
V
DAC  
D13  
OUTPUT  
LATCH  
SAR  
D0  
1414 F01  
Figure 1. Simplified Block Diagram  
During the conversion, the internal differential 14-bit  
capacitive DAC output is sequenced by the SAR from the  
most significant bit (MSB) to the least significant bit  
(LSB). Referring to Figure 1, the AIN+ and AINinputs are  
Signal-to-Noise Ratio  
connected to the sample-and-hold capacitors (CSAMPLE  
)
The signal-to-(noise + distortion) ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 2a shows a typical spectral content with  
a 2.2MHz sampling rate and a 100kHz input. The dynamic  
performance is excellent for input frequencies up to and  
beyond the Nyquist limit of 1.1MHz. (See Figure 2b)  
during the acquire phase, and the comparator offset is  
nulled by the zeroing switches. In this acquire phase, a  
minimum delay of 70ns will provide enough time for the  
sample-and-hold capacitors to acquire the analog signal.  
Duringtheconvertphasethecomparatorzeroingswitches  
open, putting the comparator into compare mode. The  
input switches connect the CSAMPLE capacitors to ground,  
transferring the differential analog input charge onto the  
summingjunction. Thisinputchargeissuccessivelycom-  
pared with the binary-weighted charges supplied by the  
differential capacitive DAC. Bit decisions are made by the  
high speed comparator. At the end of a conversion, the  
differential DAC output balances the AIN+ and AINinput  
charges. The SAR contents (a 14-bit data word) which  
represents the difference of AIN+ and AINare loaded into  
the 14-bit output latches.  
0
SINAD = 80dB  
SFDR = 96dB  
–20  
f
f
= 2.2MHz  
= 97.753kHz  
SAMPLE  
IN  
–40  
–60  
–80  
–100  
–120  
DYNAMIC PERFORMANCE  
The LTC1414 has excellent high speed sampling capabil-  
ity. FFT (Fast Four Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise at  
the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 2 shows a  
typical LTC1414 FFT plot.  
0
200  
400  
600  
800  
1000  
FREQUENCY (kHz)  
1414 F02a  
Figure 2a. LTC1414 Nonaveraged, 2048 Point FFT,  
Input Frequency = 100kHz  
7
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
14  
13  
12  
11  
10  
9
86  
80  
74  
68  
0
SINAD = 78dB  
SFDR = 84dB  
–20  
f
f
= 2.2MHz  
= 997.949kHz  
SAMPLE  
IN  
–40  
–60  
8
7
6
–80  
5
4
–100  
–120  
3
f
= 2.2MHz  
10k  
SAMPLE  
2
1k  
100k  
1M  
10M  
0
200  
400  
600  
800  
1000  
INPUT FREQUENCY (Hz)  
FREQUENCY (kHz)  
1414 TA02  
1414 F02b  
Figure 3. Effective Bits and Signal/(Noise + Distortion)  
vs Input Frequency  
Figure 2b. LTC1414 2048 Point FFT,  
Input Frequency = 1MHz  
0
–10  
–20  
–30  
–40  
Effective Number of Bits  
The effective number of bits (ENOBs) is a measurement of  
the resolution of an ADC and is directly related to the  
S/(N + D) by the equation:  
–50  
THD  
–60  
ENOBS = [S/(N + D) – 1.76]/6.02  
–70  
–80  
2nd  
where S/(N + D) is expressed in dB. At the maximum  
samplingrateof2.2MHztheLTC1414maintainsnearideal  
ENOBsuptotheNyquistinputfrequencyof1.1MHz. Refer  
to Figure 3.  
–90  
3rd  
–100  
1
10k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
1414 F04  
Figure 4. Distortion vs Input Frequency  
Total Harmonic Distortion  
Intermodulation Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
the THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
2
2
2
2
V + V + V +V  
N
2
3
4
THD = 20log  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3  
etc. Forexample, the2ndorderIMDtermsinclude(fa ±fb).  
If the two input sine waves are equal in magnitude, the  
value (in dB) of the 2nd order IMD products can be  
expressed by the following formula:  
V
1
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
secondthrough Nth harmonics. THD vsinputfrequency is  
shown in Figure 4. The LTC1414 has good distortion  
performance up to the Nyquist frequency and beyond.  
8
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
The full-linear bandwidth is the input frequency at which  
the S/(N + D) has dropped to 74dB (12 effective bits). The  
LTC1414 has been designed to optimize input bandwidth,  
allowing the ADC to undersample input signals with fre-  
quencies above the converter’s Nyquist frequency. The  
noise floor stays very low at high frequencies; S/(N + D)  
becomes dominated by distortion at frequencies far be-  
yond Nyquist.  
amplitude at f ± f  
(
)
a
b
IMD f ± f = 20log  
(
)
a
b
amplitude at f  
a
0
f
f
f
= 2.2MHz  
= 80.566kHz  
= 97.753kHz  
SAMPLE  
IN1  
IN2  
–20  
–40  
Driving the Analog Input  
–60  
The differential analog inputs of the LTC1414 are easy to  
drive.Theinputsmaybedrivendifferentiallyorasasingle-  
–80  
endedinput(i.e.,theAIN inputisgrounded).TheAIN+ and  
–100  
–120  
AIN inputs are sampled at the same instant. Any  
unwanted signal that is common mode to both inputs will  
be reduced by the common mode rejection of the sample-  
and-hold circuit. The inputs draw only one small current  
spike while charging the sample-and-hold capacitors at  
the end of conversion. During conversion, the analog  
inputs draw only a small leakage current. If the source  
impedance of the driving circuit is low then the LTC1414  
inputs can be driven directly. As source impedance  
increases so will acquisition time (see Figure 6). For  
minimum acquisition time, with high source impedance, a  
buffer amplifier should be used. The only requirement is  
that the amplifier driving the analog input(s) must settle  
after the small current spike before the next conversion  
starts(settlingtimemustbe70nsforfullthroughputrate).  
0
200  
400  
600  
800  
1000  
FREQUENCY (kHz)  
1414 F05a  
Figure 5a. Intermodulation Distortion Plot  
with Inputs at 80kHz and 97kHz  
0
f
f
f
= 2.2MHz  
SAMPLE  
= 970.019kHz  
= 1.492MHz  
IN1  
IN2  
–20  
–40  
–60  
–80  
–100  
–120  
0
200  
400  
600  
800  
1000  
10  
FREQUENCY (kHz)  
1414 F05b  
Figure 5b. Intermodulation Distortion Plot  
with Input Signals of 1MHz and 1.5MHz  
1
Peak Harmonic or Spurious Noise  
The peak harmonic or spurious noise is the largest spec-  
tral component excluding the input signal and DC. This  
value is expressed in dB relative to the RMS value of a full-  
scale input signal.  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
Full-Power and Full-Linear Bandwidth  
1414 FO6  
The full-power bandwidth is that input frequency at which  
the amplitude of the reconstructed fundamental is re-  
duced by 3db for a full-scale input signal.  
Figure 6. Acquisition Time vs Source Resistance  
9
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
Choosing an Input Amplifier  
AC Coupled Inputs  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (<100) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain of  
1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100. The  
second requirement is that the closed-loop bandwidth  
must be greater than 40MHz to ensure adequate small-  
signal settling for full throughput rate. If slower op amps  
areused, moresettlingtimecanbeprovidedbyincreasing  
the time between conversions.  
InapplicationswhereonlytheACcomponentoftheanalog  
input is important, it may be desirable to AC couple the  
input. This is easily accomplished by DC biasing the  
LTC1414 analog input with a resistor to ground and using  
a coupling capacitor to the input. Figure 7 shows a simple  
AC coupled input circuit for the LTC1414 using only two  
additional components. C1 is a 10µF ceramic capacitor  
and R1 is a 1000resistor to ground. R1 and C1 form a  
highpassfilterwithalowercutofffrequencyof1/2π(C1)R1  
or 15.9Hz.  
C1  
10µF  
1
+
A
ANALOG INPUT  
IN  
R1  
1k  
The best choice for an op amp to drive the LTC1414 will  
depend on the application. Generally applications fall into  
two categories: AC applications where dynamic specifica-  
tionsaremostcriticalandtimedomainapplicationswhere  
DC accuracy and settling time are most critical. The  
followinglistisasummaryoftheopampsthataresuitable  
for driving the LTC1414. More detailed information is  
available in the Linear Technology Databooks and on the  
LinearViewTM CD-ROM.  
2
3
A
V
IN  
LTC1414  
REF  
1µF  
4
5
REFCOMP  
AGND  
10µF  
LTC1414 • F07  
Figure 7. AC Coupled Input  
LT®1223: 100MHz Video Current Feedback Amplifier.  
6mA supply current. ±5V to ±15V supplies. Low noise.  
Good for AC applications.  
Differential Drive  
In some applications the ADC drive circuitry is differential.  
ThedifferentialdrivecanbeapplieddirectlytotheLTC1414  
without any special translation circuitry. Differential drive  
can be advantageous at high frequencies (>1MHz) since it  
provides improved THD and SFDR. Transformers can be  
used to provide AC coupling, input scaling and single  
ended to differential conversion as shown in Figure 8. The  
resistor RS across the secondary will determine the input  
impedance on the primary. The input impedance of the  
primaryRP willberelatedtothesecondaryloadresistorRS  
by the equation  
LT1227:140MHzVideoCurrentFeedbackAmplifier.10mA  
supply current. ±5V to ±15V supplies. Low noise. Best for  
AC applications.  
LT1229/LT1230: Dual and Quad 100MHz Current Feed-  
back Amplifiers. ±2V to ±15V supplies. Low noise. Good  
AC specifications, 6mA supply current each amplifier.  
LT1360: 50MHz Voltage Feedback Amplifier. 3.8mA sup-  
plycurrent.GoodACandDCspecs.±5Vto±15Vsupplies.  
70ns settling to 0.5LSB.  
RP = RS/n2  
LT1363: 70MHz, 1000V/µs Op Amps. 6.3mA supply cur-  
rent. Good AC and DC specifications. 60ns settling to  
0.5LSB.  
For example, if a Minicircuits T4-6T transformer is used,  
the turns ratio is 2; if RS is 200then RP is equal to 50.  
The center tap of the secondary will set the common  
mode voltage and should be grounded for optimal AC  
performance.  
LT1364/LT1365: Dual and Quad 70MHz, 1000V/µs Op  
Amps. 6.3mA supply current per amplifier. 60ns settling  
to 0.5LSB.  
LinearView is a trademark of Linear Technology Corporation.  
10  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
R1  
Input Range  
50  
1:N  
1
+
R
A
P
IN  
C1  
ANALOG  
INPUT  
R
The±2.5VinputrangeoftheLTC1414isoptimizedforlow  
noise and low distortion. Most op amps also perform best  
over this same range, allowing direct coupling to the  
analog inputs and eliminating the need for special transla-  
tion circuitry.  
S
500pF  
2
3
A
V
IN  
R2  
LTC1414  
50Ω  
REF  
1µF  
4
5
REFCOMP  
AGND  
10µF  
Some applications may require other input ranges. The  
LTC1414 differential inputs and reference circuitry can  
accommodate other input ranges often with little or no  
additional circuitry. The following sections describe the  
reference and input circuitry and how they affect the input  
range.  
LTC1414 • F08  
Figure 8. If a Transformer Coupled Input is Required,  
this Circuit Provides a Simple Solution  
Input Filtering  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1414 noise and distortion. The small-signal band-  
width of the sample-and-hold circuit is 40MHz. Any noise  
ordistortionproductsthatarepresentattheanaloginputs  
will be summed over this entire bandwidth. Noisy input  
circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications.  
Internal Reference  
The LTC1414 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference that is factory  
trimmedto2.500V.Itisconnectedinternallytoareference  
amplifier and is available at VREF (Pin 3), see Figure 10. A  
2k resistor is in series with the output so that it can be  
easily overdriven by an external reference or other cir-  
cuitry. The reference amplifier multiplies the voltage at the  
VREF pin by 1.625 to create the required internal reference  
voltage. This provides buffering between the VREF pin and  
the high speed capacitive DAC. The reference amplifier  
compensation pin, REFCOMP (Pin 4) must be bypassed  
with a capacitor to ground. The reference amplifier is  
stable with capacitors of 1µF or greater. For the best noise  
performance, a 10µF ceramic or 10µF tantalum in parallel  
with a 0.1µF ceramic is recommended.  
+
For example, Figure 9 shows a 500pF capacitor from AIN  
to ground and a 100source resistor to limit the input  
bandwidth to 3.2MHz. The 500pF capacitor also acts as a  
charge reservoir for the input sample-and-hold and iso-  
lates the ADC input from sampling glitch-sensitive cir-  
cuitry. High quality capacitors and resistors should be  
used since poor quality components can add distortion.  
NPO and silver mica type dielectric capacitors have excel-  
lent linearity. Carbon surface mount resistors can also  
generate distortion from self heating and from damage  
thatmayoccurduringsoldering. Metalfilmsurfacemount  
resistors are much less susceptible to both problems.  
R1  
2k  
V
3
4
REF  
BANDGAP  
REFERENCE  
2.500V  
+
100  
REFCOMP  
1
+
REFERENCE  
A
INPUT  
4.0625V  
IN  
AMP  
500pF  
2
3
4
5
A
IN  
R2  
40k  
10µF  
LTC1414  
V
R3  
64k  
REF  
AGND  
5
LTC1414  
REFCOMP  
AGND  
1414 F10  
10µF  
Figure 10. LTC1414 Reference Circuit  
LTC1414 • F09  
Figure 9. An RC Filter Reduces the ADC’s 40MHz  
Bandwidth to 3.2MHz and Filters Out Wideband Noise  
Which May Be Present in the Input Signal  
11  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
80  
70  
60  
50  
40  
30  
20  
10  
0
The VREF pin can be driven with a DAC or other means  
showninFigure11.Thisisusefulinapplicationswherethe  
peak input signal amplitude may vary. The input span of  
the ADC can then be adjusted to match the peak input  
signal, maximizing the signal-to-noise ratio. The filtering  
of the internal LTC1414 reference amplifier will limit the  
bandwidth and settling time of this circuit. A settling time  
of 5ms should be allowed after a reference adjustment.  
1
2
3
4
5
+
A
A
V
IN  
ANALOG INPUT  
±2V TO ±3V  
1k  
10k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
DIFFERENTIAL  
IN  
LTC1414 • F12  
LTC1414  
Figure 12. CMRR vs Input Frequency  
2V TO 3V  
LTC1450  
REF  
The output is two’s complement binary with  
1LSB = FS – (FS)/16384 = 5V/16384 = 305.2µV.  
REFCOMP  
AGND  
10µF  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero. Offset  
error must be adjusted before full-scale error. Figure 14  
shows the extra components required for full-scale error  
adjustment. Zero offset is achieved by adjusting the offset  
1414 F11  
Figure 11. Driving VREF with a DAC  
Differential Inputs  
applied to the AIN input. For zero offset error apply  
+
152µV (i.e., 0.5LSB) at AIN and adjust the offset at the  
The LTC1414 has a unique differential sample-and-hold  
circuit that allows rail-to-rail inputs. The ADC will always  
AIN input until the output code flickers between 0000  
+
0000 0000 00 and 1111 1111 1111 11. For full-scale  
adjustment, aninputvoltageof2.499544V(FS1.5LSBs)  
convert the difference of AIN – (AIN ) independent of the  
common mode voltage. The common mode rejection  
holdsuptoextremelyhighfrequencies, seeFigure12. The  
only requirement is that neither input can exceed the AVDD  
or AVSS power supply voltages. Integral nonlinearity er-  
rors (INL) and differential nonlinearity errors (DNL) are  
independent of the common mode voltage, however, the  
bipolar zero error (BZE) will vary. The change in BZE is  
typically less than 0.1% of the common mode voltage.  
Dynamic performance is also affected by the common  
mode voltage. THD will degrade as the inputs approach  
either power supply rail, from –84dB with a common  
mode of 0V to –75dB with a common mode of 2.5V  
or –2.5V.  
+
is applied to AIN and R2 is adjusted until the output  
code flickers between 0111 1111 1111 10 and  
0111 1111 1111 11.  
011…111  
011…110  
011…101  
000…000  
111…111  
100…010  
100…001  
100…000  
Full-Scale and Offset Adjustment  
–(FS – 1LSB)  
0
FS – 1LSB  
INPUT RANGE  
Figure 13 shows the ideal input/output characteristics for  
theLTC1414. Thecodetransitionsoccurmidwaybetween  
successive integer LSB values (i.e., FS + 0.5LSB,  
FS+1.5LSB,FS+2.5LSB,...FS2.5LSB,FS1.5LSB).  
LTC1414 • F13  
Figure 13. LTC1414 Transfer Characteristics  
12  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
–5V  
The LTC1414 has differential inputs to minimize noise  
R3  
1
2
3
4
5
+
ANALOG INPUT  
A
A
V
24k  
+
IN  
coupling. Common mode noise on the AIN and AIN  
R1  
50k  
R4  
100Ω  
inputs will be reflected by the input CMRR. The AIN input  
IN  
+
can be used as a ground sense for the AIN input; the  
LTC1414  
R5 R2  
47k 50k  
LTC1414 will hold and convert the difference voltage  
REF  
+
+
between AIN and AIN . The leads to AIN (Pin 1) and AIN  
R6  
24k  
(Pin 2) should be kept as short as possible. In applications  
REFCOMP  
AGND  
+
where this is not possible, the AIN and AIN traces should  
be run side by side to equalize coupling.  
10µF  
LTC1414 • F14  
A single point analog ground separate from the logic  
system ground should be established with an analog  
ground plane at AGND (Pin 5, 27) or as close as possible  
to the ADC (see Figure 8). The ADC’s DGND (Pin 23) and  
all other analog grounds should be connected to this  
single analog ground point. No other digital grounds  
should be connected to this analog ground point. Low  
impedance analog and digital power supply common  
returnsareessentialtolownoiseoperationoftheADCand  
these traces should be as wide as possible. Excessive  
capacitive loading on the ADC’s data output lines can  
generate large transient currents on the ADC supplies  
which may affect conversion results. In these cases, the  
use of digital buffers is recommended to isolate the ADC  
from the excessive loading.  
Figure 14. Offset and Full-Scale Adjust Circuit  
Board Layout and Bypassing  
To obtain the best performance from the LTC1414, a  
printed circuit board with a ground plane is required.  
Layout for the printed circuit board should ensure that  
digital and analog signal lines are separated as much as  
possible. In particular, care should be taken not to run any  
digital line alongside an analog signal line or underneath  
the ADC. The analog input should be screened by AGND.  
High quality tantalum and ceramic bypass capacitors  
should be used at the VDD, VSS and VREF pins. Bypass  
capacitorsmustbelocatedasclosetothepinsaspossible.  
The traces connecting the pins and bypass capacitors  
must be kept short and should be made as wide as  
possible.  
EXAMPLE LAYOUT  
Figures 16a, 16b, 16c and 16d show the schematic and  
layoutofanevaluationboard.Thelayoutdemonstratesthe  
proper use of decoupling capacitors and ground plane  
with a two layer printed circuit board.  
1
+
DIGITAL  
SYSTEM  
LTC1414  
A
IN  
A
IN  
REFCOMP  
4
AGND  
5, 27  
V
AV  
DV  
OV  
DGND OGND  
SS  
DD  
28  
DD  
22  
DD  
21  
ANALOG  
INPUT  
CIRCUITRY  
2
26  
10µF  
23  
14  
+
10µF  
10µF  
ANALOG GROUND PLANE  
1414 F15  
Figure 15. Power Supply Grounding Practice  
13  
LTC1414  
APPLICATIONS INFORMATION  
U
W U U  
V
V
SS  
V
V
LOGIC  
CC  
CC  
R14  
J2  
GND  
J3  
5V  
J1  
20  
–5V  
C2  
+
D2  
SS12  
C2  
22µF  
10V  
D1  
SS12  
0.125W  
22µF  
+
10V  
AGND  
DGND  
+
C10  
10µF  
10V  
C14  
0.1µF  
C12  
0.1µF  
C7  
0.1µF  
V
CC  
DGND  
J9  
J4  
C4  
0.1µF  
JP3  
V
OUT  
JP2  
+
+
V
V
V
V
U3  
LT1363  
6
U1  
LT1363  
6
7
4
7
4
+
A
2
2
U5  
R15  
51Ω  
R17  
10k  
74HC574  
3
3
1
11  
2
3
4
5
6
7
8
+
+
0E  
B[00:13]  
D[00:13]  
8
1
SO-8  
8
1
DIP-8  
C11  
470pF  
19  
18  
17  
16  
15  
14  
13  
12  
B00  
B01  
B02  
B03  
B04  
B05  
B08  
D00  
D01  
D02  
D03  
D04  
D05  
D08  
R18  
10k  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
JP4  
(OPTIONAL)  
J5  
A
R16  
51Ω  
U4  
C3  
0.1µF  
LTC1414CGN  
V
SS  
1
2
3
6
7
8
9
B13  
B12  
B11  
B10  
+
(MSB)D13  
A
A
V
J10  
IN  
9
D12  
D11  
D10  
D9  
IN  
V
REF  
REF  
4
U6  
REFCOMP  
BUSY  
CONVST  
DGND  
25  
24  
23  
22  
21  
28  
26  
27  
5
10 B09  
11 B08  
12 B07  
13 B06  
15 B05  
16 B04  
17 B03  
18 B02  
19 B01  
20 B00  
74HC574  
1
11  
2
3
4
5
6
7
8
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0E  
C8  
1µF  
10V  
C13  
4.7µF  
B07  
B06  
B09  
B10  
B11  
B12  
B13  
19 D07  
18 D06  
17 D09  
16 D10  
15 D11  
14 D12  
13 D13  
12  
J8  
D00  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D0 Q0  
D1 Q1  
D2 Q2  
D3 Q3  
D4 Q4  
D5 Q5  
D6 Q6  
D7 Q7  
OV  
OV  
AV  
V
DD  
CC  
D00  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D13  
RDY  
DGND  
DGND  
J6-13  
J6-14  
J6-11  
J6-12  
J6-9  
10V  
DD  
DD  
V
SS  
J7  
CLK  
AGND  
AGND  
OGND  
V
SS  
R19  
51Ω  
14  
J6-10  
J6-7  
D0  
9
J6-8  
C5  
1µF  
C9  
1µF  
C15  
1µF  
J6-5  
DGND  
J6-6  
U7G, HC14  
10V  
10V  
10V  
D13 D10  
D11  
J6-3  
14  
7
U7E, HC14  
V
LOGIC  
PWR GND  
J6-4  
D12  
D13  
D13  
RDY  
11  
10  
J6-1  
DGND  
12  
J6-2  
R21  
1k  
J6-15  
J6-16  
J6-17  
J6-18  
DATA READY  
13  
U7F, HC14  
9
8
C6  
NOTES: UNLESS OTHERWISE SPECIFIED  
1. ALL RESISTOR VALUES IN OHMS, 1/10W, 5%  
2. ALL CAPACITOR VALUES IN µF, 25V, 20% AND IN pF, 50V, 10%  
U7D, HC14  
15pF  
HEADER  
18-PIN  
1414 F16a  
Figure 16a. Evaluation Circuit Schematic  
14  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
Figure 16b. Evaluation Circuit Board Component Side Silkscreen  
15  
LTC1414  
APPLICATIONS INFORMATION  
U
W U U  
Figure 16c. Evaluation Circuit Board Component Side Layout  
16  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
Figure 16d. Evaluation Circuit Board Solder Side Layout  
17  
LTC1414  
U
W U U  
APPLICATIONS INFORMATION  
Digital Interface  
The output data is updated at the end of the conversion as  
BUSY rises. Output data is updated coincident with the  
rising edge of BUSY. Data will be valid, and can be latched,  
20ns after the rising edge of BUSY. Valid data can also be  
latched with the falling edge of BUSY or with the rising  
edge of CONVST. In the latter two cases the data latched  
will be for the previous conversion.  
The A/D converter has just one control input CONVST.  
Data is output on 14-bit parallel bus. An additional output  
BUSY indicates the converter status.  
DIGITAL OUTPUTS  
TheparalleldigitaloutputsoftheLTC1414aredesignedto  
interface to TTL and CMOS logic. The output data is two’s  
complement coded.  
CONVST Drive Considerations  
Timing jitter of the CONVST signal can adversely affect the  
noise performance of the LTC1414 when the input signal  
contains high slew rate components. The falling edge of  
CONVST determines the sampling instant. Any uncer-  
tainty in this sampling instant will translate to voltage  
noise when a fast changing input signal is being sampled.  
For a full amplitude sinusoidal input, the relationship  
between timing jitter (tjitter) and SNRj is  
The output drivers have a separate power pin (OVDD) and  
ground pin (OGND). This allows relatively noisy output  
ground and the output supply bypass ground to be sepa-  
rated from the other ADC grounds. Additionally, the OVDD  
pin may be driven by the supply of the logic that is being  
driven. For example, the OVDD supply may be 3V while  
LTC1414 DVDD and AVDD pins are 5V, allowing 3V logic to  
be driven directly.  
SNRj = 20log(1/2π • fIN • tjitter  
)
Care should be taken to not load the digital outputs with  
excessive capacitance. Large capacitive loads result in  
large charging currents which can cause conversion er-  
rors. It is recommended that the capacitive loading is kept  
under 20pF. If it is not possible to keep the capacitance  
low, a buffer or latch may be used to isolate the LTC1414  
from the capacitive load.  
where SNRj is the signal-to-jitter noise ratio.  
The internal circuitry of the LTC1414 has been optimized  
for ultralow jitter (typically 3ps RMS). The external clock  
drive circuitry is equally important and must also have low  
jitter to achieve low noise.  
Internal Clock  
Timing and Control  
The internal clock is factory trimmed to achieve a typical  
conversion time of 330ns and a maximum conversion  
time over the full operating temperature range of 400ns.  
No external adjustments are required. The guaranteed  
maximumacquisitiontimeis100ns.Inaddition,athrough-  
put time (acquisition + conversion) of 454ns and a mini-  
mum sampling rate of 2.2Msps is guaranteed.  
The conversion start is controlled by the CONVST input.  
The falling edge of CONVST will start a conversion. Once  
initiated, it cannot be restarted until the conversion is  
complete. Converter status is indicated by the BUSY  
output. BUSY is low during a conversion.  
t
CONV  
t
t
5
4
CONVST  
BUSY  
t
t
1
3
t
2
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
DATA  
1414 F17  
Figure 17. Timing Diagram  
18  
LTC1414  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
GN Package  
28-Lead Plastic SSOP Narrow (0.150)  
(LTC DWG # 05-08-1641)  
0.386 – 0.393*  
(9.804 – 9.982)  
0.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.004 – 0.009  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.053 – 0.069  
× 45°  
(1.351 – 1.748)  
(0.102 – 0.249)  
0.0075 – 0.0098  
(0.191 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN28 (SSOP) 0398  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
19  
LTC1414  
U
TYPICAL APPLICATIO  
2.2MHz, 14-Bit Sampling ADC  
5V  
1
2
3
4
5
28  
27  
26  
25  
24  
23  
22  
+
A
A
V
AV  
DD  
DIFFERENTIAL ANALOG INPUT  
–2.5V TO 2.5V  
IN  
–5V  
10µF  
AGND  
IN  
10µF  
LTC1414  
V
SS  
V
REF  
OUT  
2.5V  
REF  
REFCOMP  
AGND  
BUSY  
CONVST  
DGND  
1µF  
10µF  
D13 (MSB)  
D12  
6
7
0.1µF  
DV  
DD  
5V  
D11  
8
21  
20  
19  
18  
17  
16  
15  
OV  
DD  
D10  
9
D0  
D1  
D2  
D3  
D4  
D5  
D9  
10  
11  
12  
13  
14  
D8  
14-BIT  
PARALLEL  
BUS  
D7  
D6  
OGND  
1414 TA03  
RELATED PARTS  
PART NUMBER  
LTC1412  
LTC1415  
LTC1416  
LTC1417  
LTC1418  
LTC1419  
LTC1604  
LT1460  
DESCRIPTION  
COMMENTS  
Low Power, 12-Bit ,3Msps, ADC  
Single 5V, 12-Bit, 1.25Msps, ADC  
Low Power, 14-Bit, 400ksps, ADC  
Nyquist Sampling, 150mW, 72dB SINAD  
Single Supply, 55mW Dissipation  
±5V Supplies, 75mW Dissipation  
Very Low Power, 14-Bit, 400ksps, ADC  
Very Low Power, 14-Bit, 200ksps, ADC  
Low Power, 14-Bit, 800ksps, ADC  
High Speed, 16-Bit, 333ksps, ADC  
Micropower Precision Series Reference  
20mW, 5V or ±5V Supply, Serial I/O in 16-Pin SSOP  
15mW, 5V or ±5V Supply, Serial or Parallel I/O  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
90dB SINAD, –100dB THD, 220mW Dissipation  
0.075% Accuracy, 10ppm/°C Drift  
1414fs, sn1414 LT/TP 0399 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1414IGN

LTC1414 - 14-Bit, 2.2 Msps,Sampling A/D Converter; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1414IGN#PBF

LTC1414 - 14-Bit, 2.2 Msps,Sampling A/D Converter; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1414IGN#TRPBF

暂无描述
Linear

LTC1415

12-Bit, 1.25Msps, 55mW Sampling A/D Converter
Linear

LTC1415C

12-Bit, 1.25Msps, 55mW Sampling A/D Converter
Linear

LTC1415CG

12-Bit, 1.25Msps, 55mW Sampling A/D Converter
Linear

LTC1415CG#PBF

暂无描述
Linear

LTC1415CG#TRPBF

暂无描述
Linear

LTC1415CSW

12-Bit, 1.25Msps, 55mW Sampling A/D Converter
Linear

LTC1415CSW#PBF

暂无描述
Linear

LTC1415CSW#TR

暂无描述
Linear

LTC1415I

12-Bit, 1.25Msps, 55mW Sampling A/D Converter
Linear