LTC1418IN#PBF [Linear]

LTC1418 - Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; Package: PDIP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC1418IN#PBF
型号: LTC1418IN#PBF
厂家: Linear    Linear
描述:

LTC1418 - Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; Package: PDIP; Pins: 28; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总30页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1418  
Low Power, 14-Bit, 200ksps  
ADC with Serial and Parallel I/O  
FEATURES  
DESCRIPTION  
The LTC®1418 is a low power, 200ksps, 14-bit A/D con-  
verter. Data output is selectable for 14-bit parallel or serial  
format. This versatile device can operate from a single 5V  
or 5Vsupply.Anonboardhighperformancesample-and-  
hold, a precision reference and internal timing minimize  
external circuitry requirements. The low 15mW power  
dissipation is made even more attractive with two user  
selectable power shutdown modes.  
n
Single Supply 5V or 5V ꢀperation  
n
Sample Rate: 200ksps  
n
1ꢁ25LSB ꢂIL anꢃ 1LSB DIL ꢄaM  
n
Power Dissipation: 15mW (Typ)  
n
Parallel or Serial Data ꢀutput  
n
No Missing Codes Over Temperature  
n
Power Shutdown: Nap and Sleep  
n
External or Internal Reference  
n
Differential High Impedance Analog Input  
The LTC1418 converts 0V to 4.096V unipolar inputs from  
a single 5V supply and 2.048V bipolar inputs from 5V  
supplies. DC specs include 1.25LSB INL, 1LSB DNL  
and no missing codes over temperature. Outstanding AC  
performance includes 82dB S/(N + D) and 94dB THD at  
the Nyquist input frequency of 100kHz.  
n
Input Range: 0V to 4.096V or 2.048V  
n
81.5dB S/(N + D) and –94dB THD at Nyquist  
n
28-Lead SSOP Package  
APPLICATIONS  
The flexible output format allows either parallel or serial  
I/O. The SPI/MICROWIRE compatible serial I/O port can  
operate as either master or slave and can support clock  
frequencies from DC to 10MHz. A separate convert start  
input and a data ready signal (BUSY) allow easy control  
of conversion start and data transfer.  
n
Remote Data Acquisition  
n
Battery Operated Systems  
n
Digital Signal Processing  
n
Isolated Data Acquisition Systems  
n
Audio and Telecom Processing  
n
Medical Instrumentation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Low Power, 200kHz, 14-Bit Sampling A/D Converter  
Typical ꢂIL Curve  
5V  
1.0  
10μF  
V
DD  
SER/PAR  
LTC1418  
S/H  
0.5  
D13  
+
A
IN  
D5  
14  
14-BIT ADC  
SELECTABLE  
SERIAL/  
PARALLEL  
PORT  
A
IN  
D4 (EXTCLKIN)  
D3 (SCLK)  
D2 (CLKOUT)  
0
4.096V  
BUFFER  
D1 (D  
)
OUT  
REFCOMP  
10μF  
D0 (EXT/INT)  
–0.5  
–1.0  
BUSY  
CS  
8k  
TIMING AND  
LOGIC  
2.5V  
REFERENCE  
V
RD  
REF  
CONVST  
SHDN  
0
4096  
8192  
12288  
16384  
1μF  
OUTPUT CODE  
AGND  
V
DGND  
1418 TA02  
SS  
(0V OR 5V)  
1418 TA01  
1418fa  
1
For more information www.linear.com/LTC1418  
LTC1418  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Iote 1, 2)  
TOP VIEW  
+
Supply Voltage (V ) .................................................6V  
DD  
1
2
V
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
A
Negative Supply Voltage (V )  
DD  
IN  
SS  
SS  
Bipolar Operation Only............................. –6V to GND  
IN  
3
BUSY  
V
REF  
Total Supply Voltage (V to V )  
DD  
SS  
4
CS  
REFCOMP  
AGND  
D13 (MSB)  
D12  
Bipolar Operation Only......................................... 12V  
5
CONVST  
RD  
Analog Input Voltage (Note 3)  
6
Unipolar Operation................... –0.3V to (V + 0.3V)  
DD  
7
SHDN  
Bipolar Operation...........(V – 0.3V) to (V + 0.3V)  
SS  
DD  
8
SER/PAR  
D0 (EXT/INT)  
D11  
Digital Input Voltage (Note 4)  
9
D10  
Unipolar Operation................................. –0.3V to 10V  
Bipolar Operation.........................(V – 0.3V) to 10V  
10  
11  
12  
13  
14  
D1 (D  
)
D9  
OUT  
SS  
D2 (CLKOUT)  
D3 (SCLK)  
D4 (EXTCLKIN)  
D5  
D8  
Digital Output Voltage  
D7  
Unipolar Operation................... –0.3V to (V + 0.3V)  
D6  
DD  
DD  
Bipolar Operation...........(V – 0.3V) to (V + 0.3V)  
DGND  
SS  
Power Dissipation.............................................. 500mW  
G PACKAGE  
OBSOLETE PACKAGE  
N PACKAGE  
28-LEAD PLASTIC SSOP  
Operation Temperature Range  
28-LEAD NARROW PDIP  
LTC1418C................................................. 0°C to 70°C  
LTC1418I..............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
T
T
= 110°C, θ = 95°C/W (G)  
JA  
JMAX  
JMAX  
= 110°C, θ = 100°C/W (N)  
JA  
ORDER INFORMATION  
LEAD FREE FꢂIꢂSH  
LTC1418ACG#PBF  
LTC1418CG#PBF  
LTC1418AIG#PBF  
LTC1418IG#PBF  
TAPE AID REEL  
PART ꢄARKꢂIG  
1418ACG  
1418CG  
PACKAGE DESCRꢂPTꢂꢀI  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
TEꢄPERATURE RAIGE  
0°C to 70°C  
LTC1418ACG#TRPBF  
LTC1418CG#TRPBF  
LTC1418AIG#TRPBF  
LTC1418IG#TRPBF  
0°C to 70°C  
1418AIG  
–40°C to 85°C  
–40°C to 85°C  
1418IG  
ꢀBSꢀLETE PACKAGE  
LTC1418ACN#PBF  
LTC1418CN#PBF  
LTC1418AIN#PBF  
LTC1418IN#PBF  
LTC1418ACN#TRPBF  
LTC1418CN#TRPBF  
LTC1418AIN#TRPBF  
LTC1418IN#TRPBF  
1418ACN  
1418CN  
1418AIN  
1418IN  
28-Lead PDIP  
28-Lead PDIP  
28-Lead PDIP  
28-Lead PDIP  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1418fa  
2
For more information www.linear.com/LTC1418  
LTC1418  
CONVERTER CHARACTERISTICS The l ꢃenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢁ (Iotes 5, 6)  
LTC1418  
TYP  
LTC1418A  
TYP  
PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
(Note 7)  
ꢄꢂI  
ꢄAX  
ꢄꢂI  
ꢄAX  
UIꢂTS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
13  
14  
0.8  
0.7  
5
2
0.5  
0.35  
2
1.25  
1
LSB  
1.5  
20  
LSB  
(Note 8)  
10  
LSB  
Full-Scale Error  
Internal Reference  
External Reference = 2.5V  
10  
5
60  
30  
20  
5
60  
15  
LSB  
LSB  
l
Full-Scale Tempco  
I
I
I
= 0, Internal Reference, Commercial  
= 0, Internal Reference, Industrial  
= 0, External Reference  
15  
10  
20  
1
45  
ppm/°C  
ppm/°C  
ppm/°C  
OUT(REF)  
OUT(REF)  
OUT(REF)  
5
ANALOG INPUT  
The l ꢃenotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°Cꢁ (Iote 5)  
SYꢄBꢀL PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
4.75V ≤ V ≤ 5.25V (Unipolar)  
ꢄꢂI  
TYP  
ꢄAX  
UIꢂTS  
l
l
V
Analog Input Range (Note 9)  
0 to 4.096  
2.048  
V
V
IN  
DD  
4.75V ≤ V ≤ 5.25V, –5.25V ≤ V ≤ –4.75V (Bipolar)  
DD  
SS  
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
CS = High  
1
µA  
IN  
C
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
25  
5
pF  
pF  
IN  
l
l
t
Sample-and-Hold Acquisition Time Commercial  
Industrial  
300  
300  
1000  
1000  
ns  
ns  
ACQ  
The l ꢃenotes the specifications which apply over the full operating temperature range,  
DYNAMIC ACCURACY  
otherwise specifications are at TA = 25°Cꢁ (Iote 5)  
SYꢄBꢀL  
S/(N + D)  
THD  
PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
ꢄꢂI  
TYP  
81.5  
–94  
95  
ꢄAX  
UIꢂTS  
dB  
l
l
l
Signal-to-Noise Plus Distortion Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Intermodulation Distortion  
Full Power Bandwidth  
97.5kHz Input Signal  
79  
100kHz Input Signal, First 5 Harmonics  
100kHz Input Signal  
–86  
dB  
SFDR  
86  
dB  
IMD  
f
= 97.7kHz, f = 104.2kHz  
–90  
5
dB  
IN1  
IN2  
MHz  
MHz  
Full Linear Bandwidth  
S/(N + D) ≥ 77dB  
0.5  
1418fa  
3
For more information www.linear.com/LTC1418  
LTC1418  
INTERNAL REFERENCE CHARACTERISTICS  
The l ꢃenotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°Cꢁ (Iote 5)  
PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
ꢄꢂI  
TYP  
ꢄAX  
2.520  
45  
UIꢂTS  
V
REF  
V
REF  
Output Voltage  
Output Tempco  
I
= 0  
2.480  
2.500  
V
OUT  
l
I
I
= 0, Commercial  
= 0, Industrial  
10  
20  
ppm/°C  
ppm/°C  
OUT  
OUT  
V
V
Line Regulation  
4.75V ≤ V ≤ 5.25V  
0.05  
0.05  
LSB/V  
LSB/V  
REF  
REF  
DD  
–5.25V ≤ V ≤ –4.75V  
SS  
Output Resistance  
0.1mA ≤ | I  
| ≤ 0.1mA  
8
kΩ  
OUT  
DIGITAL INPUTS AND OUTPUTS  
The l ꢃenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢁ (Iote 5)  
SYꢄBꢀL  
PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
ꢄꢂI  
TYP  
ꢄAX  
UIꢂTS  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
µA  
pF  
IN  
DD  
C
V
1.4  
IN  
V
V
= 4.75V, I = –10μA  
4.74  
V
V
OH  
DD  
DD  
O
l
= 4.75V, I = –200µA  
4.0  
O
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160μA  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
l
l
l
= 4.75V, I = 1.6mA  
0.4  
10  
15  
O
I
OZ  
Hi-Z Output Leakage D13 to D0  
Hi-Z Output Capacitance D13 to D0  
Output Source Current  
V
= 0V to V , CS High  
µA  
pF  
OUT  
DD  
C
CS High (Note 9)  
OZ  
I
I
V
V
= 0V  
–10  
10  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
Output Sink Current  
= V  
DD  
The l ꢃenotes the specifications which apply over the full operating temperature  
POWER REQUIREMENTS  
range, otherwise specifications are at TA = 25°Cꢁ (Iote 5)  
SYꢄBꢀL PARAꢄETER CꢀIDꢂTꢂꢀIS  
ꢄꢂI  
4.75  
TYP  
ꢄAX  
5.25  
UIꢂTS  
V
V
Positive Supply Voltage (Notes 10, 11)  
Negative Supply Voltage (Note 10)  
Positive Supply Current  
V
V
DD  
Bipolar Only (V = 0V for Unipolar)  
–4.75  
–5.25  
SS  
SS  
l
l
I
Unipolar, RD High (Note 5 )  
Bipolar, RD High (Note 5)  
3.0  
3.9  
570  
2
4.3  
4.5  
mA  
µA  
µA  
DD  
Nap Mode  
Sleep Mode  
SHDN = 0V, CS = 0V (Note 12)  
SHDN = 0V, CS = 5V (Note 12)  
l
I
SS  
Negative Supply Current  
Nap Mode  
Bipolar, RD High (Note 5)  
SHDN = 0V, CS = 0V (Note 12)  
SHDN = 0V, CS = 5V (Note 12)  
1.4  
0.1  
0.1  
1.8  
mA  
µA  
µA  
Sleep Mode  
l
l
P
DIS  
Power Dissipation  
Unipolar  
Bipolar  
15.0  
26.5  
21.5  
31.5  
mW  
mW  
1418fa  
4
For more information www.linear.com/LTC1418  
LTC1418  
TIMING CHARACTERISTICS The l ꢃenotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°Cꢁ (Iote 5)  
SYꢄBꢀL  
PARAꢄETER  
CꢀIDꢂTꢂꢀIS  
ꢄꢂI  
TYP  
ꢄAX  
UIꢂTS  
kHz  
µs  
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
Acquisition Time  
Acquisition Plus Conversion Time  
CS to RD Setup Time  
200  
SAMPLE(MAX)  
CONV  
3.4  
0.3  
3.7  
4
1
5
µs  
µs  
ns  
ACQ  
+ t  
ACQ  
1
CONV  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Note 10)  
0
l
l
CSto CONVSTSetup Time  
CSto SHDNSetup Time to Ensure Nap Mode  
SHDNto CONVSTWake-Up Time from Nap Mode  
CONVST Low Time  
CONVST to BUSY Delay  
Data Ready Before BUSY↑  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
MHz  
µs  
ns  
ns  
ns  
ns  
2
3
4
5
6
7
500  
l
l
(Notes 10, 11)  
40  
C = 25pF  
L
35  
35  
70  
20  
15  
500  
–5  
l
l
l
t
t
t
Delay Between Conversions  
Wait Time RDAfter BUSY↑  
Data Access Time After RD↓  
(Note 10)  
8
9
C = 25pF  
L
15  
20  
8
30  
40  
40  
55  
20  
25  
30  
10  
l
l
C = 100pF  
L
t
11  
Bus Relinquish Time  
l
l
l
Commercial  
Industrial  
t
t
t
t
f
f
t
t
t
t
t
RD Low Time  
CONVST High Time  
Delay Time, SCLKto D  
Time from Previous Data Remain Valid After SCLK↓  
Shift Clock Frequency  
External Conversion Clock Frequency  
Delay Time, CONVSTto External Conversion Clock Input (Notes 9, 10)  
SCLK High Time  
SCLK Low Time  
t
12  
13  
14  
15  
10  
40  
l
l
Valid  
C = 25pF (Note 9)  
35  
25  
70  
OUT  
L
C = 25pF (Note 9)  
15  
0
0.03  
L
(Notes 9, 10)  
(Notes 9, 10)  
12.5  
4.5  
533  
SCLK  
EXTCLKIN  
dEXTCLKIN  
H SCLK  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
10  
20  
L SCLK  
EXTCLKIN High Time  
EXTCLKIN Low Time  
250  
250  
H EXTCLKIN  
L EXTCLKIN  
Iote 6: Linearity, offset and full-scale specifications apply for a single-  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
ended input with A grounded.  
IN  
Iote 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Iote 2: All voltage values are with respect to ground with DGND and  
AGND wired together (unless otherwise noted).  
Iote 8: Bipolar offset is the offset voltage measured from –0.5LSB when the  
output code flickers between 0000 0000 0000 00 and 1111 1111 1111 11.  
Iote 3: When these pin voltages are taken below V or above V , they  
SS  
DD  
will be clamped by internal diodes. This product can handle input currents  
greater than 100mA below V or above V without latchup.  
Iote 9: Guaranteed by design, not subject to test.  
Iote 10: Recommended operating conditions.  
Iote 11: The falling edge of CONVST starts a conversion. If CONVST  
returns high at a critical point during the conversion, it can create small  
errors. For best performance ensure that CONVST returns high either  
within 2.1µs after the conversion starts or after BUSY rises.  
SS  
CC  
Iote 4: When these pin voltages are taken below V they will be clamped  
SS  
by internal diodes. This product can handle input currents greater than  
100mA below V without latchup. These pins are not clamped to V  
.
DD  
SS  
Iote 5: V = 5V, V = 0V or –5V, f  
= 200kHz, t = t = 5ns unless  
r f  
DD  
SS  
SAMPLE  
otherwise specified.  
Iote 12: Pins 16 (D4/EXTCLKIN), 17 (D3/SCLK) and 20 (DO/EXT/INT) at  
0V or 5V. See Power Shutdown.  
1418fa  
5
For more information www.linear.com/LTC1418  
LTC1418  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Ionlinearity  
vs ꢀutput Coꢃe  
S/(I + D) vs ꢂnput Frequency  
anꢃ Amplituꢃe  
Typical ꢂIL Curve  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.5  
0
1.0  
0.5  
V
= 0dB  
IN  
V
= –20dB  
IN  
0
V
= –60dB  
IN  
–0.5  
0.5  
–1.0  
–1.0  
1k  
10k  
100k  
1M  
0
4096  
8192  
OUTPUT CODE  
12288  
16384  
0
4096  
8192  
OUTPUT CODE  
12288  
16384  
INPUT FREQUENCY (Hz)  
1418 G03  
1418 G02  
1418 G01  
Signal-to-Ioise Ratio  
vs ꢂnput Frequency  
Spurious-Free Dynamic Range  
vs ꢂnput Frequency  
Distortion vs ꢂnput Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
0
–20  
–40  
–40  
–60  
–60  
3RD  
THD  
–80  
–80  
2ND  
–100  
–120  
–100  
–120  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1418 G06  
1418 G05  
1418 G04  
Ionaverageꢃ, 4096 Point FFT,  
ꢂnput Frequency = 10kHz  
Ionaverageꢃ, 4096 Point FFT,  
ꢂnput Frequency = 100kHz  
ꢂntermoꢃulation Distortion Plot  
0
–20  
0
–20  
0
20  
f
f
f
= 200kHz  
f
f
= 200kHz  
f
f
= 200kHz  
SAMPLE  
IN1  
IN2  
SAMPLE  
IN  
SAMPLE  
IN  
= 97.65625kHz  
= 97.509765kHz  
= 9.9609375kHz  
= 104.248046kHz  
SFDR = 94.29  
SINAD = 81.4  
SFDR = 99.32  
SINAD = 82.4  
–40  
40  
–40  
60  
–60  
–60  
80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
60 70  
FREQUENCY (kHz)  
0
10 20 30 40 50  
80 90 100  
1418 G09  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 G08  
1418 G07  
1418fa  
6
For more information www.linear.com/LTC1418  
LTC1418  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Supply Feeꢃthrough  
vs Ripple Frequency  
ꢂnput Common ꢄoꢃe Rejection  
vs ꢂnput Frequency  
ꢂnput ꢀffset Voltage Shift  
vs Source Resistance  
0
–20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
–40  
–60  
V
V
SS  
DD  
–80  
DGND  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
1M  
10k 100k  
1k  
10k  
100k  
1M  
10M  
INPUT SOURCE RESISTANCE (Ω)  
FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1418 G12  
1418 G11  
1418 G10  
VDD Supply Current vs  
Temperature (Unipolar ꢄoꢃe)  
VDD Supply Current vs  
VSS Supply Current vs  
Temperature (Bipolar ꢄoꢃe)  
Temperature (Bipolar ꢄoꢃe)  
5
4
3
2
1
0
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
125  
–75 –50  
0
25 50  
100  
75  
150  
–25  
125  
–75 –50  
0
25 50  
100  
75  
150  
–25  
125  
–75 –50  
0
25 50  
100  
75  
150  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1418 G14  
1418 G13  
1418 G13  
VDD Supply Current vs Sampling  
Frequency (Unipolar ꢄoꢃe)  
VDD Supply Current vs Sampling  
Frequency (Bipolar ꢄoꢃe)  
VSS Supply Current vs Sampling  
Frequency (Bipolar ꢄoꢃe)  
5
4
3
2
1
0
5
4
3
2
1
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
50  
150  
200  
250  
300  
0
100  
150  
200  
250  
300  
100  
50  
0
50  
150  
200  
250  
300  
100  
SAMPLING FREQUENCY (kHz)  
SAMPLING FREQUENCY (kHz)  
SAMPLING FREQUENCY (kHz)  
1418 G17  
1418 G16  
1418 G18  
1418fa  
7
For more information www.linear.com/LTC1418  
LTC1418  
PIN FUNCTIONS  
+
A
A
V
(Pin 1): Positive Analog Input.  
D0(EXT/INT)(Pin20):Three-StateDataOutput(Parallel).  
Conversion clock selector (serial). An input low enables  
the internal conversion clock. An input high indicates  
an external conversion clock will be assigned to Pin 16  
(EXTCLKIN).  
ꢂI  
(Pin 2): Negative Analog Input.  
ꢂI  
(Pin 3): 2.50V Reference Output. Bypass to AGND  
REF  
with 1µF.  
REFCꢀꢄP (Pin 4): 4.096V Reference Bypass Pin. Bypass  
SER/PAR (Pin 21): Data Output Mode.  
toAGNDwith1Ftantaluminparallelwith0.1µFceramic.  
SHDN (Pin 22): Power Shutdown Input. Low selects  
shutdown. Shutdown mode selected by CS. CS = 0 for  
nap mode and CS = 1 for sleep mode.  
AGID (Pin 5): Analog Ground.  
D13 to D6(Pins6to13): Three-State Data Outputs(Paral-  
lel). D13 is the most significant bit.  
RD (Pin 23): Read Input. This enables the output drivers  
when CS is low.  
DGID (Pin 14): Digital Ground for Internal Logic. Tie to  
AGND.  
CONVST(Pin24):ConversionStartSignal.Thisactivelow  
signal starts a conversion on its falling edge.  
D5 (Pin 15): Three-State Data Output (Parallel).  
CS (Pin 25): Chip Select. This input must be low for the  
ADC to recognize the CONVST and RD inputs. CS also  
sets the shutdown mode when SHDN goes low. CS and  
SHDN low select the quick wake-up nap mode. CS high  
and SHDN low select sleep mode.  
D4 (EXTCLKꢂI) (Pin 16): Three-State Data Output (Par-  
allel). Conversion clock input (serial) when Pin 20 (EXT/  
INT) is tied high.  
D3 (SCLK) (Pin 17): Three-State Data Output (Parallel).  
Data clock input (serial).  
BUSY (Pin 26): The BUSY Output Shows the Converter  
Status. It is low when a conversion is in progress.  
D2(CLKꢀUT)(Pin18):Three-StateDataOutput(Parallel).  
Conversion clock output (serial).  
V
(Pin 27): Negative Supply, –5V for Bipolar Operation.  
SS  
D1 (D ) (Pin 19): Three-State Data Output (Parallel).  
ꢀUT  
Bypass to AGND with 10µF tantalum in parallel with 0.1µF  
Serial data output (serial).  
ceramic. Analog ground for unipolar operation.  
V
(Pin 28): 5V Positive Supply. Bypass to AGND with  
DD  
10µF tantalum in parallel with 0.1µF ceramic.  
TEST CIRCUITS  
Loaꢃ Circuits for ꢀutput Float Delay  
Loaꢃ Circuits for Access Timing  
5V  
5V  
1k  
1k  
DBN  
DBN  
DBN  
DBN  
30pF  
1k  
30pF  
1k  
C
C
L
L
DGND  
A) HI-Z TO V AND V TO V  
DGND  
B) HI-Z TO V AND V TO V  
A) V TO HI-Z  
OH  
B) V TO HI-Z  
OL  
1418 TC02  
OH  
OL  
OH  
OL  
OH  
OL  
1418 TC01  
1418fa  
8
For more information www.linear.com/LTC1418  
LTC1418  
BLOCK DIAGRAM  
C
C
SAMPLE  
SAMPLE  
+
A
IN  
V
V
: 5V  
DD  
: 0V FOR UNIPOLAR MODE  
5V FOR BIPOLAR MODE  
SS  
A
IN  
8k  
2.5V  
ZEROING SWITCHES  
V
2.5V REF  
REF  
+
REF AMP  
COMP  
14-BIT CAPACITIVE DAC  
4.096V  
REFCOMP  
AGND  
14  
D13  
D0  
SUCCESSIVE APPROXIMATION  
REGISTER  
SHIFT  
REGISTER  
D3/(SCLK)  
D1/(D  
INTERNAL  
CLOCK  
CONTROL LOGIC  
MUX  
DGND  
)
OUT  
1418 BD  
D4 (EXTCLKIN) D0 (EXT/INT) SHDN CONVST RD CS SER/PAR D2/(CLKOUT) BUSY  
NOTE: PIN NAMES IN PARENTHESES  
REFER TO SERIAL MODE  
APPLICATIONS INFORMATION  
+
CꢀIVERSꢂꢀI DETAꢂLS  
C
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
+
A
A
IN  
IN  
ZEROING SWITCHES  
HOLD  
The LTC1418 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an ana-  
log signal to a 14-bit parallel or serial output. The ADC is  
complete with a precision reference and an internal clock.  
The control logic provides easy interface to microproces-  
sors and DSPs (please refer to Digital Interface section  
for the data format).  
HOLD  
C
HOLD  
HOLD  
+
C
DAC  
+
C
DAC  
COMP  
+
V
DAC  
Conversion start is controlled by the CS and CONVST  
inputs. At the start of the conversion the successive ap-  
proximation register (SAR) is reset. Once a conversion  
cycle has begun it cannot be restarted.  
14  
V
D13  
DAC  
OUTPUT  
LATCH  
SAR  
D0  
1418 F01  
During the conversion, the internal differential 14-bit  
capacitive DAC output is sequenced by the SAR from the  
mostsignificantbit(MSB)totheleastsignificantbit(LSB).  
Figure 1ꢁ Simplifieꢃ Block Diagram  
1418fa  
9
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
+
0
–20  
ReferringtoFigure1,theA andA inputsareconnected  
IN  
IN  
f
f
= 200kHz  
SAMPLE  
IN  
to the sample-and-hold capacitors (C  
) during the  
SAMPLE  
= 9.9609375kHz  
SFDR = 99.32  
SINAD = 82.4  
acquire phase and the comparator offset is nulled by the  
zeroing switches. In this acquire phase, a minimum delay  
of 1µs will provide enough time for the sample-and-hold  
capacitorstoacquiretheanalogsignal. Duringtheconvert  
phase, the comparator zeroing switches open, putting the  
comparator into compare mode. The input switches the  
–40  
–60  
–80  
–100  
–120  
C
capacitorstoground, transferringthedifferential  
SAMPLE  
analoginputchargeontothesummingjunction.Thisinput  
chargeissuccessivelycomparedwiththebinaryweighted  
charges supplied by the differential capacitive DAC. Bit  
decisions are made by the high speed comparator. At the  
end of a conversion, the differential DAC output balances  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 F02a  
Figure 2aꢁ LTC1418 Ionaverageꢃ, 4096 Point FFT,  
ꢂnput Frequency = 10kHz  
+
the A and A input charges. The SAR contents (a  
IN  
IN  
+
0
14-bit data word) which represent the difference of A  
IN  
f
f
= 200kHz  
SAMPLE  
IN  
and A are loaded into the 14-bit output latches.  
= 97.509765kHz  
IN  
–20  
–40  
SFDR = 94.29  
SINAD = 81.4  
DYIAꢄꢂC PERFꢀRꢄAICE  
–60  
TheLTC1418hasexcellenthighspeedsamplingcapability.  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
for frequencies outside the fundamental. Figure 2a shows  
a typical LTC1418 FFT plot.  
–80  
–100  
–120  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 F02b  
Figure 2bꢁ LTC1418 Ionaverageꢃ, 4096 Point FFT,  
ꢂnput Frequency = 97ꢁ5kHz  
Signal-to-Ioise Ratio  
Effective Iumber of Bits  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 2b shows a typical spectral content with  
a 200kHz sampling rate and a 10kHz input. The dynamic  
performance is excellent for input frequencies up to and  
beyond the Nyquist limit of 100kHz.  
The effective number of bits (ENOBs) is a measurement  
of the resolution of an ADC and is directly related to the  
S/(N + D) by the equation:  
N = [S/(N + D) – 1.76]/6.02  
where N is the effective number of bits of resolution  
and S/(N + D) is expressed in dB. At the maximum  
sampling rate of 200kHz, the LTC1418 maintains near  
ideal ENOBs up to the Nyquist input frequency of 100kHz  
(refer to Figure 3).  
1418fa  
10  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
14  
13  
12  
11  
10  
9
ꢂntermoꢃulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
8
7
6
5
4
If two pure sine waves of frequencies fa and fb are applied  
totheADCinput,nonlinearitiesintheADCtransferfunction  
can create distortion products at the sum and difference  
frequencies of mfa nfb, where m and n = 0, 1, 2, 3, etc.  
For example, the 2nd order IMD terms include (fa + fb).  
If the two input sine waves are equal in magnitude, the  
value (in decibels) of the 2nd order IMD products can be  
expressed by the following formula:  
3
2
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
1418 F03  
Figure 3ꢁ Effective Bits anꢃ Signal/(Ioise + Distortion)  
vs ꢂnput Frequency  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
Amplitude at fa + fb  
(
)
IMD fa+fb =20Log  
(
)
Amplitude at fa  
0
f
f
f
= 200kHz  
SAMPLE  
IN1  
IN2  
= 97.65625kHz  
20  
40  
= 104.248046kHz  
2
V22 +V32 +V42 +...VN  
THD=20Log  
V1  
60  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
N
80  
second through nth harmonics. THD vs Input Frequency  
is shown in Figure 4. The LTC1418 has good distortion  
performance up to the Nyquist frequency and beyond.  
–100  
–120  
60 70  
80 90 100  
FREQUENCY (kHz)  
0
10 20 30 40 50  
0
–20  
–40  
–60  
1418 F05  
Figure 5ꢁ ꢂntermoꢃulation Distortion Plot  
Peak Harmonic or Spurious Ioise  
3RD  
Thepeakharmonicorspuriousnoiseisthelargestspectral  
component excluding the input signal and DC. This value  
is expressed in decibels relative to the RMS value of a  
full-scale input signal.  
–80  
THD  
2ND  
–100  
–120  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
1418 F04  
Figure 4ꢁ Distortion vs ꢂnput Frequency  
1418fa  
11  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
Full-Power anꢃ Full-Linear Banꢃwiꢃth  
small-signal settling for full throughput rate. If slower op  
amps are used, more settling time can be provided by  
increasing the time between conversions.  
The full-power bandwidth is that input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full-scale input signal.  
The best choice for an op amp to drive the LTC1418 will  
depend on the application. Generally, applications fall into  
two categories: AC applications where dynamic specifica-  
tionsaremostcriticalandtimedomainapplicationswhere  
DC accuracy and settling time are most critical. The fol-  
lowing list is a summary of the op amps that are suitable  
for driving the LTC1418. More detailed information is  
available at www.linear.com.  
LT®1354: 12MHz, 400V/µs Op Amp. 1.25mA maximum  
supply current. Good AC and DC specifications. Suitable  
for dual supply application.  
The full-linear bandwidth is the input frequency at  
which the S/(N + D) has dropped to 77dB (12.5 effec-  
tive bits). The LTC1418 has been designed to optimize  
input bandwidth, allowing the ADC to undersample  
input signals with frequencies above the converter’s  
Nyquist Frequency. The noise floor stays very low at  
high frequencies; S/(N + D) becomes dominated by  
distortion at frequencies far beyond Nyquist.  
DRꢂVꢂIG THE AIALꢀG ꢂIPUT  
LT1357: 25MHz, 600V/µs Op Amp. 2.5mA maximum  
supply current. Good AC and DC specifications. Suitable  
for dual supply application.  
The differential analog inputs of the LTC1418 are easy  
to drive. The inputs may be driven differentially or as a  
single-ended input (i.e., the A input is grounded). The  
IN  
+
A
IN  
and A inputs are sampled at the same instant. Any  
IN  
LT1366/LT1367: Dual/Quad Precision Rail-to-Rail Input  
and Output Op Amps. 375µA supply current per amplifier.  
1.8V to 15V supplies. Low input offset voltage: 150µV.  
Good for low power and single supply applications with  
sampling rates of 20ksps and under.  
unwanted signal that is common mode to both inputs will  
be reduced by the common mode rejection of the sample-  
and-hold circuit. The inputs draw only one small current  
spikewhilechargingthesample-and-holdcapacitorsatthe  
end of conversion. During conversion, the analog inputs  
draw only a small leakage current. If the source imped-  
ance of the driving circuit is low then the LTC1418 inputs  
can be driven directly. As source impedance increases so  
will acquisition time (see Figure 6). For minimum acquisi-  
tion time, with high source impedance, a buffer amplifier  
must be used. The only requirement is that the amplifier  
driving the analog input(s) must settle after the small  
current spike before the next conversion starts—1µs for  
full throughput rate.  
LT1498/LT1499: 10MHz, 6V/µs, Dual/Quad Rail-to-Rail  
Input and Output Op Amps. 1.7mA supply current per  
amplifier. 2.2V to 15V supplies. Good AC performance,  
input noise voltage = 12nV/√Hz (typ).  
100  
10  
1
Choosing an ꢂnput Amplifier  
Choosing an input amplifier is easy if a few requirements  
aretakenintoconsideration.First,chooseanamplifierthat  
has a low output impedance (<100Ω) at the closed-loop  
bandwidth frequency. For example, if an amplifier is used  
in a gain of 1 and has a closed-loop bandwidth of 10MHz,  
then the output impedance at 10MHz must be less than  
100Ω. The second requirement is that the closed-loop  
bandwidth must be greater than 5MHz to ensure adequate  
0.1  
1
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE (Ω)  
1418 F06  
Figure 6ꢁ tACQ vs Source Resistance  
1418fa  
12  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
LT1630/LT1631: 30MHz, 10V/µs, Dual/Quad Rail-to-Rail  
Input and Output Precision Op Amps. 3.5mA supply cur-  
rent per amplifier. 2.7V to 15V supplies. Best AC perfor-  
mance, input noise voltage = 6nV/√Hz (typ), THD = –86dB  
at 100kHz.  
ꢂnput Range  
The 2.048Vand0Vto4.096VinputrangesoftheLTC1418  
are optimized for low noise and low distortion. Most op  
amps also perform well over these ranges, allowing direct  
coupling to the analog inputs and eliminating the need for  
special translation circuitry.  
ꢂnput Filtering  
Some applications may require other input ranges. The  
LTC1418 differential inputs and reference circuitry can  
accommodate other input ranges often with little or no  
additional circuitry. The following sections describe  
the reference and input circuitry and how they affect  
the input range.  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add  
to the LTC1418 noise and distortion. The small-signal  
bandwidth of the sample-and-hold circuit is 5MHz. Any  
noise or distortion products that are present at the analog  
inputs will be summed over this entire bandwidth. Noisy  
input circuitry should be filtered prior to the analog inputs  
to minimize noise. A simple 1-pole RC filter is sufficient  
for many applications. For example, Figure 7 shows a  
ꢂITERIAL REFEREICE  
The LTC1418 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference which is factory  
trimmed to 2.500V. It is internally connected to a refer-  
ence amplifier and is available at Pin 3. A 8k resistor is in  
series with the output so that it can be easily overdriven  
in applications where an external reference is required,  
see Figure 8. The reference amplifier compensation pin  
(REFCOMP, Pin 4) must be connected to a capacitor to  
ground. The reference is stable with capacitors of 1µF or  
greater. For the best noise performance, a 10µF in parallel  
with a 0.1µF ceramic is recommended.  
2000pF capacitor from +A to ground and a 100Ω source  
IN  
resistor to limit the input bandwidth to 800kHz. The  
2000pF capacitor also acts as a charge reservoir for the  
input sample-and-hold and isolates the ADC input from  
sampling glitch sensitive circuitry. High quality capacitors  
and resistors should be used since these components  
can add distortion. NPO and silver mica type dielectric  
capacitors have excellent linearity. Carbon surface mount  
resistors can also generate distortion from self heating  
and from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible  
to both problems.  
The V pin can be driven with a DAC or other means to  
REF  
provide input span adjustment. The reference should be  
100Ω  
kept in the range of 2.25V to 2.75V for specified linearity.  
1
2
3
4
5
+
A
A
V
ANALOG INPUT  
IN  
IN  
2000pF  
5V  
V
LTC1418  
DD  
REF  
1
2
3
4
5
+
A
A
V
IN  
IN  
5V  
ANALOG  
INPUT  
REFCOMP  
AGND  
10μF  
V
IN  
LTC1418  
V
1418 F07  
OUT  
REF  
LT1460  
REFCOMP  
AGND  
0.1μF  
10μF  
Figure 7ꢁ RC ꢂnput Filter  
1418 F08  
Figure 8ꢁ Using the LT1460 as an EMternal Reference  
1418fa  
13  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
UIꢂPꢀLAR/BꢂPꢀLAR ꢀPERATꢂꢀI AID ADJUSTꢄEIT  
full-scale error adjustment. Zero offset is achieved by  
adjusting the offset applied to the A input. For zero  
IN  
Figure 9a shows the ideal input/output characteristics for  
theLTC1418. Thecodetransitionsoccurmidwaybetween  
successive integer LSB values (i.e., 0.5LSB, 1.5LSB,  
2.5LSB, … FS – 1.5LSB). The output code is natural  
binary with 1LSB = FS/16384 = 4.096V/16384 = 250µV.  
Figure 9b shows the input/output transfer characteristics  
for the bipolar mode in two’s complement format.  
offset error apply 125µV (i.e., 0.5LSB) at the input and  
adjust the offset at the A input until the output code  
IN  
flickers between 0000 0000 0000 00 and 0000 0000  
0000 01. For full-scale adjustment, an input voltage of  
+
4.095625V (FS – 1.5LSBs) is applied to A and R2 is  
IN  
adjusteduntiltheoutputcodeflickersbetween11111111  
1111 10 and 1111 1111 1111 11.  
Unipolar ꢀffset anꢃ Full-Scale Error Aꢃjustment  
Bipolar ꢀffset anꢃ Full-Scale Error Aꢃjustment  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero. Offset  
error must be adjusted before full-scale error. Figures  
10a and 10b show the extra components required for  
Bipolaroffsetandfull-scaleerrorsareadjustedinasimilar  
fashion to the unipolar case. Again, bipolar offset error  
must be adjusted before full-scale error. Bipolar offset  
FS  
4.096V  
1LSB =  
=
111...111  
111...110  
111...101  
111...100  
R7  
R8  
16384 16384  
48k  
5V  
100Ω  
ANALOG INPUT  
R3  
V
DD  
1
R1  
50k  
+
A
IN  
IN  
R4  
2
3
4
5
24k  
100Ω  
A
V
LTC1418  
R5 R2  
47k 50k  
UNIPOLAR  
ZERO  
REF  
000...011  
000...010  
000...001  
000...000  
R6  
24k  
REFCOMP  
AGND  
V
SS  
0.1μF  
10μF  
1418 F10a  
0V  
1
LSB  
FS – 1LSB  
INPUT VOLTAGE (V)  
1418 F9a  
Figure 9aꢁ LTC1418 Unipolar Transfer Characteristics  
Figure 10aꢁ ꢀffset anꢃ Full-Scale Aꢃjust Circuit  
ꢂf 5V ꢂs Iot Available  
011...111  
–5V  
5V  
BIPOLAR  
ZERO  
011...110  
ANALOG INPUT  
V
DD  
1
2
3
4
5
R1  
50k  
+
A
A
V
IN  
IN  
R3  
24k  
R4  
100Ω  
000...001  
000...000  
111...111  
111...110  
LTC1418  
R5 R2  
47k 50k  
REF  
R6  
24k  
REFCOMP  
AGND  
100...001  
100...000  
FS = 4.096V  
1LSB = FS/16384  
V
SS  
0.1μF  
10μF  
1418 F10b  
*
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FS/2  
FS/2 – 1LSB  
1N5817  
*ONLY NEEDED IF V GOES  
SS  
ABOVE GROUND  
–5V  
LSB  
1418 F9b  
Figure 10bꢁ ꢀffset anꢃ Full-Scale Aꢃjust Circuit  
ꢂf 5V ꢂs Available  
Figure 9bꢁ LTC1418 Bipolar Transfer Characteristics  
1418fa  
14  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
erroradjustmentisachievedbyadjustingtheoffsetapplied  
power supply common returns are essential to low noise  
operation of the ADC and the foil width for these tracks  
should be as wide as possible. In applications where the  
ADC data outputs and control signals are connected to  
a continuously active microprocessor bus, it is possible  
to get errors in the conversion results. These errors are  
due to feedthrough from the microprocessor to the suc-  
cessive approximation comparator. The problem can  
be eliminated by forcing the microprocessor into a wait  
state during conversion or by using three-state buffers to  
isolate the ADC data bus. The traces connecting the pins  
and bypass capacitors must be kept short and should be  
made as wide as possible.  
to the A input. For zero offset error apply –125µV (i.e.,  
IN  
+
–0.5LSB) at A and adjust the offset at the A input  
IN  
IN  
until the output code flickers between 0000 0000 0000  
00 and 1111 1111 1111 11. For full-scale adjustment,  
an input voltage of 2.047625V (FS – 1.5LSBs) is applied  
+
to A  
and R2 is adjusted until the output code flickers  
IN  
between 0111 1111 1111 10 and 0111 1111 1111 11.  
BꢀARD LAYꢀUT AID GRꢀUIDꢂIG  
Wire wrap boards are not recommended for high reso-  
lution or high speed A/D converters. To obtain the best  
performance from the LTC1418, a printed circuit board  
with ground plane is required. The ground plane under  
the ADC area should be as free of breaks and holes as  
possible, such that a low impedance path between all ADC  
grounds and all ADC decoupling capacitors is provided.  
It is critical to prevent digital noise from being coupled to  
the analog input, reference or analog power supply lines.  
Layout should ensure that digital and analog signal lines  
are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track.  
The LTC1418 has differential inputs to minimize noise  
+
coupling. CommonmodenoiseontheA andA leads  
IN  
IN  
will be rejected by the input CMRR. The A input can be  
IN  
+
used as a ground sense for the A  
input; the LTC1418  
IN  
+
will hold and convert the difference voltage between A  
IN  
+
and A . The leads to A (Pin 1) and A (Pin 2) should  
IN  
IN  
IN  
be kept as short as possible. In applications where this is  
+
not possible, the A  
and A traces should be run side  
IN  
IN  
by side to equalize coupling.  
SUPPLY BYPASSꢂIG  
An analog ground plane separate from the logic system  
ground should be established under and around the ADC.  
Pin 5 (AGND) and Pin 14 (DGND) and all other analog  
groundsshouldbeconnectedtothissingleanalogground  
High quality, low series resistance ceramic, 10µF bypass  
capacitors should be used at the V and REFCOMP  
DD  
pins. Surface mount ceramic capacitors such as Murata  
GRM235Y5V106Z016 provide excellent bypassing in a  
small board space. Alternatively 10µF tantalum capacitors  
in parallel with 0.1µF ceramic capacitors can be used.  
plane.TheREFCOMPbypasscapacitorandtheV bypass  
DD  
capacitor should also be connected to this analog ground  
plane.Nootherdigitalgroundsshouldbeconnectedtothis  
analog ground plane. Low impedance analog and digital  
1
+
DIGITAL  
SYSTEM  
LTC1418  
REFCOMP AGND  
A
IN  
A
IN  
V
V
V
DD  
DGND  
14  
REF  
SS  
ANALOG  
INPUT  
CIRCUITRY  
2
3
4
5
27  
10μF  
28  
10μF  
+
1μF  
10μF  
ANALOG GROUND PLANE  
1418 F11  
Figure 11ꢁ Power Supply Grounꢃing Practice  
1418fa  
15  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
1418fa  
16  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
1418 F12b  
Figure 12bꢁ Suggesteꢃ Evaluation Circuit Boarꢃ— Component Siꢃe Top Silkscreen  
1418 F12c  
Figure 12cꢁ Suggesteꢃ Evaluation Circuit Boarꢃ—Top Layer  
1418fa  
17  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
1418 F12d  
Figure 12ꢃꢁ Suggesteꢃ Evaluation Circuit Boarꢃ—Solꢃer Siꢃe Layout  
Bypass capacitors must be located as close to the pins as  
serial output mode either the internal clock or an external  
clockmaybeusedastheconversionclock(seeFigure20).  
The internal clock is factory trimmed to achieve a typical  
conversion time of 3.4µs and a maximum conversion  
time over the full operating temperature range of 4µs. No  
externaladjustmentsarerequired,andwiththeguaranteed  
maximumacquisitiontimeof1µs,throughputperformance  
of 200ksps is assured.  
possible. The traces connecting the pins and the bypass  
capacitors must be kept short and should be made as  
wide as possible.  
EMample Layout  
Figures 12a, 12b, 12c and 12d show the schematic and  
layout of a suggested evaluation board. The layout dem-  
onstrates the proper use of decoupling capacitors and  
ground plane with a 2-layer printed circuit board.  
Power Shutꢃown  
The LTC1418 provides two power shutdown modes, nap  
and sleep, to save power during inactive periods. The nap  
modereducesthepowerby80%andleavesonlythedigital  
logic and reference powered up. The wake-up time from  
nap to active is 500ns (see Figure 13a). In sleep mode  
all bias currents are shut down and only leakage current  
remains—about 2µA. Wake-up time from sleep mode is  
much slower since the reference circuit must power up  
and settle to 0.005% for full 14-bit accuracy. Sleep mode  
wake-up time is dependent on the value of the capacitor  
connected to the REFCOMP (Pin 4). The wake-up time is  
30ms with the recommended 10µF capacitor. Shutdown  
is controlled by Pin 22 (SHDN); the ADC is in shutdown  
when it is low. The shutdown mode is selected with Pin 25  
(CS); low selects nap (see Figure 13b), high selects sleep.  
DꢂGꢂTAL ꢂITERFACE  
The LTC1418 can operate in serial or parallel mode. In  
parallel mode the ADC is designed to interface with mi-  
croprocessors as a memory mapped device. The CS and  
RD control inputs are common to all peripheral memory  
interfacing. In serial mode only four digital interface lines  
are required, SCLK, CONVST, EXTCLKIN and D . SCLK,  
OUT  
the serial data shift clock can be an external input or sup-  
plied by the LTC1418 internal clock.  
ꢂnternal Clock  
TheADC has an internalclock. In paralleloutput mode, the  
internal clock is always used as the conversion clock. In  
1418fa  
18  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
SHDN  
CS  
CONVST  
RD  
t
t
2
4
CONVST  
1418 F13a  
t
1
Figure 13aꢁ SHDN to CONVST Wake-Up Timing  
1418 F14  
CS  
Figure 14ꢁ CS to CONVST Set-Up Timing  
t
3
SHDN  
data outputs are always enabled and data can be latched  
with the BUSY rising edge. Mode 1a shows operation  
with a narrow logic low CONVST pulse. Mode 1b shows  
a narrow logic high CONVST pulse.  
1418 F13b  
Figure 13bꢁ CS to SHDN Timing  
Conversion Control  
In mode 2 (Figure 17) CS is tied low. The falling edge of  
CONVST signal again starts the conversion. Data outputs  
are in three-state until read by the MPU with the RD signal.  
Mode 2 can be used for operation with a shared data bus.  
Conversion start is controlled by the CS and CONVST  
inputs. A falling edge of CONVST pin will start a conver-  
sion after the ADC has been selected (i.e., CS is low, see  
Figure 14). Once initiated, it cannot be restarted until the  
conversion is complete. Converter status is indicated by  
the BUSY output. BUSY is low during a conversion.  
In slow memory and ROM modes (Figures 18 and 19),  
CS is tied low and CONVST and RD are tied together. The  
MPU starts the conversion and reads the output with the  
RD signal. Conversions are started by the MPU or DSP  
(no external sample clock).  
Data ꢀutput  
The data format is controlled by the SER/PAR input pin;  
logic low selects parallel output format. In parallel mode,  
the 14-bit data output word D0 to D13 is updated at the  
end of each conversion on Pins 6 to 13 and Pins 15 to 20.  
AlogichighappliedtoSER/PAR selectstheserialformatted  
data output and Pins 16 to 20 assume their serial function,  
Pins 6 to 13 and 15 are in the Hi-Z state. In either parallel  
or serial data formats, outputs will be active only when  
CS and RD are low. Any other combination of CS and RD  
InslowmemorymodetheprocessortakesRD(=CONVST)  
low and starts the conversion. BUSY goes low forcing  
the processor into a wait state. The previous conversion  
result appears on the data outputs. When the conversion  
iscomplete,thenewconversionresultsappearonthedata  
outputs; BUSY goes high releasing the processor and the  
processor takes RD (= CONVST) back high and reads the  
new conversion data.  
will three-state the output. In unipolar mode (V = 0V)  
SS  
In ROM mode, the processor takes RD (= CONVST) low,  
startingaconversionandreadingthepreviousconversion  
result. After the conversion is complete, the processor  
can read the new result and initiate another conversion.  
thedatawillbeinstraightbinaryformat(correspondingto  
the unipolar input range). In bipolar mode(V = –5V), the  
SS  
data will be in two’s complement format (corresponding  
to the bipolar input range).  
Serial ꢀutput ꢄoꢃe  
Parallel ꢀutput ꢄoꢃe  
Serial output mode is selected when the SER/PAR input  
pin is high. In this mode, Pins 16 to 20, D0 (EXT/INT),  
Parallel mode is selected with a logic 0 applied to the  
SER/PAR pin. Figures 15 through 19 show different  
modes of parallel output operation. In modes 1a and  
1b (Figures 15 and 16) CS and RD are both tied low.  
The falling edge of CONVST starts the conversion. The  
D1 (D ), D2 (CLKOUT), D3 (SCLK) and D4 (EXTCLKIN)  
OUT  
assume their serial functions as shown in Figure 20. (Dur-  
ing this discussion, these pins will be referred to by their  
1418fa  
19  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
CS = RD = 0  
t
CONV  
(SAMPLE N)  
t
5
CONVST  
t
t
8
6
BUSY  
t
7
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
1418 F15  
DATA  
Figure 15ꢁ ꢄoꢃe 1aꢁ CONVST Starts a Conversionꢁ Data ꢀutputs Always Enableꢃ  
(CONVST =  
)
t
13  
t
CS = RD = 0  
CONV  
t
5
CONVST  
t
t
8
6
t
6
BUSY  
t
7
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
DATA  
1418 F16  
(CONVST =  
)
Figure 16ꢁ ꢄoꢃe 1bꢁ CONVST Starts a Conversionꢁ Data ꢀutputs Always Enableꢃ  
t
12  
(SAMPLE N)  
CS = 0  
t
t
8
CONV  
t
5
CONVST  
t
6
BUSY  
RD  
t
t
11  
9
t
12  
t
10  
DATA N  
DB13 TO DB0  
DATA  
1418 F17  
Figure 17ꢁ ꢄoꢃe 2ꢁ CONVST Starts a Conversionꢁ Data is Reaꢃ by RD  
1418fa  
20  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
CS = 0  
t
t
8
CONV  
(SAMPLE N)  
RD = CONVST  
t
t
11  
6
BUSY  
t
t
7
10  
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
DATA  
1418 F18  
Figure 18ꢁ Slow ꢄemory ꢄoꢃe Timing  
CS = 0  
t
t
8
CONV  
(SAMPLE N)  
RD = CONVST  
BUSY  
t
t
11  
6
t
10  
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA  
1418 F19  
Figure 19ꢁ Rꢀꢄ ꢄoꢃe Timing  
serialfunctionnames:EXT/INT, D , CLKOUT, SCLKand  
during a conversion, the SCLK should be used as the  
external conversion clock to avoid the noise generated  
by the asynchronous clocks. To maintain accuracy the  
external conversion clock frequency must be between  
30kHz and 4.5MHz.) The SAR sends an end of conversion  
signal, EOC, that gates the external conversion clock so  
that only 16 clock cycles can go into the SAR, even if the  
external clock, EXTCLKIN, contains more than 16 cycles.  
OUT  
EXTCLKIN.)Asinparallelmode,conversionsarestartedby  
a falling CONVST edge with CS low. After a conversion is  
completed and the output shift register has been updated,  
BUSY will go high and valid data will be available on D  
OUT  
(Pin 19). This data can be clocked out either before the  
next conversion starts or it can be clocked out during the  
next conversion. To enable the serial data output buffer  
and shift clock, CS and RD must be low.  
When CS and RD are low, these 16 cycles of conversion  
clock (whether internally or externally generated) will ap-  
pear on CLKOUT during each conversion and then CLK-  
OUT will remain low until the next conversion. If desired,  
CLKOUT can be used as a master clock to drive the serial  
port. Because CLKOUT is running during the conversion,  
it is important to avoid excessive loading that can cause  
large supply transients and create noise. For the best  
performance, limit CLKOUT loading to 20pF.  
Figure 20 shows a function block diagram of the LTC1418  
in serial mode. There are two pieces to this circuitry: the  
conversionclockselectioncircuit(EXT/INT,EXTCLKINand  
CLKOUT) and the serial port (SCLK, D , CS and RD).  
OUT  
Conversion Clock Selection (Serial ꢄoꢃe)  
In Figure 20, the conversion clock controls the internal  
ADCoperation.Theconversionclockcanbeeitherinternal  
or external. By connecting EXT/INT low, the internal clock  
is selected. This clock generates 16 clock cycles which  
feed into the SAR for each conversion.  
Serial Port  
The serial port in Figure 20 is made up of a 16-bit shift  
register and a three-state output buffer that are controlled  
by three inputs: SCLK, RD and CS. The serial port has one  
To select an external conversion clock, tie EXT/INT high  
and apply an external conversion clock to EXTCLKIN  
(Pin 16). (When an external shift clock (SCLK) is used  
output, D , that provides the serial output data.  
OUT  
1418fa  
21  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
• • •  
17  
23  
25  
SCLK*  
RD  
CLOCK  
DATA  
IN  
14  
INPUT  
DATA  
OUT  
SHIFT  
REGISTER  
CS  
THREE  
STATE  
BUFFER  
19  
D
OUT  
*
SAR  
16 CONVERSION CLOCK CYCLES  
THREE  
STATE  
BUFFER  
18  
CLKOUT*  
• • •  
EOC  
16  
20  
EXTCLKIN*  
EXT/INT*  
INTERNAL  
CLOCK  
26  
BUSY  
*PINS 16 TO 20 ARE LABELED WITH THEIR SERIAL FUNCTIONS  
1418 F20  
Figure 20ꢁ Functional Block Diagram for Serial ꢄoꢃe (SER/PAR = High)  
The SCLK is used to clock the shift register. Data may be  
clockedoutwiththeinternalconversionclockoperatingas  
amaster byconnectingCLKOUT(Pin18) to SCLK(Pin 17)  
or with an external data clock applied to D3 (SCLK). The  
minimum number of SCLK cycles required to transfer a  
data word is 14. Normally, SCLK contains 16 clock cycles  
for a word length of 16 bits; 14 bits with MSB first, fol-  
lowed by two trailing zeros.  
will all the remaining bits. The data may be captured on  
either edge. The largest hold time margin is achieved if  
data is captured on the rising edge of SCLK.  
BUSY gives the end of conversion indication. When the  
LTC1418 is configured as a master serial device, BUSY  
can be used as a framing pulse and to three-state the se-  
rial port after transferring the serial output data by tying  
it to the RD pin.  
AlogichighonRDdisablesSCLKandthree-statesD .In  
OUT  
Figures 22 to 25 show several serial modes of operation,  
demonstrating the flexibility of the LTC1418 serial port.  
case of using a continuous SCLK, RD can be controlled to  
limitthenumberofshiftclockstothedesirednumber(i.e.,  
16 cycles) and to three-state D  
after the data transfer.  
OUT  
SERꢂAL DATA ꢀUTPUT DURꢂIG A CꢀIVERSꢂꢀI  
A logic high on CS three-states the D  
output buffer.  
OUT  
It also inhibits conversion when it is tied high. In power  
shutdown mode (SHDN = low), a high CS selects sleep  
mode while a low CS selects nap mode. For normal serial  
port operation, CS can be grounded.  
Using ꢂnternal Conversion Clock for Conversion anꢃ  
Data Transfer  
Figure 22 shows data from the previous conversion be-  
ing clocked out during the conversion with the LTC1418  
internal clock providing both the conversion clock and the  
SCLK. The internal clock has been optimized for the fast-  
est conversion time, consequently this mode can provide  
the best overall speed performance. To select an internal  
conversion clock, tie EXT/INT (Pin 20) low. The internal  
D
outputs the serial data; 14 bits, MSB first, on the  
OUT  
falling edge of each SCLK (see Figures 21 and 22). If  
16 SCLKs are provided, the 14 data bits will be followed  
by two zeros. The MSB (D13) will be valid on the first  
rising and the first falling edge of the SCLK. D12 will be  
valid on the second rising and the second falling edge as  
1418fa  
22  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
SCLK  
V
IL  
t
14  
t
15  
V
V
OH  
OL  
D
OUT  
1418 F21  
Figure 21ꢁ SCLK to DꢀUT Delay  
BUSY (= RD)  
24  
26  
23  
17  
CONVST  
CONVST  
BUSY  
RD  
μP OR DSP  
(CONFIGURED  
AS SLAVE)  
OR  
SCLK  
LTC1418  
CLKOUT  
SHIFT  
CLKOUT ( = SCLK)  
18  
REGISTER  
D
OUT  
19  
20  
D
OUT  
EXT/INT  
CS  
1418 F22a  
25  
(SAMPLE N)  
CS = EXT/INT = 0  
t
(SAMPLE N + 1)  
5
CONVST  
t
13  
t
6
t
8
BUSY (= RD)  
HOLD  
SAMPLE  
HOLD  
2
t
10  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
3
CLKOUT (= SCLK)  
t
7
Hi-Z  
Hi-Z  
FILL  
ZEROS  
D
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D13  
D13  
D12 D11  
DATA N  
OUT  
DATA (N – 1)  
t
CONV  
t
1418 F22b  
11  
CLKOUT  
(= SCLK)  
V
IL  
t
14  
t
15  
V
V
OH  
OL  
D
OUT  
D13  
D12  
D11  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 22ꢁ ꢂnternal Conversion Clock Selecteꢃꢁ Data Transferreꢃ During Conversion Using the ADC Clock ꢀutput as a ꢄaster  
Shift Clock (SCLK Driven from CLKꢀUT)  
1418fa  
23  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
clock appears on CLKOUT (Pin 18) which can be tied to  
SCLK (Pin 17) to supply the SCLK.  
It is not recommended to clock data with an external clock  
during a conversion that is running on an internal clock  
because the asynchronous clocks may create noise.  
Using EMternal Clock for Conversion anꢃ Data Transfer  
Serial Data ꢀutput After a Conversion  
In Figure 23, data from the previous conversion is output  
during the conversion with an external clock providing  
both the conversion clock and the shift clock. To select  
an external conversion clock, tie EXT/INT high and apply  
the clock to EXTCLKIN. The same clock is also applied to  
SCLK to provide a data shift clock. To maintain accuracy  
the conversion clock frequency must be between 30kHz  
and 4.5MHz.  
Using Internal Conversion Clock and External Data Clock.  
In this mode, data is output after the end of each conver-  
sion but before the next conversion is started (Figure 24).  
The internal clock is used as the conversion clock and an  
external clock is used for the SCLK. This mode is useful in  
applications where the processor acts as a master serial  
device. This mode is SPI and MICROWIRE compatible. It  
alsoallowsoperationwhentheSCLKfrequencyisverylow  
BUSY (= RD)  
24  
26  
23  
CONVST  
CONVST  
BUSY  
RD  
EXTCLKIN ( = SCLK)  
μP OR DSP  
16  
EXTCLKIN  
LTC1418  
SCLK  
17  
D
OUT  
19  
20  
D
OUT  
EXT/INT  
CS  
5V  
1418 F23a  
25  
(SAMPLE N)  
CS = 0, EXT/INT = 5  
t
(SAMPLE N + 1)  
5
CONVST  
t
13  
t
t
8
6
BUSY (= RD)  
HOLD  
SAMPLE  
HOLD  
2
t
dEXTCLKIN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
3
EXTCLKIN (= SCLK)  
t
10  
t
7
Hi-Z  
Hi-Z  
FILL  
ZEROS  
D
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D13  
D13  
D12 D11  
DATA N  
OUT  
DATA (N – 1)  
t
CONV  
t
1418 F23b  
11  
EXTCLKIN  
(= SCLK)  
t
LEXTCLKIN  
V
t
IL  
HEXTCLKIN  
D12  
t
14  
t
15  
V
V
OH  
D
OUT  
D13  
D11  
OL  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 23ꢁ EMternal Conversion Clock Selecteꢃꢁ Data Transferreꢃ During Conversion Using the EMternal Clock (EMternal Clock  
Drives Both EXTCLKꢂI anꢃ SCLK)  
1418fa  
24  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
24  
26  
23  
17  
INT  
C0  
CONVST  
CONVST  
BUSY  
RD  
SCK  
SCLK  
LTC1418  
μP OR DSP  
MISO  
19  
20  
D
OUT  
EXT/INT  
CS  
25  
1418 F24a  
t
5
CS = EXT/INT = 0  
CONVST  
t
13  
t
6
t
8
SAMPLE  
BUSY  
RD  
HOLD  
t
9
1
2
3
4
5
9
6
8
7
7
8
9
5
10 11 12 13 14 15 16  
SCLK  
t
10  
t
11  
Hi-Z  
FILL  
Hi-Z  
D
D13 12 11 10  
6
4
3
2
1
0
OUT  
ZEROS  
(SAMPLE N)  
t
DATA N  
CONV  
1418 F24b  
t
LSCLK  
SCLK  
V
t
IL  
HSCLK  
t
14  
t
15  
V
V
OH  
OL  
D
OUT  
D13  
D12  
D11  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 24ꢁ ꢂnternal Conversion Clock Selecteꢃꢁ Data Transferreꢃ After Conversion Using an EMternal SCLKꢁ BUSY↑  
ꢂnꢃicates Enꢃ of Conversion  
1418fa  
25  
For more information www.linear.com/LTC1418  
LTC1418  
APPLICATIONS INFORMATION  
(less than 30kHz). To select the internal conversion clock  
tie EXT/INT low. The external SCLK is applied to SCLK.  
RD can be used to gate the external SCLK, such that data  
identical to Figure 24 except that an external clock is used for  
the conversion. This mode allows the user to synchronize the  
A/D conversion to an external clock either to have precise  
control of the internal bit test timing or to provide a precise  
conversion time. As in Figure 24, this mode works when the  
SCLK frequency is very low (less than 30kHz). However, the  
externalconversionclockmustbebetween30kHzand4.5MHz  
to maintain accuracy. If more than 16 SCLKs are provided,  
more zeros will be filled in after the data word indefinitely. To  
select the external conversion clock tie EXT/INT high. The  
external SCLK is applied to SCLK. RD can be used to gate the  
externalSCLKsuchthatdatawillclockonlyafterRDgoeslow.  
will clock only after RD goes low and to three-state D  
OUT  
after data transfer. If more than 16 SCLKs are provided,  
more zeros will be filled in after the data word indefinitely.  
Using EMternal Conversion Clock anꢃ EMternal Data Clock  
In Figure 25, data is also output after each conversion is com-  
pleted and before the next conversion is started. An external  
clock is used for the conversion clock and either another or  
the same external clock is used for the SCLK. This mode is  
24  
16  
26  
23  
CLKOUT  
INT  
CONVST  
CONVST EXTCLKIN  
BUSY  
RD  
C0  
μP OR DSP  
LTC1418  
SCLK  
17  
19  
20  
SCK  
MISO  
D
OUT  
EXT/INT  
5V  
1418 F25a  
CS  
25  
1
5
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
CS = 0, EXT/INT = 5  
t
dEXTCLKIN  
EXTCLKIN  
t
t
7
CONVST  
t
13  
t
t
6
8
SAMPLE  
BUSY  
RD  
HOLD  
t
9
1
2
3
4
5
6
8
7
7
8
6
9
5
10 11 12 13 14 15 16  
SCLK  
t
t
10  
11  
Hi-Z  
FILL  
Hi-Z  
D
D13 12 11 10  
9
4
3
2
1
0
OUT  
ZEROS  
(SAMPLE N)  
t
CONV  
DATA N  
1418 F25b  
t
LSCLK  
SCLK  
V
IL  
t
HSCLK  
t
14  
t
15  
V
OH  
D
OUT  
D13  
D12  
D11  
V
OL  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 25ꢁ EMternal Conversion Clock Selecteꢃꢁ Data Transferreꢃ After Conversion Using an EMternal SCLKꢁ BUSY↑  
ꢂnꢃicates Enꢃ of Conversion  
1418fa  
26  
For more information www.linear.com/LTC1418  
LTC1418  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
1.25 0.12  
5.3 – 5.7  
7.8 – 8.2  
7.40 – 8.20  
(.291 – .323)  
0.42 0.03  
RECOMMENDED SOLDER PAD LAYOUT  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G28 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1418fa  
27  
For more information www.linear.com/LTC1418  
LTC1418  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
28-Lead Plastic PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
1.400*  
(35.560)  
MAX  
28  
27 26 25 24  
23 22 21 20  
19 18 17 16  
15  
14  
.240 – .295*  
(6.096 – 7.493)  
5
6
7
8
9
10 11 12 13  
1
2
3
4
.045 – .065  
.130 ±.005  
(1.143 – 1.651)  
(3.302 ±0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
N28 REV I 0711  
.120  
(3.048)  
MIN  
.005  
(0.127)  
MIN  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
NOTE:  
1. DIMENSIONS ARE  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
OBSOLETE PACKAGE  
1418fa  
28  
For more information www.linear.com/LTC1418  
LTC1418  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUM BER  
A
07/15 Obsoleted 28-Lead PDIP Package  
2, 28  
1418fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTC1418  
TYPICAL APPLICATION  
Single 5V Supply, 200kHz, 14-Bit Sampling A/D Converter  
LTC1418  
5V  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DIFFERENTIAL  
ANALOG INPUT  
(0V TO 4.096V)  
+
A
A
V
V
DD  
IN  
IN  
V
10μF  
V
SS  
REF  
3
OUTPUT  
2.5V  
BUSY  
CS  
REF  
1N5817*  
4
REFCOMP  
AGND  
D13(MSB)  
D12  
5
1μF  
10μF  
CONVST  
RD  
μP CONTROL  
LINES  
6
7
SHDN  
8
D11  
SER/PAR  
(EXT/INT)D0  
9
D10  
*REQUIRED ONLY IF V CAN BECOME  
SS  
POSITIVE WITH RESPECT TO GROUND  
10  
11  
12  
13  
14  
D9  
(D )D1  
OUT  
D8  
(CLKOUT)D2  
(SCLK)D3  
(EXTCLKIN )D4  
D5  
14-BIT  
PARALLEL  
BUS  
D7  
D6  
DGND  
1418 TA03  
RELATED PARTS  
PART NUM BER  
DESCRIPTION  
COM M ENTS  
ADCs  
LTC1274/LTC1277 Low Power, 12-Bit, 100ksps ADCs  
10mW Power Dissipation, Parallel/Byte Interface  
Best Dynamic Performance, SINAD = 72dB at Nyquist  
55mW Power Dissipation, 72dB SINAD  
LTC1412  
LTC1415  
LTC1416  
LTC1419  
LTC1604  
LTC1605  
DACs  
12-Bit, 3Msps Sampling ADC  
Single 5V, 12-Bit, 1.25Msps ADC  
Low Power, 14-Bit, 400ksps ADC  
Low Power, 14-Bit, 800ksps ADC  
16-Bit, 333ksps Sampling ADC  
Single 5V, 16-Bit, 100ksps ADC  
70mW Power Dissipation, 80.5dB SINAD  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
2.5V Input, SINAD = 90dB, THD = 100dB  
Low Power, 10V Inputs, Parallel/Byte Interface  
LTC1595  
LTC1596  
Reference  
LT1019-2.5  
16-Bit CMOS Multiplying DAC in SO-8  
16-Bit CMOS Multiplying DAC  
1LSB Max INL/DNL, 1nV • sec Glitch, DAC8043 Upgrade  
1LSB Max INL/DNL, DAC8143/AD7543 Upgrade  
Precision Bandgap Reference  
0.05% Max, 5ppm/°C Max  
1418fa  
LT 0715 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
30  
LINEAR TECHNOLOGY CORPORATION 1998  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC1418  

相关型号:

LTC1418IN#TRPBF

SUCCESSIVE APPROXIMATION ADC
Linear

LTC1419

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACG

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACG#PBF

暂无描述
Linear

LTC1419ACG#TR

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1419ACSW

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACSW#TR

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SO; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1419ACSW#TRPBF

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SO; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1419AIG

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419AIG#PBF

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1419AIG#TR

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1419AIG#TRPBF

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear