LTC1590IS#TR [Linear]

LTC1590 - Dual Serial 12-Bit Multiplying DAC; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C;
LTC1590IS#TR
型号: LTC1590IS#TR
厂家: Linear    Linear
描述:

LTC1590 - Dual Serial 12-Bit Multiplying DAC; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总12页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1590  
Dual Serial 12-Bit  
Multiplying DAC  
U
FEATURES  
DESCRIPTION  
The LTC®1590 is a dual, serial input 12-bit multiplying  
digital-to-analog converter (DAC). It includes two current  
output multiplying CMOS DACs and an easy SPI compat-  
ible serial interface with daisy-chain output. An asynchro-  
nous CLR pin sets both DACs to zero scale.  
DNL and INL Over Temperature: ±0.5LSB Max  
Gain Error:  
±
1LSB Max  
Low Supply Current: 10  
µA Max  
4-Quadrant Multiplication  
Power-On Reset  
Asynchronous Clear Input  
Daisy-Chain 3-Wire Serial Interface  
16-Pin Narrow SUO and PDIP Packages  
Excellent accuracy, stability and versatility are combined  
with the smallest package available for a dual 12-bit  
multiplying DAC.  
Parts are available in 16-pin PDIP and narrow SO pack-  
ages and are specified over the commercial and industrial  
temperature ranges.  
APPLICATIONS  
Process Control and Industrial Automation  
Software Controlled Gain Adjustment  
Digitally Controlled Filter and Power Supplies  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Automatic Test Equipment  
U
Integral Nonlinearity Over  
Temperature DAC A  
TYPICAL APPLICATION  
1.0  
THREE  
SUPERIMPOSED  
CURVES  
Dual 12-Bit 2-Quadrant Multiplying DAC  
0.5  
0
T
= –40°C,  
A
25°C, 85°C  
V
IN A  
V
IN B  
±10V  
5V  
16  
±10V  
9
1
2
15V  
V
CC  
33pF  
–0.5  
–1.0  
LT®1112  
13  
D
IN  
V
R
REF B FB B  
OUT1 B  
OUT2 B  
3
4
14 CLK  
+
DAC B  
V
OUT B  
2560 3072  
3584 4095  
0
512 1024 1536 2048  
µP  
±10V  
DIGITAL INPUT CODE  
LTC1590 • TA02  
24-BIT  
SHIFT  
REG  
11 CS/LD  
Integral Nonlinearity Over  
Temperature DAC B  
8
6
AND  
LATCH  
33pF  
V
R
1.0  
0.5  
REF A FB A  
OUT1 A  
OUT2 A  
+
THREE  
SUPERIMPOSED  
CURVES  
V
±10V  
DAC A  
OUT A  
5
T
= –40°C,  
A
12  
D
OUT  
25°C, 85°C  
LTC1590  
CLR DGND  
15  
AGND  
7
0
10  
LTC1590 • TA01  
–15V  
5V  
–0.5  
–1.0  
2560 3072  
0
512 1024 1536 2048  
3584 4095  
DIGITAL INPUT CODE  
LTC1590 • TA03  
1
LTC1590  
W W  
U W  
/O  
PACKAGE RDER I FOR ATIO  
ABSOLUTE MAXIMUM RATINGS  
VCC to AGND............................................... 0.5V to 7V  
TOP VIEW  
ORDER PART  
V
CC to DGND .............................................. 0.5V to 7V  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
NUMBER  
REF B  
CC  
AGND to DGND............................................. VCC + 0.5V  
DGND to AGND..............................................VCC + 0.5V  
R
CLR  
CLK  
FB B  
OUT1 B  
OUT2 B  
OUT2 A  
OUT1 A  
AGND  
LTC1590CN  
LTC1590CS  
LTC1590IN  
LTC1590IS  
V
REF to AGND ........................................................±25V  
D
IN  
RFB to AGND .......................................................... ±25V  
D
OUT  
CS/LD  
DGND  
Digital Inputs to DGND ...................0.5V to VCC + 0.5V  
V
OUT1, VOUT2 to AGND ....................0.5V to VCC + 0.5V  
R
V
FB A  
REF A  
Maximum Junction Temperature .......................... 150°C  
Operating Temperature Range  
N PACKAGE  
S PACKAGE  
16-LEAD PDIP 16-LEAD PLASTIC SO  
LTC1590C................................................ 0°C to 70°C  
LTC1590I............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TJMAX = 150°C, θJA = 100°C/W (N)  
JMAX = 150°C, θJA = 150°C/W (S)  
T
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VCC = 4.5V to 5.5V, VREF = 10V, VOUT1 = VOUT2 = AGND = DGND = 0V, TA = TMIN to TMAX, unless otherwise noted.  
SYMBOL  
Accuracy  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
Bits  
LSB  
LSB  
INL  
DNL  
GE  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
(Note 1)  
± 0.5  
± 0.5  
Guaranteed Monotonic, T  
to T  
MAX  
MIN  
(Note 2), T = 25°C  
±1  
±2  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Gain Temperature Coefficient  
(Note 3) Gain/Temperature  
1
5
ppm/°C  
I
OUT1 A, OUT1 B Leakage Current  
(Note 4), T = 25°C  
±5  
±25  
nA  
nA  
LEAKAGE  
A
T
to T  
MIN  
MAX  
Zero-Scale Error  
T = 25°C  
±0.03  
±0.15  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
PSRR  
Power Supply Rejection  
V
= 5V ±10%  
±0.0001 ±0.002  
%/%  
CC  
Reference Input  
R
REF  
V
V
Input Resistance  
REF  
8
11  
15  
3
kΩ  
, V  
Input Resistance Match  
%
REFA REFB  
AC Performance (Note 3)  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
Output Current Settling Time  
Channel-to-Channel Isolation  
Digital Crosstalk  
(Notes 5, 6)  
(Note 11)  
1
nV-s  
dB  
89  
0.3  
80  
0.8  
(Note 5) To 0.01% for Full-Scale Change  
µs  
(Note 7)  
90  
dB  
(Notes 5, 8)  
(Note 9)  
1
13  
nV-s  
nV/Hz  
dB  
Output Noise Voltage Density  
Total Harmonic Distortion  
Multiplying Bandwidth  
THD  
(Note 10)  
(Note 12)  
108  
1
92  
MHz  
2
LTC1590  
ELECTRICAL CHARACTERISTICS  
VCC = 4.5V to 5.5V, VREF = 10V, VOUT1 = VOUT2 = AGND = DGND = 0V, TA = TMIN to TMAX, unless otherwise noted.  
SYMBOL PARAMETER  
Analog Outputs  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
Output Capacitance (Note 3)  
DAC Register Loaded to All 1s  
DAC Register Loaded to All 0s  
60  
30  
90  
60  
pF  
pF  
OUT  
Digital Input  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
2.4  
V
V
IH  
IL  
0.8  
±1  
8
I
0.001  
µA  
pF  
IN  
C
Digital Input Capacitance  
(Note 3) V = 0V  
IN  
IN  
Digital Output  
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
I
I
= 200µA  
4
V
V
OH  
OL  
OH  
OH  
= 1.6mA  
0.4  
Timing Characteristics  
t
t
t
t
t
t
t
t
t
D
D
to CLK Setup Time  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
9
IN  
IN  
to CLK Setup Hold Time  
CLK High Time  
40  
40  
50  
40  
20  
20  
10  
CLK Low Time  
CS/LD High Time  
LSB CLK to CS/LD  
CS/LD Low to CLK High  
CLK Low to CS/LD Low  
CLK to D  
Delay  
160  
OUT  
Power Supply  
V
Operating Supply Range  
Supply Current  
4.5  
5
5.5  
10  
V
CC  
I
Digital Inputs = 0V or V  
µA  
CC  
CC  
The  
denotes specifications which apply over the full operating  
Note 8: Glitch on DAC A or DAC B output when the other DAC makes a  
temperature range.  
full-scale transition.  
Note 1: ±0.5LSB = ±0.012% of full scale.  
Note 2: Using internal feedback resistor.  
Note 3: Guaranteed by design, not subject to test.  
Note 9: 10Hz to 100kHz. Calculation from e = 4KTRB where:  
K = Boltzmann constant (J/K°); R = resistance (); T = resistor temperature  
(°K); B = bandwidth (Hz).  
n
Note10: V = 6V  
at 1kHz. DAC register loaded with all 1s, using  
RMS  
REF  
Note 4: I  
with DAC register loaded with all 0s.  
OUT1  
LT®1124 op amp.  
Note 5: OUT1 load = 100in parallel with 13pF.  
Note 11: V = ±10V, 10kHz sine wave, DAC register loaded with all 0s,  
REF  
Note 6: V = 0V. DAC register contents changed from all 0s to all 1s or  
REF  
using LT1358 op amp.  
Note 12: –3dB bandwidth using LT1358 op amp.  
all 1s to all 0s.  
Note 7: DAC A output with V  
= 0V and V  
= 10kHz 20V , or  
REF A  
REF B P-P  
DAC B output with V  
loaded with all 1s.  
= 0V, V  
= 10kHz 20V . Both DAC registers  
REF A P-P  
REF B  
3
LTC1590  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Full-Scale Settling Waveform  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
= 5V  
DD  
0V TO 5V OUTPUT RANGE  
LT1363 OP AMP  
C
30pF  
FB  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
2560 3072  
2560 3072  
3584 4095  
0
512 1024 1536 2048  
3584 4095  
0
512 1024 1536 2048  
TIME (500ns/DIV)  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1590 G02  
1590 G03  
1590 G12  
Differential Nonlinearity vs  
Reference Voltage  
Multiplying Mode Signal-to-  
(Noise + Distortion) vs Frequency  
Integral Nonlinearity vs  
Reference Voltage  
–50  
–60  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
V
DD  
= 5V  
V
DD  
= 5V  
V
DD  
= 5V  
–70  
–80  
USING AN  
–90  
LT1363 WITH  
500kHz FILTER  
–100  
–110  
USING AN LT1007  
WITH 22kHz FILTER  
1
10  
50  
2
3
4
5
6
7
8
9
10  
3
5
6
7
8
10  
2
4
9
FREQUENCY (kHz)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1590 G10  
1590 G06  
1590 G05  
Integral Nonlinearity vs  
Supply Voltage  
Multiplying Mode Frequency  
Response vs Digital Code  
Differential Nonlinearity vs  
Supply Voltage  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ALL BITS  
ON  
V
= 2V  
REF  
V
= 2V  
REF  
ALL BITS  
OFF  
V
REF  
= 10V  
V
= 10V  
REF  
100  
1k  
10k  
100k  
1M  
10M  
2
3
4
5
6
7
8
9
10  
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1590 G07  
1590 G08  
1590 G09  
4
LTC1590  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs  
Logic Input Voltage  
Logic Threshold vs  
Supply Voltage  
Midscale Glitch Impulse  
4
3
2
1
0
V
= 5V  
DD  
1.0  
0.5  
LT1363 OP AMP  
= 30pF  
C
FB  
0
0
5
10  
15  
0
1
2
3
4
5
TIME (500ns/DIV)  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
1590 G11  
1590 G04  
1590 G01  
U
U
U
PIN FUNCTIONS  
enabled so the data can be clocked in. When CS/LD is  
pulled high, data is loaded from the shift register into the  
DAC register, updating the DAC output.  
VREF B, VREF A (Pins 1, 9): Reference Inputs for DAC A/B.  
Typically ±10V, accepts up to ±25V.  
RFB B, RFB A (Pins 2, 8): Feedback Resistors for DAC A/B.  
Normally tied to the output of current to voltage converter  
op amp. Typically swings to ±10V. Swings from 0V to  
DOUT (Pin 12): The Serial Data Output. Data becomes valid  
on the rising edge of the CLK.  
VREF  
.
DIN (Pin 13): The Serial Data Input. Data on the DIN pin is  
latchedintotheshiftregisterontherisingedgeoftheserial  
clock. Data is loaded as one 24-bit word. The first 12 bits  
are for DAC A, MSB-first and the second 12 bits are for  
DAC B, MSB-first.  
OUT1 B, OUT1 A (Pins 3, 6): True Current Output for DAC  
A/B. Normally tied to inverting input of current to voltage  
converter op amp.  
OUT2 B, OUT2 A (Pins 4, 5): Complement Current Output  
for DAC A/B. Normally tied to ground.  
CLK(Pin14):TheSerialInterfaceClockInput.  
CLR (Pin 15):The Clear Pin for the DAC. Clears both DACs  
to zero scale when pulled low. This pin should be tied to  
VCC for normal operation.  
AGND (Pin 7): Analog Ground Pin. Tie to ground.  
DGND (Pin 10): Digital Ground Pin. Tie to ground.  
CS/LD (Pin 11): The Serial Interface Enable and Load  
Control Input. When CS/LD is low the CLK signal is  
VCC (Pin 16): The Positive Supply Input. 4.5 VCC  
5.5V. Requires a bypass capacitor to ground.  
5
LTC1590  
W
BLOCK DIAGRA  
20k  
40k  
20k  
40k  
20k  
V
R
FB B  
1
2
REF B  
10k  
40k  
40k  
40k  
40k  
40k  
3
4
OUT1 B  
OUT2 B  
DECODER  
DAC B  
D11  
D10  
D9  
D8  
D0  
(LSB)  
(MSB)  
DAC REGISTER B  
LOAD  
12  
8
R
FB A  
V
9
REF A  
6
5
OUT1 A  
OUT2 A  
DAC A  
12  
CS/LD  
11  
CLK  
IN  
CLK  
14  
13  
INPUT 24-BIT SHIFT REGISTER  
D
OUT  
12  
OUT  
D
IN  
1590 • BD  
16  
10  
7
V
CC  
DGND  
AGND  
W U  
W
TIMING DIAGRAMS  
OPERATING SEQUENCE  
DAC A INPUT  
DAC B INPUT  
MSB  
LSB MSB  
LSB  
24  
D
D11 D10 D9 D8  
D7 D6 D5  
D4  
D3  
D2  
D1 D0 D11 D10 D9 D8  
D7 D6 D5  
D4  
D3  
D2  
D1 D0  
IN  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CS/LD  
(ENABLE CLOCK)  
(UPDATE DAC OUTPUT)  
LTC1590 • TD  
6
LTC1590  
W U  
W
TIMING DIAGRAMS  
TIMING DIAGRAM  
t
t
6
t
t
t
7
2
1
8
3
t
CLK  
23  
24  
1
2
t
3
4
D11 A  
MSB  
D0 B  
LSB  
D
IN  
D10 A  
D9 A  
D1 B  
CS/LD  
t
5
t
9
D11 A  
PREVIOUS WORD  
D10 A  
D9 A  
D0 B  
PREVIOUS WORD  
D11 A  
CURRENT WORD  
D
OUT  
PREVIOUS WORD PREVIOUS WORD  
1590 TD02  
U
W U U  
APPLICATIONS INFORMATION  
Equivalent Circuit  
Description  
The LTC1590 is a dual 12-bit multiplying DAC that has  
serial inputs and current outputs. It uses precision R/2R  
resistor ladder technology to provide exceptional linearity  
and stability. The device operates from a single 5V supply  
and provides a ±10V reference input and voltage output  
range when used with an external op amp.  
Figure1showsanequivalentanalogcircuitfortheLTC1590  
DACs. R is the reference input, RREF, which is nominally  
11k. The DAC output is represented by the Thevinin  
equivalent current source with a value of:  
(Code/4096)(VREF/R)  
ThecurrentsourceILKG modelsthejunctionleakageofthe  
DAC output switches. ILKG is typically less than 5nA at  
85°C and decreases by roughly two times for every 10°C  
reduction in temperature. COUT is the output capacitance,  
anditalsocomesfromtheDACoutputswitchesandvaries  
from 30pF at zero scale to 60pF at full scale. RO is the  
equivalent output resistance, which varies with digital  
input code (see Op Amp Selection section).  
Serial I/O  
The LTC1590 has a 3-wire SPI/MICROWIRETM compatible  
serial port that accepts 24-bit serial words. Data is loaded  
MSB first with the first 12 bits controlling DAC A and the  
second 12 bits controlling DAC B. Data is shifted into the  
DIN input on the rising edge of CLK. The CS/LD input must  
be taken low before transferring data to enable the CLK  
input. After transferring data, CS/LD is pulled high to load  
data from the shift register to the DAC registers which  
updates both DACs.  
R
R
R
FB A  
FB B  
V
REF A  
V
REF B  
OUT1 A  
OUT1 B  
I
LKG  
V
REF  
R
CODE  
4096  
R
O
C
R
OUT  
(
)(  
)
The buffered output of the 24-bit shift register is available  
on the DOUT pin. Multiple DACs can be daisy-chained on  
one 3-wire interface by connecting the DOUT pin to the DIN  
pin of the next DAC (see the Timing Diagrams section).  
OUT2 A  
OUT2 B  
AGND  
1590 F01  
Figure 1. Equivalent Circuit  
MICROWIRE is a trademark of National Semiconductor Corporation.  
7
LTC1590  
U
W U U  
APPLICATIONS INFORMATION  
Table 1. Unipolar Binary Code Table  
Unipolar 2-Quadrant Multiplying Mode  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
(VOUT = 0V to VREF  
)
ANALOG OUTPUT  
V
The LTC1590 can be used with a dual op amp to provide  
a dual 2-quadrant multiplying DAC as shown in Figure 2.  
The unipolar DAC transfer function is shown in Table 1.  
The33pFfeedbackcapacitorisrecommendedtocompen-  
sate for the pole caused by the internal feedback resistor  
andtheOUT1outputcapacitance. Forhighspeedopamps  
this feedback capacitor is required for stability, and a  
smaller value, 8pF to 15pF, may be desired to get the  
fastest transient response and shortest settling time. A  
larger feedback capacitor can be used to reduce wideband  
noise, glitch impulse and distortion for lower frequency  
signals. A pole is introduced in the DAC transfer function  
at approximately (CFB)(RFB). For example, a 100pF feed-  
back capacitor will typically give a pole at:  
OUT  
MSB  
LSB  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
–V  
–V  
–V  
0V  
(4095/4096)  
REF  
(2048/4096) = V /2  
(1/4096)  
REF  
REF  
REF  
Bipolar 4-Quadrant Multiplying Mode  
(VOUT = VREF to +VREF  
)
The circuit of Figure 3 can be used to provide a dual  
4-quadrant multiplying DAC. This circuit starts with the  
unipolarapplicationcircuitandaddsthreeresistorsandan  
op amp. These extra devices provide a gain of–2 from the  
unipolar output to the bipolar output, plus an offset of  
(–1)(VREF)toproducethetransferfunctionshowninTable  
2. A pack of matched 20k resistors, with two resistors in  
parallel forming the 10k resistor, is recommended.  
1
145kHz =  
2π 100pF 11kΩ  
(
)(  
)
5V  
V
Table 2. Bipolar Offset Binary Code Table  
DIGITAL INPUT  
REF  
–10V TO 10V  
0.1µF  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
33pF  
15V  
V
OUT  
V
V
R
CC  
REF  
FB  
OUT1  
+
MSB  
LSB  
1/2  
LT1112  
LTC1590  
DAC A OR DAC B  
V
OUT  
0V TO –V  
1111 1111 1111  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
+V  
+V  
0V  
–V  
–V  
(2047/2048)  
(1/2048)  
REF  
REF  
REF  
OUT2  
DGND AGND  
1590 F02  
–15V  
(1/2048)  
(2048/2048) = – V  
REF  
REF  
REF  
Figure 2. Unipolar Operation (2-Quadrant Multiplication)  
R2  
20k  
R3  
20k  
V
REF  
–10V TO 10V  
5V  
0.1µF  
15V  
33pF  
V
V
R
FB  
OUT1  
CC  
REF  
15V  
R1  
10k  
1/2  
LT1112  
+
LTC1590  
DAC A OR DAC B  
+
1/2  
LT1112  
V
OUT  
OUT2  
–V  
REF  
TO V  
REF  
DGND AGND  
–15V  
–15V  
1590 F03  
Figure 3. Bipolar Operation (4-Quadrant Multiplication)  
8
LTC1590  
U
W U U  
APPLICATIONS INFORMATION  
Op Amp Selection  
amp bias current causes a 1.1mV DAC offset, or 0.45LSB  
for a 10V full-scale range. It is important to note that  
connecting the op amp noninverting input to ground  
through a resistor will not cancel bias current errors and  
should never be done! Similarly an offset caused by op  
amp bias current should not be adjusted by using the op  
amp null pins since this increases offset between DAC  
OUT1 and OUT2 pins, causing INL, DNL and gain errors.  
If op amp offset error adjustment is required, the op amp  
input offset voltage (the voltage difference between OUT1  
and OUT2) should be nulled.  
To maintain the excellent accuracy and stability of the  
LTC1590 thought should be given to op amp selection.  
Fortunately,thesensitivityofINLandDNLtoopampoffset  
has been significantly reduced compared to competing  
parts of this type. The op amp’s VOS causes DAC output  
offset. In addition, because the DAC’s equivalent output  
resistance RO changes as a function of code, there is a  
code-dependentDACoutputerrorproportionaltoVOS.For  
fixed reference applicationsthiscausesgain, INLand DNL  
error. For multiplying applications, a code-dependent, DC  
output voltage error is seen. At zero scale the DAC output  
error is equal to the op amp offset, and at full scale the  
output error is equal to twice the op amp offset. For  
example, a 1mV op amp offset will cause a 0.41LSB zero-  
scale error and a 0.82LSB full-scale error with a 10V full-  
scale range. The offset caused INL error is approximately  
0.4 times the op amp VOS and DNL error is 0.07 times op  
amp VOS. For the same example of 1mV op amp VOS and  
10V full-scale range, the INL degradation will be 0.17LSB  
and DNL degradation will be 0.03LSB.  
Grounding  
As with any high precision data converter, clean ground-  
ing is important. A low impedance analog ground plane  
and star grounding should be used. OUT2 carries the  
complementary DAC output current and should be tied to  
the star ground with as low a resistance as possible. Other  
ground points that must be tied to the star ground point  
include the VREF input ground, the op amp noninverting  
input(s) and the VOUT ground reference point.  
Op amp bias current causes only an offset error equal to  
(IBIAS)(RFB) (IBIAS)(11k). For example, a 100nA op  
U
TYPICAL APPLICATIONS  
Dual Programmable Attenuator  
5V  
V
IN B  
±10V  
15V  
0.1µF  
16  
1
2
33pF  
0.01µF  
V
R
REF B  
FB B  
2
3
OUT1 B  
OUT2 B  
3
4
8
D
13  
14  
11  
12  
15  
+
IN  
DATA IN  
SERIAL CLOCK  
CHIP SELECT/DAC LOAD  
DATA OUT  
1/2  
1
CLK  
DAC B  
V
OUT B  
LT1358  
CS/LD  
24-BIT  
SHIFT  
REG  
D
OUT  
CLR  
D
4096  
V
= –V  
IN  
LTC1590  
DAC A  
CLEAR  
OUT  
(
)
AND  
LATCH  
5
6
OUT2 A  
OUT1 A  
5
6
+
1/2  
7
V
OUT A  
LT1358  
7
4
AGND  
DGND  
V
V
R
REF A  
FB A  
10  
33pF  
0.01µF  
–15V  
9
8
1590 TA07  
IN A  
±10V  
9
LTC1590  
U
TYPICAL APPLICATIONS  
Very Low Power Single Supply Dual VOUT DAC  
500k  
50k  
1/4  
LT1179  
V
V
OUT A  
+
500k  
50k  
+
1/4  
LT1179  
V
OUT B  
0V TO 2.2V  
3.3V  
+
16  
1
9
V
CC  
2
3
R
FB B  
V
REF B  
OUT1 B  
OUT2 B  
+
V
3.3V  
DAC B  
0.2V  
4
120k  
8
6
LTC1590  
+
LT1004-1.2  
V
R
OUT1 A  
OUT2 A  
REF A  
1/4  
LT1179  
FB A  
DAC A  
210k  
50k  
5
0.1µF  
I
= 100µA (TYP)  
SUPPLY TOTAL  
(WORSE-CASE CODE)  
AGND  
7
DGND  
10  
1590 TA06  
Dual Programmable Gain Amplifier  
V
IN B  
±10V  
5V  
16  
15V  
0.1µF  
1
2
33pF  
0.01µF  
V
REF B  
R
FB B  
2
3
OUT1 B  
OUT2 B  
3
4
8
D
13  
14  
11  
12  
15  
IN  
DATA IN  
1/2  
1
CLK  
DAC B  
V
OUT B  
LT1358  
SERIAL CLOCK  
CHIP SELECT/DAC LOAD  
DATA OUT  
CS/LD  
+
24-BIT  
SHIFT  
REG  
D
OUT  
4096  
D
CLR  
V
= –V  
IN  
OUT  
LTC1590  
DAC A  
(
)
CLEAR  
AND  
LATCH  
5
6
OUT2 A  
OUT1 A  
5
6
+
1/2  
7
V
OUT A  
LT1358  
7
4
AGND  
DGND  
V
R
REF A  
9
FB A  
10  
33pF  
0.01µF  
–15V  
8
1590 TA08  
V
IN A  
±10V  
10  
LTC1590  
U
TYPICAL APPLICATIONS  
Dual Programmable Gain Amplifier with Input Attenuation  
V
IN B  
±10V  
1k  
15k  
5V  
1k  
15k  
15V  
8
0.1µF  
16  
1
2
33pF  
0.01µF  
V
R
REF B  
FB B  
2
OUT1 B  
OUT2 B  
3
4
D
13  
14  
11  
12  
15  
+
IN  
DATA IN  
SERIAL CLOCK  
CHIP SELECT/DAC LOAD  
DATA OUT  
1/2  
LT1358  
1
CLK  
DAC B  
V
OUT B  
3
CS/LD  
24-BIT  
SHIFT  
REG  
D
OUT  
4096  
16D  
CLR  
V
OUT  
= –V  
IN  
(
)
LTC1590  
DAC A  
CLEAR  
AND  
LATCH  
5
6
OUT2 A  
OUT1 A  
5
6
+
1/2  
LT1358  
7
V
OUT A  
7
4
AGND  
DGND  
V
R
REF A  
FB A  
10  
33pF  
0.01µF  
–15V  
9
8
15k  
1k  
1k  
1590 TA09  
15k  
V
IN A  
±10V  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
N Package  
16-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
0.255 ± 0.015*  
(6.477 ± 0.381)  
2
1
3
4
6
5
7
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
0.015  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.325  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
–0.015  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
+0.635  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N16 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1590  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0.004 – 0.010  
(0.101 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
5
6
7
8
4
S16 0695  
U
TYPICAL APPLICATION  
Dual Programmable Attenuator with Gain  
V
IN B  
±10V  
1k  
15k  
5V  
15k  
15V  
8
0.1µF  
16  
1
2
33pF  
1k  
0.01µF  
V
R
FB B  
REF B  
2
3
OUT1 B  
OUT2 B  
3
4
D
13  
14  
11  
12  
15  
+
IN  
DATA IN  
SERIAL CLOCK  
CHIP SELECT/DAC LOAD  
DATA OUT  
1/2  
LT1358  
1
CLK  
DAC B  
V
OUT B  
CS/LD  
24-BIT  
SHIFT  
REG  
D
OUT  
16D  
4096  
CLR  
V
OUT  
= –V  
IN  
(
)
LTC1590  
DAC A  
CLEAR  
AND  
LATCH  
5
6
OUT2 A  
OUT1 A  
5
6
+
1/2  
LT1358  
7
V
OUT A  
7
4
AGND  
DGND  
V
R
REF A  
9
FB A  
10  
0.01µF  
1k  
15k  
33pF  
–15V  
8
1590 TA10  
1k  
15k  
V
IN A  
±10V  
RELATED PARTS  
PART NUMBER  
LTC1595  
DESCRIPTION  
COMMENTS  
True 16-Bit Upgrade for DAC8043  
True 16-Bit Upgrade for DAC8143 and AD7543  
12-Bit Wide Parallel Input  
16-Bit Multiplying I  
16-Bit Multiplying I  
DAC in SO-8  
DAC  
12-Bit DAC  
OUT  
OUT  
LTC1596  
OUT  
LTC7541A  
Parallel I/O Multiplying I  
LTC7543/LTC8143  
LTC7545A  
LTC8043  
Serial I/O Multiplying I  
Parallel I/O Multiplying I  
Serial I/O Multiplying I  
12-Bit DACs  
Clear Pin and Serial Data Output (LTC8143)  
12-Bit Wide Latched Parallel Input  
8-Pin SO and PDIP  
OUT  
12-Bit DAC  
OUT  
12-Bit DAC  
OUT  
1590f LT/TP 1197 4K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
LINEAR TECHNOLOGY CORPORATION 1997  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LTC1591

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1C

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1CG

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1CG#PBF

暂无描述
Linear

LTC1591-1CG#TR

LTC1591 - 14-Bit Parallel Low Glitch Multiplying DAC with 4-Quadrant Resistors; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1591-1CN

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1CN#TRPBF

IC PARALLEL, WORD INPUT LOADING, 1 us SETTLING TIME, 14-BIT DAC, PDIP28, LEAD FREE, PLASTIC, DIP-28, Digital to Analog Converter
Linear

LTC1591-1I

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1IG

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591-1IG#TR

LTC1591 - 14-Bit Parallel Low Glitch Multiplying DAC with 4-Quadrant Resistors; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1591-1IN

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear

LTC1591C

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
Linear