LTC1597ACN [Linear]

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors; 14位和16位并行低干扰乘法数模转换器与4象限电阻
LTC1597ACN
型号: LTC1597ACN
厂家: Linear    Linear
描述:

14-Bit and 16-Bit Parallel Low Glitch Multiplying DACs with 4-Quadrant Resistors
14位和16位并行低干扰乘法数模转换器与4象限电阻

转换器 数模转换器
文件: 总20页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1591/LTC1597  
14-Bit and 16-Bit Parallel  
Low Glitch Multiplying DACs  
with 4-Quadrant Resistors  
DESCRIPTION  
U
FEATURES  
The LTC®1591/LTC1597 are pin compatible, parallel input  
14-bit and 16-bit multiplying current output DACs that oper-  
atefromasingle5Vsupply.INLandDNLareaccurateto1LSB  
over the industrial temperature range in both 2- and 4-  
quadrant multiplying modes. True 16-bit 4-quadrant multi-  
plication is achieved with on-chip 4-quadrant multiplication  
resistors.  
True 16-Bit Performance Over Industrial  
Temperature Range  
DNL and INL: 1LSB Max  
On-Chip 4-Quadrant Resistors Allow Precise 0V to  
10V, 0V to 10V or ±10V Outputs  
Pin Compatible 14- and 16-Bit Parts  
Asynchronous Clear Pin  
LTC1591/LTC1597: Reset to Zero Scale  
LTC1591-1/LTC1597-1: Reset to Midscale  
Glitch Impulse < 2nV-s  
TheseDACsincludeaninternaldeglitchercircuitthatreduces  
theglitchimpulsetolessthan2nV-s(typ).Theasynchronous  
CLR pin resets the LTC1591/LTC1597 to zero scale and  
LTC1591-1/LTC1597-1 to midscale.  
28-Lead SSOP Package  
Low Power Consumption: 10µW Typ  
The LTC1591/LTC1597 are available in 28-pin SSOP and  
PDIPpackagesandarespecifiedovertheindustrialtempera-  
ture range.  
Power-On ResetU  
APPLICATIONS  
For serial interface 16-bit current output DACs refer to the  
LTC1595/LTC1596 data sheet.  
Process Control and Industrial Automation  
Direct Digital Waveform Generation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Software-Controlled Gain Adjustment  
Automatic Test Equipment  
U
LTC1591/LTC1591-1 Integral Nonlinearity  
1.0  
TYPICAL APPLICATION  
0.8  
0.6  
16-Bit, 4-Quadrant Multiplying DAC with a  
Minimum of External Components  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
REF  
5V  
+
0.1µF  
LT®1468  
15pF  
0
8192  
12288  
4096  
16383  
DIGITAL INPUT CODE  
5
3
2
1
23  
4
1591/97 TA02  
R1  
R
REF  
V
CC  
R
R
COM  
R2  
OFS  
FB  
15pF  
LTC1597/LTC1597-1 Integral Nonlinearity  
1.0  
R
R
OFS  
FB  
R1  
I
0.8  
0.6  
OUT1  
6
V
=
OUT  
–V  
16  
LTC1597-1  
LT1468  
DATA  
16-BIT DAC  
REF  
0.4  
+
TO V  
AGND  
22  
INPUTS  
7
REF  
0.2  
10 TO 21,  
24 TO 27  
DGND  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
WR LD CLR  
28  
1591/97 TA01  
9
8
WR  
LD  
CLR  
0
32768  
49152  
16384  
65535  
DIGITAL INPUT CODE  
1591/97 TA03  
1
LTC1591/LTC1597  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
VCC to AGND............................................... – 0.5V to 7V  
Operating Temperature Range  
V
CC to DGND .............................................. 0.5V to 7V  
LTC1591C/LTC1591-1C  
AGND to DGND............................................. VCC + 0.5V  
DGND to AGND............................................. VCC + 0.5V  
REF, ROFS, RFB, R1, RCOM to AGND, DGND .......... ±25V  
Digital Inputs to DGND ............... 0.5V to (VCC + 0.5V)  
IOUT1 to AGND ............................ 0.5V to( VCC + 0.5V)  
Maximum Junction Temperature .......................... 125°C  
LTC1597C/LTC1597-1C.......................... 0°C to 70°C  
LTC1591I/LTC1591-1I  
LTC1597I/LTC1597-1I ....................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
TOP VIEW  
REF  
1
2
3
4
5
6
7
8
9
28 CLR  
27 NC  
26 NC  
25 D0  
24 D1  
REF  
1
2
3
4
5
6
7
8
9
28 CLR  
27 D0  
26 D1  
25 D2  
24 D3  
LTC1591CG  
LTC1591CN  
LTC1591IG  
LTC1597ACG  
LTC1597ACN  
LTC1597BCG  
LTC1597BCN  
LTC1597-1ACG  
LTC1597-1ACN  
LTC1597-1BCG  
LTC1597-1BCN  
LTC1597AIG  
R
R
I
COM  
R1  
COM  
R1  
R
R
OFS  
OFS  
LTC1591IN  
R
FB  
R
FB  
I
23  
V
23  
V
CC  
LTC1591-1CG  
LTC1591-1CN  
LTC1591-1IG  
LTC1591-1IN  
OUT1  
CC  
OUT1  
AGND  
22 DGND  
21 D2  
20 D3  
19 D4  
18 D5  
17 D6  
16 D7  
15 D8  
AGND  
22 DGND  
21 D4  
20 D5  
19 D6  
18 D7  
17 D8  
16 D9  
15 D10  
LD  
LD  
WR  
WR  
D13 10  
D12 11  
D11 12  
D10 13  
D9 14  
D15 10  
D14 11  
D13 12  
D12 13  
D11 14  
LTC1597AIN  
LTC1597BIG  
LTC1597BIN  
G PACKAGE  
N PACKAGE  
G PACKAGE  
N PACKAGE  
LTC1597-1AIG  
LTC1597-1AIN  
LTC1597-1BIG  
LTC1597-1BIN  
28-LEAD PLASTIC SSOP 28-LEAD NARROW PDIP  
28-LEAD PLASTIC SSOP 28-LEAD NARROW PDIP  
TJMAX = 125°C, θJA = 95°C/ W (G)  
JMAX = 125°C, θJA = 70°C/ W (N)  
TJMAX = 125°C, θJA = 95°C/ W (G)  
JMAX = 125°C, θJA = 70°C/ W (N)  
T
T
Consult factory for Military grade parts.  
2
LTC1591/LTC1597  
ELECTRICAL CHARACTERISTICS  
VCC = 5V ±10%, VREF = 10V, IOUT1 = AGND = DGND = 0V, TA = TMIN to TMAX, unless otherwise noted.  
LTC1591/-1 LTC1597B/-1B  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
LTC1597A/-1A  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
UNITS  
Resolution  
14  
14  
16  
16  
16  
16  
Bits  
Bits  
Monotonicity  
INL  
DNL  
GE  
Integral Nonlinearity  
(Note 2) T = 25°C  
±1  
±1  
± 2  
±2  
±0.25 ±1  
±0.35 ±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Differential Nonlinearity  
Gain Error  
T = 25°C  
± 1  
±1  
±1  
±1  
±0.2 ±1  
±0.2 ±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Unipolar Mode  
(Note 3) T = 25°C  
±4  
±6  
±16  
±24  
2
3
±16  
±16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Bipolar Mode  
(Note 3) T = 25°C  
±4  
±6  
±16  
±24  
2
3
±16  
± 16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Gain Temperature Coefficient (Note 4) Gain/Temperature  
1
2
1
2
1
2
ppm/°C  
Bipolar Zero-Scale Error  
T = 25°C  
± 3  
± 5  
± 10  
± 16  
± 5  
± 8  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
I
OUT1 Leakage Current  
(Note 5) T = 25°C  
±5  
±15  
±5  
±15  
±5  
±15  
nA  
nA  
LKG  
A
T
to T  
MIN  
MAX  
PSRR  
Power Supply Rejection Ratio  
V
= 5V ±10  
±0.1 ±1  
±0.4 ±2  
±0.4 ±2  
LSB/V  
CC  
VCC = 5V ±10%, VREF = 10V, IOUT1 = AGND = DGND = 0V, TA = TMIN to TMAX, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
R
DAC Input Resistance (Unipolar)  
R1/R2 Resistance (Bipolar)  
(Note 6)  
4.5  
9
6
12  
12  
10  
20  
20  
kΩ  
kΩ  
kΩ  
REF  
R1/R2  
, R  
(Notes 6, 13)  
(Note 6)  
R
Feedback and Offset Resistances  
9
OFS FB  
AC Performance (Note 4)  
Output Current Settling Time  
(Notes 7, 8)  
(Note 12)  
(Note 9)  
1
2
µs  
nV-s  
nV-s  
Midscale Glitch Impulse  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
Total Harmonic Distortion  
Output Noise Voltage Density  
1
V
= ±10V, 10kHz Sine Wave  
1
mV  
P-P  
REF  
THD  
(Note 10)  
(Note 11)  
108  
10  
dB  
nV/Hz  
Harmonic Distortion  
(Digital Waveform Generation)  
Unipolar Mode (Note 14)  
2nd Harmonic  
3rd Harmonic  
SFDR  
94  
101  
94  
dB  
dB  
dB  
Bipolar Mode (Note 14)  
2nd Harmonic  
3rd Harmonic  
SFDR  
94  
101  
94  
dB  
dB  
dB  
3
LTC1591/LTC1597  
ELECTRICAL CHARACTERISTICS  
VCC = 5V ±10%, VREF = 10V, IOUT1 = AGND = DGND = 0V, TA = TMIN to TMAX, unless otherwise noted.  
SYMBOL  
Analog Outputs (Note 4)  
Output Capacitance (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
OUT  
DAC Register Loaded to All 1s: C  
DAC Register Loaded to All 0s: C  
115  
70  
130  
80  
pF  
pF  
OUT1  
OUT1  
Digital Inputs  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
2.4  
V
V
IH  
IL  
0.8  
±1  
8
I
0.001  
µA  
pF  
IN  
C
IN  
Digital Input Capacitance  
(Note 4) V = 0V  
IN  
Timing Characteristics  
t
t
t
t
t
t
Data to WR Setup Time  
Data to WR Hold Time  
WR Pulse Width  
60  
0
20  
–12  
25  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
60  
110  
60  
0
WR  
LD  
LD Pulse Width  
55  
Clear Pulse Width  
WR to LD Delay Time  
40  
CLR  
LWD  
Power Supply  
V
Supply Voltage  
Supply Current  
4.5  
5
5.5  
10  
V
DD  
I
Digital Inputs = 0V or V  
µA  
DD  
CC  
The  
range.  
denotes specifications that apply over the full operating temperature  
Note 9: V = 0V. DAC register contents changed from all 0s to all 1s or  
all 1s to all 0s.  
REF  
Note 1: Absolute Maximum Values are those beyond which the life of a  
Note 10: V = 6V  
at 1kHz. DAC register loaded with all 1s.  
RMS  
REF  
device may be impaired.  
Note 11: Calculation from e = 4kTRB where: k = Boltzmann constant  
n
Note 2: ±1LSB = ±0.006% of full scale = ±61ppm of full scale for the  
LTC1591/LTC1591-1. ±1LSB = ±0.0015% of full scale = ±15.3ppm of full  
scale for the LTC1597/LTC1597-1.  
(J/°K), R = resistance (), T = temperature (°K), B = bandwidth (Hz).  
Note 12: Midscale transition code: 01 1111 1111 1111 to 10 0000 0000  
0000 for the LTC1591/LTC1591-1 and 0111 1111 1111 1111 to 1000  
0000 0000 0000 for the LTC1597/LTC1597-1.  
Note 3: Using internal feedback resistor.  
Note 4: Guaranteed by design, not subject to test.  
Note 13: R1 and R2 are measured between R1 and R  
, REF and R  
.
COM  
COM  
Note 5: I  
with DAC register loaded to all 0s.  
Note 14: Measured using the LT1468 op amp in unipolar mode for I/V  
converter and LT1468 I/V and LT1001 reference inverter in bipolar mode.  
Sample Rate = 50kHz, Signal Frequency = 1kHz, V = 5V, T = 25°C.  
(OUT1)  
Note 6: Typical temperature coefficient is 100ppm/°C.  
Note 7: I load = 100in parallel with 13pF.  
REF  
A
OUT1  
Note 8: To 0.006% for a full-scale change, measured from the rising edge  
of LD for the LTC1591/LTC1591-1. To 0.0015% for a full-scale change,  
measured from the rising edge of LD for the LTC1597/LTC1597-1.  
4
LTC1591/LTC1597  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1591/LTC1597)  
U W  
Unipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency  
Midscale Glitch Impulse  
Full-Scale Settling Waveform  
40  
50  
40  
30  
20  
10  
V
C
= 5V USING AN LT1468  
= 30pF  
USING AN LT1468  
CC  
C
V
= 30pF  
FEEDBACK  
REFERENCE = 6V  
FEEDBACK  
= 10V  
REF  
RMS  
LD PULSE  
5V/DIV  
60  
70  
0
GATED  
SETTLING  
WAVEFORM  
500µV/DIV  
80  
1nV-s TYPICAL  
–10  
500kHz FILTER  
90  
–20  
30  
40  
1591/97 G02  
80kHz FILTER  
–100  
–110  
500ns/DIV  
USING LT1468 OP AMP  
CFEEDBACK = 20pF  
0V to 10V STEP  
30kHz FILTER  
10k 100k  
0.2  
0.4  
0.8  
10  
100  
1k  
0
1.0  
0.6  
FREQUENCY (Hz)  
TIME (µs)  
1591/97 G03  
1591/97 G01  
Bipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Zeros  
Bipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Ones  
40  
50  
40  
50  
V
C
= 5V USING TWO LT1468s  
V
C
= 5V USING TWO LT1468s  
FEEDBACK  
REFERENCE = 6V  
RMS  
CC  
CC  
= 15pF  
= 15pF  
FEEDBACK  
REFERENCE = 6V  
RMS  
60  
60  
70  
70  
80  
80  
500kHz FILTER  
500kHz FILTER  
90  
90  
80kHz FILTER  
30kHz FILTER  
–100  
–110  
–100  
–110  
80kHz FILTER  
30kHz  
FILTER  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1591/97 G05  
1591/97 G04  
Supply Current vs Input Voltage  
Logic Threshold vs Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
V
CC  
= 5V  
ALL DIGITAL INPUTS  
TIED TOGETHER  
4
3
2
1
0
0
2
3
4
5
6
7
0
1
2
3
4
5
1
SUPPLY VOLTAGE (V)  
INTPUT VOLTAGE (V)  
1591/97 G07  
1591/97 G06  
5
LTC1591/LTC1597  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1591)  
Integral Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0
8192  
12280  
4096  
16383  
0
8192  
12280  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
4096  
16383  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
REFERENCE VOLTAGE (V)  
1591 G01  
1591 G02  
1591 G03  
Differential Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Differential Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
Integral Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1591 G04  
1591 G05  
1591 G06  
Integral Nonlinearity vs  
Supply Voltage in Unipolar Mode  
Integral Nonlinearity vs  
Supply Voltage in Bipolar Mode  
Differential Nonlinearity vs  
Supply Voltage in Unipolar Mode  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
V
REF  
= 10V  
V
REF  
= 10V  
REF  
REF  
0.2  
0.2  
0.2  
V
= 10V  
REF  
V
V
= 2.5V  
V
= 2.5V  
V
= 2.5V  
REF  
0
0
0
= 10V  
= 2.5V  
V
= 10V  
= 2.5V  
REF  
REF  
REF  
REF  
V
= 2.5V  
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
V
REF  
= 10V  
V
V
0
2
3
4
5
6
7
0
2
3
4
5
6
7
0
2
3
4
5
6
7
1
1
1
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1591 G07  
1591 G08  
1591 G09  
6
LTC1591/LTC1597  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1591)  
Differential Nonlinearity vs  
Supply Voltage in Bipolar Mode  
Unipolar Multiplying Mode Frequency  
Response vs Digital Code  
1.0  
0.8  
0
20  
ALL BITS ON  
D13 ON  
D12 ON  
D11 ON  
D10 ON  
D9 ON  
D8 ON  
D7 ON  
D6 ON  
D5 ON  
D4 ON  
D3 ON  
D2 ON  
D1 ON  
0.6  
0.4  
40  
0.2  
V
V
= 10V  
REF  
V
= 2.5V  
0
REF  
60  
= 10V  
= 2.5V  
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
V
REF  
80  
D0 ON  
100  
ALL BITS OFF  
120  
0
2
3
4
5
6
7
1
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1591G11  
1591 G10  
VREF  
30pF  
3
2
1 4 5  
6
LTC1591  
LT1468  
+
VOUT  
7
22  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
0
20  
0
20  
ALL BITS ON  
ALL BITS OFF  
D12 ON  
D13 AND D12 ON  
D13 AND D11 ON  
D13 AND D10 ON  
D13 AND D9 ON  
D13 AND D8 ON  
D13 AND D7 ON  
D13 AND D6 ON  
D13 AND D5 ON  
D13 AND D4 ON  
D13 AND D3 ON  
D13 AND D2 ON  
D13 AND D1 ON  
D13 AND D0 ON  
D12 AND D11 ON  
D12 TO D10 ON  
D12 TO D9 ON  
D12 TO D8 ON  
D12 TO D7 ON  
D12 TO D6 ON  
D12 TO D5 ON  
D12 TO D4 ON  
D12 TO D3 ON  
D12 TO D2 ON  
D12 TO D1 ON  
D12 TO D0 ON  
40  
40  
60  
60  
80  
80  
D13 ON  
D13 ON  
*
*
CODES FROM MIDSCALE TO FULL SCALE  
CODES FROM MIDSCALE TO ZERO SCALE  
100  
100  
10  
100  
1k  
10k  
100k 1M  
10M  
10  
100  
1k  
10k  
100k 1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1591G13  
1591 G12  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 84dB TYPICAL (–70dB MAX)  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 84dB TYPICAL (–70dB MAX)  
V
REF  
V
REF  
+
+
LT1468  
LT1468  
V
OUT  
V
OUT  
12pF  
12pF  
12pF  
12pF  
15pF  
LT1468  
+
15pF  
LT1468  
+
3
2
1 4 5  
3
2
1 4 5  
6
6
LTC1591  
LTC1591  
7
22  
7
22  
7
LTC1591/LTC1597  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1597)  
Integral Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0
32768  
49152  
16384  
65535  
0
32768  
49152  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
16384  
65535  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
REFERENCE VOLTAGE (V)  
1597 G01  
1597 G02  
1597 G03  
Differential Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Differential Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
Integral Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1597 G04  
1597 G06  
1597 G05  
Integral Nonlinearity vs  
Supply Voltage in Unipolar Mode  
Integral Nonlinearity vs  
Supply Voltage in Bipolar Mode  
Differential Nonlinearity vs  
Supply Voltage in Unipolar Mode  
2.0  
1.5  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
1.0  
0.4  
V
V
= 10V  
= 10V  
0.4  
REF  
V
= 10V  
REF  
0.5  
V
= 10V  
REF  
0.2  
0.2  
V
= 2.5V  
REF  
V
V
= 2.5V  
= 2.5V  
REF  
V
REF  
= 2.5V  
0
0
0
REF  
V
REF  
= 10V  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
V
= 10V  
= 2.5V  
– 0.5  
–1.0  
–1.5  
–2.0  
REF  
REF  
REF  
V
V
= 2.5V  
REF  
3
4
5
6
7
2
3
4
5
7
2
3
4
5
6
7
2
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1597 G08  
1597 G09  
1597 G07  
8
LTC1591/LTC1597  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1597)  
Differential Nonlinearity vs  
Supply Voltage in Bipolar Mode  
Unipolar Multiplying Mode Frequency  
Response vs Digital Code  
1.0  
0.8  
0
20  
ALL BITS ON  
D15 ON  
D14 ON  
D13 ON  
D12 ON  
D11 ON  
D10 ON  
D9 ON  
D8 ON  
D7 ON  
D6 ON  
D5 ON  
0.6  
0.4  
40  
0.2  
V
V
= 10V  
= 10V  
REF  
0
60  
V
V
= 2.5V  
= 2.5V  
REF  
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
D4 ON  
D3 ON  
D2 ON  
D1 ON  
REF  
80  
100  
120  
D0 ON  
ALL BITS OFF  
2
3
4
5
6
7
100  
1k  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1597G11  
1597 G10  
VREF  
30pF  
3
2 1 4 5  
6
LTC1597  
LT1468  
+
VOUT  
7
22  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
0
20  
40  
60  
80  
0
ALL BITS ON  
ALL BITS OFF  
D14 ON  
D15 AND D14 ON  
D15 AND D13 ON  
D15 AND D12 ON  
D15 AND D11 ON  
D15 AND D10 ON  
D15 AND D9 ON  
D15 AND D8 ON  
D15 AND D7 ON  
D15 AND D6 ON  
D15 AND D5 ON  
D15 AND D4 ON  
D15 AND D3 ON  
D15 AND D2 ON  
D14 AND D13 ON  
D14 TO D12 ON  
D14 TO D11 ON  
D14 TO D10 ON  
D14 TO D9 ON  
D14 TO D8 ON  
D14 TO D7 ON  
D14 TO D6 ON  
D14 TO D5 ON  
D14 TO D4 ON  
D14 TO D3 ON  
D14 TO D2 ON  
D14 TO D1 ON  
20  
40  
60  
CODES FROM  
CODES FROM  
MIDSCALE  
TO ZERO SCALE  
MIDSCALE  
TO FULL SCALE  
80  
D15 AND D1 ON  
D15 AND D0 ON  
D14 TO D0 ON  
D15 ON  
D15 ON  
*
*
100  
100  
10  
100  
1k  
10k  
100k 1M  
10M  
10  
100  
1k  
10k  
100k 1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1597 G12  
1597 G13  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
V
REF  
V
REF  
+
+
LT1468  
LT1468  
V
OUT  
V
OUT  
12pF  
12pF  
12pF  
12pF  
15pF  
15pF  
3
2
1 4 5  
3
2
1 4 5  
6
6
LTC1597  
LT1468  
+
LTC1597  
LT1468  
+
7
22  
7
22  
9
LTC1591/LTC1597  
U
U
U
PIN FUNCTIONS  
IOUT1 (Pin 6): DAC Current Output. Tie to the inverting  
LTC1591  
input of the current to voltage converter op amp.  
REF(Pin1):Reference Inputand4-QuadrantResistorR2.  
Typically ±10V, accepts up to ±25V. In 2-Quadrant mode  
this is the reference input. In 4-quadrant mode, this pin is  
driven by external inverting reference amplifier.  
AGND (Pin 7): Analog Ground. Tie to ground.  
LD(Pin8):DACDigitalInputLoadControlInput. WhenLD  
is taken to a logic high, data is loaded from the input  
register into the DAC register, updating the DAC output.  
RCOM (Pin 2): Center Tap Point of the Two 4-Quadrant  
Resistors R1 and R2. Normally tied to the inverting input  
ofanexternalamplifierin4-quadrantoperation, otherwise  
shorted to the REF pin. See Figures 1a and 2a.  
WR (Pin 9):DAC Digital Write Control Input. When WR is  
taken to a logic low, data is loaded from the digital input  
pins into the 14-bit wide input register.  
R1 (Pin 3): 4-Quadrant Resistor R1. In 2-quadrant opera-  
tion short to the REF pin. In 4-quadrant mode tie to ROFS  
(Pin 4).  
DB13 to D2 (Pins 10 to 21): Digital Input Data Bits.  
DGND (Pin 22): Digital Ground. Tie to ground.  
V
CC (Pin23):ThePositiveSupplyInput.4.5VVCC 5.5V.  
ROFS (Pin 4): Bipolar Offset Resistor. Typically swings  
±10V, accepts up to ±25V. In 2-quadrant operation tie to  
RFB. In 4-quadrant operation tie to R1.  
Requires a bypass capacitor to ground.  
DB1, DB0 (Pins 24, 25): Digital Input Data Bits.  
NC (Pins 26, 27): No Connect.  
RFB (Pin5):FeedbackResistor.Normallytiedtotheoutput  
of the current to voltage converter op amp. Swings to  
±VREF. VREF is typically ±10V.  
CLR (Pin 28):Digital Clear Control Function for the DAC.  
When CLR is taken to a logic low, it sets the DAC output  
and all internal registers to zero code for the LTC1591 and  
midscale code for the LTC1591-1.  
IOUT1 (Pin 6): DAC Current Output. Tie to the inverting  
LTC1597  
input of the current to voltage converter op amp.  
REF(Pin1):ReferenceInput and4-QuadrantResistorR2.  
Typically ±10V, accepts up to ±25V. In 2-Quadrant mode  
this is the reference input. In 4-quadrant mode, this pin is  
driven by external inverting reference amplifier.  
AGND (Pin 7): Analog Ground. Tie to ground.  
LD(Pin8):DACDigitalInputLoadControlInput. WhenLD  
is taken to a logic high, data is loaded from the input  
register into the DAC register, updating the DAC output.  
RCOM (Pin 2): Center Tap Point of the Two 4-Quadrant  
Resistors R1 and R2. Normally tied to the inverting input  
ofanexternalamplifierin4-quadrantoperation, otherwise  
shorted to the REF pin. See Figures 1b and 2b.  
WR (Pin 9):DAC Digital Write Control Input. When WR is  
taken to a logic low, data is loaded from the digital input  
pins into the 16-bit wide input register.  
R1 (Pin 3): 4-Quadrant Resistor R1. In 2-quadrant opera-  
tion short to the REF pin. In 4-quadrant mode tie to ROFS  
(Pin 4).  
DB15 to D4 (Pins 10 to 21): Digital Input Data Bits.  
DGND (Pin 22): Digital Ground. Tie to ground.  
VCC (Pin23):ThePositiveSupplyInput.4.5VVCC 5.5V.  
Requires a bypass capacitor to ground.  
ROFS (Pin 4): Bipolar Offset Resistor. Typically swings  
±10V, accepts up to ±25V. In 2-quadrant operation tie to  
RFB. In 4-quadrant operation tie to R1.  
DB3 to DB0 (Pins 24 to 27): Digital Input Data Bits.  
CLR (Pin 28):Digital Clear Control Function for the DAC.  
When CLR is taken to a logic low, it sets the DAC output  
and all internal registers to zero code for the LTC1597 and  
midscale code for the LTC1597-1.  
RFB (Pin5):FeedbackResistor.Normallytiedtotheoutput  
of the current to voltage converter op amp. Swings to  
±VREF. VREF is typically ±10V.  
10  
LTC1591/LTC1597  
TRUTH TABLE  
Table 1  
CONTROL INPUTS  
CLR WR  
LD  
REGISTER OPERATION  
0
1
1
1
1
X
0
1
0
X
Reset Input and DAC Register to All 0s for LTC1591/LTC1597 and Midscale for LTC1591-1/LTC1597-1 (Asynchronous Operation)  
Load Input Register with All 14/16 Data Bits  
0
1
Load DAC Register with the Contents of the Input Register  
1
Input and DAC Register Are Transparent  
CLK = LD and WR Tied Together. The 14/16 Data Bits Are Loaded into the Input Register on the Falling Edge of the CLK and Then  
Loaded into the DAC Register on the Rising Edge of the CLK  
1
1
0
No Register Operation  
W
BLOCK DIAGRA SM  
LTC1591  
48k  
48k  
REF  
R
FB  
1
2
3
5
4
12k  
12k  
12k  
96k  
12k  
48k  
48k  
48k  
48k  
48k  
48k  
48k  
96k  
96k  
96k  
R
OFS  
R
COM  
R1  
6
7
I
OUT1  
V
CC  
AGND  
23  
DECODER  
22 DGND  
28 CLR  
D13  
D12  
D11  
D10  
D9  
• • •  
D0  
(LSB)  
(MSB)  
LD  
LOAD  
8
9
RST  
RST  
DAC REGISTER  
WR  
INPUT REGISTER  
WR  
1591 BD  
10  
11  
21  
24  
D1  
25  
26  
NC  
27  
• • • •  
D13  
D12  
D2  
D0  
NC  
11  
LTC1591/LTC1597  
W
BLOCK DIAGRA SM  
LTC1597  
48k  
48k  
REF  
R
FB  
1
2
3
5
4
12k  
12k  
12k  
96k  
12k  
48k  
48k  
48k  
48k  
48k  
48k  
48k  
96k  
96k  
96k  
R
OFS  
R
COM  
R1  
6
7
I
OUT1  
V
CC  
AGND  
23  
DECODER  
22 DGND  
28 CLR  
D15  
D14  
D13  
D12  
D11  
• • •  
D0  
(LSB)  
(MSB)  
LOAD  
RST  
RST  
LD  
8
9
DAC REGISTER  
WR  
INPUT REGISTER  
WR  
1597 BD  
10  
11  
21  
24  
25  
26  
D1  
27  
• • • •  
D15  
D14  
D4  
D3  
D2  
D0  
W U  
TI I G DIAGRA  
W
t
WR  
WR  
DATA  
LD  
t
DS  
t
DH  
t
LWD  
t
LD  
t
CLR  
CLR  
1591/97TD  
12  
LTC1591/LTC1597  
U
W U U  
APPLICATIONS INFORMATION  
Description  
Digital Section  
TheLTC1591/LTC1597are14-/16-bitmultiplying,current  
output DACswithafullparallel14-/16-bitdigitalinterface.  
The devices operate from a single 5V supply and provide  
both unipolar 0V to 10V or 0V to 10V and bipolar ±10V  
output ranges from a 10V or –10V reference input. They  
have three additional precision resistors on chip for bipo-  
lar operation. Refer to the block diagrams regarding the  
following description.  
The LTC1591/LTC1597 are 14-/16-bit wide full parallel  
data bus inputs. The devices are double-buffered with two  
14-/16-bit registers. The double-buffered feature permits  
the update of several DACs simultaneously. The input  
register is loaded directly from a 16-bit microprocessor  
bus when the WR pin is brought to a logic low level. The  
second register (DAC register) is updated with the data  
from the input register when the LD pin is brought to a  
logic high level. Updating the DAC register updates the  
DAC output with the new data. To make both registers  
transparent for flowthrough mode, tie WR low and LD  
high. However, this defeats the deglitcher operation and  
output glitch impulse may increase. The deglitcher is  
activated on the rising edge of the LD pin. The versatility  
of the interface also allows the use of the input and DAC  
registers in a master slave or edge-triggered configura-  
tion. This mode of operation occurs when WR and LD are  
tied together. The asynchronous clear pin resets the  
LTC1591/LTC1597 to zero scale and the LTC1591-1/  
LTC1597-1 to midscale. CLR resets both the input and  
DAC registers. These devices also have a power-on reset.  
Table 1 shows the truth table for the LTC1591/LT1597.  
The14-/16-bitDACsconsistofaprecisionR-2Rladderfor  
the 11/13LSBs. The 3MSBs are decoded into seven seg-  
ments of resistor value R. Each of these segments and the  
R-2R ladder carries an equally weighted current of one  
eighth of full scale. The feedback resistor RFB and  
4-quadrant resistor ROFS have a value of R/4. 4-quadrant  
resistors R1 and R2 have a magnitude of R/4. R1 and R2  
together with an external op amp (see Figure 2) inverts the  
referenceinputvoltageandappliesittothe14-/16-bitDAC  
input REF, in 4-quadrant operation. The REF pin presents  
a constant input impedance of R/8 in unipolar mode and  
R/12inbipolarmode.Theoutputimpedanceofthecurrent  
output pin IOUT1 varies with DAC input code. The IOUT1  
capacitance due to the NMOS current steering switches  
also varies with input code from 70pF to 115pF. An added  
feature of these devices, especially for waveform genera-  
tion, is a proprietary deglitcher that reduces glitch energy  
to below 2nV-s over the DAC output voltage range.  
Unipolar Mode  
(2-Quadrant Multiplying, VOUT = 0V to VREF  
)
The LTC1591/LTC1597 can be used with a single op amp  
to provide 2-quadrant multiplying operation as shown in  
Figure 1. With a fixed 10V reference, the circuits shown  
give a precision unipolar 0V to 10V output swing.  
5V  
0.1µF  
V
REF  
5
2
3
1
23  
4
R1  
R
COM  
REF  
V
CC  
R
R
FB  
OFS  
33pF  
Unipolar Binary Code Table  
R
R
OFS  
FB  
R1  
R2  
I
+
OUT1  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
6
ANALOG OUTPUT  
V
=
OUT  
14  
V
OUT  
LTC1591  
14-BIT DAC  
LT1001  
0V TO  
–V  
DATA  
AGND  
22  
INPUTS  
7
REF  
MSB  
LSB  
11  
00  
1111 1111 1111  
1000 0000 0000  
0000 0000 0000  
0000 0000 0000  
–V (16,383/16,384)  
REF  
10 TO 21,  
24, 25  
–V (8,192/16,384) = –V  
/2  
REF  
DGND  
REF  
01  
00  
–V (1/16,384)  
REF  
0V  
WR LD CLR  
28  
NC NC  
26 27  
1591/97 F01a  
9
8
WR  
LD  
CLR  
Figure 1a. Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
13  
LTC1591/LTC1597  
U
W U U  
APPLICATIONS INFORMATION  
5V  
0.1µF  
V
REF  
5
2
3
1
23  
4
R1  
R
REF  
V
CC  
R
FB  
R
COM  
R2  
OFS  
33pF  
Unipolar Binary Code Table  
R
R
FB  
OFS  
R1  
I
OUT1  
6
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
V
=
ANALOG OUTPUT  
OUT  
16  
V
LTC1597  
16-BIT DAC  
LT1001  
0V TO  
OUT  
DATA  
+
AGND  
22  
INPUTS  
7
–V  
REF  
MSB  
LSB  
1111  
0000  
0001  
0000  
1111 1111 1111  
1000 0000 0000  
0000 0000 0000  
0000 0000 0000  
–V  
REF  
–V  
REF  
–V  
REF  
0V  
(65,535/65,536)  
(32,768/65,536) = –V /2  
(1/65,536)  
10 TO 21,  
24 TO 27  
DGND  
REF  
WR LD CLR  
28  
1591/97 F01b  
9
8
WR  
LD  
CLR  
Figure 1b. Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
Bipolar Mode  
(4-Quadrant Multiplying, VOUT = VREF to VREF  
offset, and a degradation of full-scale error equal to twice  
the op amp offset. For the LTC1597, the same 500µV op  
amp offset (2mV offset for LTC1591) will cause a 3.3LSB  
zero-scale error and a 6.5LSB full-scale error with a 10V  
full-scale range.  
)
The LTC1591/LTC1597 contain on chip all the 4-quadrant  
resistors necessary for bipolar operation. 4-quadrant  
multiplying operation can be achieved with a minimum of  
external components, a capacitor and a dual op amp, as  
shown in Figure 2. With a fixed 10V reference, the circuit  
shown gives a precision bipolar 10V to 10V output  
swing.  
Op amp input bias current (IBIAS) contributes only a zero-  
scale error equal to IBIAS(RFB/ OFS) = IBIAS(6k). For a  
R
thorough discussion of 16-bit DAC settling time and op  
amp selection, refer to Application Note 74, “Component  
and Measurement Advances Ensure 16-Bit DAC Settling  
Time.”  
Op Amp Selection  
Because of the extremely high accuracy of the 14-/16-bit  
LTC1591/LTC1597, thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Reference Input and Grounding  
For optimum performance the reference input of the  
LTC1597 should be driven by a source impedance of less  
than 1k. However, these DACs have been designed to  
minimize source impedance effects. An 8ksource im-  
pedance degrades both INL and DNL by 0.2LSB.  
Op amp offset will contribute mostly to output offset and  
gain and will have minimal effect on INL and DNL. For the  
LTC1597,a500µVopampoffsetwillcauseabout0.55LSB  
INLdegradationand0.15LSBDNLdegradationwitha10V  
full-scale range. The main effects of op amp offset will be  
a degradation of zero-scale error equal to the op amp  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding should be used. AGND must be tied to the star  
ground with as low a resistance as possible.  
14  
LTC1591/LTC1597  
U
W U U  
APPLICATIONS INFORMATION  
V
REF  
5V  
+
0.1µF  
1/2 LT1112  
2
5
3
1
23  
4
R1  
R
V
CC  
REF  
R
R
FB  
COM  
OFS  
33pF  
Bipolar Offset Binary Code Table  
R
R
OFS  
FB  
R1  
R2  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
I
OUT1  
6
ANALOG OUTPUT  
V
=
V
OUT  
–V  
14  
OUT  
14-BIT DAC  
LTC1591-1  
1/2 LT1112  
+
DATA  
REF  
MSB  
LSB  
11  
01  
AGND  
22  
INPUTS  
7
TO V  
REF  
1111 1111  
1000 0000  
1000 0000  
0111 1111  
0000 0000  
1111  
0000  
V
V
(8,191/8,192)  
(1/8,192)  
REF  
REF  
10 TO 21,  
24, 25  
DGND  
0000  
1111  
0000  
00 0V  
11 –V (1/8,192)  
00 –V  
REF  
WR LD CLR  
28  
NC NC  
26 27  
REF  
1591/97 F02a  
9
8
WR  
LD  
CLR  
Figure 2a. Bipolar Operation (4-Quadrant Multiplication) VOUT = VREF to VREF  
V
REF  
5V  
+
0.1µF  
1/2 LT1112  
2
5
3
1
23  
4
R1  
R
V
CC  
REF  
R
R
FB  
COM  
OFS  
33pF  
Bipolar Offset Binary Code Table  
R
R
OFS  
FB  
R1  
R2  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
I
OUT1  
6
ANALOG OUTPUT  
V
=
V
OUT  
–V  
16  
OUT  
LTC1597-1  
1/2 LT1112  
+
16-BIT DAC  
DATA  
REF  
MSB  
LSB  
1111 V (32,767/32,768)  
AGND  
22  
INPUTS  
7
TO V  
REF  
1111 1111 1111  
1000 0000 0000  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
REF  
0001V (1/32,768)  
REF  
10 TO 21,  
24 TO 27  
DGND  
00000V  
1111V (1/32,768)  
REF  
WR LD CLR  
28  
0000V  
REF  
1591/97 F02b  
9
8
WR  
LD  
CLR  
Figure 2b. Bipolar Operation (4-Quadrant Multiplication) VOUT = VREF to VREF  
15  
LTC1591/LTC1597  
TYPICAL APPLICATIONS  
U
Noninverting Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
5V  
+
0.1µF  
1/2 LT1112  
2
5
1
23  
4
REF  
V
CC  
R
R
COM  
R
OFS  
FB  
33pF  
R1  
3
V
REF  
R
R
FB  
OFS  
R1  
R2  
I
OUT1  
6
16  
V
=
OUT  
0V TO V  
16-BIT DAC  
LTC1597  
1/2 LT1112  
+
DATA  
REF  
AGND  
22  
INPUTS  
7
10 TO 21,  
24 TO 27  
DGND  
WR LD CLR  
28  
1591/97 F06  
9
8
WR  
LD  
CLR  
16  
LTC1591/LTC1597  
U
TYPICAL APPLICATIONS  
16-Bit VOUT DAC Programmable Unipolar/Bipolar Configuration  
16  
15  
14  
LTC203AC  
3
UNIPOLAR/  
BIPOLAR  
1
2
+
LT1468  
2
15V  
LT1236A-10  
4
6
5V  
+
0.1µF  
LT1001  
3
2
1
23  
4
5
R
COM  
R1  
REF  
V
R
OFS  
R
CC  
FB  
15pF  
R
R
FB  
OFS  
R1  
R2  
I
OUT1  
6
16  
LTC1597  
LT1468  
V
OUT  
16-BIT DAC  
DATA  
+
AGND  
INPUTS  
7
10 TO 21,  
24 TO 27  
22  
DGND  
WR LD CLR  
28  
1591/97 F04  
9
8
WR  
LD  
CLR  
17  
LTC1591/LTC1597  
U
TYPICAL APPLICATIONS  
Digital Waveform Generator  
2
4
15V  
LT1236A-10  
6
+
5V  
LT1001  
0.1µF  
3
2
5
1
23  
4
R
V
CC  
R1  
REF  
R
R
COM  
R2  
PHASE ACCUMULATOR  
OFS  
FB  
15pF  
n
FREQUENCY CONTROL  
R
R
OFS  
FB  
R1  
I
OUT1  
6
PARALLEL  
SERIAL  
OR BYTE  
LOAD  
REGISTER  
n
n
n
n
SIN ROM  
LOOKUP  
TABLE  
16  
DELTA  
PHASE  
REGISTER  
M
LOWPASS  
FILTER  
PHASE  
REGISTER  
16-BIT DAC  
LTC1597  
LT1468  
DATA  
Σ
+
AGND  
22  
INPUTS  
7
(M)(f )  
C
2
f
=
O
CLOCK  
n
10 TO 21,  
24 TO 27  
DGND  
PHASE  
n = 24 TO 32 BITS  
TRUNCATION  
16 BITS  
WR LD CLR  
28  
1591/97 F05  
9
8
f
O
18  
LTC1591/LTC1597  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
0.397 – 0.407*  
(10.07 – 10.33)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0.301 – 0.311  
(7.65 – 7.90)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
0.205 – 0.212**  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
0° – 8°  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
(0.13 – 0.22)  
0.022 – 0.037  
(0.55 – 0.95)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
G28 SSOP 0694  
N Package  
28-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.370*  
(34.789)  
MAX  
28 27 26 25 24  
23 22 21 20  
19 18 17 16 15  
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
+0.889  
8.255  
N28 1197  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1591/LTC1597  
TYPICAL APPLICATION  
U
17-Bit Sign Magnitude DAC with Bipolar Zero Error of 140µV (0.92LSB at 17 Bits) at 25°C  
16  
15  
14  
LTC203AC  
2
4
15V  
1
2
3
LT1236A-10  
6
5V  
+
0.1µF  
LT1468  
15pF  
3
2
5
1
4
23  
R
R1  
REF  
V
CC  
R
R
FB  
COM  
R2  
OFS  
SIGN  
BIT  
20pF  
R
R
FB  
OFS  
R1  
I
OUT1  
6
16  
DATA  
INPUTS  
16-BIT DAC  
V
OUT  
LTC1597  
LT1468  
+
AGND  
7
10 TO 21,  
24 TO 27  
22  
DGND  
WR LD CLR  
28  
1591/97 F03  
9
8
WR  
LD  
CLR  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Precision Operational Amplifier  
COMMENTS  
Op Amps  
LT1001  
Low Offset, Low Drift  
LT1112  
Dual Low Power, Precision Picoamp Input Op Amp  
90MHz, 22V/µs, 16-Bit Accurate Op Amp  
Serial 16-Bit Current Output DACs  
Serial 16-Bit Voltage Output DAC  
Serial 14-Bit Voltage Output DAC  
14-Bit, 200ksps 5V Sampling ADC  
16-Bit, 333ksps Sampling ADC  
Low Offset, Low Drift  
LT1468  
Precise, 1µs Settling to 0.0015%  
Low Glitch, ±1LSB Maximum INL, DNL  
Low Noise and Glitch Rail-to-Rail VOUT  
DACs  
LTC1595/LTC1596  
LTC1650  
LTC1658  
LTC1418  
LTC1604  
LTC1605  
Low Power, 8-Lead MSOP Rail-to-Rail VOUT  
16mW Dissipation, Serial and Parallel Outputs  
±2.5V Input, SINAD = 90dB, THD = 100dB  
Low Power, ±10V Inputs  
ADCs  
Single 5V, 16-Bit 100ksps ADC  
References LT1236  
Precision Reference  
Ultralow Drift, 5ppm/°C, High Accuracy 0.05%  
15917f LT/TP 1298 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
20 Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY