LTC1606AC [Linear]

16-Bit, 250ksps, Single Supply ADC; 16位, 250ksps的,单电源ADC
LTC1606AC
型号: LTC1606AC
厂家: Linear    Linear
描述:

16-Bit, 250ksps, Single Supply ADC
16位, 250ksps的,单电源ADC

文件: 总12页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LTC1606  
16-Bit, 250ksps,  
Single Supply ADC  
March 2000  
U
DESCRIPTION  
FEATURES  
The LTC®1606 is a 250ksps, sampling 16-bit A/D con-  
verter that draws only 75mW (typical) from a single 5V  
supply. This easy-to-use device includes sample-and-  
hold, precision reference, switched capacitor successive  
approximation A/D and trimmed internal clock.  
Sample Rate: 250ksps  
Single 5V Supply  
Bipolar Input Range: ±10V  
Signal-to-Noise Ratio: 90dB Typ  
Power Dissipation: 75mW Typ  
Integral Nonlinearity: ±2.0LSB Max  
Guaranteed No Missing Codes  
Operates with Internal or External Reference  
Internal Synchronized Clock  
The LTC1606’s input range is an industry standard ±10V.  
Maximum DC specs include ±2.0LSB INL and 16 bits no  
missing codes over temperature. An external reference  
can be used if greater accuracy over temperature is  
needed.  
28-Pin SSOP Package  
Improved 2nd Source to AD976A and ADS7805  
The 90dB signal-to-noise ratio offers an improvement of  
3dBovercompetingdevices,andtheRMStransitionnoise  
is reduced (0.65LSB vs 1LSB) relative to competitive  
parts.  
U
APPLICATIONS  
Industrial Process Control  
Multiplexed Data Acquisition Systems  
The ADC has a microprocessor compatible, 16-bit or two  
byte parallel output port. A convert start input and a data  
ready signal (BUSY) ease connections to FIFOs, DSPs and  
High Speed Data Acquisition for PCs  
Digital Signal Processing  
microprocessors.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Low Power, 250kHz, 16-Bit Sampling ADC on 5V Supply  
5V  
10µF  
0.1µF  
28  
27  
V
V
DIG ANA  
6 TO 13  
15 TO 22  
16-BIT  
200Ω  
7.35k  
V
IN  
1
±10V  
INPUT  
16-BIT  
SAMPLING ADC  
OR 2 BYTE  
PARALLEL  
BUS  
D15 TO D0  
33.2k  
2.5k  
9k  
CAP  
REF  
4
3
4.096V  
26  
25  
BUSY  
CS  
10µF  
1.64x  
BUFFER  
DIGITAL  
CONTROL  
SIGNALS  
CONTROL  
LOGIC AND  
TIMING  
4k  
R/C 24  
2.5V  
REFERENCE  
BYTE  
23  
2.2µF  
AGND1 AGND2  
DGND  
14  
1606 TA01  
2
5
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LTC1606  
W
U
W W W  
U
/O  
PACKAGE RDER I FOR ATIO  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
ORDER PART  
TOP VIEW  
VANA .......................................................................... 7V  
VDIG to VANA ........................................................... 0.3V  
NUMBER  
V
1
2
3
4
5
6
7
8
9
28  
27  
V
V
IN  
DIG  
AGND1  
REF  
ANA  
LTC1606ACG  
LTC1606AIG  
LTC1606CG  
LTC1606IG  
V
DIG ........................................................................... 7V  
26 BUSY  
25 CS  
24 R/C  
23 BYTE  
22 D0  
21 D1  
20 D2  
19 D3  
18 D4  
17 D5  
16 D6  
15 D7  
Ground Voltage Difference  
DGND, AGND1 and AGND2 .............................. ±0.3V  
Analog Inputs (Note 3)  
CAP  
AGND2  
D15 (MSB)  
D14  
VIN ..................................................................... ±25V  
CAP ............................ VANA + 0.3V to AGND2 – 0.3V  
REF....................................Indefinite Short to AGND2  
Momentary Short to VANA  
D13  
D12  
D11 10  
D10 11  
D9 12  
Digital Input Voltage (Note 4) ........ VDGND – 0.3V to 10V  
Digital Output Voltage........ VDGND – 0.3V to VDIG + 0.3V  
Power Dissipation.............................................. 500mW  
Operating Ambient Temperature Range  
D8 13  
DGND 14  
LTC1606AC/LTC1606C............................ 0°C to 70°C  
LTC1606AI/LTC1606I ......................... – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 95°C/W  
Consult factory for Military grade parts.  
U
CONVERTER CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 6)  
LTC1606  
TYP  
LTC1606A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Resolution  
Bits  
Bits  
No Missing Codes  
Transition Noise  
15  
16  
0.65  
0.65  
LSB  
RMS  
Integral Linearity Error  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Full-Scale Error Drift  
Full-Scale Error  
(Note 7)  
±3  
±2  
LSB  
Ext. Reference = 2.5V (Note 8)  
±10  
±10  
mV  
±2  
±7  
±2  
±5  
ppm/°C  
ppm/°C  
%
Ext. Reference = 2.5V (Notes 12, 13)  
Ext. Reference = 2.5V  
±0.50  
±8  
±0.25  
±8  
Full-Scale Error Drift  
Power Supply Sensitivity  
±2  
±2  
ppm/°C  
V
= V = V  
V = 5V ±5% (Note 9)  
DD  
LSB  
ANA  
DIG  
DD  
2
LTC1606  
U
U
The indicates specifications which apply over the full operating temperature range, otherwise  
ANALOG INPUT  
specifications are at TA = 25°C. (Note 5)  
LTC1606/LTC1606A  
SYMBOL PARAMETER  
CONDITIONS  
4.75V V  
MIN  
TYP  
±10  
10  
MAX  
UNITS  
V
V
C
Analog Input Range (Note 9)  
Analog Input Capacitance  
Analog Input Impedance  
5.25V, 4.75V V 5.25V  
IN  
IN  
ANA  
DIG  
pF  
R
IN  
10  
kΩ  
U W  
DYNAMIC ACCURACY (Notes 5, 14)  
LTC1606  
TYP  
LTC1606A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
S/(N + D) Signal-to-(Noise + Distortion) Ratio 1kHz Input Signal (Note 14)  
10kHz Input Signal  
90  
90  
30  
90  
90  
30  
dB  
dB  
dB  
87  
20kHz, 60dB Input Signal  
THD  
Total Harmonic Distortion  
1kHz Input Signal, First 5 Harmonics  
10kHz Input Signal, First 5 Harmonics  
–102  
–94  
– 102  
94  
dB  
dB  
–89  
Peak Harmonic or Spurious Noise 1kHz Input Signal  
10kHz Input Signal  
–102  
–94  
102  
94  
dB  
dB  
Full-Power Bandwidth  
Aperture Delay  
(Note 15)  
275  
40  
275  
40  
kHz  
ns  
Aperture Jitter  
Sufficient to Meet AC Specs Sufficient to Meet AC Specs  
Transient Response  
Overvoltage Recovery  
Full-Scale Step (Note 9)  
(Note 16)  
2
2
µs  
150  
150  
ns  
U U  
U
INTERNAL REFERENCE CHARACTERISTICS The indicates specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1606/LTC1606A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.500  
±5  
MAX  
UNITS  
V
V
Output Voltage  
Output Tempco  
I
I
= 0  
= 0  
2.470  
2.520  
V
REF  
REF  
OUT  
OUT  
ppm/°C  
Internal Reference Source Current  
External Reference Voltage for Specified Linearity  
External Reference Current Drain  
CAP Output Voltage  
1
µA  
V
(Notes 9, 10)  
2.30  
2.50  
2.70  
100  
Ext. Reference = 2.5V (Note 9)  
µA  
V
I
= 0  
4.096  
OUT  
3
LTC1606  
DIGITAL INPUTS AND DIGITAL OUTPUTS  
U
U
The indicates specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1606/LTC1606A  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
DD  
= 4.75V  
DD  
= 0V to V  
IN  
2.4  
IH  
IL  
0.8  
V
I
±10  
µA  
pF  
V
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
V
V
= 4.75V  
= 4.75V  
I = –10µA  
4.5  
OH  
DD  
O
I = 200µA  
O
4.0  
V
V
Low Level Output Voltage  
I = 160µA  
O
0.05  
0.10  
V
OL  
DD  
I = 1.6mA  
O
0.4  
±10  
15  
V
I
Hi-Z Output Leakage D15 to D0  
Hi-Z Output Capacitance D15 to D0  
Output Source Current  
= 0V to V , CS High  
µA  
pF  
mA  
mA  
OZ  
OUT  
DD  
C
CS High (Note 9)  
OZ  
I
I
V
V
= 0V  
–10  
10  
SOURCE  
SINK  
OUT  
OUT  
Output Sink Current  
= V  
DD  
W U  
TIMING CHARACTERISTICS The indicates specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1606/LTC1606A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
250  
SAMPLE(MAX)  
2.5  
1.5  
CONV  
Acquisition Time  
µs  
ACQ  
1
Convert Pulse Width  
Data Valid Delay After R/C↓  
BUSY Delay from R/C↓  
BUSY Low  
(Note 11)  
(Note 9)  
40  
ns  
2.5  
65  
µs  
2
C = 30pF  
L
ns  
3
2.5  
µs  
4
BUSY Delay After End of Conversion  
Aperture Delay  
100  
40  
15  
90  
2
ns  
5
ns  
6
Bus Relinquish Time  
BUSY Delay After Data Valid  
Previous Data Valid After R/C↓  
R/C to CS Setup Time  
Time Between Conversions  
Bus Access  
50  
ns  
7
20  
ns  
8
µs  
9
(Notes 9, 10)  
5
4
ns  
10  
11  
12  
µs  
C = 30pF, (Notes 10)  
L
15  
15  
60  
60  
ns  
Byte Delay  
C = 30pF, (Notes 9, 10)  
L
ns  
4
LTC1606  
W U  
POWER REQUIREMENTS The indicates specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1606/LTC1606A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
20  
UNITS  
V
V
Positive Supply Voltage  
Positive Supply Current  
Power Dissipation  
(Notes 9, 10)  
4.75  
DD  
I
15  
75  
mA  
DD  
P
100  
mW  
DIS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
Note 2: All voltage values are with respect to ground with DGND, AGND1  
and AGND2 wired together (unless otherwise noted).  
Note 11: With CS low the falling R/C edge starts a conversion. If R/C  
returns high at a critical point during the conversion, it can create errors.  
For best results, ensure that R/C returns high within 1µs after the start of  
the conversion.  
Note 3: When these pin voltages are taken below ground or above V  
=
ANA  
V
= V , they will be clamped by internal diodes. This product can  
DIG  
DD  
handle input currents of greater than 100mA below ground or above V  
without latch-up.  
DD  
Note 12: As measured with fixed resistors shown in Figure 4. Adjustable to  
zero with external potentiometer.  
Note 4: When these pin voltages are taken below ground, they will be  
clamped by internal diodes. This product can handle input currents of  
90mA below ground without latchup. These pins are not clamped to V  
Note 13: Full-scale error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions, divided by the transition  
voltage (not divided by the full-scale range) and includes the effect of  
offset error.  
.
DD  
Note 5: V = 5V, f  
= 250kHz, t = t = 5ns unless otherwise  
r f  
DD  
SAMPLE  
specified.  
Note 14: All specifications in dB are referred to a full-scale ±10V input.  
Note 6: Linearity, offset and full-scale specifications apply for a V input  
with respect to ground.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
IN  
Note 15: Full-power bandwidth is defined as full-scale input frequency at  
which a signal-to-(noise + distortion) degrades to 60dB or 10 bits of  
accuracy.  
Note 16: Recovers to specified performance after (2FS) input  
overvoltage.  
Note 8: Bipolar offset is the offset voltage measured from 0.5 LSB when  
the output code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111.  
U
U
U
PIN FUNCTIONS  
VIN (Pin 1): Analog Input. Connect through a 200Ω  
resistor to the analog input. Full-scale input range is  
±10V.  
DGND (Pin 14): Digital Ground.  
D7 to D0 (Pins 15 to 22): Three-State Data Outputs.  
Hi-Z state when CS is high or when R/C is low.  
AGND1 (Pin 2): Analog Ground. Tie to analog ground  
plane.  
BYTE (Pin 23): Byte Select. With BYTE low, data will be  
output with Pin 6 (D15) being the MSB and Pin 22 (D0)  
being the LSB. With BYTE high the upper eight bits and  
the lower eight bits will be switched. The MSB is output  
on Pin 15 and bit 8 is output on Pin 22. Bit 7 is output on  
Pin 6 and the LSB is output on Pin 13.  
REF (Pin 3): 2.5V Reference Output. Bypass with 2.2µF  
tantalum capacitor. Can be driven with an external refer-  
ence.  
CAP (Pin 4): Reference Buffer Output. Bypass with 10µF  
tantalumcapacitor.Thecapacitoroutputvoltageis4.096V  
when REF = 2.5V.  
R/C (Pin 24): Read/Convert Input. With CS low, a falling  
edge on R/C puts the internal sample-and-hold into the  
hold state and starts a conversion. With CS low, a rising  
edge on R/C enables the output data bits.  
AGND2 (Pin 5): Analog Ground. Tie to analog ground  
plane.  
D15 to D8 (Pins 6 to 13): Three-State Data Outputs.  
Hi-Z state when CS is high or when R/C is low.  
5
LTC1606  
U
U
U
PIN FUNCTIONS  
CS (Pin 25): Chip Select. Internally OR’d with R/C. With  
R/C low, a falling edge on CS will initiate a conversion.  
With R/C high, a falling edge on CS will enable the output  
data.  
or another conversion will start without time for signal  
acquisition.  
V
ANA (Pin 27): 5V Analog Supply. Bypass to ground with  
a 0.1µF ceramic and a 10µF tantalum capacitor.  
BUSY (Pin 26): Output Shows Converter Status. It is low  
when a conversion is in progress. Data valid on the rising  
edge of BUSY. CS or R/C must be high when BUSY rises  
VDIG (Pin 28): 5V Digital Supply. Connect directly to Pin  
27.  
TEST CIRCUITS  
Load Circuit for Output Float Delay  
Load Circuit for Access Timing  
5V  
5V  
1k  
1k  
DBN  
DBN  
DBN  
DBN  
1k  
30pF  
30pF  
1k  
30pF  
30pF  
1606 TC02  
1606 TC01  
A. Hi-Z TO V AND V TO V  
B. Hi-Z TO V AND V TO V  
OL OH  
A. V TO Hi-Z  
OH  
B. V TO Hi-Z  
OL  
OH  
OL  
OH  
OL  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
C
SAMPLE  
7.35k  
V
IN  
V
V
ANA  
9k  
2.5k  
SAMPLE  
DIG  
ZEROING SWITCHES  
4k  
REF  
2.5V REF  
+
REF BUF  
1.64x  
COMP  
16-BIT CAPACITIVE DAC  
CAP  
(4.096V)  
16  
D15  
D0  
SUCCESSIVE APPROXIMATION  
REGISTER  
OUTPUT LATCHES  
AGND1  
AGND2  
DGND  
INTERNAL  
CLOCK  
CONTROL LOGIC  
1606 BD  
CS  
R/C  
BYTE  
BUSY  
6
LTC1606  
U
W U U  
APPLICATIONS INFORMATION  
Conversion Details  
Driving the Analog Inputs  
The LTC1606 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 16-bit or two byte parallel output. The  
ADC is complete with a precision reference and an internal  
clock. The control logic provides easy interface to micro-  
processors and DSPs. (Please refer to the Digital Interface  
section for the data format.)  
The nominal input range for the LTC1606 is ±10V or  
(±4VREF)andtheinputisovervoltageprotectedto±25V.  
Theinputimpedanceistypically10k,therefore,itshould  
be driven with a low impedance source. Wideband noise  
coupling into the input can be minimized by placing a  
1000pF capacitor at the input as shown in Figure 2. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If an  
amplifier is to be used to drive the input, care should be  
takentoselectanamplifierwithadequateaccuracy,linear-  
ity and noise for the application. The following list is a  
summary of the op amps that are suitable for driving the  
LTC1606. More detailed information is available in the  
LinearTechnologydatabooksandLinearViewTM CD-ROM.  
Conversion start is controlled by the CS and R/C inputs. At  
the start of conversion the successive approximation  
register (SAR) is reset. Once a conversion cycle has  
begun, it cannot be restarted.  
During the conversion, the internal 16-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, VIN is connected through the resistor divider to  
the sample-and-hold capacitor during the acquire phase  
andthecomparatoroffsetisnulledbytheautozeroswitches.  
In this acquire phase, a minimum delay of 1.5µs will  
provide enough time for the sample-and-hold capacitor to  
acquire the analog signal. During the convert phase, the  
autozero switches open, putting the comparator into the  
compare mode. The input switch switches CSAMPLE to  
ground, injecting the analog input charge onto the sum-  
ming junction. This input charge is successively com-  
pared with the binary-weighted charges supplied by the  
capacitive DAC. Bit decisions are made by the high speed  
comparator. At the end of a conversion, the DAC output  
balances the VIN input charge. The SAR contents (a 16-bit  
data word) that represents the VIN are loaded into the  
16-bit output latches.  
200Ω  
A
IN  
V
IN  
1000pF  
33.2k  
CAP  
1606 • F02  
Figure 2. Analog Input Filtering  
LT1007 - Low noise precision amplifier. 2.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
LT1097 - Low cost, low power precision amplifier. 300µA  
supply current. ±5V to ±15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
LT1227-140MHzvideocurrentfeedbackamplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
SAMPLE  
SI  
C
SAMPLE  
R
SAMPLE  
HOLD  
IN1  
LT1360 - 37MHz voltage feedback amplifier. 3.8mA sup-  
ply current. ±5V to ±15V supplies. Good AC/DC specs.  
V
IN  
+
R
IN2  
LT1363 - 50MHz voltage feedback amplifier. 6.3mA sup-  
ply current. Good AC/DC specs.  
C
V
DAC  
COMPARATOR  
DAC  
DAC  
S
A
R
LT1364/LT1365 - Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good AC/  
DC specs.  
16-BIT  
LATCH  
LT1468 - 90MHz 22V/µs 16-bit accurate amplifier.  
1606 • F01  
Figure 1. LTC1606 Simplified Equivalent Circuit  
LinearView is a trademark of Linear Technology Corporation  
7
LTC1606  
U
W U U  
APPLICATIONS INFORMATION  
is applied to VIN and R4 is adjusted until the output code  
is changing between 0111 1111 1111 1110 and 0111  
1111 1111 1111. Figure 6 shows the bipolar transfer  
characteristic of the LTC1606.  
Internal Voltage Reference  
The LTC1606 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
trimmed to 2.50V. The full-scale range of the ADC is equal  
to (±4 • VREF) or nominally ±10V. The output of the  
reference is connected to the input of a buffer (1.64x)  
througha4kresistor(seeFigure3). Theinputtothebuffer  
or the output of the reference is available at REF (Pin 3).  
The internal reference can be overdriven with an external  
reference if more accuracy is needed. The buffer output  
drives the internal DAC and is available at CAP (Pin 4). The  
CAP pin can be used to drive a steady DC load of less than  
2mA. Driving an AC load is not recommended because it  
can cause the performance of the converter to degrade.  
1
V
±10V INPUT  
IN  
2
200Ω  
1%  
AGND1  
2.2µF  
+
LTC1606  
33.2k  
1%  
3
4
REF  
CAP  
+
10µF  
5
AGND2  
1606 • F04  
Figure 4. ±10V Input Without Trim  
4k  
3
REF  
(2.5V)  
BANDGAP  
REFERENCE  
1
2.2µF  
V
±10V INPUT  
IN  
2
+
200Ω  
AGND1  
R
1%  
2.2µF  
+
3
0.64R  
33.2k  
REF  
5V  
1%  
LTC1606  
4
CAP  
(4.096V)  
576k  
R4  
50k  
INTERNAL  
CAPACITOR  
DAC  
4
5
CAP  
+
10µF  
R3  
50k  
10µF  
AGND2  
1606 • F03  
1606 • F05  
Figure 3. Internal or External Reference Source  
Figure 5. ±10V Input with Offset and Gain Trim  
For minimum code transition noise, the REF pin and the  
CAP pin should each be decoupled with a capacitor to  
filter wideband noise from the reference and the buffer  
(2.2µFtantalumfortheREFpinand10µFtantalumforthe  
CAP pin).  
011...111  
BIPOLAR  
011...110  
ZERO  
000...001  
000...000  
111...111  
111...110  
Offset and Gain Adjustments  
TheLTC1606offsetandfull-scaleerrorshavebeentrimmed  
at the factory with the external resistors shown in Figure  
4. This allows for external adjustment of offset and full  
scale in applications where absolute accuracy is impor-  
tant. See Figure 5 for the offset and gain trim circuit. First,  
adjust the offset to zero by adjusting resistor R3. Apply an  
input voltage of –152.6µV (0.5LSB) and adjust R3 so the  
codeischangingbetween1111111111111111and0000  
0000 0000 0000. The gain error is trimmed by adjusting  
resistorR4. Aninputvoltageof9.999542V(+FS1.5LSB)  
100...001  
FS = 20V  
100...000  
1LSB = FS/65536  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
LSB  
–FS/2  
FS/2 – 1LSB  
1606 • F06  
Figure 6. LTC1606 Bipolar Transfer Characteristics  
8
LTC1606  
U
W U U  
APPLICATIONS INFORMATION  
DC Performance  
Timing and Control  
Onewayofmeasuringthetransitionnoiseassociatedwith  
a high resolution ADC is to use a technique where a DC  
signal is applied to the input of the ADC and the resulting  
output codes are collected over a large number of conver-  
sions. For example in Figure 7, the distribution of output  
code is shown for a DC input that has been digitized 4096  
times. The distribution is Gaussian and the RMS code  
transition is about 0.65LSB.  
Conversion start and data read are controlled by two  
digital inputs: CS and R/C. To start a conversion and put  
the sample-and-hold into the hold mode, bring CS and  
R/C low for no less than 40ns. Once initiated, it cannot be  
restarted until the conversion is complete. Converter  
statusisindicatedbytheBUSYoutputandthisislowwhile  
the conversion is in progress.  
Therearetwomodesofoperation.Thefirstmodeisshown  
in Figure 8. The digital input R/C is used to control the start  
of conversion. CS is tied low. When R/C goes low, the  
sample-and-hold goes into the hold mode and a conver-  
sion is started. BUSY goes low and stays low during the  
conversion and will go back high after the conversion has  
been completed and the internal output shift registers  
havebeenupdated.R/Cshouldremainlowfornolessthan  
40ns. During the time R/C is low, the digital outputs are in  
a Hi-Z state. R/C should be brought back high within 1µs  
after the start of the conversion to ensure that no errors  
occur in the digitized result. The second mode, shown in  
Figure 9, uses the CS signal to control the start of a  
conversion and the reading of the digital output. In this  
mode the R/C input signal should be brought low no less  
than 10ns before the falling edge of CS. The minimum  
pulse width for CS is 40ns. When CS falls, BUSY goes low  
and will stay low until the end of the conversion. BUSY will  
go high after the conversion has been completed. The new  
data is valid when CS is brought back low again to initiate  
2500  
2000  
1500  
1000  
500  
0
–3 –2 –1  
0
1
2
3
4
CODE  
1606 • F07  
Figure 7. Histogram for 4096 Conversions  
DIGITAL INTERFACE  
Internal Clock  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 2.3µs. No external adjust-  
mentsarerequiredand, withthetypicalacquisitiontimeof a read. Again, it is recommended that both R/C and CS  
1µs, throughput performance of 250ksps is assured.  
return high within 1µs after the start of the conversion.  
t
1
R/C  
t
11  
t
2
t
4
t
3
BUSY  
MODE  
t
t
6
5
ACQUIRE  
CONVERT  
ACQUIRE  
CONVERT  
Hi-Z  
t
t
ACQ  
CONV  
t
9
PREVIOUS  
DATA VALID  
PREVIOUS  
DATA VALID  
DATA  
VALID  
DATA  
VALID  
Hi-Z  
NOT VALID  
DATA MODE  
1606 • F08  
t
t
7
8
Figure 8. Conversion Timing with Outputs Enabled After Conversion (CS Tied Low)  
9
LTC1606  
APPLICATIONS INFORMATION  
U
W U U  
t
t
t
t
10  
10  
10  
10  
R/C  
t
t
1
1
CS  
t
3
t
4
BUSY  
MODE  
t
6
ACQUIRE  
CONVERT  
ACQUIRE  
t
CONV  
HI-Z  
Hi-Z  
DATA  
VALID  
DATA BUS  
t
t
7
12  
1606 • F09  
Figure 9. Using CS to Control Conversion and Read Timing  
t
t
10  
10  
R/C  
CS  
BYTE  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
PINS 6 TO 13  
PINS 15 TO 22  
HIGH BYTE  
LOW BYTE  
LOW BYTE  
HIGH BYTE  
t
t
t
7
12  
12  
1606 • F10  
Figure 10. Using CS and BYTE to Control Data Bus Read Timing  
10  
LTC1606  
U
W U U  
APPLICATIONS INFORMATION  
Output Data  
expressed as:  
The output data can be read as a 16-bit word or it can be  
read as two 8-bit bytes. The format of the output data is  
two’s complement. The digital input pin BYTE is used to  
control the two byte read. With the BYTE pin low, the first  
eight MSBs are output on the D15 to D8 pins and the eight  
LSBs are output on the D7 to D0 pins. When the BYTE pin  
is taken high, the eight LSBs replace the eight MSBs  
(Figure 10).  
2
2
2
2
V2 + V3 + V4 ... + VN  
THD = 20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics.  
Board Layout, Power Supplies and Decoupling  
Wire wrap boards and molded sockets are not recom-  
mended for high resolution or high speed A/D converters.  
To obtain the best performance from the LTC1606, a  
printed circuit board is required. Layout for the printed  
circuit board should ensure the digital and analog signal  
linesareseparatedasmuchaspossible. Inparticular, care  
should be taken not to run any digital track alongside an  
analog signal track or underneath the ADC. The analog  
input should be screened by AGND.  
Dynamic Performance  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise at  
the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental.  
Signal-to-Noise Ratio  
Pay particular attention to the design of the analog and  
digital ground planes. The DGND pin of the LTC1606  
should be tied to the analog ground plane. Placing the  
bypasscapacitorascloseaspossibletothepowersupply,  
the reference and reference buffer output is very impor-  
tant. Low impedance common returns for these bypass  
capacitors are essential to low noise operation of the ADC,  
and the foil width for these tracks should be as wide as  
possible. Also, since any potential difference in grounds  
between the signal source and ADC appears as an error  
voltage in series with the input signal, attention should be  
paid to reducing the ground circuit impedance as much as  
possible.  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. A typical LTC1606 has a SINAD of 90dB and  
THD of –102dB with a 250kHz sampling rate and a 1kHz  
input.  
Total Harmonic Distortion  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
11  
LTC1606  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
10.07 – 10.33*  
(0.397 – 0.407)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.65 – 7.90  
(0.301 – 0.311)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G28 SSOP 1098  
RELATED PARTS  
PART NUMBER  
LTC1274/LTC1277  
LTC1415  
DESCRIPTION  
COMMENTS  
Low Power 12-Bit, 100ksps ADCs  
Single 5V, 12-Bit, 1.25Msps ADC  
14-Bit, 200ksps ADC  
10mW Power Dissipation, Parallel/Byte Interface  
55mW Power Dissipation, 72dB SINAD  
15mW, Serial or Parallel Interface  
LTC1418  
LTC1419  
Low Power 14-Bit, 800ksps ADC  
Micropower Precision Series Reference  
Precision Bandgap Reference  
Micropower 4-/8-Channel 12-Bit ADCs  
16-Bit, 333ksps ADC  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
0.075% Max, 10ppm/°C Max, Only 130µA Supply Current  
0.04% Max, 3ppm/°C Max  
LT1460-2.5  
LT1461  
LTC1594/LTC1598  
LTC1604  
Serial I/O, 3V and 5V Versions  
±2.5V Input, 90dB SINAD, 100dB THD, No Missing Codes  
Pin Compatible  
LTC1605  
16 Bits, 100kHz ADC  
LTC1605-1/LTC1605-2 16 Bits, 100kHz ADC  
0V to 4V/±4V Input Range, Pin Compatible with LTC1606  
1606i LT/TP 0300 4K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

LTC1606ACG

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACG#TRPBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1606ACSW

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACSW#PBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SO; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1606ACSW#TRPBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SO; Pins: 28; Temperature Range: 0°C to 70°C
Linear

LTC1606AI

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606AIG

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606AIG#PBF

暂无描述
Linear

LTC1606AIG#TR

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1606AIG#TRPBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1606AISW

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606AISW#PBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SO; Pins: 28; Temperature Range: -40°C to 85°C
Linear