LTC1682 [Linear]

Doubler Charge Pumps with Low Noise Linear Regulator; 倍电荷泵,低噪声线性稳压器
LTC1682
型号: LTC1682
厂家: Linear    Linear
描述:

Doubler Charge Pumps with Low Noise Linear Regulator
倍电荷泵,低噪声线性稳压器

稳压器 泵
文件: 总12页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U
FEATURES  
DESCRIPTIO  
TheLTC®1682/LTC1682-3.3/LTC1682-5aredoublercharge  
pumps with an internal low noise, low dropout (LDO) linear  
regulator. These parts are designed to provide a low noise  
boosted supply voltage for powering noise sensitive devices  
such as high frequency VCOs in wireless applications.  
Low Output Noise: 60µVRMS (100kHz BW)  
Adjustable or Fixed Boosted Output  
Adjustable Output Voltage Range: 2.5V to 5.5V  
Fixed Output Voltages: 3.3V, 5V  
Wide Input Voltage Range: 1.8V to 4.4V  
Uses Small Ceramic Capacitors  
An internal doubler charge pump converts a 1.8V to 4.4V  
input to a boosted output, while the internal LDO regulator  
convertstheboostedvoltagetoalownoiseregulatedoutput.  
TheadjustableversionallowstheusertosetVOUT viaexternal  
resistorsconnectedtoFB. Theregulatoriscapableofsupply-  
ing up to 50mA of output current. Shutdown reduces the  
supply current to < 5µA, removes the load from VIN by  
disabling the regulator and discharges VOUT to ground  
through a 100switch.  
No Inductors Required  
Output Current up to 50mA  
550kHz Switching Frequency  
Low Operating Current: 150µA  
Low Shutdown Current: 1µA  
Internal Thermal Shutdown and Current Limiting  
Available in 8-Pin MSOP and SO Packages  
U
APPLICATIO S  
The LTC1682 LDO regulator is stable with only 2µF on the  
output. Small ceramic capacitors can be used, reducing PC  
board area.  
VCO Power Supplies in Cellular Phones  
2-Way Pagers  
TheLTC1682/LTC1682-3.3/LTC1682-5areshort-circuitand  
over temperature protected. The parts are available in 8-pin  
MSOP and SO packages.  
Wireless PCMCIA Cards  
Portable Medical Instruments  
Low Power Data Acquisition  
Remote Transmitters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Open-Loop Close-In Phase Noise  
4.2V VCO Power Supply, VIN = 2.5V to 4.4V  
SHUTDOWN  
1
4.2V  
4.7µF  
8
7
6
5
f
OUT  
B
P
V
CPO  
OUT  
902MHz  
1000pF  
VCO  
4.7µF  
MURATA  
2
AMPLITUDE  
10dB/DIV  
+
SHDN  
LTC1682  
C
MQE001-902  
M
100k  
36k  
C
V
C
V
3
4
IN  
1µF  
FB  
V
C
IN  
2.5V TO  
4.4V  
0.22µF  
4.7µF  
4.7µF  
15k  
1000pF  
1k  
1000pF  
GND  
1682 TA01  
CENTER = 902MHz  
SPAN = 100kHz  
SWP = 10 sec  
RES BW = 1kHz  
VBW = 30Hz  
REF = 0dBm  
1682 TA02  
1
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
VIN to Ground ..............................................0.3V to 5V  
VOUT Voltage................................................0.3V to 6V  
CPO to Ground ........................................................ 10V  
SHDN, FILT/FB Voltage to  
Operating Temperature Range  
Commercial ............................................ 0°C to 70°C  
Extended Commercial (Note 2)........... 40°C to 85°C  
Industrial ........................................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Maximum Junction Temperature.......................... 125°C  
Ground ..................................... 0.3V to (VIN + 0.3V)  
VOUT Short-Circuit Duration............................ Indefinite  
IOUT...................................................................... 90mA  
U
W
U
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
LTC1682CS8  
LTC1682CMS8  
LTC1682CMS8-3.3  
LTC1682CMS8-5  
LTC1682IMS8  
LTC1682IMS8-3.3  
LTC1682IMS8-5  
TOP VIEW  
CPO  
1
2
3
4
8
7
6
5
V
OUT  
LTC1682CS8-3.3  
LTC1682CS8-5  
LTC1682IS8  
V
1
2
3
4
8 CPO  
7 C  
OUT  
+
+
C
SHDN  
FILT/FB*  
GND  
SHDN  
FILT/FB*  
GND  
6 V  
5 C  
IN  
V
IN  
C
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
LTC1682IS8-3.3  
LTC1682IS8-5  
S8 PACKAGE  
8-LEAD PLASTIC SO  
*PIN3 = FILT FOR LTC1682-3.3/LTC1682-5  
= FB FOR LTC1682  
*PIN3 = FILT FOR LTC1682-3.3/LTC1682-5  
= FB FOR LTC1682  
MS8 PART MARKING  
S8 PART MARKING  
T
JMAX = 125°C, θJA = 140°C/ W  
TJMAX = 125°C, θJA = 120°C/ W  
LTER  
LTGT  
LTGV  
LTHM  
LTGU  
LTGW  
1682  
168233 1682I33  
16825 1682I5  
1682I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. SHDN = VIN = 3V; C1 = 0.22µF; C2, C3, C4 = 4.7µF, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Operating Voltage  
LTC1682  
LTC1682-3.3  
LTC1682-5  
1.8  
2
2.7  
4.4  
4.4  
4.4  
V
V
V
IN  
I
I
Shutdown Current  
Operating Current  
SHDN = 0V  
1
5
µA  
VIN  
VIN  
I
= 0mA, Burst ModeTM Operation  
0°C to 70°C  
OUT  
150  
150  
250  
300  
µA  
µA  
40°C to 85°C  
FB Input Current  
FB Voltage  
LTC1682, FB = 1.235V  
LTC1682  
50  
50  
nA  
V
1.210  
1.235  
1.260  
Regulated Output Voltage  
LTC1682-3.3, I  
= 1mA  
= 1mA  
3.23  
4.9  
3.30  
5.0  
3.37  
5.1  
V
V
OUT  
LTC1682-5, I  
OUT  
V
Temperature Coefficient  
±50  
ppm  
kHz  
OUT  
Charge Pump Oscillator Frequency  
I
> 200µA, V = 1.8V to 4.4V  
480  
550  
620  
OUT  
IN  
Burst Mode is a trademark of Linear Technology Corporation.  
2
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are TA = 25°C. SHDN = VIN = 3V; C1 = 0.22µF; C2, C3, C4 = 4.7µF, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CPO (Charge Pump Output)  
Output Resistance  
V
V
V
= 1.8V, I  
= 10mA  
OUT  
= 10mA  
18  
13  
11  
30  
20  
17  
IN  
IN  
IN  
= 3V, I  
OUT  
= 4.4V, I  
= 10mA  
OUT  
V
Dropout Voltage (Note 3)  
LTC1682, I  
LTC1682/LTC1682-3.3, I  
LTC1682/LTC1682-5, I  
= 10mA, V = 2.57V (Note 5)  
OUT  
100  
75  
50  
160  
120  
90  
mV  
mV  
mV  
OUT  
OUT  
= 10mA, V  
= 3.3V  
= 5V  
OUT  
OUT  
= 10mA, V  
OUT  
OUT  
V
V
Enable Time  
I
= 10mA  
OUT  
2
ms  
OUT  
OUT  
Output Noise Voltage  
LTC1682  
I
I
= 10mA, 10Hz f 100kHz, V  
= 10mA, 10Hz f 2.5MHz, V  
= 5V  
= 5V  
88  
800  
µV  
µV  
µV  
OUT  
OUT  
OUT  
RMS  
µV  
P-P  
OUT  
LTC1682-3.3  
LTC1682-5  
I
I
= 10mA, 10Hz f 100kHz, C  
= 1nF  
= 1nF  
58  
500  
OUT  
OUT  
FILT  
RMS  
= 10mA, 10Hz f 2.5MHz, C  
µV  
P-P  
FILT  
I
I
= 10mA, 10Hz f 100kHz, C  
= 1nF  
= 1nF  
64  
600  
OUT  
OUT  
FILT  
RMS  
= 10mA, 10Hz f 2.5MHz, C  
µV  
P-P  
FILT  
V
V
Line Regulation  
Load Regulation  
V
= 3V to 4V, I  
= 0mA (Note 6)  
5
20  
10  
mV  
OUT  
OUT  
IN  
OUT  
I
I
= 1mA to 10mA  
= 1mA to 50mA (Note 4)  
3
10  
mV  
mV  
OUT  
OUT  
V
Shutdown Resistance  
SHDN = 0V, Resistance Measured to Ground, V = 1.8V  
150  
50  
350  
150  
OUT  
IN  
SHDN = 0V, Resistance Measured to Ground, V = 4.4V  
IN  
SHDN Input Threshold  
SHDN Input Current  
V
= 1.8V to 4.4V  
0.4  
1
1.6  
V
IN  
SHDN = V  
SHDN = 0V  
–1  
–1  
1
1
µA  
µA  
IN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Operating conditions are limited by maximum junction  
temperature. The regulated output specification will not apply for all  
possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range may be  
limited. When operating at maximum output current, the input voltage  
range may be limited.  
of a device may be impaired.  
Note 2: The LTC1682C is guaranteed to meet specified performance from  
0°C to 70°C and is designed, characterized and expected to meet these  
extended temperature limits, but is not tested at 40°C and 85°C. The  
LTC1682I is guaranteed to meet the extended temperature limits.  
Note 5: Limited by the LDO disable switch point of 1.45V .  
Note 3: Dropout voltage is the minimum input/output voltage required to  
IN  
maintain regulation at the specified output current. In dropout the output  
Note 6: The LTC1682 is set to 5V. The feedback current is 25µA.  
voltage will be equal to: V  
– V  
(see Figure 4).  
CPO  
DROPOUT  
3
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOUT Transient Response  
Min and Max VCPO vs VIN  
CPO Output Resistance vs VIN  
35  
30  
25  
20  
15  
10  
5
9
8
7
6
5
4
3
10  
5
T
= 25°C  
T
= 25°C  
A
A
C1 = 0.22µF  
= 10mA  
I
OUT  
0
V
= 2(V  
(A)  
)
IN  
CPO  
T
= 25°C  
A
V
V
C
= 3V  
–5  
–10  
15  
10  
5
IN  
= 4V  
OUT  
OUT  
= 10µF  
(B)  
V
= 1.45(V )  
IN  
CPO  
0
250  
1.5  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
0
50  
100  
150  
200  
300  
2.0  
2.0  
TIME (µs)  
V
V
(V)  
IN  
IN  
1682 G01  
1682 G02  
(A) THE MAXIMUM GENERATED NO LOAD  
CPO VOLTAGE  
(B) THE MINIMUM ALLOWABLE CPO VOLTAGE,  
AT FULL LOAD, TO ENSURE THAT THE LDO  
IS NOT DISABLED  
1682 G02  
LTC1682-5 Output Noise  
(BW = 10Hz to 2.5MHz)  
Enable to Shutdown Timing  
Shutdown to Enable Timing  
2
2
0
4
3
2
1
0
0
4
3
2
1
0
VOUT  
200µV/DIV  
T
= 25°C  
A
V
V
= 3V  
IN  
= 4V  
OUT  
OUT  
I
= 10mA  
NO LOAD  
C
= C  
= 10µF  
CPO  
OUT  
T
= 25°C  
A
V
V
C
= 3V  
IN  
100µs/DIV  
1682 G04  
= 4V  
OUT  
OUT  
= 10µF  
CCPO = COUT = 4.7µF  
IOUT = 10mA  
VIN = 3V  
VOUT = 5V  
TA = 25°C  
CFILT = 1nF  
200µs/DIV  
1ms/DIV  
1682 G05  
1682 G06  
Operating Current vs VIN  
(No Load)  
Oscillator Frequency vs  
Temperature  
220  
200  
180  
160  
140  
120  
100  
80  
565  
560  
555  
550  
545  
540  
535  
530  
T
= 25°C  
A
V
IN  
= 3V  
LTC1682-3.3  
LTC1682-5  
LTC1682  
60  
1.5  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
2.0  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
V
IN  
1682 G08  
1682 G07  
4
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VOUT Voltage vs Temperature  
VOUT Voltage vs Output Current  
5.030  
5.020  
5.010  
5.000  
4.990  
3.340  
3.330  
3.320  
3.310  
3.300  
3.290  
1.240  
1.238  
1.236  
1.234  
5.000  
4.999  
4.998  
4.997  
4.996  
4.995  
4.994  
4.993  
V
I
= 3V  
OUT  
V
T
= 3.3V  
IN  
IN  
A
= 10mA  
= 25°C  
LTC1682-5  
LTC1682-5  
LTC1682-3.3  
3.300  
3.299  
3.298  
3.297  
3.296  
3.295  
3.294  
LTC1682-3.3  
LTC1682  
–50 –25  
0
25  
50  
75 100 125  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT CURRENT (mA)  
1682 G10  
TEMPERATURE (°C)  
1682 G09  
U
U
U
PIN FUNCTIONS  
VOUT (Pin 1): Low Noise Regulated Output Voltage. VOUT  
should be bypassed with a 2µF low ESR capacitor as  
closetothepinaspossibleforbestperformance.TheVOUT  
range is 2.5V to 5.5V.  
FILT (Pin 3) (LTC1682-3.3/LTC1682-5): This pin is used  
to filter the internal voltage reference. Typically a 1nF  
capacitor is connected from FILT to ground.  
GND (Pin 4): System Ground.  
SHDN (Pin 2): Shutdown Input. A logic low on the SHDN  
pin puts the part in shutdown mode. A logic high enables  
the part. To continuously enable the part connect SHDN to  
VIN. When the part is in shutdown, VOUT will be connected  
to ground via a 100switch and CPO will be high  
impedance disconnected from VIN.  
C(Pin 5): Flying Capacitor Negative Input.  
VIN (Pin 6): Input Voltage, 1.8V to 4.4V. VIN should be  
bypassed with a 2µF low ESR capacitor as close to the  
pin as possible for best performance. A minimum capaci-  
tance value of 0.1µF is required.  
C+ (Pin 7): Flying Capacitor Positive Input.  
FB (Pin 3) (LTC1682):The voltage on this pin is compared  
to the internal reference voltage (1.235V) by the error  
amplifier to keep the output in regulation. An external  
resistor divider is required between VOUT and FB to adjust  
the output voltage.  
CPO (Pin 8): Unregulated Charge Pump Output Voltage.  
Approximately1.95(VIN)atlowloads.Bypasswitha2µF  
low ESR capacitor. If a minimum VOUT enable time is  
required, the CPO capacitor should be 2× the VOUT  
capacitor.  
5
W
BLOCK DIAGRA SM  
C1  
0.22µF  
+
C
C
7
5
CHARGE PUMP  
AND  
CPO  
6
V
8
IN  
SLEW CONTROL  
C3  
4.7µF  
C4  
275k  
4.7µF  
+
ENB  
CLK1  
38k  
+
POWER-  
ON  
RESET  
550kHz  
OSCILLATOR  
REG B  
SHDN  
2
SD  
328k  
REGEN  
ENB  
1:100  
V
+
IN  
1
V
OUT  
LDO  
C2  
4.7µF  
REGEN  
SD  
V
= 1.235V  
REF  
100Ω  
1µA/2µA  
FB  
GND  
3
4
R1  
R2  
1682 F01  
Figure 1. LTC1682 Block Diagram  
6
W
BLOCK DIAGRA SM  
C1  
0.22µF  
+
C
C
7
5
CHARGE PUMP  
AND  
CPO  
6
V
8
IN  
SLEW CONTROL  
C3  
4.7µF  
C4  
4.7µF  
275k  
+
ENB  
CLK1  
38k  
+
POWER-  
ON  
550kHz  
OSCILLATOR  
REG B  
SHDN  
2
3
RESET  
SD  
328k  
REGEN  
ENB  
1:100  
FILT  
200k  
1nF  
+
V
IN  
1
V
OUT  
LDO  
C2  
4.7µF  
REGEN  
SD  
V
= 1.235V  
REF  
RA  
120k/65.5k  
RB  
200k  
100Ω  
1µA/2µA  
1682 F02  
4
GND  
Figure 2. LTC1682-3.3/LTC1682-5 Block Diagram  
7
U
W U U  
APPLICATIONS INFORMATION  
Operation  
The LDO is used to filter the ripple on CPO and to set an  
output voltage independent of CPO. VOUT is set by an  
external or internal resistor divider. The LDO requires a  
capacitoronVOUTforstabilityandimprovedload transient  
response. A low ESR capacitor of 2µF should be used.  
The LTC1682 uses a switched-capacitor charge pump to  
generate a CPO voltage of approximately 2(VIN). CPO  
powers an internal low dropout linear regulator that sup-  
plies a regulated output at VOUT. Internal comparators are  
used to sense CPO and VIN voltages for power-up condi-  
tioning. The output current is sensed to determine the  
chargepumpoperatingmode.Atrimmedinternalbandgap  
is used as the voltage reference and a trimmed internal  
oscillator is used to control the charge pump switches.  
Output Voltage Selection  
The LTC1682-3.3/LTC1682-5 versions have internal  
resistor networks to set the regulated output voltage. The  
LTC1682 output voltage is set using an external resistor  
divider (see Figure 3). The output voltage is determined  
using the following formula:  
The charge pump is a doubler configuration that uses one  
external flying capacitor. When enabled, a 2-phase  
nonoverlappingclockcontrolsthechargepumpswitches.  
At start-up, the LDO is disabled and the load is removed  
from CPO. When CPO reaches 1.75(VIN) the LDO is  
enabled. If CPO falls below 1.45(VIN) the LDO will be  
disabled. Generally, the charge pump runs open loop with  
continuous clocking for low noise. If CPO is greater than  
1.95(VIN) and IOUT is less than 100µA, the charge pump  
will operate in Burst Mode operation for increased effi-  
ciency but slightly higher output noise. In Burst Mode  
operation,theclockisdisabledwhenCPOreaches1.95(VIN)  
and enabled when CPO droops by about 100mV. The  
switching frequency is precisely controlled to ensure that  
the frequency is above 455kHz and at the optimum rate to  
ensure maximum efficiency. The switch edge rates are  
also controlled to minimize noise. The effective output  
resistance at CPO is dependent on the voltage at VIN, CPO  
andthejunctiontemperature.AlowESRcapacitorof2µF  
should be used at CPO for minimum noise.  
V
OUT = 1.235V(1 + R1/R2)  
The output voltage range is 2.5V to 5.5V.  
Maximum VOUT and IOUT Calculations  
The maximum available output voltage and current can be  
calculated based on the open circuit CPO voltage, the  
dropout voltage of the LDO and the effective output  
resistance of the charge pump. The open circuit CPO  
voltage is approximately 2(VIN) (see Figure 4).  
R
R
DROPOUT  
CPO  
V
CPO  
V
OUT  
I
+
V
DROPOUT  
+
2V  
C
LOAD  
IN  
CPO  
1682 F04  
Figure 4. Equivalent Circuit  
EXTERNAL LDO  
8
1
2
5.1V  
RIPPLE  
CPO  
V
OUT  
V
= 800µV  
P-P  
C3  
C2  
4.7µF  
4.7µF  
7
+
C
SHDN  
FB  
R1  
IN  
LTC1682  
56k  
3.3V  
V
6
5
3
4
IN  
V
OUT  
= 1.235V(1 + R1/R2)  
OUT  
GND  
V
IN  
3.6V  
C1  
0.22µF  
R2  
18k  
C4  
C5  
4.7µF  
C
GND  
1682 F03  
Figure 3. Powering an Auxiliary Regulator from CPO  
8
U
W U U  
APPLICATIONS INFORMATION  
The following formula can be used to find the maximum  
output voltage that may be programmed for a given  
minimum input voltage and output current load:  
instantaneous currents which may induce ripple onto  
a common voltage rail. C4 should be 2µF and a spike  
reducing resistor of 2.2may be required between  
VIN and the supply.  
V
OUT(MAX) = (2)(VIN(MIN)) – (IOUT)(RCPO) – VDROPOUT  
A low ESR ceramic capacitor is recommended for the  
flying capacitor C1 with a value of 0.22µF. At low load or  
high VIN a smaller capacitor could be used to reduce ripple  
with the condition that (IOUT)(RCPO) < 0.55VIN.  
Example:  
VIN(MIN) = 3V  
on CPO which would reflect as lower ripple on VOUT  
.
IOUT = 10mA  
If a minimum enable time is required, the CPO output filter  
capacitor should be at least 2× the VOUT filter capacitor.  
When the LDO is first enabled, the CPO capacitor will  
dump a large amount of charge into the VOUT capacitor. If  
the drop in the CPO voltage falls below 1.45(VIN), the LDO  
will be disabled and the CPO voltage will have to charge up  
to 1.75(VIN) to enable the LDO. The resulting cycling  
extends the enable time.  
RCPO(MAX) = 20Ω  
Max unloaded CPO voltage = 6V  
Loaded CPO voltage = 6V – (10mA)(20) = 5.8V  
V
DROPOUT(MAX) = 0.08V  
VOUT(MAX) = (6V) – (0.2V) – (0.08V) = 5.72V  
VOUT < 5.5V and (IOUT)(RCPO) < 0.55VIN, 0.2V < 1.65V.  
Forminimumnoiseapplications,theLDOmustbekeptout  
of dropout to prevent CPO noise from coupling into VOUT  
A 1nF filter capacitor for the LTC1682-3.3/LTC1682-5  
should be connected between the FILT pin and ground for  
optimum noise performance.  
.
External CPO Loading  
The CPO output can drive an external load (an LDO, for  
example). The current required by this additional load will  
reduce the available current from VOUT. If the external load  
requires5mA,thenthemaximumavailablecurrentatVOUT  
will be reduced by 5mA.  
Output Ripple  
The output noise and ripple on CPO includes a spike  
component from the charge pump switches and a droop  
componentwhichisdependentontheloadcurrentandthe  
value of C3. The charge pump has been carefully designed  
to minimize the spike component; however, low ESR  
capacitors are essential to reduce the remaining spike  
energy effect on the CPO voltage. C3 should be increased  
for high load currents to minimize the droop component.  
RipplecomponentsonCPOaregreatlyreducedatVOUT by  
the LDO; however, C2 should also be a low ESR capacitor  
to improve filtering of the CPO noise.  
Short-Circuit and Thermal Protection  
VOUT can be shorted to ground indefinitely. Internal cir-  
cuitry will limit the output current. If the junction tempera-  
ture exceeds 150°C, the part will shut down. Excessive  
power dissipation due to heavy loads will also cause the  
part to shut down when the junction temperature exceeds  
150°C. The part will become enabled when the junction  
temperature drops below 140°C. If the fault condition  
remains in place, the part will cycle between the shutdown  
and enabled states.  
Shutdown  
When SHDN pin is pulled low (<0.4V), the part will be in  
shutdown, the supply current will be < 5µA and VOUT will  
be connected to ground through a 100switch. In addi-  
tion, CPO will be high impedance and disconnected from  
VIN.  
Capacitor Selection  
For best performance it is recommended that low ESR  
capacitors be used for C2, C3 and C4 in Figure 1 to  
reduce noise and ripple. C2 must be 2µF and C3 must  
be equal to or greater than C2. C4 is dependent on the  
source impedance. The charge pump demands large  
If shutdown is not required, connect SHDN to VIN which  
will continuously enable the part.  
9
U
W U U  
APPLICATIONS INFORMATION  
Power-On Reset  
General Layout Considerations  
Upon initial power-up, a power-on reset circuit ensures  
that the internal functions are correctly initialized when  
power is applied. Once VIN reaches approximately 1V, the  
power-on reset circuit will enable the part as long as the  
SHDN pin is held high.  
Due to the high switching frequency and high transient  
currents produced by the device, careful board layout is a  
must. A clean board layout using a ground plane and short  
connections to all capacitors will improve noise perfor-  
mance and ensure proper regulation (Figure 5).  
The FILT pin on the LTC1682-3.3/LTC1682-5 is a high  
impedance node. Leakage currents at this pin must be  
minimized.  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C). The  
device power dissipation PD = IOUT(2VIN – VOUT) +  
VIN(4mA). The device dissipates the majority of its heat  
through its pins, especially GND (Pin 4). Thermal resis-  
tance to ambient can be optimized by connecting GND to  
a large copper region on the PCB, which serves as a heat  
sink. Applications which operate the LTC1682 near maxi-  
mum power levels should maximize the copper area at all  
pins except C+, Cand FILT/FB and ensure that there is  
some airflow over the part to carry away excess heat.  
Measuring Output Noise  
Measuring the LTC1682 low noise levels requires care.  
Figure 6 shows a test setup for taking the measurement.  
Good connection and signal handling technique should  
yield about 500µVP-P over a 2.5MHz bandwidth. The noise  
measurement involves AC coupling the LTC1682 output  
into the test setup’s input and terminating this connection  
with 50. Coaxial connections must be maintained to  
preserve measurement integrity.  
V
OUT  
C3  
C2  
1
2
3
4
8
V
IN  
SHDN  
7
6
5
LTC1682-3.3/5  
C4  
C
FILT  
GND  
C1  
1682 F05  
Figure 5  
BNC CABLES  
OR COUPLERS  
COUPLING  
CAPACITOR  
PREAMPLIFIER  
1822  
LTC1682  
BATTERY OR  
LOW NOISE DC  
POWER SUPPLY  
V
OUT  
+
DEMO  
INPUT  
BANDWIDTH  
FILTER  
BOARD  
20dB  
OSCILLOSCOPE  
R*  
R
LOAD  
1682 F06  
R*  
CONNECT BNC AND  
GROUND TO THE  
R
PLACE BANDWIDTH FILTER  
COMPONENTS IN SHIELDED BOX  
WITH COAXIAL CONNECTORS  
LOAD  
R*  
OUTPUT CAPACITOR  
PLACE COUPLING  
GROUND TERMINAL E5  
CAPACITOR IN SHIELDED  
BOX WITH COAXIAL  
CONNECTOR  
*50TERMINATIONS NOTE: KEEP BNC CONNECTIONS  
HP-11048C OR  
EQUIVALENT  
AS SHORT AS POSSIBLE  
Figure 6. LTC1682 Noise Measurement Test Setup  
10  
U
TYPICAL APPLICATION  
3.3V to Low Noise 3.3V Converter  
SHUTDOWN  
8
7
6
5
1
2
3
4
3.3V  
V
CPO  
V
OUT  
= 500µV  
C2  
4.7µF  
RIPPLE  
P-P  
C3  
4.7µF  
+
C
SHDN  
FILT  
LTC1682-3.3  
V
IN  
3.3V  
V
C
IN  
C
C4  
4.7µF  
C1  
0.22µF  
FILT  
1nF  
GND  
1682 TA03  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.192 ± 0.004  
(4.88 ± 0.10)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
TYP  
MSOP (MS8) 1197  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
11  
U
TYPICAL APPLICATION  
Wide Input Range VCO Supply (VIN > 4.4V)  
V
IN  
3V TO 6V  
Q1  
FMMT3904  
R1  
5V  
470Ω  
LOW NOISE  
8
7
6
5
1
2
3
4
V
CPO  
OUT  
C3  
C2  
4.7µF  
4.7µF  
VCO  
+
SHDN  
LTC1682-5  
C
SHUTDOWN  
C
D1  
1N4148  
FILT  
V
3V  
(REQUIRED FOR  
START-UP)  
IN  
1682 ta04  
C1  
0.22µF  
C4  
4.7µF  
FILT  
1nF  
GND  
C
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1340  
Low Noise, Voltage-Boosted Varactor Driver  
Generates 5V Varactor Drive from 3V Supply  
I = 6µA; Short Circuit/Thermal Protected  
CC  
LTC1517-X  
LT1521  
Micropower, Regulated Charge Pump Doubler in SOT-23  
300mA Low Dropout Regulator  
Micropower; Good Transient Response  
Ultralow Power: Typical Operating I = 6µA  
LTC1522  
Micropower, Regulated 5V Charge Pump  
100mA Low Noise LDO Regulator in SOT-23  
CC  
LT1761 Series  
I
= 20µA; 20µV  
Output Noise  
CC  
RMS  
128235fs, sn128235 LT/TP 0799 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1682-3.3

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682-3.3_15

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682-5

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682-5_15

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682CMS8

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682CMS8#PBF

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1682CMS8#TR

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1682CMS8#TRPBF

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1682CMS8-3.3

Doubler Charge Pumps with Low Noise Linear Regulator
Linear

LTC1682CMS8-3.3#PBF

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1682CMS8-3.3#TR

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1682CMS8-3.3#TRPBF

LTC1682 - Doubler Charge Pumps with Low Noise Linear Regulator; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear