LTC1821-1AIGW [Linear]

16-Bit, Ultra Precise, Fast Settling VOUT DAC; 16位,超精密,快速建立DAC VOUT
LTC1821-1AIGW
型号: LTC1821-1AIGW
厂家: Linear    Linear
描述:

16-Bit, Ultra Precise, Fast Settling VOUT DAC
16位,超精密,快速建立DAC VOUT

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1821  
16-Bit, Ultra Precise,  
Fast Settling V DAC  
OUT  
U
FEATURES  
DESCRIPTIO  
The LTC®1821 is a parallel input 16-bit multiplying voltage  
output DAC that operates from analog supply voltages of  
±5V up to ±15V. INL and DNL are accurate to 1LSB over the  
industrial temperature range in both unipolar 0V to 10V and  
bipolar±10Vmodes.Precise16-bitbipolar±10Voutputsare  
achieved with on-chip 4-quadrant multiplication resistors.  
The LTC1821 is available in a 36-lead SSOP package and is  
specified over the industrial temperature range.  
2µs Settling to 0.0015% for 10V Step  
1LSB Max DNL and INL Over Industrial  
Temperature Range  
On-Chip 4-Quadrant Resistors Allow Precise 0V to  
10V, 0V to –10V or ±10V Outputs  
Low Glitch Impulse: 2nV•s  
Low Noise: 13nV/Hz  
36-Lead SSOP Package  
Power-On Reset  
Thedeviceincludesaninternaldeglitchercircuitthatreduces  
the glitch impulse to less than 2nV•s (typ). The LTC1821  
settles to 1LBS in 2µs with a full-scale 10V step. The  
combinationoffast,precisesettlingandultralowglitchmake  
the LTC1821 ideal for precision industrial control applica-  
tions.  
Asynchronous Clear Pin  
LTC1821: Reset to Zero Scale  
LTC1821-1: Reset to Midscale  
U
APPLICATIO S  
The asynchronous CLR pin resets the LTC1821 to zero scale  
and resets the LTC1821-1 to midscale.  
Process Control and Industrial Automation  
Precision Instrumentation  
Direct Digital Waveform Generation  
Software-Controlled Gain Adjustment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Automatic Test Equipment  
U
TYPICAL APPLICATIO  
16-Bit, 4-Quadrant Multiplying DAC with a  
Minimum of External Components  
V
REF  
–V  
LTC1821/LTC1821-1  
Integral Nonlinearity  
REF  
5V  
3
2
+
0.1µF  
6
1.0  
LT®1468  
0.8  
0.6  
15pF  
15pF  
0.4  
12 14  
10  
R1  
9
R
8
2
V
CC  
11  
R
0.2  
REF  
R
I
OUT  
COM  
R2  
OFS  
FB  
+
V
15  
0
15V  
R
R
OFS  
FB  
R1  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.1µF  
+
V
REF  
16  
13  
V
V
=
OUT  
LTC1821-1  
DATA  
16-BIT DAC  
OUT  
INPUTS  
–V  
REF  
3 TO 6,  
25 TO 36  
–15V  
0.1µF  
V
20  
0
32768  
49152  
16384  
65535  
DIGITAL INPUT CODE  
WR LD CLR  
24 23  
DNC* DNC* DNC* NC  
18 19 21 22  
DGND  
1
AGNDF AGNDS  
17 16  
1821 TA02  
7
WR  
LD  
1821 TA01  
CLR  
*DO NOT CONNECT  
1
LTC1821  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
NUMBER  
VCC to AGNDF, AGNDS ............................... – 0.3V to 7V  
DGND  
1
2
3
4
5
6
7
8
9
36 D4  
35 D5  
34 D6  
33 D7  
32 D8  
31 D9  
30 D10  
29 D11  
28 D12  
27 D13  
26 D14  
25 D15  
24 WR  
23 LD  
22 NC  
V
CC to DGND .............................................. 0.3V to 7V  
V
CC  
Total Supply Voltage (V+ to V) ............................... 36V  
AGNDF, AGNDS to DGND ............................. VCC + 0.3V  
DGND to AGNDF, AGNDS ............................. VCC + 0.3V  
REF, RCOM to AGNDF, AGNDS, DGND .................. ±15V  
ROFS, RFB, R1, to AGNDF, AGNDS, DGND ............ ±15V  
Digital Inputs to DGND ............... 0.3V to (VCC + 0.3V)  
IOUT to AGNDF, AGNDS............... 0.3V to (VCC + 0.3V)  
Maximum Junction Temperature .......................... 150°C  
Operating Temperature Range  
D3  
D2  
LTC1821ACGW  
LTC1821BCGW  
LTC1821-1ACGW  
LTC1821-1BCGW  
LTC1821AIGW  
LTC1821BIGW  
LTC1821-1AIGW  
LTC1821-1BIGW  
D1  
D0  
CLR  
REF  
R
COM  
R1 10  
R
11  
12  
OFS  
R
FB  
V
OUT 13  
I
14  
15  
OUT  
+
V
LTC1821C/LTC1821-1C.......................... 0°C to 70°C  
LTC1821I/LTC1821-1I ....................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
AGNDS 16  
AGNDF 17  
DNC* 18  
21 DNC*  
20  
V
19 DNC*  
GW PACKAGE  
36-LEAD PLASTIC SSOP WIDE  
TJMAX = 125°C, θJA = 80°C/ W  
*DO NOT CONNECT  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
V+ = 15V, V= –15V, VCC = 5V, VREF = 10V, AGNDF = AGNDS = DGND = 0V.  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = TMIN to TMAX  
,
LTC1821B/-1B  
LTC1821A/-1A  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Resolution  
16  
16  
16  
16  
Bits  
Bits  
Monotonicity  
INL  
DNL  
GE  
Integral Nonlinearity  
T = 25°C (Note 2)  
±2  
±2  
±0.25  
±0.35  
±1  
±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Differential Nonlinearity  
Gain Error  
T = 25°C  
±1  
±1  
±0.2  
±0.2  
±1  
±1  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Unipolar Mode  
T = 25°C (Note 3)  
±16  
±24  
±5  
±8  
±16  
±16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Bipolar Mode  
T = 25°C (Note 3)  
±16  
± 24  
±2  
±5  
±16  
±16  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Gain Temperature Coefficient  
Unipolar Zero-Scale Error  
Gain/Temperature (Note 4)  
1
3
1
3
ppm/°C  
T = 25°C  
±3  
±6  
±0.25  
±0.50  
±2  
±4  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
Bipolar Zero Error  
T = 25°C  
±12  
±16  
±2  
±3  
±8  
±10  
LSB  
LSB  
A
T
to T  
MIN  
MAX  
PSRR  
Power Supply Rejection Ratio  
V
= 5V ±10%  
2
±2  
0.7  
±0.1  
2
±2  
LSB/V  
LSB/V  
CC  
+
V , V = ±4.5V to ±16.5V  
2
LTC1821  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = TMIN to TMAX  
V+ = 15V, V= 15V, VCC = 5V, VREF = 10V, AGNDF = AGNDS = DGND = 0V.  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
R
DAC Input Resistance (Unipolar)  
R1/R2 Resistance (Bipolar)  
(Note 6)  
4.5  
9
6
12  
12  
10  
20  
20  
kΩ  
kΩ  
kΩ  
REF  
R1/R2  
, R  
(Notes 6, 11)  
(Note 6)  
R
Feedback and Offset Resistances  
9
OFS FB  
AC Performance (Note 4)  
Output Voltage Settling Time  
V  
= 10V (Notes 7, 8)  
2
2
µs  
nV•s  
nV•s  
OUT  
Midscale Glitch Impulse  
Digital-Feedthrough  
(Note 10)  
(Note 9)  
2
Multiplying Feedthrough Error  
Multiplying Bandwidth  
V
= ±10V, 10kHz Sine Wave (Note 7)  
1
mV  
P-P  
REF  
Code = Full Scale (Note 7)  
600  
kHz  
Output Noise Voltage Density  
1kHz to 100kHz (Note 7)  
Code = Zero Scale  
Code = Full Scale  
13  
20  
nV/Hz  
nV/Hz  
Output Noise Voltage  
1/f Noise Corner  
0.1Hz to 10Hz (Note 7)  
Code = Zero Scale  
Code = Full Scale  
0.45  
1
µV  
µV  
RMS  
RMS  
(Note 7)  
30  
Hz  
Analog Outputs (Note 4)  
+
+
V
DAC Output Swing  
R = 2k, V = 15V, V = –15V  
±12.6  
±2.6  
V
V
OUT  
L
R = 2k, V = 5V, V = –5V  
L
+
DAC Output Load Regulation  
Short-Circuit Current  
Slew Rate  
V = 15V, V = –15V, ±5mA Load  
0.02  
40  
0.2  
LSB/mA  
mA  
+
I
V
OUT  
= 0V, V = 15V, V = –15V  
12  
SC  
+
+
SR  
R = 2k, V = 15V, V = –15V  
20  
14  
V/µs  
V/µs  
L
L
R = 2k, V = 5V, V = –5V  
Digital Inputs  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
2.4  
V
V
IH  
IL  
0.8  
±1  
8
I
0.001  
µA  
pF  
IN  
C
Digital Input Capacitance  
(Note 4 ) V = 0V  
IN  
IN  
Timing Characteristics  
t
t
t
t
t
t
Data to WR Setup Time  
Data to WR Hold Time  
WR Pulse Width  
60  
0
20  
–12  
25  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
60  
110  
60  
0
WR  
LD  
LD Pulse Width  
55  
Clear Pulse Width  
WR to LD Delay Time  
40  
CLR  
LWD  
Power Supply  
I
I
Supply Current, V  
Digital Inputs = 0V or V  
CC  
1.5  
10  
µA  
CC  
S
CC  
+
Supply Current, V , V  
±15V  
±5V  
4.5  
4.0  
7.0  
6.8  
mA  
mA  
V
V
V
Supply Voltage  
Supply Voltage  
Supply Voltage  
4.5  
4.5  
5
5.5  
V
V
V
CC  
+
16.5  
4.5  
–16.5  
3
LTC1821  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 8: To 0.0015% for a full-scale change, measured from the rising  
of a device may be impaired.  
edge of LD.  
Note 2: ±1LSB = ±0.0015% of full scale = ±15.3ppm of full scale.  
Note 3: Using internal feedback resistor.  
Note 4: Guaranteed by design, not subject to test.  
Note 9: REF = 0V. DAC register contents changed from all 0s to all 1s or all  
1s to all 0s. LD low and WR high.  
Note 10: Midscale transition code: 0111 1111 1111 1111 to  
1000 0000 0000 0000. Unipolar mode, C  
= 33pF.  
FEEDBACK  
Note 5: I  
with DAC register loaded to all 0s.  
OUT  
Note 11: R1 and R2 are measured between R1 and R , REF and R  
COM  
.
COM  
Note 6: Typical temperature coefficient is 100ppm/°C.  
Note 7: Measured in unipolar mode.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Unipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency  
Midscale Glitch Impulse  
Full-Scale Setting Waveform  
40  
50  
40  
30  
20  
10  
V
C
= 5V  
C
V
= 30pF  
CC  
FEEDBACK  
FEEDBACK  
= 10V  
REF  
= 30pF  
REFERENCE = 6V  
RMS  
LD PULSE  
5V/DIV  
60  
70  
GATED  
SETTLING  
WAVEFORM  
500µV/DIV  
0
80  
1nV-s TYPICAL  
–10  
500kHz FILTER  
90  
–20  
30  
40  
1821 G02  
80kHz FILTER  
500ns/DIV  
VREF = –10V  
CFEEDBACK = 20pF  
0V TO 10V STEP  
–100  
–110  
30kHz FILTER  
10k 100k  
0.2  
0.4  
TIME (µs)  
0.8  
10  
100  
1k  
0
1.0  
0.6  
FREQUENCY (Hz)  
1821 G03  
1821 G01  
Bipolar Multiplying Mode  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Zeros  
Bipolar Multiplying Mode  
VCC Supply Current vs Digital  
Input Voltage  
Signal-to-(Noise + Distortion)  
vs Frequency, Code = All Ones  
5
40  
50  
40  
50  
V = 5V  
CC  
ALL DIGITAL INPUTS  
TIED TOGETHER  
V
C
= 5V USING AN LT1468  
FEEDBACK  
REFERENCE = 6V  
V
C
= 5V USING AN LT1468  
FEEDBACK  
CC  
CC  
= 15pF  
= 15pF  
REFERENCE = 6V  
RMS  
RMS  
4
3
2
1
0
60  
60  
70  
70  
80  
80  
500kHz FILTER  
500kHz FILTER  
90  
90  
80kHz FILTER  
30kHz FILTER  
–100  
–110  
–100  
–110  
80kHz FILTER  
30kHz  
FILTER  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INTPUT VOLTAGE (V)  
1821 G04  
1821 G05  
1821 G06  
4
LTC1821  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Logic Threshold vs VCC Supply  
Voltage  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0
2
3
4
5
6
7
0
16384  
32768  
49152  
65535  
0
32768  
49152  
1
16384  
65535  
SUPPLY VOLTAGE (V)  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1821 G07  
1821 G08  
1821 G09  
Integral Nonlinearity vs Reference  
Voltage in Bipolar Mode  
Differential Nonlinearity vs  
Reference Voltage in Unipolar Mode  
Integral Nonlinearity vs Reference  
Voltage in Unipolar Mode  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1821 G10  
1821 G12  
1821 G11  
Differential Nonlinearity vs  
Reference Voltage in Bipolar Mode  
Integral Nonlinearity vs VCC Supply  
Voltage in Unipolar Mode  
Integral Nonlinearity vs VCC Supply  
Voltage in Bipolar Mode  
1.0  
0.8  
1.0  
0.8  
2.0  
1.5  
0.6  
0.6  
1.0  
0.4  
0.4  
V
V
= 10V  
= 10V  
REF  
0.5  
V
REF  
= 10V  
0.2  
0.2  
V
V
= 2.5V  
= 2.5V  
REF  
V
REF  
= 2.5V  
0
0
0
REF  
V
REF  
= 10V  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
– 0.5  
–1.0  
–1.5  
–2.0  
REF  
V
REF  
= 2.5V  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
2
3
4
5
6
7
4
SUPPLY VOLTAGE (V)  
7
2
3
5
6
REFERENCE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1821 G13  
1821 G14  
1821 G15  
5
LTC1821  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential Nonlinearity vs VCC  
Supply Voltage in Bipolar Mode  
Differential Nonlinearity vs VCC  
Supply Voltage in Unipolar Mode  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
V
REF  
= 10V  
= 2.5V  
REF  
0.2  
0.2  
V
V
= 10V  
= 10V  
V
REF  
0
0
V
V
= 2.5V  
= 2.5V  
REF  
REF  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
V
= 10V  
REF  
REF  
REF  
V
= 2.5V  
2
3
4
5
6
7
2
3
4
5
6
7
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1821 G16  
1821 G17  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
Bipolar Multiplying Mode Frequency  
Response vs Digital Code  
Unipolar Multiplying Mode Frequency  
Response vs Digital Code  
0
20  
40  
60  
80  
0
20  
0
ALL BITS ON  
ALL BITS ON  
D15 ON  
D14 ON  
D13 ON  
D12 ON  
D11 ON  
D10 ON  
D9 ON  
D8 ON  
D7 ON  
D6 ON  
D5 ON  
ALL BITS OFF  
D14 ON  
D15 AND D14 ON  
D15 AND D13 ON  
D15 AND D12 ON  
D15 AND D11 ON  
D15 AND D10 ON  
D15 AND D9 ON  
D15 AND D8 ON  
D15 AND D7 ON  
D15 AND D6 ON  
D14 AND D13 ON  
D14 TO D12 ON  
D14 TO D11 ON  
D14 TO D10 ON  
D14 TO D9 ON  
D14 TO D8 ON  
D14 TO D7 ON  
D14 TO D6 ON  
D14 TO D5 ON  
20  
40  
40  
60  
60  
D15 AND D5 ON  
D15 AND D4 ON  
D15 AND D3 ON  
D15 AND D2 ON  
D4 ON  
D3 ON  
D2 ON  
D1 ON  
CODES FROM  
80  
CODES FROM  
MIDSCALE  
D14 TO D4 ON  
D14 TO D3 ON  
D14 TO D2 ON  
D14 TO D1 ON  
MIDSCALE  
TO FULL SCALE  
80  
TO ZERO SCALE  
100  
120  
D0 ON  
D15 AND D1 ON  
D15 AND D0 ON  
D14 TO D0 ON  
D15 ON  
ALL BITS OFF  
D15 ON  
*
*
100  
100  
10  
100  
1k  
10k  
100k 1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1821 G19  
1821 G18  
1821 G20  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR  
ZERO ERROR TO 96dB TYPICAL (–78dB MAX, A GRADE)  
V
REF  
VREF  
V
REF  
3
2
30pF  
3
2
+
+
8
9 10 11 12  
14  
6
6
LT1468  
LT1468  
VOUT  
LTC1821 13  
12pF  
12pF  
12pF  
12pF  
1 16 17  
15pF  
15pF  
10  
9
8 1112  
10  
9
8 1112  
14  
13  
14  
13  
V
OUT  
LTC1821  
1 16 17  
V
OUT  
LTC1821  
1 16 17  
6
LTC1821  
U
U
U
PIN FUNCTIONS  
DGND (Pin 1): Digital Ground. Connect to analog ground.  
IOUT (Pin 14): DAC Current Output. Normally tied through  
a 22pF feedback capacitor in unipolar mode (15pF in  
VCC (Pin 2): Positive Supply Input. 4.5V VCC 5.5V.  
Requires a bypass capacitor to ground.  
bipolar mode) to VOUT  
.
V+ (Pin 15): Amplifier Positive Supply. Range is 4.5V to  
16.5V.  
D3 (Pin 3): Digital Input Data Bit 3.  
D2 (Pin 4): Digital Input Data Bit 2.  
D1 (Pin 5): Digital Input Data Bit 1.  
D0 (Pin 6): LSB or Digital Input Data Bit 0.  
AGNDS (Pin 16): Analog Ground Sense. Connect to  
analog ground.  
AGNDF (Pin 17): Analog Ground Force. Connect to  
analog ground.  
CLR (Pin 7): Digital Clear Control Function for the DAC.  
When CLR is taken to a logic low, it sets the DAC output  
andallinternalregistersto:zerocodefortheLTC1821and  
midscale code for the LTC1821-1.  
DNC (Pin 18, 19, 21): Connected internally. Do not  
connect external circuitry to these pins.  
V(Pin 20): Amplifier Negative Supply. Range is 4.5V  
to 16.5V.  
REF (Pin 8):ReferenceInput and4-QuadrantResistorR2.  
Typically ±10V, accepts up to ±15V. In 2-quadrant mode,  
tie this pin to the external reference signal. In 4-quadrant  
mode, this pin is driven by external inverting reference  
amplifier.  
NC (Pin 22): No Connection.  
LD (Pin 23): DAC Digital Input Load Control Input. When  
LD is taken to a logic high, data is loaded from the input  
register into the DAC register, updating the DAC output.  
RCOM (Pin 9): Center Tap Point of the Two 4-Quadrant  
Resistors R1 and R2. Normally tied to the inverting input  
of an external amplifier in 4-quadrant operation. Other-  
wise this pin is shorted to the REF pin. See Figures 1  
and 2.  
WR (Pin 24): DAC Digital Write Control Input. When WR  
is taken to a logic low, data is written from the digital input  
pins into the 16-bit wide input reigster.  
D15 (Pins 25): MSB or Digital Input Data Bit 15.  
D14 (Pin 26): Digital Input Data Bit 14.  
D13 (Pin 27): Digital Input Data Bit 13.  
D12 (Pin 28): Digital Input Data Bit 12.  
D11 (Pin 29): Digital Input Data Bit 11.  
D10 (Pin 30): Digital Input Data Bit 10.  
D9 (Pin 31): Digital Input Data Bit 9.  
D8 (Pin 32): Digital Input Data Bit 8.  
D7 (Pin 33): Digital Input Data Bit 7.  
D6 (Pin 34): Digital Input Data Bit 6.  
D5 (Pin 35): Digital Input Data Bit 5.  
D4 (Pin 36): Digital Input Data Bit 4.  
R1 (Pin 10): 4-Quadrant Resistor R1. In 2-quadrant  
operation, short this pin to the REF pin. In 4-quadrant  
mode, tie this pin to the external reference signal.  
ROFS (Pin 11): Bipolar Offset Resistor. Typically swings  
±10V, accepts up to ±15V. For 2-quadrant operation, tie  
this pin to RFB and for 4-quadrant operation, tie this pin to  
R1.  
RFB (Pin12): Feedback Resistor. Normally connected to  
VOUT. Typically swings ±10V. The voltage at this pin  
swings 0 to VREF in unipolar mode and ±VREF in bipolar  
mode.  
VOUT (Pin 13): DAC Voltage Output. Normally connected  
to RFB and to IOUT through a 22pF feedback capacitor in  
unipolar mode (15pF in bipolar mode). Typically swings  
±10V.  
7
LTC1821  
TRUTH TABLE  
Table 1  
CONTROL INPUTS  
CLR WR  
LD  
REGISTER OPERATION  
0
1
1
1
1
X
0
1
0
X
Reset Input and DAC Register to All 0s for LTC1821 and Midscale for LTC1821-1 (Asynchronous Operation)  
Write Input Register with All 16 Data Bits  
0
1
Load DAC Register with the Contents of the Input Register  
Input and DAC Register Are Transparent  
1
CLK = LD and WR Tied Together. The 16 Data Bits Are Written Into the Input Register on the Falling Edge of the CLK and Then  
Loaded Into the DAC Register on the Rising Edge of the CLK  
1
1
0
No Register Operation  
W
BLOCK DIAGRA  
48k  
48k  
REF  
R
FB  
8
12  
11  
12k  
12k  
12k  
96k  
12k  
48k  
48k  
48k  
48k  
48k  
48k  
48k  
96k  
96k  
96k  
R
OFS  
R
COM  
9
14  
15  
I
OUT  
+
R1 10  
V
V
V
+
13  
OUT  
V
2
CC  
20  
16  
17  
DECODER  
AGNDS  
AGNDF  
CLR  
D15  
(MSB)  
D14  
D13  
D12  
D11  
• • •  
D0  
(LSB)  
LOAD  
RST  
RST  
7
LD  
23  
24  
DAC REGISTER  
18 DNC*  
19  
21  
DNC*  
DNC*  
WR  
INPUT REGISTER  
WR  
22 NC  
1
1821 BD  
DGND  
*CONNECTED INTERNALLY.  
DO NOT CONNECT EXTERNAL  
CIRCUITRY TO THESE PINS  
25  
26  
36  
3
4
5
6
• • • •  
D15  
D14  
D4  
D3  
D2  
D1  
D0  
8
LTC1821  
W U  
W
TI I G DIAGRA  
t
WR  
WR  
DATA  
LD  
t
DS  
t
DH  
t
LWD  
t
LD  
t
CLR  
CLR  
1821 TD  
U
W U U  
APPLICATIONS INFORMATION  
Description  
The LTC1821 contains an onboard precision high speed  
amplifier. This amplifier together with the feedback resis-  
tor(RFB)formaprecisioncurrent-to-voltageconverterfor  
theDAC’scurrentoutput.Theamplifierhasverylownoise,  
offset, input bias current and settles in less than 2µs to  
0.0015% for a 10V step. It can sink and source 22mA  
(±15V) typically and can drive a 300pF capacitive load. An  
added feature of these devices, especially for waveform  
generation, is a proprietary deglitcher that reduces glitch  
impulsetobelow2nV-sovertheDACoutputvoltagerange.  
The LTC1821 is a 16-bit voltage output DAC with a full  
parallel 16-bit digital interface. The device can operate  
from 5V and ±15 supplies and provides both unipolar 0V  
to10Vor0Vto10Vandbipolar±10Voutputrangesfrom  
a 10V or –10V reference input. Additionally, the power  
suppliesfortheLTC1821cangoaslowas4.5Vand±4.5V.  
Inthiscasefora2.5Vor2.5Vreference, theoutputrange  
is 0V to 2.5V, 0V to 2.5V and ±2.5V. The LTC1821 has  
three additional precision resistors on chip for bipolar  
operation. Refer to the block diagram regarding the fol-  
lowing description.  
Digital Section  
The LTC1821 has a 16-bit wide full parallel data bus input.  
The device is double-buffered with two 16-bit registers.  
The double-buffered feature permits the update of several  
DACs simultaneously. The input register is loaded directly  
from a 16-bit microprocessor bus when the WR pin is  
brought to a logic low level. The second register (DAC  
register) is updated with the data from the input register  
when the LD signal is brought to a logic high. Updating the  
DACregisterupdatestheDACoutputwiththenewdata.To  
make both registers transparent in flowthrough mode, tie  
WR low and LD high. However, this defeats the deglitcher  
operation and output glitch impulse may increase. The  
deglitcher is activated on the rising edge of the LD pin. The  
The 16-bit DAC consists of a precision R-2R ladder for the  
13 LSBs. The three MSBs are decoded into seven seg-  
ments of resistor value R. Each of these segments and the  
R-2R ladder carries an equally weighted current of one  
eighth of full scale. The feedback resistor RFB and  
4-quadrant resistor ROFS have a value of R/4. 4-quadrant  
resistors R1 and R2 have a magnitude of R/4. R1 and R2  
together with an external op amp (see Figure 2) inverts the  
reference input voltage and applies it to the 16-bit DAC  
input REF, in 4-quadrant operation. The REF pin presents  
a constant input impedance of R/8 in unipolar mode and  
R/12 in bipolar mode.  
9
LTC1821  
U
W U U  
APPLICATIONS INFORMATION  
versatility of the interface also allows the use of the input Unipolar Mode  
and DAC registers in a master slave or edge-triggered (2-Quadrant Multiplying, VOUT = 0V to VREF  
configuration. This mode of operation occurs when WR  
and LD are tied together. The asynchronous clear pin  
resets the LTC1821 to zero scale and the LTC1821-1 to  
midscale. CLR resets both the input and DAC registers.  
These devices also have a power-on reset. Table 1 shows  
the truth table for the LTC1821.  
)
The LTC1821 can be used to provide 2-quadrant multiply-  
ing operation as shown in Figure 1. With a fixed 10V  
reference, the circuit shown gives a precision unipolar 0V  
to 10V output swing.  
5V  
22pF  
0.1µF  
V
REF  
12  
R
9
14  
I
10  
R1  
8
REF  
2
11  
R
R
V
COM  
R2  
FB  
CC  
OFS  
OUT  
+
15  
V
15V  
0.1µF  
R
R
FB  
OFS  
R1  
V
=
OUT  
16  
13  
16-BIT DAC  
0V TO  
–V  
DATA  
V
OUT  
+
INPUTS  
REF  
LTC1821  
25 TO 36,  
3 TO 6  
V
20  
–15V  
0.1µF  
WR  
24  
LD CLR DNC* DNC* DNC* NC  
23  
18 19 21 22  
DGND  
AGNDF AGNDS  
17 16  
7
1
WR  
LD  
CLR  
*DO NOT CONNECT  
Unipolar Binary Code Table  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
V
OUT  
MSB  
LSB  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–V  
REF  
–V  
REF  
–V  
REF  
0V  
(65,535/65,536)  
(32,768/65,536) = –V /2  
REF  
(1/65,536)  
1821 F01  
Figure 1. Unipolar Operation (2-Quadrant Multiplication) VOUT = 0V to VREF  
10  
LTC1821  
U
W U U  
APPLICATIONS INFORMATION  
Bipolar Mode  
operation can be achieved with a minimum of external  
components—a capacitor and a single op amp, as shown  
in Figure 2. With a fixed 10V reference, the circuit shown  
gives a precision bipolar 10V to 10V output swing.  
(4-Quadrant Multiplying, VOUT = VREF to VREF  
)
The LTC1821 contains on chip all the 4-quadrant resistors  
necessary for bipolar operation. 4-quadrant multiplying  
V
REF  
3
2
+
5V  
6
LT1001  
0.1µF  
22pF  
12  
R
9
14  
I
10  
R1  
8
REF  
2
V
CC  
11  
R
R
COM  
R2  
FB  
OFS  
OUT  
+
15  
V
15V  
0.1µF  
R
R
R1  
OFS  
FB  
V
–V  
TO V  
=
OUT  
16  
13  
16-BIT DAC  
DATA  
REF  
V
OUT  
+
INPUTS  
REF  
LTC1821  
25 TO 36,  
3 TO 6  
V
20  
–15V  
0.1µF  
WR  
24  
LD CLR DNC* DNC* DNC* NC  
23  
18 19 21 22  
DGND  
AGNDF AGNDS  
17 16  
7
1
WR  
LD  
*DO NOT CONNECT  
CLR  
Bipolar Offset Binary Code Table  
DIGITAL INPUT  
BINARY NUMBER  
IN DAC REGISTER  
ANALOG OUTPUT  
VOUT  
MSB  
LSB  
1111 1111 1111 1111 VREF (32,767/32,768)  
1000 0000 0000 0001 VREF (1/32,768)  
1000 0000 0000 0000 0V  
0111 1111 1111 1111 –VREF (1/32,768)  
0000 0000 0000 0000 –VREF  
1821 F02  
Figure 2. Bipolar Operation (4-Quadrant Multiplication) VOUT = VREF to VREF  
11  
LTC1821  
U
W U U  
APPLICATIONS INFORMATION  
Precision Voltage Reference Considerations  
reference with as low an output noise voltage as practical  
for the system resolution desired. Precision voltage refer-  
ences, like the LT1236, produce low output noise in the  
0.1Hz to 10Hz region, well below the 16-bit LSB level in 5V  
or 10V full-scale systems. However, as the circuit band-  
widths increase, filtering the output of the reference may  
be required to minimize output noise.  
Because of the extremely high accuracy of the 16-bit  
LTC1821, careful thought should be given to the selection  
of a precision voltage reference. As shown in the section  
describing the basic operation of the LTC1821, the output  
voltageoftheDACcircuitisdirectlyaffectedbythevoltage  
reference; thus, any voltage reference error will appear as  
a DAC output voltage error.  
Grounding  
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit applica-  
tions: output voltage initial tolerance, output voltage tem-  
perature coefficient (TC), and output voltage noise.  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding should be used. AGNDF and AGNDS must be  
tiedtothestargroundwithaslowaresistanceaspossible.  
When it is not possible to locate star ground close to  
AGNDF and AGNDS, separate traces should be used to  
route these pins to the star ground. This minimizes the  
voltage drop from these pins to ground due to the code  
dependent current flowing into the ground plane. If the  
resistance of these separate circuit board traces exceeds  
1, the circuit of Figure 3 eliminates this code dependent  
voltage drop error for high resistance traces.  
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
(±0.05%), minimizes the gain error due to the reference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s INL and DNL performance. If a reference is  
chosen with a loose output voltage temperature coeffi-  
cient, then the DAC output voltage along its transfer  
characteristic will be very dependent on ambient condi-  
tions. Minimizing the error due to reference temperature  
coefficient can be achieved by choosing a precision refer-  
ence with a low output voltage temperature coefficient  
and/or tightly controlling the ambient temperature of the  
circuit to minimize temperature gradients.  
To calculate PC track resistance in squares, divide the  
length of the PC track by the width and multiply this result  
by the sheet resistance of copper foil. For 1 oz copper  
(1.4 mils thick), the sheet resistance is 0.045per  
square.  
Table 2. Partial List of LTC Precision References Recommended  
for Use with the LTC1821, with Relevant Specifications  
INITIAL  
TOLERANCE  
TEMPERATURE  
DRIFT  
0.1Hz to 10Hz  
NOISE  
REFERENCE  
LT1019A-5,  
LT1019A-10  
±0.05%  
±0.05%  
±0.075%  
±0.05%  
5ppm/°C  
5ppm/°C  
10ppm/°C  
10ppm/°C  
12µV  
P-P  
As precision DAC applications move to 16-bit and higher  
performance, reference output voltage noise may contrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
LT1236A-5,  
LT1236A-10  
3µV  
P-P  
LT1460A-5,  
LT1460A-10  
20µV  
12µV  
P-P  
P-P  
LT1790A-2.5  
12  
LTC1821  
U
W U U  
APPLICATIONS INFORMATION  
5V  
22pF  
15  
0.1µF  
2
4
6
10V  
15V  
LT1236A-10  
12  
R
9
10  
R1  
8
REF  
2
11  
R
14  
I
R
V
COM  
FB  
CC  
OFS  
OUT  
+
V
15V  
0.1µF  
R
R1  
R
FB  
R2  
OFS  
16  
DATA  
INPUTS  
+
13  
V
=
OUT  
LTC1821  
16-BIT DAC  
0V TO –10V  
V
OUT  
25 TO 36,  
3 TO 6  
V
20  
–15V  
AGNDS  
16  
0.1µF  
WR  
LD CLR DNC* DNC* DNC* NC  
23  
18 19 21 22  
DGND  
19  
AGNDF  
17  
24  
7
WR  
LD  
CLR  
2
*DO NOT CONNECT  
6
LT1001  
+ 3  
ERA82.004  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
16  
AGNDS  
AGNDF  
200Ω  
17  
200Ω  
2
6
1000pF  
LT1468  
+ 3  
ERA82.004  
1821 F03  
Figure 3. Driving AGNDF and AGNDS with a Force/Sense Amplifier  
13  
LTC1821  
TYPICAL APPLICATION  
U
17-Bit Sign Magnitude Output Voltage DAC with Bipolar Zero Error of 140µV (0.92LSB at 17 Bits)  
16  
15  
14  
LTC203AC  
3
2
4
15V  
1
2
0.1µF  
0.1µF  
LT1236A-10  
+
V
6
+
3
5V  
6
0.1µF  
LT1468  
2
V
22pF  
15pF  
10  
9
12  
14  
I
8
REF  
2
11  
R
R
R1  
V
R
COM  
CC  
OFS  
FB  
OUT  
SIGN  
BIT  
+
V
15  
15V  
0.1µF  
R
R
OFS  
FB  
R1  
R2  
+
16  
DATA  
INPUTS  
13  
16-BIT DAC  
V
LTC1821  
OUT  
V
OUT  
25 TO 36,  
3 TO 6  
V
20  
–15V  
0.1µF  
DGND  
1
AGNDF AGNDS  
17  
16  
WR  
24  
LD CLR DNC* DNC* DNC* NC  
23  
18 19 21 22  
7
WR  
LD  
*DO NOT CONNECT  
CLR  
1821 TA03  
14  
LTC1821  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
GW Package  
36-Lead Plastic SSOP (Wide 0.300)  
(LTC DWG # 05-08-1642)  
15.290 – 15.544*  
(0.602 – 0.612)  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
10.160 – 10.414  
(0.400 – 0.410)  
7.417 – 7.595**  
(0.292 – 0.299)  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  
2.286 – 2.387  
(0.090 – 0.094)  
2.463 – 2.641  
(0.097 – 0.104)  
0.254 – 0.406  
(0.010 – 0.016)  
× 45°  
0° – 8° TYP  
0.127 – 0.305  
(0.005 – 0.0115)  
0.610 – 1.016  
(0.024 – 0.040)  
0.800  
(0.0315)  
BSC  
0.231 – 0.3175  
(0.0091 – 0.0125)  
0.304 – 0.431  
(0.012 – 0.017)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
GW36 SSOP 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1821  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1417  
Low Power 400ksps, 14-Bit ADC  
20mW, Single or ±5V, Serial I/O  
LTC1418  
14-Bit, 200ksps, Single 5V ADC  
15mW, Serial/Parallel ±10V  
LTC1604/LTC1608  
LTC1605/LTC1606  
LTC1609  
16-Bit, 333ksps/500ksps, ±5V ADC  
16-Bit, 100ksps/250ksps, Single 5V ADC  
16-Bit, 200ksps, Single 5V ADC  
90dB SINAD, 100dB THD, ±2.5V Inputs  
±10V Inputs, 55mW/75mW, Byte or Parallel I/O  
±10V Inputs, 65mW, Serial I/O  
LTC2400  
24-Bit, Micropower ∆Σ ADC in SO-8  
24-Bit, Fully Differential, No Latency ∆Σ ADC  
Parallel 14-/16-Bit Current Output DACs  
Serial 16-Bit Current Output DACs in SO-8/S16  
Parallel 2 Byte 16-Bit Current Output DAC  
Serial 16-Bit ±5V Voltage Output DAC  
0.3ppm Noise, 4ppm INL, 10ppm Total Unadjusted Error, 200µA  
0.16ppm Noise, 2ppm INL, 10ppm Total Unadjusted Error, 200µA  
On-Chip 4-Quadrant Resistors  
LTC2410  
DACs  
LTC1591/LTC1597  
LTC1595/LTC1596  
LTC1599  
Low Glitch, ±1LSB Maximum INL, DNL  
On-Chip 4-Quadrant Resistors  
LTC1650  
Low Noise and Low Glitch Rail-to-Rail V  
OUT  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
OUT  
LTC1655/LTC1655L Serial 5V/3V 16-Bit Voltage Output DAC in SO-8  
LTC1657/LTC1657L Parallel 5V/3V 16-Bit Voltage Output DAC  
Low Power, Deglitched, Rail-to-Rail V  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
LTC1658  
LT1001  
LT1468  
Serial 14-Bit Voltage Output DAC  
Precision Operational Amplifier  
90MHz, 22V/µs, 16-Bit Accurate Op Amp  
Bandgap Reference  
Low Power, 8-Lead MSOP Rail-to-Rail V  
Low Offset, Low Drift  
OUT  
Op Amps  
Precise, 1µs Settling to 0.0015%  
±0.05% Initial Tolerance, 5ppm/°C  
References LT1019  
LT1236  
Precision Buried Zener Reference  
Micropower Bandgap Reference  
SOT-23 Micropower, Low Dropout Reference  
±0.05% Initial Tolerance, Low Noise 3µV  
±0.075% Initial Tolerance, 10ppm/°C  
±0.05% Initial Tolerance, 10ppm/°C  
P-P  
LT1460  
LT1790  
1821f LT/TP 0401 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 2000  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1821-1AIGW#PBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1821-1AIGW#TRPBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1821-1BCGW

16-Bit, Ultra Precise, Fast Settling VOUT DAC
Linear

LTC1821-1BCGW#PBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1821-1BCGW#TR

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1821-1BCGW#TRPBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear

LTC1821-1BIGW

16-Bit, Ultra Precise, Fast Settling VOUT DAC
Linear

LTC1821-1BIGW#PBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1821-1BIGW#TRPBF

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC1821ACGW

16-Bit, Ultra Precise, Fast Settling VOUT DAC
Linear

LTC1821ACGW#PBF

暂无描述
Linear

LTC1821ACGW#TR

LTC1821 - 16-Bit, Ultra Precise, Fast Settling VOUT DAC; Package: SSOP; Pins: 36; Temperature Range: 0°C to 70°C
Linear