LTC2203CUK#PBF [Linear]

LTC2203 - 16-Bit, 25Msps ADCs; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C;
LTC2203CUK#PBF
型号: LTC2203CUK#PBF
厂家: Linear    Linear
描述:

LTC2203 - 16-Bit, 25Msps ADCs; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C

转换器 模数转换器
文件: 总24页 (文件大小:1117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2201  
16-Bit, 20Msps ADC  
FEATURES  
DESCRIPTION  
Sample Rate: 20Msps  
TheLTC®2201isa20Msps,sampling16-bitA/Dconverter  
designedfordigitizinghighfrequency,widedynamicrange  
signals with input frequencies up to 380MHz. The input  
range of the ADC can be optimized with the PGA front end.  
n
n
81.6dB SNR and 100dB SFDR (2.5V Range)  
n
90dB SFDR at 70MHz (1.667V Input Range)  
PGA Front End (2.5V or 1.667V Input Range)  
380MHz Full Power Bandwidth S/H  
Optional Internal Dither  
Optional Data Output Randomizer  
Single 3.3V Supply  
P-P  
n
n
n
n
n
n
n
n
n
P-P  
P-P  
The LTC2201 is perfect for demanding applications, with  
AC performance that includes 81.6dB SNR and 100dB  
spurious free dynamic range (SFDR). Maximum DC specs  
include ±±LSB ꢀNL, ±1LSB DNL (no missing codes).  
Power Dissipation: 211mW  
Clock Duty Cycle Stabilizer  
Out-of-Range ꢀndicator  
A separate output power supply allows the CMOS output  
swing to range from 0.±V to 3.6V.  
Pin Compatible Family  
Asingle-endedCLKinputcontrolsconverteroperation.An  
optionalclockdutycyclestabilizerallowshighperformance  
at full speed with a wide range of clock duty cycles.  
2±Msps: LTC2203 (16-Bit)  
10Msps: LTC2202 (16-Bit)  
48-Pin (7mm × 7mm) QFN Package  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
APPLICATIONS  
n
Telecommunications  
n
Receivers  
n
Cellular Base Stations  
n
Spectrum Analysis  
n
ꢀmaging Systems  
n
ATE  
TYPICAL APPLICATION  
Integral Nonlinearity (INL)  
vs Output Code  
3.3V  
SENSE  
2.0  
OV  
DD  
1.2±V  
COMMON MODE  
BꢀAS VOLTAGE  
ꢀNTERNAL ADC  
REFERENCE  
GENERATOR  
V
0.±V TO 3.6V  
1.±  
CM  
1μF  
2.2μF  
1.0  
OF  
CLKOUT+  
CLKOUT–  
+
A
0.±  
ꢀN  
+
16-BꢀT  
PꢀPELꢀNED  
ADC CORE  
OUTPUT  
DRꢀVERS  
CORRECTꢀON  
LOGꢀC AND  
SHꢀFT REGꢀSTER  
ANALOG  
ꢀNPUT  
S/H  
CMOS  
OUTPUTS  
0.0  
–0.±  
–1.0  
–1.±  
–2.0  
D1±  
AMP  
t
t
A
ꢀN  
t
D0  
OGND  
CLOCK/DUTY  
CYCLE  
3.3V  
1μF  
V
DD  
CONTROL  
1μF  
1μF  
GND  
32768  
CODE  
0
16384  
491±2  
6±±36  
CLK  
2201 TA02  
PGA SHDN DꢀTH MODE  
ADC CONTROL ꢀNPUTS  
RAND  
OE  
2201 TA01  
2201f  
1
LTC2201  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
OVDD = VDD (Notes 1 and 2)  
TOP VꢀEW  
Supply Voltage (V ).................................. 0.3V to 4V  
DD  
Digital Output Supply Voltage (OV )......... 0.3V to 4V  
DD  
Digital Output Ground Voltage (OGND)........0.3V to 1V  
SENSE 1  
36 OV  
DD  
Analog ꢀnput Voltage (Note 3) .....0.3V to (V + 0.3V)  
DD  
V
V
V
2
3
4
3± D11  
34 D10  
33 D9  
CM  
Digital ꢀnput Voltage ....................0.3V to (V + 0.3V)  
DD  
DD  
DD  
Digital Output Voltage............... 0.3V to (OV + 0.3V)  
DD  
GND ±  
32 D8  
+
Power Dissipation............................................2000mW  
A
A
6
7
31 OGND  
30 CLKOUT  
29 CLKOUT  
28 D7  
27 D6  
26 D±  
ꢀN  
49  
+
ꢀN  
Operating Temperature Range  
GND 8  
GND 9  
CLK 10  
GND 11  
LTC2201C ............................................... 0°C to 70°C  
LTC2201ꢀ ............................................40°C to 8±°C  
Storage Temperature Range ................. 6±°C to 1±0°C  
V
DD  
12  
2± OV  
DD  
UK PACKAGE  
48-LEAD (7mm s 7mm) PLASTꢀC QFN  
EXPOSED PAD ꢀS GND (PꢀN 49)  
MUST BE SOLDERED TO PCB BOARD  
T
= 1±0°C, θ = 29°C/W  
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2201CUK#PBF  
LTC2201ꢀUK#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2201UK  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2201CUK#TRPBF  
LTC2201ꢀUK#TRPBF  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
LTC2201UK  
–40°C to 8±°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2201f  
2
LTC2201  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution (No missing codes)  
ꢀntegral Linearity Error  
Differential Linearity Error  
Offset Error  
16  
l
l
l
Differential Analog ꢀnput (Note ±)  
Differential Analog ꢀnput  
(Note 6)  
±1.±  
±0.3  
±2  
±±  
±1  
LSB  
LSB  
±10  
mV  
Offset Drift  
±10  
±0.2  
μV/°C  
%FS  
l
Gain Error  
External Reference  
±1.±  
Full-Scale Drift  
ꢀnternal Reference  
External Reference  
±30  
±1±  
ppm/°C  
ppm/°C  
Transition Noise  
External Reference (2.±V Range, PGA = 0)  
1.92  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.667 or 2.±  
1.2±  
MAX  
UNITS  
+
V
3.13±V ≤ V ≤ 3.46±V  
V
P-P  
Analog ꢀnput Range (A  
A
ꢀN  
)
ꢀN  
DD  
ꢀN  
l
l
l
V
Analog ꢀnput Common Mode  
Differential ꢀnput (Note 7)  
1
1.±  
1
V
μA  
μA  
μA  
μA  
ꢀN, CM  
+
Analog ꢀnput Leakage Current  
SENSE ꢀnput Leakage Current  
–1  
–3  
0V ≤ A  
,
A
≤ V (Note 9)  
ꢀN  
ꢀN  
ꢀN DD  
0V ≤ SENSE ≤ V (Note 10)  
3
SENSE  
MODE  
OE  
DD  
MODE Pin Pull-Down Current to GND  
OE Pin Pull-Down Current to GND  
Analog ꢀnput Capacitance  
10  
10  
C
Sample Mode CLK = 0  
Hold Mode CLK = 0  
10.±  
1.4  
pF  
pF  
ꢀN  
t
t
Sample-and-Hold  
0.9  
200  
80  
ns  
AP  
Acquisition Delay Time  
Sample-and-Hold  
Acquisition Delay Time Jitter  
fs  
RMS  
JꢀTTER  
+
CMRR  
Analog ꢀnput  
Common Mode Rejection Ratio  
1V < (A = A ) <1.±V  
dB  
ꢀN  
ꢀN  
BW-3dB  
Full Power Bandwidth  
R < 20Ω  
S
380  
MHz  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = 1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
1MHz ꢀnput (2.2±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
81.6  
79.4  
dBFS  
dBFS  
l
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
80  
81.6  
79.4  
dBFS  
dBFS  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
81.4  
79.3  
dBFS  
dBFS  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
80.8  
78.9  
dBFS  
dBFS  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA =1 )  
78.3  
77.2  
dBFS  
dBFS  
2201f  
3
LTC2201  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = 1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SFDR  
Spurious Free  
1MHz ꢀnput (2.±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
100  
100  
dBc  
dBc  
Dynamic Range  
nd  
rd  
2
or 3 Harmonic  
l
l
l
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
8±  
100  
100  
dBc  
dBc  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
9±  
100  
dBc  
dBc  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
90  
9±  
dBc  
dBc  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA = 1)  
8±  
90  
dBc  
dBc  
SFDR  
Spurious Free  
1MHz ꢀnput (2.±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
100  
100  
dBc  
dBc  
Dynamic Range  
4th Harmonic or Higher  
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
90  
100  
100  
dBc  
dBc  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
100  
100  
dBc  
dBc  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
100  
100  
dBc  
dBc  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA = 1)  
90  
90  
dBc  
dBc  
S/(N+D)  
Signal-to-Noise  
Plus Distortion Ratio  
1MHz ꢀnput (2.±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
81.±  
79.3  
dBFS  
dBFS  
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
79.7  
81.±  
79.3  
dBFS  
dBFS  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
81.3  
79.2  
dBFS  
dBFS  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
80.6  
78.6  
dBFS  
dBFS  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA = 1)  
78.1  
77  
dBFS  
dBFS  
SFDR  
Spurious Free  
Dynamic Range  
at 2±dBFS  
1MHz ꢀnput (2.±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
10±  
10±  
dBFS  
dBFS  
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
10±  
10±  
dBFS  
dBFS  
Dither “OFF”  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
10±  
10±  
dBFS  
dBFS  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
10±  
10±  
dBFS  
dBFS  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA = 1)  
100  
100  
dBFS  
dBFS  
2201f  
4
LTC2201  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = 1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SFDR  
Spurious Free  
Dynamic Range  
at 2±dBFS  
1MHz ꢀnput (2.±V Range, PGA = 0)  
1MHz ꢀnput (1.667V Range, PGA = 1)  
11±  
11±  
dBFS  
dBFS  
±MHz ꢀnput (2.±V Range, PGA = 0)  
±MHz ꢀnput (1.667V Range, PGA = 1)  
11±  
11±  
dBFS  
dBFS  
Dither “ON”  
12.±MHz ꢀnput (2.±V Range, PGA = 0)  
12.±MHz ꢀnput (1.667V Range, PGA = 1)  
11±  
11±  
dBFS  
dBFS  
30MHz ꢀnput (2.±V Range, PGA = 0)  
30MHz ꢀnput (1.667V Range, PGA = 1)  
11±  
11±  
dBFS  
dBFS  
70MHz ꢀnput (2.±V Range, PGA = 0)  
70MHz ꢀnput (1.667V Range, PGA = 1)  
110  
110  
dBFS  
dBFS  
COMMON MODE BIAS CHARACTERISTICS The l denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.2±  
±40  
1
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
= 0  
= 0  
1.1±  
1.3±  
CM  
CM  
CM  
CM  
OUT  
OUT  
ppm/°C  
3.13±V ≤ V ≤ 3.46±V  
mV/V  
Ω
DD  
1mA ≤ | ꢀ  
| ≤ 1mA  
2
OUT  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUTS (CLK, OE, DITH, PGA, SHDN, RAND)  
l
l
l
V
V
High Level ꢀnput Voltage  
Low Level ꢀnput Voltage  
Digital ꢀnput Current  
V
V
V
= 3.3V  
= 3.3V  
2
V
V
ꢀH  
DD  
DD  
ꢀN  
0.8  
ꢀL  
= 0V to V  
±10  
μA  
pF  
ꢀN  
DD  
C
Digital ꢀnput Capacitance  
(Note 7)  
1.±  
ꢀN  
LOGIC OUTPUTS  
OV = 3.3V  
DD  
V
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
ꢀ = –10μA  
O
3.299  
3.29  
V
V
OH  
DD  
O
l
l
ꢀ = 200μA  
3.1  
V
ꢀ = 160μA  
0.01  
0.10  
V
V
OL  
DD  
O
ꢀ = 1.6mA  
0.4  
O
Output Source Current  
Output Sink Current  
V
V
= 0V  
–±0  
±0  
mA  
mA  
SOURCE  
OUT  
= 3.3V  
SꢀNK  
OUT  
OV = 2.5V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
ꢀ = 200μA  
2.49  
0.1  
V
V
DD  
O
ꢀ = 1.60mA  
O
DD  
OV = 1.8V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V  
= 3.3V  
ꢀ = 200μA  
1.79  
0.1  
V
V
DD  
O
ꢀ = 1.60mA  
O
DD  
2201f  
5
LTC2201  
POWER REQUIREMENTS  
The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.3  
2
MAX  
UNITS  
V
l
V
P
Analog Supply Voltage  
Shutdown Power  
3.13±  
3.46±  
DD  
SHDN = V , CLK = V  
DD  
mW  
V
SHDN  
DD  
l
l
l
OV  
Output Supply Voltage  
Analog Supply Current  
Power Dissipation  
0.±  
3.6  
80  
DD  
64  
mA  
mW  
VDD  
P
DꢀS  
211  
264  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
S
t
L
Sampling Frequency  
CLK Low Time  
1
20  
MHz  
l
l
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
20  
±
2±  
2±  
±00  
±00  
ns  
ns  
l
l
t
t
CLK High Time  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
20  
±
2±  
2±  
±00  
±00  
ns  
ns  
H
Sample-and-Hold  
Aperture Delay  
0.9  
ns  
AP  
l
l
l
t
t
t
CLK to DATA Delay  
C = ±pF (Note 7)  
1.3  
1.3  
3.1  
3.1  
0
4.9  
4.9  
0.6  
ns  
ns  
ns  
D
L
CLK to CLKOUT Delay  
DATA to CLKOUT Skew  
C = ±pF (Note 7)  
L
C
C = ±pF (Note 7)  
L
0.6  
SKEW  
l
l
DATA Access Time  
Bus Relinquish Time  
C = ±pF (Note 7)  
±
±
1±  
1±  
ns  
ns  
L
(Note 7)  
Pipeline  
Latency  
7
Cycles  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND, with GND and OGND  
shorted (unless otherwise noted).  
Note 5: ꢀntegral nonlinearity is defined as the deviation of a code from a  
“best fit straight line” to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 6: Offset error is the offset voltage measured from 1/2LSB when the  
output code flickers between 0000 0000 0000 0000 and 1111 1111 1111  
1111 in 2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Recommended operating conditions.  
Note 9: Dynamic current from switched capacitor inputs is large compared  
to DC leakage current, and will vary with sample rate.  
Note 10: Leakage current will experience transient at power up. Keep  
DD  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: V = 3.3V, f  
= 20MHz, input range = 2.±V with  
DD  
SAMPLE  
P-P  
differential drive (PGA = 0), unless otherwise specified.  
resistance < 1kΩ.  
2201f  
6
LTC2201  
TIMING DIAGRAM  
t
AP  
N + 1  
N + 4  
ANALOG  
ꢀNPUT  
N + 3  
N
N + 2  
t
L
t
H
CLK  
t
D
N – 7  
N – 6  
N – ±  
N – 4  
N – 3  
D0-D1±, OF  
t
C
+
CLKOUT  
2201 TD01  
CLKOUT  
TYPICAL PERFORMANCE CHARACTERISTICS  
Integral Nonlinearity (INL)  
vs Output Code  
Differential Nonlinearity (DNL)  
vs Output Code  
AC Grounded Input Histogram  
(256k Samples)  
1.0  
0.8  
60000  
2.0  
1.±  
±0000  
0.6  
1.0  
0.4  
40000  
30000  
0.±  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.±  
–1.0  
–1.±  
–2.0  
20000  
10000  
0
32812 32816 32820 32824 32828 32832  
32768  
CODE  
0
16384  
32768  
CODE  
6±±36  
0
16384  
491±2  
6±±36  
491±2  
OUTPUT CODE  
2201 G03  
2201 G02  
2201 G01  
SFDR vs Input Level,  
fIN = 5MHz, PGA = 0, Dither “Off”  
SFDR vs Input Level,  
IN = 5MHz, PGA = 0, Dither “On”  
SFDR vs Input Level, fIN = 12.7MHz,  
PGA = 0, Dither “Off”  
f
140  
120  
140  
120  
140  
120  
100  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
80  
60  
40  
20  
0
0
0
–60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–70 –60 –±0 –40 –30 –20 –10  
0
–70  
–70  
ꢀNPUT LEVEL (dBFS)  
2201 G0±  
2201 G06  
2201 G04  
2201f  
7
LTC2201  
TYPICAL PERFORMANCE CHARACTERISTICS  
SFDR vs Input Level, fIN = 12.7MHz,  
PGA = 0, Dither “On”  
SFDR vs Input Level, fIN = 30.1MHz,  
PGA = 0, Dither “Off”  
SFDR vs Input Level, fIN = 30.1MHz,  
PGA = 0, Dither “On”  
140  
120  
140  
120  
140  
120  
100  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
80  
60  
40  
20  
0
0
0
–70 –60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–70 –60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–70 –60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
–80  
2201 G07  
2201 G08  
2201 G09  
SFDR vs Input Level, fIN = 70.1MHz,  
PGA = 0, Dither “Off”  
SFDR vs Input Level, fIN = 70.1MHz,  
PGA = 0, Dither “On”  
SFDR (HD2 or HD3)  
vs Input Frequency  
140  
120  
140  
120  
110  
10±  
100  
9±  
100  
100  
PGA = 1  
80  
60  
40  
20  
80  
60  
40  
20  
90  
8±  
PGA = 0  
80  
7±  
70  
0
0
–70 –60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70 –60 –±0 –40 –30 –20 –10  
ꢀNPUT LEVEL (dBFS)  
0
20  
40  
80  
0
100  
60  
ꢀNPUT FREQUENCY (MHz)  
2201 G10  
2201 G11  
2201 G12  
SNR and SFDR vs Supply Voltage  
(VDD), fIN = 5MHz  
IVDD vs Sample Rate,  
5MHz Sine Wave, –1dBFS  
SNR vs Input Frequency  
82  
81  
80  
79  
78  
77  
76  
7±  
74  
110  
10±  
68  
6±  
62  
±9  
±6  
±3  
UPPER LꢀMꢀT  
LOWER LꢀMꢀT  
PGA = 0  
SFDR  
100  
9±  
90  
8±  
80  
PGA = 1  
SNR  
7±  
73  
2.9 3.0 3.1 3.2 3.3  
SUPPLY VOLTAGE (V)  
3.6  
0
4
8
12  
16  
20  
2.8  
3.4 3.±  
0
20  
40  
60  
140  
80 100 120  
ꢀNPUT FREQUENCY (MHz)  
SAMPLE RATE (Msps)  
2201 G13  
2201 G14  
2201 G1±  
2201f  
8
LTC2201  
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized Full Scale  
SFDR vs Input Common Mode  
Voltage, fIN = 5MHz, –1dBFS,  
PGA = 0  
vs Temperature, Internal  
Reference, 5 Units  
Offset Voltage  
vs Temperature, 5 Units  
1.01  
1.00±  
1
6
4
2
0
110  
10±  
100  
9±  
90  
8±  
80  
–2  
–4  
–6  
7±  
0.99±  
70  
6±  
60  
0.99  
–40  
–20  
0
20  
40  
60  
80  
40  
TEMPERATURE (˚C)  
80  
0.±  
0.7±  
1.2± 1.±0 1.7±  
2
–40  
–20  
0
20  
60  
1
TEMPERATURE (°C)  
ꢀNPUT COMMON MODE VOLTAGE (V)  
2201 G16  
2201 G17  
2201 G18  
Mid-Scale Settling After Wake  
Up from Shutdown or Starting  
Encode Clock  
Full-Scale Settling After Wake  
Up from Shutdown or Starting  
Encode Clock  
1.0  
0.8  
±
4
0.6  
3
0.4  
2
0.2  
1
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–±  
0
±0 100 1±0 200 2±0 300 3±0 400 4±0 ±00  
TꢀME AFTER WAKE-UP OR CLOCK START (μs)  
2201 G19  
0
100 200 300 400 ±00 600 700 800 9001000  
TꢀME FROM WAKE-UP OR CLOCK START (μs)  
2201 G20  
2201f  
9
LTC2201  
PIN FUNCTIONS  
SENSE(Pin1):ReferenceModeSelectandExternalRefer-  
CLKOUT (Pin29):DataValidOutput.CLKOUT willtoggle  
ence ꢀnput. Tie SENSE to V with 1k Ω or less to select  
at the sample rate. Latch the data on the falling edge of  
DD  
theinternal2Vbandgapreference.Anexternalreference  
of 2.±V or 1.2±V may be used; both reference values will  
set a full scale ADC range of 2.±V (PGA = 0).  
CLKOUT .  
+
+
CLKOUT (Pin 30): ꢀnverted Data Valid Output. CLKOUT  
will toggle at the sample rate. Latch the data on the rising  
+
V
(Pin2):1.2±VOutput.Optimumvoltageforinputcom-  
edge of CLKOUT .  
CM  
mon mode. Must be bypassed to ground with a minimum  
of 2.2μF. Ceramic chip capacitors are recommended.  
OF (Pin 43): Over/Under Flow Digital Output. OF is high  
when an over or under flow has occurred.  
V
(Pins 3, 4, 12, 13, 14): 3.3V Analog Supply Pin.  
DD  
OE (Pin 44): Output Enable Pin. Low enables the digital  
output drivers. High puts digital outputs in Hi-Z state.  
Bypass to GND with 0.1μF ceramic chip capacitors.  
GND (Pins 5, 8, 9, 11, 15, 48, 49): ADC Power  
Ground.  
MODE (Pin 45): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and disables the clock duty  
+
A
IN  
A
IN  
(Pin 6): Positive Differential Analog ꢀnput.  
(Pin 7): Negative Differential Analog ꢀnput.  
cyclestabilizer.ConnectingMODEto1/3V selectsoffset  
DD  
binary output format and enables the clock duty cycle sta-  
CLK (Pin 10): Clock ꢀnput. The hold phase of the sample-  
and-hold circuit begins on the falling edge. The output  
data may be latched on the rising edge of CLK.  
bilizer.ConnectingMODEto2/3V selects2scomplement  
DD  
output format and enables the clock duty cycle stabilizer.  
Connecting MODE to V selects 2’s complement output  
DD  
format and disables the clock duty cycle stabilizer.  
SHDN(Pin16):PowerShutdownPin. SHDN=lowresults  
in normal operation. SHDN = high results in powered  
down analog circuitry and the digital outputs are placed  
in a high impedance state.  
RAND(Pin46):DigitalOutputRandomizationSelectionPin.  
RAND low results in normal operation. RAND high selects  
D1-D1± to be EXCLUSꢀVE-ORed with D0 (the LSB). The  
outputcanbedecodedbyagainapplyinganXORoperation  
between the LSB and all other bits. The mode of operation  
reduces the effects of digital output interference.  
DITH (Pin 17): ꢀnternal Dither Enable Pin. DꢀTH = low  
disables internal dither. DꢀTH = high enables internal  
dither. Refer to ꢀnternal Dither section of this data sheet  
for details on dither operation.  
PGA(Pin47):ProgrammableGainAmplifierControlPin.Low  
selects a front-end gain of 1, input range of 2.±V . High  
D0-D15 (Pins 18-22, 26-28, 32-35 and 39-42): Digital  
Outputs. D1± is the MSB.  
P-P  
selects a front-end gain of 1.±, input range of 1.667V  
.
P-P  
GND (Exposed Pad, Pin 49): ADC Power Ground. The ex-  
posed pad on the bottom of the package must be soldered  
to ground.  
OGND (Pins 23, 31 and 38): Output Driver Ground.  
OV (Pins24, 25, 36, 37):PositiveSupplyfortheOutput  
DD  
Drivers. Bypass to ground with 0.1μF capacitors.  
2201f  
10  
LTC2201  
BLOCK DIAGRAM  
+
A
A
ꢀN  
ꢀN  
V
DD  
ꢀNPUT  
S/H  
FꢀRST PꢀPELꢀNED  
ADC STAGE  
SECOND PꢀPELꢀNED  
ADC STAGE  
THꢀRD PꢀPELꢀNED  
ADC STAGE  
FOURTH PꢀPELꢀNED  
ADC STAGE  
FꢀFTH PꢀPELꢀNED  
ADC STAGE  
GND  
DꢀTHER  
SꢀGNAL  
GENERATOR  
CORRECTꢀON LOGꢀC  
AND  
SHꢀFT REGꢀSTER  
ADC CLOCKS  
RANGE  
SELECT  
OV  
DD  
+
CLKOUT  
CLKOUT  
OF  
SENSE  
LOW JꢀTTER  
CLOCK  
DRꢀVER  
ADC  
REFERENCE  
PGA  
D1±  
D14  
CONTROL  
LOGꢀC  
OUTPUT  
DRꢀVERS  
t
t
t
V
CM  
BUFFER  
D1  
D0  
VOLTAGE  
REFERENCE  
2201 F01  
OGND  
CLK  
SHDN PGA RAND M0DE DꢀTH  
OE  
Figure 1. Functional Block Diagram  
2201f  
11  
LTC2201  
APPLICATIONS INFORMATION  
DYNAMIC PERFORMANCE  
ꢀf two pure sine waves of frequencies fa and fb are ap-  
plied to the ADC input, nonlinearities in the ADC transfer  
function can create distortion products at the sum and  
difference frequencies of mfa ± nfb, where m and n =  
0, 1, 2, 3, etc. For example, the 3rd order ꢀMD terms  
include (2fa + fb), (fa + 2fb), (2fa - fb) and (fa - 2fb). The  
3rd order ꢀMD is defined as the ratio of the RMS value  
of either input tone to the RMS value of the largest 3rd  
order ꢀMD product.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/(N+D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band lim-  
ited to frequencies above DC to below half the sampling  
frequency.  
Spurious Free Dynamic Range (SFDR)  
Signal-to-Noise Ratio  
The ratio of the RMS input signal amplitude to the RMS  
valueofthepeakspuriousspectralcomponentexpressed  
in dBc. SFDR may also be calculated relative to full scale  
and expressed in dBFS.  
The signal-to-noise (SNR) is the ratio between the RMS  
amplitudeofthefundamentalinputfrequencyandtheRMS  
amplitude of all other frequency components, except the  
first five harmonics.  
Full Power Bandwidth  
Total Harmonic Distortion  
TheFullPowerbandwidthisthatinputfrequencyatwhich  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full scale input signal.  
Total harmonic distortion is the ratio of the RMS sum  
of all harmonics of the input signal to the fundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
Aperture Delay Time  
The time from when CLK reaches 0.4± of VDD to the  
instant that the input signal is held by the sample-and-  
hold circuit.  
2
2
2
2
THD = 20Log  
(
(V + V + V + ... V )/V  
)
2
3
4
N
1
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
through nth harmonics.  
Aperture Delay Jitter  
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
Intermodulation Distortion  
ꢀf the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (ꢀMD) in addition to  
THD. ꢀMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
SNR  
= 20log (2  
π
• f • t  
ꢀN JꢀTTER  
)
JꢀTTER  
2201f  
12  
LTC2201  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
The LTC2201 is a CMOS pipelined multistep converter  
with a front-end PGA. As shown in Figure 1, the converter  
has five pipelined ADC stages; a sampled analog input  
will result in a digitized value seven cycles later (see the  
TimingDiagramsection).Theanaloginputisdifferentialfor  
improvedcommonmodenoiseimmunityandtomaximize  
the input range. Additionally, the differential input drive  
will reduce even order harmonics of the sample-and-hold  
circuit.  
Sample/Hold Operation  
Figure2showsanequivalentcircuitfortheLTC2201CMOS  
differentialsampleandhold. Thedifferentialanaloginputs  
are sampled directly onto sampling capacitors (C  
through NMOS transitors. The capacitors shown attached  
)
SAMPLE  
to each input (C  
) are the summation of all other  
PARASꢀTꢀC  
capacitance associated with each input.  
LTC2201  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage amplifier. ꢀn op-  
eration, the ADC quantizes the input to the stage and the  
quantized value is subtracted from the input by the DAC  
to produce a residue. The residue is amplified and output  
by the residue amplifier. Successive stages operate out of  
phasesothatwhenoddstagesareoutputtingtheirresidue,  
the even stages are acquiring that residue and vice versa.  
V
V
DD  
C
SAMPLE  
9.1pF  
R
R
R
ON  
PARASꢀTꢀC  
3Ω  
20Ω  
+
A
A
ꢀN  
C
1.4pF  
PARASꢀTꢀC  
DD  
C
SAMPLE  
9.1pF  
R
ON  
PARASꢀTꢀC  
3Ω  
20Ω  
ꢀN  
The phase of operation is determined by the state of the  
CLK input pin.  
C
PARASꢀTꢀC  
1.4pF  
When CLK is high, the analog input is sampled differen-  
tially directly onto the input sample-and-hold capacitors,  
inside the “input S/H” shown in the block diagram. At the  
instant that CLK transitions from high to low, the voltage  
on the sample capacitors is held. While CLK is low, the  
held input voltage is buffered by the S/H amplifier which  
drivestherstpipelinedADCstage.Therststageacquires  
the output of the S/H amplifier during the low phase of  
CLK. When CLK goes back high, the first stage produces  
its residue which is acquired by the second stage. At the  
sametime,theinputS/Hgoesbacktoacquiringtheanalog  
input. When CLK goes low, the second stage produces its  
residue which is acquired by the third stage. An identi-  
cal process is repeated for the third and fourth stages,  
resulting in a fourth stage residue that is sent to the fifth  
stage for final evaluation.  
CLK  
2201 F02  
Figure 2. Equivalent Input Circuit  
During the sample phase when CLK is high, the NMOS  
transistors connect the analog inputs to the sampling  
capacitors and they charge to, and track the differential  
input voltage. When CLK transitions from high to low, the  
sampled input voltage is held on the sampling capacitors.  
During the hold phase when CLK is high, the sampling  
capacitors are disconnected from the input and the held  
voltage is passed to the ADC core for processing. As CLK  
transitions from low to high, the inputs are reconnected to  
the sampling capacitors to acquire a new sample. Since  
the sampling capacitors still hold the previous sample,  
a charging glitch proportional to the change in voltage  
between samples will be seen at this time at the input of  
the converter. ꢀf the change between the last sample and  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally delayed such that  
the results can be properly combined in the correction  
logic before being sent to the output buffer.  
2201f  
13  
LTC2201  
APPLICATIONS INFORMATION  
the new sample is small, the charging glitch seen at the  
input will be small. ꢀf the input change is large, such as  
the change seen with input frequencies near Nyquist, then  
a larger charging glitch will be seen.  
ratio transformer. Other turns ratios can be used; however,  
as the turns ratio increases so does the impedance seen by  
the ADC. Source impedance greater than ±0Ω can reduce  
the input bandwidth and increase high frequency distor-  
tion. A disadvantage of using a transformer is the loss of  
low frequency response. Most small RF transformers have  
poor performance at frequencies below 1MHz.  
Common Mode Bias  
The ADC sample-and-hold circuit requires differential  
drive to achieve specified performance. Each input may  
swing ±0.62±V for the 2.±V range (PGA = 0) or ±0.417V  
for the 1.667V range (PGA = 1), around a common mode  
V
CM  
2.2μF  
0.1μF  
T1  
1:1  
+
voltage of 1.2±V. The V output pin (Pin 2) is designed  
2±Ω  
A
CM  
ꢀN  
ANALOG  
ꢀNPUT  
LTC2201  
to provide the common mode bias level. V can be tied  
CM  
0.1μF  
12pF  
2±Ω  
2±Ω  
directly to the center tap of a transformer to set the DC  
input level or as a reference level to an op amp differential  
12pF  
12pF  
2±Ω  
A
ꢀN  
driver circuit. The V pin must be bypassed to ground  
CM  
T1 = COꢀLCRAFT WBCꢀ-ꢀT OR  
MA/COM ETC1-1T.  
close to the ADC with 2.2μF or greater.  
2201 F03  
RESꢀSTORS, CAPACꢀTORS ARE  
0402 PACKAGE SꢀZE, EXCEPT 2.2μF.  
Input Drive Impedence  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer. Recommended for Input  
Frequencies from 1MHz to 100MHz  
As with all high performance, high speed ADCs the dy-  
namic performance of the LTC2201 can be influenced  
by the input drive circuitry, particularly the second and  
third harmonics. Source impedance and input reac-  
tance can influence SFDR. At the rising edge of CLK the  
sample and hold circuit will connect the 9.1pF sampling  
capacitor to the input pin and start the sampling period.  
The sampling period ends when CLK falls, holding the  
sampled input on the sampling capacitor. ꢀdeally, the  
input circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
Center-tapped transformers provide a convenient means  
of DC biasing the secondary; however, they often show  
poor balance at high input frequencies, resulting in large  
2nd order harmonics.  
Figure 4 shows transformer coupling using a transmis-  
sion line balun transformer. This type of transformer has  
muchbetterhighfrequencyresponseandbalancethanux  
coupled center tap transformers. Coupling capacitors are  
added at the ground and input primary terminals to allow  
the secondary terminals to be biased at 1.2±V.  
1/(2F ); however, this is not always possible and the  
CLK  
incomplete settling may degrade the SFDR. The sampling  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
V
CM  
For the best performance it is recommended to have a  
source impedance of 100Ω or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
2.2μF  
2±Ω  
0.1μF  
+
10Ω  
A
A
ꢀN  
ꢀN  
ANALOG  
ꢀNPUT  
LTC2201  
0.1μF  
4.7pF  
2±Ω  
2±Ω  
2±Ω  
T1  
1:1  
4.7pF  
0.1μF  
10Ω  
INPUT DRIVE CIRCUITS  
4.7pF  
T1 = MA/COM ETC1-1-13.  
RESꢀSTORS, CAPACꢀTORS  
ARE 0402 PACKAGE SꢀZE,  
EXCEPT 2.2μF.  
2201 F04  
Figure 3 shows the LTC2201 being driven by an RF trans-  
former with a center-tapped secondary. The secondary  
center tap is DC biased with V , setting the ADC input  
signal at its optimum DC level. Figure 3 shows a 1:1 turns  
Figure 4. Using a Transmission Line Balun Transformer.  
Recommended for Input Frequencies from 50MHz to 250MHz  
CM  
2201f  
14  
LTC2201  
APPLICATIONS INFORMATION  
Figure ± demonstrates the use of an LTC1994 differential  
amplifier to convert a single ended input signal into a  
differential input signal. The advantage of this method is  
that it provides low frequency input response; however,  
the limited gain bandwidth of any op amp will limit the  
SFDR at high input frequencies.  
The internal programmable gain amplifier provides the  
internal reference voltage for the ADC. This amplifier has  
very stringent settling requirements and is not accessible  
for external use.  
LTC2201  
RANGE  
SELECT  
AND GAꢀN  
CONTROL  
TꢀE TO V TO USE  
DD  
V
ꢀNTERNAL  
ADC  
REFERENCE  
CM  
ꢀNTERNAL 2.±V  
REFERENCE  
2.2 μF  
499Ω  
100pF  
OR ꢀNPUT FOR  
EXTERNAL 2.±V  
REFERENCE  
SENSE  
+
PGA  
LTC2201  
2±Ω  
±23Ω  
A
A
ꢀN  
OR ꢀNPUT FOR  
EXTERNAL 1.2±V  
REFERENCE  
+
100pF  
100pF  
CM LT1994  
2.±V  
499Ω  
2±Ω  
+
ꢀN  
BANDGAP  
REFERENCE  
±3.6Ω  
V
2201 F0±  
CM  
1.2±V  
499Ω  
BUFFER  
2.2μF  
Figure 5. DC Coupled Input with Differential Amplifier  
2201 F06  
The 2±Ω resistors and 12pF capacitor on the analog  
inputs serve two purposes: isolating the drive circuitry  
from the sample-and-hold charging glitches and limiting  
the wideband noise at the converter input.  
Figure 6. Reference Circuit  
TheSENSEpincanbedriven±±%aroundthenominal2.±V  
or 1.2±V external reference input. This adjustment range  
can be used to trim the ADC gain error or other system  
gain errors. When selecting the internal reference, the  
Reference Operation  
Figure6showstheLTC2201referencecircuitryconsisting  
of a 2.±V bandgap reference, a programmable gain ampli-  
fier and control circuit. The LTC2201 has three modes of  
reference operation: ꢀnternal Reference, 1.2±V external  
reference or 2.±V external reference. To use the internal  
SENSE pin should be tied to V as close to the converter  
DD  
as possible. ꢀf the sense pin is driven externally it should  
be bypassed to ground as close to the device as possible  
with at least a 1μF ceramic capacitor.  
reference, tie the SENSE pin to V . To use the external  
DD  
V
CM  
1.2±V  
reference, simply apply either a 1.2±V or 2.±V reference  
2.2μF  
voltagetotheSENSEinputpin.Both1.2±Vand2Vapplied  
LTC2201  
to SENSE will result in a full scale range of 2.±V (PGA =  
SENSE  
2.2μF  
P-P  
6
2
3.3V  
1μF  
LT1461-2.±  
4
0). A 1.2±V output, V , is provided for a common mode  
CM  
biasforinputdrivecircuitry.Anexternalbypasscapacitoris  
requiredfortheV output.Thisprovidesahighfrequency  
CM  
2201 F07  
low impedance path to ground for internal and external  
circuitry. This is also the compensation capacitor for the  
reference; it will not be stable without this capacitor. The  
minimum value required for stability is 2.2μF.  
Figure 7. A 2.5V Range ADC  
with an External 2.5V Reference  
2201f  
15  
LTC2201  
APPLICATIONS INFORMATION  
PGA Pin  
ꢀn applications where jitter is critical, such as when digi-  
tizing high input frequencies, use as large an amplitude  
as possible. ꢀt is also helpful to drive the CLK pin with a  
low-jitter high frequency source which has been divided  
down to the appropriate sample rate. ꢀf the ADC is clocked  
with a sinusoidal signal, filter the CLK signal to reduce  
wideband noise and distortion products generated by  
the source.  
ThePGApinselectsbetweentwogainsettingsfortheADC  
front-end.PGA=0selectsaninputrangeof2.±V ;PGA=  
P-P  
1selectsaninputrangeof1.667V .The2Vinputrange  
P-P  
hasthebestSNR;however, thedistortionwillbehigherfor  
inputfrequenciesabove100MHz.Forapplicationswithhigh  
input frequencies, the low input range will have improved  
distortion; however, the SNR will be 2.4dB worse. See the  
Typical Performance Characteristics section.  
Maximum and Minimum Conversion Rates  
Driving the Clock Input  
ThemaximumconversionratefortheLTC2201is20Msps.  
For the ADC to operate properly the CLK signal should  
have a ±0% (±10%) duty cycle. Each half cycle must have  
at least 20ns for the LTC2201 internal circuitry to have  
enough settling time for proper operation.  
The CLK input can be driven directly with a CMOS or TTL  
levelsignal.Asinusoidalclockcanalsobeusedalongwitha  
low-jitter squaring circuit before the CLK pin (Figure 8).  
CLEAN 3.3V  
An on-chip clock duty cycle stabilizer may be activated if  
theinputclockdoesnothavea±0%dutycycle.Thiscircuit  
usesthefallingedgeofCLKpintosampletheanaloginput.  
The rising edge of CLK is ignored and an internal rising  
edge is generated by a phase-locked loop. The input clock  
duty cycle can vary from 30% to 70% and the clock duty  
cycle stabilizer will maintain a constant ±0% internal duty  
cycle. ꢀf the clock is turned off for a long period of time,  
the duty cycle stabilizer circuit will require one hundred  
clock cycles for the PLL to lock onto the input clock. To  
use the clock duty cycle stabilizer, the MODE pin must be  
SUPPLY  
4.7μF  
FERRꢀTE  
BEAD  
0.1μF  
1k  
0.1μF  
SꢀNUSOꢀDAL  
CLOCK  
CLK  
LTC2201  
ꢀNPUT  
±6Ω  
NC7SVU04  
1k  
2201 F08  
Figure 8. Sinusoidal Single-Ended CLK Drive  
connected to 1/3V or 2/3V using external resistors.  
DD  
DD  
The noise performance of the LTC2201 can depend on the  
clock signal quality as much as on the analog input. Any  
noise present on the clock signal will result in additional  
aperture jitter that will be RMS summed with the inherent  
ADC aperture jitter.  
The lower limit of the LTC2201 sample rate is determined  
by droop of the sample and hold circuits. The pipelined  
architectureofthisADCreliesonstoringanalogsignalson  
small valued capacitors. Junction leakage will discharge  
thecapacitors.Thespecifiedminimumoperatingfrequency  
for the LTC2201 is 1Msps.  
2201f  
16  
LTC2201  
APPLICATIONS INFORMATION  
DIGITAL OUTPUTS  
Data Format  
TheLTC2201paralleldigitaloutputcanbeselectedforoffset  
binary or 2’s complement format. The format is selected  
with the MODE pin. This pin has a four level logic input,  
Digital Output Buffers  
Figure 9 shows an equivalent circuit for a single output  
buffer in CMOS Mode. Each buffer is powered by OVDD  
and OGND, isolated from the ADC power and ground. The  
additional N-channel transistor in the output driver allows  
operation down to low voltages. The internal resistor in  
series with the output makes the output appear as ±0Ω  
to external circuitry and eliminates the need for external  
damping resistors.  
centered at 0, 1/3V , 2/3V and V . An external resis-  
DD  
DD  
DD  
tor divider can be user to set the 1/3V and 2/3V logic  
DD  
DD  
levels. Table 1 shows the logic states for the MODE pin.  
Table 1. MODE Pin Function  
CLOCK DUTY  
MODE  
OUTPUT FORMAT  
CYCLE STABILIZER  
0(GND)  
Offset Binary  
Off  
On  
On  
Off  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digitaloutputsoftheLTC2201shoulddriveasmallcapaci-  
tive load to avoid possible interaction between the digital  
outputs and sensitive input circuitry. The output should  
be buffered with a device such as a ALVCH16373 CMOS  
latch. For full speed operation the capacitive load should  
be kept under 10pF. A resistor in series with the output  
may be used but is not required since the ADC has a series  
resistor of 43Ω on chip.  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
V
DD  
Overflow Bit  
An overflow output bit (OF) indicates when the converter  
is over-ranged or under-ranged. A logic high on the OF  
pin indicates an overflow or underflow.  
Output Clock  
Lower OV voltages will also help reduce interference  
DD  
from the digital outputs.  
The ADC has a delayed version of the CLK input available  
+
as a digital output. Both a noninverted version, CLKOUT  
LTC2201  
and an inverted version CLKOUT are provided. The  
OV  
DD  
0.±V  
+
TO 3.6V  
CLKOUT /CLKOUT can be used to synchronize the con-  
verter data to the digital system. This is necessary when  
using a sinusoidal clock. Data can be latched on the rising  
V
V
DD  
DD  
0.1μF  
OV  
DD  
+
+
edgeofCLKOUT orthefallingedgeofCLKOUT .CLKOUT  
falls and CLKOUT rises as the data outputs are updated.  
DATA  
FROM  
LATCH  
PREDRꢀVER  
LOGꢀC  
43Ω  
TYPꢀCAL  
DATA  
OUTPUT  
OGND  
2201 F09  
Figure 9. Equivalent Circuit for a Digital Output Buffer  
2201f  
17  
LTC2201  
APPLICATIONS INFORMATION  
Digital Output Randomizer  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
ꢀnterference from the ADC digital outputs is sometimes  
unavoidable. ꢀnterference from the digital outputs may be  
from capacitive or inductive coupling or coupling through  
the ground plane. Even a tiny coupling factor can result in  
discernible unwanted tones in the ADC output spectrum.  
By randomizing the digital output before it is transmitted  
offchip,theseunwantedtonescanberandomized,trading  
a slight increase in the noise floor for a large reduction in  
unwanted tone amplitude.  
supply for the digital output buffers, OV , should be tied  
DD  
to the same power supply as for the logic being driven. For  
example, if the converter is driving a DSP powered by a  
1.8V supply, then OV should be tied to that same 1.8V  
DD  
supply. ꢀn CMOS mode OV can be powered with any  
DD  
logic voltage up to 3.6V. OGND can be powered with any  
voltagefromgroundupto1VandmustbelessthanOV  
.
DD  
.
The logic outputs will swing between OGND and OV  
DD  
The digital output is “Randomized” by applying an exclu-  
sive-ORlogicoperationbetweentheLSBandallotherdata  
output bits. To decode, the reverse operation is applied;  
that is, an exclusive-OR operation is applied between the  
LSB and all other bits. The LSB, OF and CLKOUT output  
are not affected. The output Randomizer function is active  
when the RAND pin is high.  
PC BOARD  
FPGA  
CLKOUT  
OF  
LTC2201  
D1±/D0  
D1±  
CLKOUT  
CLKOUT  
OF  
D14/D0  
D14  
OF  
LTC2201  
t
t
D1±  
D2/D0  
t
D1±/D0  
D14/D0  
D2  
D14  
D1/D0  
D1  
t
t
t
D0  
D2  
D1  
D0  
D2/D0  
D1/D0  
RAND = HꢀGH,  
SCRAMBLE  
ENABLED  
2201 F11  
RAND  
D0  
Figure 11. Descrambling a Scrambled Digital Output  
D0  
2201 F10  
Figure 10. Functional Equivalent of Digital Output Randomizer  
2201f  
18  
LTC2201  
APPLICATIONS INFORMATION  
Internal Dither  
Grounding and Bypassing  
The LTC2201 is a 16-bit ADC with a very linear transfer  
function;however,atlowinputlevelsevenslightimperfec-  
tions in the transfer function will result in unwanted tones.  
Small errors in the transfer function are usually a result  
of ADC element mismatches. An optional internal dither  
mode can be enabled to randomize the input’s location  
on the ADC transfer curve, resulting in improved SFDR  
for low signal levels.  
The LTC2201 require a printed circuit board with a  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTC2201 has been optimized for a flowthrough layout so  
that the interaction between inputs and digital outputs is  
minimized. Layout for the printed circuit board should  
ensure that digital and analog signal lines are separated  
as much as possible. ꢀn particular, care should be taken  
not to run any digital track alongside an analog signal  
track or underneath the ADC.  
As shown in Figure 12, the output of the sample-and-hold  
amplifier is summed with the output of a dither DAC. The  
dither DAC is driven by a long sequence pseudo-random  
number generator; the random number fed to the dither  
DAC is also subtracted from the ADC result. ꢀf the dither  
DAC is precisely calibrated to the ADC, very little of the  
dither signal will be seen at the output. The dither signal  
thatdoesleakthroughwillappearaswhitenoise.Thedither  
DAC is calibrated to result in less than 0.±dB elevation in  
the noise floor of the ADC, as compared to the noise floor  
with dither off.  
High quality ceramic bypass capacitors should be used  
at the V , V , and OV pins. Bypass capacitors must  
DD CM  
DD  
be located as close to the pins as possible. The traces  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
The LTC2201 differential inputs should run parallel and  
close to each other. The input traces should be as short  
as possible to minimize capacitance and to minimize  
noise pickup.  
+
LTC2201  
CLKOUT  
CLKOUT  
+
Heat Transfer  
OF  
D1±  
t
A
ꢀN  
16-BꢀT  
PꢀPELꢀNED  
ADC CORE  
DꢀGꢀTAL  
SUMMATꢀON  
ANALOG  
ꢀNPUT  
OUTPUT  
DRꢀVERS  
S/H  
AMP  
t
Most of the heat generated by the LTC2201 is transferred  
from the die through the bottom-side exposed pad. For  
good electrical and thermal performance, the exposed  
pad must be soldered to a large grounded pad on the PC  
board. ꢀt is critical that the exposed pad and all ground  
pins are connected to a ground plane of sufficient area  
with as many vias as possible.  
t
D0  
A
ꢀN  
CLOCK/DUTY  
CYCLE  
CONTROL  
MULTꢀBꢀT DEEP  
PSEUDO-RANDOM  
NUMBER  
PRECꢀSꢀON  
DAC  
GENERATOR  
2201 F12  
CLK  
DꢀTH  
DꢀTHER ENABLE  
HꢀGH = DꢀTHER ON  
LOW = DꢀTHER OFF  
Figure 12. Functional Equivalent Block Diagram of  
Internal Dither Circuit  
2201f  
19  
LTC2201  
APPLICATIONS INFORMATION  
G N D  
4 9  
2 4  
D D  
D D  
O V  
O V  
3 7  
O G N D  
O G N D  
2 3  
2 2  
2 1  
2 0  
3 8  
D 1 2  
3 9  
D 1 3  
D 4  
D 3  
D 2  
D 1  
4 0  
D 1 4  
4 1  
D 1 ±  
1 9  
4 2  
O F  
4 3  
D 0  
1 8  
1 7  
O E  
D ꢀ T H  
S H D N  
G N D  
4 4  
M O D E  
4 ±  
1 6  
1 ±  
R A N D  
4 6  
D D  
P G A  
V
1 4  
1 3  
4 7  
D D  
G N D  
4 8  
V
2201f  
20  
LTC2201  
APPLICATIONS INFORMATION  
Silkscreen Top  
Inner Layer 2  
Silkscreen Topside  
Inner Layer 3  
2201f  
21  
LTC2201  
APPLICATIONS INFORMATION  
Silkscreen Bottom Side  
Silkscreen Bottom  
2201f  
22  
LTC2201  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UK Package  
48-Lead Plastic QFN (7mm × 7mm)  
(Reference LTC DWG # 0±-08-1704 Rev C)  
0.70 ±0.0±  
±.1± ± 0.0±  
±.±0 REF  
6.10 ±0.0± 7.±0 ±0.0±  
(4 SꢀDES)  
±.1± ± 0.0±  
PACKAGE OUTLꢀNE  
0.2± ±0.0±  
0.±0 BSC  
RECOMMENDED SOLDER PAD PꢀTCH AND DꢀMENSꢀONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.7± ± 0.0±  
R = 0.11±  
TYP  
7.00 ± 0.10  
(4 SꢀDES)  
R = 0.10  
TYP  
47 48  
0.40 ± 0.10  
PꢀN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PꢀN 1  
CHAMFER  
C = 0.3±  
±.1± ± 0.10  
±.±0 REF  
(4-SꢀDES)  
±.1± ± 0.10  
(UK48) QFN 0406 REV C  
0.200 REF  
0.2± ± 0.0±  
0.±0 BSC  
BOTTOM VꢀEW—EXPOSED PAD  
0.00 – 0.0±  
NOTE:  
1. DRAWꢀNG CONFORMS TO JEDEC PACKAGE OUTLꢀNE MO-220 VARꢀATꢀON (WKKD-2)  
2. DRAWꢀNG NOT TO SCALE  
3. ALL DꢀMENSꢀONS ARE ꢀN MꢀLLꢀMETERS  
4. DꢀMENSꢀONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT ꢀNCLUDE  
MOLD FLASH. MOLD FLASH, ꢀF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SꢀDE, ꢀF PRESENT  
±. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA ꢀS ONLY A REFERENCE FOR PꢀN 1 LOCATꢀON ON THE TOP AND BOTTOM OF PACKAGE  
2201f  
ꢀnformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2201  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC2202  
LTC2203  
LTC6404-1  
16-Bit, 10Msps, 3.3V ADC  
140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
220mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
1.±nV/√Hz Noise, –90dBc Distortion at 10MHz  
16-Bit, 2±Msps, 3.3V ADC  
600MHz Low Noise, Low Distortion, Differential  
ADC Driver  
LT1994  
Low Noise, Low Distortion Fully  
Differential ꢀnput/Output Amplifier/Driver  
Low Distortion: –94dBc at 1MHz  
LTC2204  
LTC220±  
LTC2206  
LTC2207  
LTC2208  
LTC2224  
LTC2242-12  
LTC22±±  
LTC2284  
LT±±12  
16-Bit, 40Msps, 3.3V ADC  
480mW, 79.1dB SNR, 100dB SFDR, 48-Pin QFN  
610mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
72±mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
900mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
12±0mW, 77.1dB SNR, 100dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
740mW, 6±.4dB SNR, 84dB SFDR, 64-Pin QFN  
39±mW, 72.±dB SNR, 88dB SFDR, 32-Pin QFN  
±40mW, 72.4dB SNR, 88dB SFDR, 64-pin QFN  
DC to 3GHz, 21dBm ꢀꢀP3, ꢀntegrated LO Buffer  
16-Bit, 6±Msps, 3.3V ADC  
16-Bit, 80Msps, 3.3V ADC  
16-Bit, 10±Msps, 3.3V ADC  
16-Bit, 130Msps, 3,3V ADC, LVDS Outputs  
12-Bit, 13±Msps, 3.3V ADC, High ꢀF Sampling  
12-Bit, 2±0Msps, 2.±V ADC, LVDS Outputs  
14-Bit, 12±Msps, 3V ADC, Lowest Power  
14-Bit, Dual, 10±Msps, 3V ADC, Low Crosstalk  
DC-3GHz High Signal Level  
Downconverting Mixer  
LT±±14  
LT±±1±  
LT±±16  
LT±±17  
LT±±22  
Ultralow Distortion ꢀF Amplifier/ADC Driver  
with Digitally Controlled Gain  
4±0MHz to 1dB BW, 47dB OꢀP3, Digital Gain Control 10.±dB to 33dB in 1.±dB/Step  
High ꢀꢀP3: 20dBm at 1.9GHz, ꢀntegrated LO Quadrature Generator  
High ꢀꢀP3: 21.±dBm at 900MHz, ꢀntegrated LO Quadrature Generator  
High ꢀꢀP3: 21dBm at 800MHz, ꢀntegrated LO Quadrature Generator  
1.±GHz to 2.±GHz Direct Conversion  
Quadrature Demodulator  
800MHz to 1.±GHz Direct Conversion  
Quadrature Demodulator  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
600MHz to 2.7GHz High Linearity  
Downconverting Mixer  
4.±V to ±.2±V Supply, 2±dBm ꢀꢀP3 at 900MHz. NF = 12.±dB, ±0Ω Single Ended  
RF and LO Ports  
2201f  
LT 0412 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9±03±-7417  
24  
l
l
(408)432-1900 FAX: (408) 434-0±07  
www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LTC2203CUK#TR

暂无描述
Linear

LTC2203CUK#TRPBF

暂无描述
Linear

LTC2203IUK

16-Bit, 25Msps/10Msps ADCs
Linear

LTC2203IUK#PBF

LTC2203 - 16-Bit, 25Msps ADCs; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2203IUK#TR

LTC2203 - 16-Bit, 25Msps ADCs; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2203IUK#TRPBF

暂无描述
Linear

LTC2203UK

16-Bit, 25Msps/10Msps ADCs
Linear

LTC2203_15

16-Bit, 25Msps/10Msps ADCs
Linear

LTC2204

16-Bit, 65Msps/40Msps
Linear

LTC2204C

IC 1-CH 16-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X7 MM, PLASTIC, MO-220, QFN-48, Analog to Digital Converter
Linear

LTC2204C#PBF

IC 1-CH 16-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X7 MM, LEAD FREE, PLASTIC, MO-220, QFN-48, Analog to Digital Converter
Linear

LTC2204C#TR

IC 1-CH 16-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQCC48, 7 X7 MM, PLASTIC, MO-220, QFN-48, Analog to Digital Converter
Linear