LTC2257-14_15 [Linear]

14-Bit, 65/40/25Msps Ultralow Power 1.8V ADCs;
LTC2257-14_15
型号: LTC2257-14_15
厂家: Linear    Linear
描述:

14-Bit, 65/40/25Msps Ultralow Power 1.8V ADCs

文件: 总34页 (文件大小:1355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2258-14  
LTC2257-14/LTC2256-14  
14-Bit, 65/40/25Msps  
Ultralow Power 1.8V ADCs  
FeaTures  
DescripTion  
The LTC®2258-14/LTC2257-14/LTC2256-14 are sam-  
pling 14-bit A/D converters designed for digitizing high  
frequency, wide dynamic range signals. They are perfect  
for demanding communications applications with AC  
performance that includes 74dB SNR and 88dB spurious  
n
74dB SNR  
n
n
n
n
n
n
n
n
n
n
n
n
88dB SFDR  
Low Power: 81mW/49mW/35mW  
Single 1.8V Supply  
CMOS, DDR CMOS or DDR LVDS Outputs  
Selectable Input Ranges: 1V to 2V  
800MHz Full-Power Bandwidth S/H  
Optional Data Output Randomizer  
Optional Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
Serial SPI Port for Configuration  
Pin Compatible 14-Bit and 12-Bit Versions  
40-Pin (6mm × 6mm) QFN Package  
free dynamic range (SFDR). Ultralow jitter of 0.17ps  
allows undersampling of IF frequencies with excellent  
noise performance.  
P-P  
P-P  
RMS  
DCspecsinclude 1LSBINL(typical), 0.3LSBDNL(typi-  
cal)andnomissingcodesovertemperature.Thetransition  
noise is a low 1.13LSB  
.
RMS  
The digital outputs can be either full rate CMOS, double  
data rate CMOS, or double data rate LVDS. A separate  
output power supply allows the CMOS output swing to  
range from 1.2V to 1.8V.  
applicaTions  
n
+
Communications  
The ENC and ENC inputs may be driven differentially  
or single ended with a sine wave, PECL, LVDS, TTL or  
CMOS inputs. An optional clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Cellular Base Stations  
n
Software Defined Radios  
Portable Medical Imaging  
Multi-Channel Data Acquisition  
Nondestructive Testing  
n
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
LTC2258-14 2-Tone FFT,  
fIN = 68MHz and 69MHz  
1.8V  
V
1.2V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
TO 1.8V  
DD  
OV  
DD  
D13  
+
14-BIT  
PIPELINED  
ADC CORE  
CMOS  
OR  
LVDS  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
–80  
–90  
OGND  
–100  
–110  
–120  
CLOCK/DUTY  
CYCLE  
CONTROL  
0
20  
10  
FREQUENCY (MHz)  
30  
225814 TA01a  
GND  
65MHz  
CLOCK  
225814 TA01b  
225814fc  
1
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
absoluTe MaxiMuM raTings (Notes 1, 2)  
Supply Voltages (V , OV )....................... –0.3V to 2V  
Digital Output Voltage................ –0.3V to (OV + 0.3V)  
DD  
DD  
DD  
+
Analog Input Voltage (A , A  
,
Operating Temperature Range:  
IN  
IN  
PAR/SER, SENSE) (Note 3).......... –0.3V to (V + 0.2V)  
LTC2258C, LTC2257C, LTC2256C............ 0°C to 70°C  
LTC2258I, LTC2257I, LTC2256I...........–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
DD  
+
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4)............................................. –0.3V to 3.9V  
pin conFiguraTions  
DOUBLE DATA RATE CMOS OUTPUT MODE  
TOP VIEW  
FULL-RATE CMOS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
40 39 38 37 36 35 34 33 32 31  
+
A
A
1
2
30  
29  
28  
D9  
IN  
A
A
1
2
30  
29  
28  
D8_9  
IN  
IN  
D8  
IN  
DNC  
+
+
GND  
REFH  
3
CLKOUT  
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
REFH  
5
26 OV  
DD  
41  
41  
REFL  
6
25  
OGND  
24 D7  
23  
REFL  
6
25  
OGND  
REFL  
7
REFL  
7
24 D6_7  
PAR/SER  
8
D6  
22 D5  
21  
PAR/SER  
8
23  
22  
21  
DNC  
D4_5  
DNC  
V
DD  
9
V
DD  
9
V
10  
D4  
DD  
V
10  
DD  
11 12 13 14 15 16 17 18 19 20  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
T
= 150°C, θ = 32°C/W  
JMAX JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
DOUBLE DATA RATE LVDS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
+
A
A
1
2
30  
29  
28  
D8_9  
D8_9  
IN  
IN  
+
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
41  
REFL  
6
25  
OGND  
+
REFL  
7
24 D6_7  
+
PAR/SER  
8
23  
D6_7  
22 D4_5  
21  
V
DD  
9
V
DD  
10  
D4_5  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
225814fc  
2
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2258CUJ-14#PBF  
LTC2258IUJ-14#PBF  
LTC2257CUJ-14#PBF  
LTC2257IUJ-14#PBF  
LTC2256CUJ-14#PBF  
LTC2256IUJ-14#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2258UJ-14  
LTC2258UJ-14  
LTC2257UJ-14  
LTC2257UJ-14  
LTC2256UJ-14  
LTC2256UJ-14  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2258CUJ-14#TRPBF  
LTC2258IUJ-14#TRPBF  
LTC2257CUJ-14#TRPBF  
LTC2257IUJ-14#TRPBF  
LTC2256CUJ-14#TRPBF  
LTC2256IUJ-14#TRPBF  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2258-14  
TYP  
LTC2257-14  
TYP  
LTC2256-14  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
14  
MAX  
MIN  
14  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
14  
–2.5  
–0.8  
–9  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–3  
1
3
0.8  
9
–2.5  
–0.8  
–9  
1
2.5  
0.8  
9
1
2.5  
0.8  
9
LSB  
LSB  
mV  
–0.8  
–9  
0.3  
1.5  
0.3  
1.5  
0.3  
1.5  
Gain Error  
Internal Reference  
External Reference  
1.5  
0.4  
1.5  
0.4  
1.5  
0.4  
%FS  
%FS  
l
–1.5  
1.5  
–1.5  
1.5  
–1.5  
1.5  
Offset Drift  
20  
20  
20  
µV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
External Reference  
1.13  
1.13  
1.13  
LSB  
RMS  
225814fc  
3
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
analog inpuT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
CM  
– 100mV  
0.625  
V
CM  
V
CM  
+ 100mV  
1.300  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE External Reference Mode  
1.250  
V
I
Analog Input Common Mode Current  
Per Pin, 65Msps  
Per Pin, 40Msps  
Per Pin, 25Msps  
81  
50  
31  
µA  
µA  
µA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current  
0 < A , A < V , No Encode  
–1  
–3  
–6  
1
3
6
µA  
µA  
µA  
ns  
IN1  
IN  
IN  
DD  
PAR/SER Input Leakage Current  
SENSE Input Leakage Current  
0 < PAR/SER < V  
IN2  
DD  
0.625 < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
0
AP  
0.17  
80  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
Figure 6 Test Circuit  
800  
MHz  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2258-14  
TYP  
LTC2257-14  
TYP  
LTC2256-14  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
TYP MAX UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
74  
73.8  
73.7  
73  
73.4  
73.2  
73.1  
72.6  
72.9  
72.8  
72.1  
71.8  
dB  
dB  
dB  
dB  
l
l
l
l
30MHz Input  
70MHz Input  
140MHz Input  
72.4  
71.9  
71.2  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd or 3rd Harmonic  
90  
90  
90  
84  
90  
90  
90  
84  
90  
90  
90  
84  
dB  
dB  
dB  
dB  
30MHz Input  
70MHz Input  
140MHz Input  
78  
85  
80  
85  
80  
85  
Spurious Free Dynamic Range 5MHz Input  
4th Harmonic or Higher  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
90  
84  
dB  
dB  
dB  
dB  
30MHz Input  
70MHz Input  
140MHz Input  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
73.8  
73.7  
73.6  
72.5  
73.2  
73.1  
73  
72.8  
72.7  
72  
dB  
dB  
dB  
dB  
30MHz Input  
70MHz Input  
140MHz Input  
71.5  
71.5  
70.7  
72.3  
71.2  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600µA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
225814fc  
4
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
IN  
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
(Note 8)  
V
kΩ  
pF  
R
10  
IN  
IN  
C
Input Capacitance  
3.5  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
DD  
0.6  
3.6  
+
ENC to GND  
(See Figure 11)  
(Note 8)  
V
R
30  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
3.5  
DIGITAL INPUTS (CS, SDI, SCK)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
µA  
pF  
C
IN  
Input Capacitance  
(Note 8)  
3
200  
4
SDO OUTPUT (Open-Drain Output. Requires 2k Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
µA  
pF  
OL  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL DATA RATE AND DOUBLE DATA RATE)  
OV = 1.8V  
DD  
l
l
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.750  
1.790  
0.010  
V
V
O
I = 500µA  
O
0.050  
OV = 1.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.488  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
OV = 1.2V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500µA  
1.185  
0.010  
V
V
OH  
OL  
O
I = 500µA  
O
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
350  
175  
454  
mV  
mV  
OD  
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.250  
1.250  
1.375  
V
V
OS  
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
225814fc  
5
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2258-14  
TYP  
LTC2257-14  
TYP  
LTC2256-14  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
CMOS Output Modes: Full Data Rate and Double Data Rate  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
(Note 10)  
(Note 10)  
1.7  
1.1  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.9  
1.9  
30  
1.7  
1.1  
1.8  
1.9  
1.9  
22  
V
V
DD  
OV  
DD  
I
DC Input  
Sine Wave Input  
44.7  
45.3  
49.5  
27  
27.9  
19.5  
19.9  
mA  
mA  
VDD  
I
Digital Supply Current  
Power Dissipation  
Sine Wave Input, OV =1.2V  
2.6  
1.6  
1.1  
mA  
OVDD  
DD  
l
P
DC Input  
80.5  
84.7  
90  
48.6  
52.1  
54  
35.1  
37.1  
40  
mW  
mW  
DISS  
Sine Wave Input, OV =1.2V  
DD  
LVDS Output Mode  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
(Note 10)  
1.7  
1.7  
1.8  
1.9  
1.9  
54  
1.7  
1.7  
1.8  
1.9  
1.9  
35  
1.7  
1.7  
1.8  
1.9  
1.9  
26  
V
V
DD  
OV  
(Note 10)  
DD  
I
I
Sine Wave Input  
48.9  
31.4  
23.5  
mA  
VDD  
OVDD  
l
l
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
20.7  
40.5  
23  
44  
20.7  
40.5  
23  
44  
20.7  
40.5  
23  
44  
mA  
mA  
(0V = 1.8V)  
DD  
l
l
P
DISS  
Power Dissipation  
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
125.3 139  
160.9 177  
93.8  
105  
79.6  
89  
mW  
mW  
129.4 143  
115.2 126  
All Output Modes  
P
P
P
Sleep Mode Power  
Nap Mode Power  
0.5  
9
0.5  
9
0.5  
9
mW  
mW  
mW  
SLEEP  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No increase for Nap or Sleep Modes)  
10  
10  
10  
DIFFCLK  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2258-14  
TYP  
LTC2257-14  
TYP  
LTC2256-14  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
l
f
S
t
L
Sampling Frequency  
(Note 10)  
1
65  
1
40  
1
25  
MHz  
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2.0  
7.69  
7.69  
500 11.88 12.5  
500 2.00 12.5  
500  
500  
19  
2.00  
20  
20  
500  
500  
ns  
ns  
l
l
t
H
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
7.3  
2.0  
7.69  
7.69  
500 11.88 12.5  
500  
500  
19  
2.00  
20  
20  
500  
500  
ns  
ns  
500  
2.00  
12.5  
t
AP  
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (CMOS Modes: Full Data Rate and Double Data Rate)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.7  
1.4  
0.3  
3.1  
2.6  
0.6  
ns  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
SKEW  
D
C
Full Data Rate Mode  
Double Data Rate Mode  
5.0  
5.5  
Cycles  
Cycles  
225814fc  
6
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (LVDS Mode)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.8  
1.5  
0.3  
5.5  
3.2  
2.7  
0.6  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
ns  
SKEW  
D
C
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
125  
PULLUP  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
termination disabled, differential ENC /ENC = 2V sine wave, input  
P-P  
range = 2V with differential drive, unless otherwise noted.  
P-P  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and 11 1111 1111  
1111 in 2’s complement output mode.  
DD  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 8: Guaranteed by design, not subject to test.  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
Note 9: V = 1.8V, f  
25MHz (LTC2256), ENC = single-ended 1.8V square wave, ENC = 0V,  
= 65MHz (LTC2258), 40MHz (LTC2257), or  
DD  
SAMPLE  
+
DD  
input range = 2V with differential drive, 5pF load on each digital output  
P-P  
unless otherwise noted.  
Note 5: V = OV = 1.8V, f = 65MHz (LTC2258),  
40MHz (LTC2257), or 25MHz (LTC2256), LVDS outputs with internal  
DD  
DD  
SAMPLE  
Note 10: Recommended operating conditions.  
225814fc  
7
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
TiMing DiagraMs  
Full-Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D13, OF  
t
C
+
CLKOUT  
CLKOUT  
225814 TD01  
Double Data Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
D0_1  
D0  
D1  
D0  
D1  
D0  
N-3  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-2  
D12_13  
OF  
D12  
D13  
D12  
OF  
D13  
D12  
D13  
D12  
D13  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
OF  
OF  
OF  
N-2  
N-5  
N-4  
N-3  
t
t
C
C
+
CLKOUT  
CLKOUT  
225814 TD02  
225814fc  
8
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
TiMing DiagraMs  
Double Data Rate LVDS Output Mode Timing  
All Outputs Are Differential and Have LVDS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
D
+
D0_1  
D0  
D1  
D0  
N-4  
D1  
D0  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-3  
N-3  
N-2  
D0_1  
+
D12_13  
D12  
D13  
D12  
D13  
D12  
D13  
D12  
D13  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
D12_13  
+
OF  
OF  
N-5  
OF  
N-4  
OF  
N-3  
OF  
N-3  
OF  
t
C
t
C
+
CLKOUT  
CLKOUT  
225814 TD03  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
225814 TD04  
225814fc  
9
HIGH IMPEDANCE  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical perForMance characTerisTics  
LTC2258-14: Integral  
Nonlinearity (INL)  
LTC2258-14: Differential  
Nonlinearity (DNL)  
LTC2258-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 65Msps  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
2.0  
1.5  
1.0  
0.4  
0.2  
0
0.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
8192  
12288  
16384  
4096  
0
20  
10  
FREQUENCY (MHz)  
30  
0
8192  
12288  
16384  
4096  
OUTPUT CODE  
OUTPUT CODE  
225814 G02  
225814 G03  
225814 G01  
LTC2258-14: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 65Msps  
LTC2258-14: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 65Msps  
LTC2258-14: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 65Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
10  
FREQUENCY (MHz)  
30  
0
10  
20  
30  
0
20  
10  
FREQUENCY (MHz)  
30  
FREQUENCY (MHz)  
225814 G04  
225814 G05  
225814 G06  
LTC2258-14: SNR vs Input  
Frequency, –1dB, 2V Range,  
65Msps  
LTC2258-14: 8k Point 2-Tone FFT,  
fIN = 68MHz, 69MHz, –1dBFS,  
65Msps  
LTC2258-14: Shorted Input  
Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
74  
73  
72  
71  
70  
69  
68  
67  
66  
–80  
–90  
–100  
–110  
–120  
2000  
1000  
0
0
20  
10  
FREQUENCY (MHz)  
30  
8197  
8201  
8203  
8205  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
8199  
50  
OUTPUT CODE  
225814 G07  
225814 G08  
225814 G09  
225814fc  
10  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical perForMance characTerisTics  
LTC2258-14: SFDR vs Input  
Frequency, –1dB, 2V Range,  
65Msps  
LTC2258-14: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 65Msps  
LTC2258-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
LVDS OUTPUTS  
CMOS OUTPUTS  
80  
70  
60  
dBc  
50  
40  
30  
20  
10  
0
35  
30  
0
20  
40  
60  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
SAMPLE RATE (Msps)  
225814 G13  
225814 G10  
225814 G12  
LTC2258-14: IOVDD vs Sample  
Rate, 5MHz Sine Wave Input,  
LTC2258-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2257-14: Integral Nonlinearity  
(INL)  
–1dB, 5pF on Each Data Output  
45  
40  
35  
30  
25  
20  
15  
2.0  
1.5  
75  
74  
73  
72  
71  
70  
3.5mA LVDS  
1.0  
0.5  
1.75mA LVDS  
0
–0.5  
–1.0  
–1.5  
–2.0  
69  
68  
67  
10  
5
1.2V CMOS  
1.8V CMOS  
0
0
20  
40  
60  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
8192  
12288  
16384  
4096  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
OUTPUT CODE  
225814 G14  
225814 G15  
225814 G21  
LTC2257-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 40Msps  
LTC2257-14: 8k Point FFT,  
fIN = 29MHz, –1dBFS, 40Msps  
LTC2257-14: Differential  
Nonlinearity (DNL)  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
0
8192  
12288  
16384  
0
20  
4096  
10  
0
20  
10  
OUTPUT CODE  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
225814 G22  
225814 G23  
225814 G24  
225814fc  
11  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical perForMance characTerisTics  
LTC2257-14: 8k Point 2-Tone FFT,  
fIN = 68MHz, 69MHz, –1dBFS,  
40Msps  
LTC2257-14: 8k Point FFT,  
LTC2257-14: 8k Point FFT,  
fIN = 139MHz, –1dBFS, 40Msps  
fIN = 69MHz, –1dBFS, 40Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
0
20  
10  
10  
0
20  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
225814 G27  
225814 G26  
225814 G25  
LTC2257-14: SNR vs Input  
Frequency, –1dB, 2V Range,  
40Msps  
LTC2257-14: SFDR vs Input  
Frequency, –1dB, 2V Range,  
40Msps  
LTC2257-14: Shorted Input  
Histogram  
74  
73  
72  
71  
70  
6000  
5000  
4000  
3000  
95  
90  
85  
80  
75  
70  
65  
69  
68  
67  
66  
2000  
1000  
0
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
8198  
8202  
8204  
8206  
8200  
0
100 150 200 250 300 350  
50  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
225814 G30  
225814 G29  
225814 G28  
LTC2257-14: IOVDD vs Sample  
Rate, 5MHz Sine Wave Input,  
–1dB, 5pF on Each Data Output  
LTC2257-14: SFDR vs Input Level,  
LTC2257-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
f
IN = 70MHz, 2V Range, 40Msps  
45  
40  
35  
30  
25  
20  
15  
110  
100  
90  
35  
30  
25  
20  
15  
3.5mA LVDS  
dBFS  
LVDS OUTPUTS  
80  
70  
60  
1.75mA LVDS  
dBc  
50  
40  
30  
20  
10  
0
CMOS OUTPUTS  
1.2V CMOS  
1.8V CMOS  
10  
5
0
0
20  
40  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
20  
40  
–70  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
225814 G34  
225814 G32  
225814 G33  
225814fc  
12  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical perForMance characTerisTics  
LTC2257-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2256-14: Integral Nonlinearity  
(INL)  
LTC2256-14: Differential  
Nonlinearity (DNL)  
1.0  
0.8  
0.6  
2.0  
1.5  
74  
73  
72  
71  
70  
69  
1.0  
0.4  
0.2  
0
0.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
68  
67  
66  
0
8192  
12288  
16384  
0
8192  
12288  
16384  
4096  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
4096  
OUTPUT CODE  
OUTPUT CODE  
SENSE PIN (V)  
225814 G42  
225814 G41  
225814 G35  
LTC2256-14: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 25Msps  
LTC2256-14: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 25Msps  
LTC2256-14: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
0
10  
5
5
0
10  
5
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
225814 G44  
225814 G43  
225814 G45  
LTC2256-14: 8k Point 2-Tone FFT,  
fIN = 68MHz, 69MHz, –1dBFS,  
25Msps  
LTC2256-14: Shorted Input  
Histogram  
LTC2256-14: 8k Point FFT,  
IN = 140MHz, –1dBFS, 25Msps  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
2000  
1000  
0
0
10  
5
0
10  
5
8198  
8202  
8204  
8206  
8200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CODE  
225814 G46  
225814 G47  
225814 G48  
225814fc  
13  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical perForMance characTerisTics  
LTC2256-14: SNR vs Input  
Frequency, –1dB, 2V Range,  
25Msps  
LTC2256-14: SFDR vs Input  
Frequency, –1dB, 2V Range,  
25Msps  
LTC2256-14: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 25Msps  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
74  
73  
72  
71  
70  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
225814 G50  
225814 G52  
225814 G49  
LTC2256-14: IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB, 5pF  
on Each Data Output  
LTC2256-14: SNR vs SENSE,  
fIN = 5MHz, –1dB  
LTC2256-14: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
25  
45  
40  
35  
30  
25  
20  
15  
74  
73  
72  
71  
70  
69  
3.5mA LVDS  
LVDS OUTPUTS  
1.75mA LVDS  
20  
15  
CMOS OUTPUTS  
68  
67  
66  
10  
5
1.2V CMOS  
20  
1.8V CMOS  
10  
0
0
10  
20  
0
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
225814 G54  
225814 G53  
225814 G55  
225814fc  
14  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
pin FuncTions  
PINS THAT ARE THE SAME FOR ALL DIGITAL OUTPUT  
MODES  
parallel programming mode (PAR/SER = V ), SCK  
DD  
controls the digital output mode. When SCK is low,  
the full-rate CMOS output mode is enabled. When SCK  
is high, the double data rate LVDS output mode (with  
3.5mA output current) is enabled. SCK can be driven  
with 1.8V to 3.3V logic.  
+
A
IN  
A
IN  
(Pin 1): Positive Differential Analog Input.  
(Pin 2): Negative Differential Analog Input.  
GND (Pin 3): ADC Power Ground.  
SDI (Pin 15): In serial programming mode, (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI is  
clocked into the mode control registers on the rising edge  
of SCK. In the parallel programming mode (PAR/SER =  
REFH (Pins 4, 5): ADC High Reference. Bypass to Pins  
6, 7 with a 2.2µF ceramic capacitor and to ground with a  
0.1µF ceramic capacitor.  
REFL (Pins 6, 7): ADC Low Reference. Bypass to Pins  
4, 5 with a 2.2µF ceramic capacitor and to ground with a  
0.1µF ceramic capacitor.  
V ), SDI can be used to power down the part. When SDI  
DD  
is low, the part operates normally. When SDI is high, the  
part enters sleep mode. SDI can be driven with 1.8V to  
3.3V logic.  
PAR/SER(Pin8):ProgrammingModeSelectionPin. Con-  
nect to ground to enable the serial programming mode.  
CS, SCK, SDI, SDO become a serial interface that control  
SDO (Pin 16): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control registers  
and can be latched on the falling edge of SCK. SDO is an  
open-drain NMOS output that requires an external 2k  
pull-up resistor to 1.8V-3.3V. If read back from the mode  
control registers is not needed, the pull-up resistor is not  
necessaryandSDOcanbeleftunconnected.Intheparallel  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, SCK, SDI become  
parallel logic inputs that control a reduced set of the A/D  
operating modes. PAR/SER should be connected directly  
to ground or the V of the part and not be driven by a  
DD  
logic signal.  
programming mode (PAR/SER = V ), SDO is not used  
DD  
V
(Pins 9, 10, 40): 1.8V Analog Power Supply. Bypass  
DD  
and should not be connected.  
to ground with 0.1µF ceramic capacitors. Pins 9 and 10  
can share a bypass capacitor.  
OGND (Pin 25): Output Driver Ground.  
+
ENC (Pin 11): Encode Input. Conversion starts on the  
OV (Pin 26): Output Driver Supply. Bypass to ground  
DD  
rising edge.  
with a 0.1µF ceramic capacitor.  
ENC (Pin 12): Encode Complement Input. Conversion  
V
(Pin 37): Common Mode Bias Output, Nominally  
CM  
starts on the falling edge.  
Equal to V /2. V should be used to bias the common  
DD  
CM  
mode of the analog inputs. Bypass to ground with a 0.1µF  
ceramic capacitor.  
CS (Pin 13): In serial programming mode, (PAR/SER =  
0V), CS is the serial interface chip select input. When  
CS is low, SCK is enabled for shifting data on SDI into  
the mode control registers. In the parallel programming  
V
(Pin38):ReferenceVoltageOutput,Nominally1.25V.  
REF  
Bypass to ground with a 1µF ceramic capacitor.  
mode (PAR/SER = V ), CS controls the clock duty cycle  
DD  
SENSE(Pin39):ReferenceProgrammingPin.Connecting  
stabilizer. WhenCS islow, theclockduty cyclestabilizeris  
turned off. When CS is high, the clock duty cycle stabilizer  
is turned on. CS can be driven with 1.8V to 3.3V logic.  
SENSEtoV selectstheinternalreferenceanda 1Vinput  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a 0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
SCK (Pin 14): In serial programming mode, (PAR/SER  
= 0V), SCK is the serial interface clock input. In the  
input range of ±0.8 • V  
.
SENSE  
225814fc  
15  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
pin FuncTions  
FULL-RATE CMOS OUTPUT MODE  
DOUBLE DATA RATE LVDS OUTPUT MODE  
All Pins Below Have CMOS Output Levels (OGND to  
All Pins Below Have LVDS Output Levels. The Output  
Current Level is Programmable. There is an Optional  
Internal 100Ω Termination Resistor Between the Pins  
of Each LVDS Output Pair.  
OV )  
DD  
D0 to D13 (Pins 17-24, 29-34): Digital Outputs. D13 is  
the MSB.  
+
+
D0_1 /D0_1 to D12_13 /D12_13 (Pins 17/18, 19/20,  
21/22, 23/24, 29/30, 31/32, 33/34): Double Data Rate  
Digital Outputs. Two data bits are multiplexed onto each  
differential output pair. The even data bits (D0, D2, D4,  
+
CLKOUT (Pin 27): Inverted version of CLKOUT .  
+
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
normally transition at the same time as the falling edge  
+
+
+
of CLKOUT . The phase of CLKOUT can also be delayed  
relative to the digital outputs by programming the mode  
control registers.  
D6, D8, D10, D12) appear when CLKOUT is low. The odd  
data bits (D1, D3, D5, D7, D9, D11, D13) appear when  
+
CLKOUT is high.  
+
DNC (Pin 35): Do not connect this pin.  
CLKOUT /CLKOUT (Pins 27/28): Data Output Clock.  
The digital outputs normally transition at the same time  
OF (Pin 36): Over/Under Flow Digital Output. OF is high  
when an overflow or underflow has occurred.  
+
as the falling and rising edges of CLKOUT . The phase of  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
by programming the mode control registers.  
DOUBLE DATA RATE CMOS OUTPUT MODE  
+
OF /OF (Pins 35/36): Over/Under Flow Digital Output.  
OF is high when an overflow or underflow has occurred.  
+
All Pins Below Have CMOS Output Levels (OGND to  
OV )  
DD  
D0_1 to D12_13 (Pins 18, 20, 22, 24, 30, 32, 34): Double  
Data Rate Digital Outputs. Two data bits are multiplexed onto  
eachoutputpin. Theevendatabits(D0, D2, D4, D6, D8, D10,  
+
D12) appear when CLKOUT is low. The odd data bits (D1,  
+
D3, D5, D7, D9, D11, D13) appear when CLKOUT is high.  
+
CLKOUT (Pin 27): Inverted version of CLKOUT .  
+
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
normally transition at the same time as the falling and ris-  
+
+
ing edges of CLKOUT . The phase of CLKOUT can also  
be delayed relative to the digital outputs by programming  
the mode control registers.  
DNC (Pins 17, 19, 21, 23, 29, 31, 33, 35): Do not con-  
nect these pins.  
OF (Pin 36): Over/Under Flow Digital Output. OF is high  
when an overflow or underflow has occurred.  
225814fc  
16  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
FuncTional block DiagraM  
+
A
A
IN  
IN  
V
DD  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
GND  
V
CM  
V
/2  
DD  
0.1µF  
V
REF  
1.25V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
1µF  
RANGE  
SELECT  
REFH  
REFL INTERNAL CLOCK SIGNALS  
REF  
BUF  
OV  
OF  
DD  
SENSE  
D13  
DIFF  
REF  
AMP  
CLOCK/DUTY  
CYCLE  
CONTROL  
MODE  
OUTPUT  
DRIVERS  
CONTROL  
REGISTERS  
D0  
+
CLKOUT  
CLKOUT  
225814 F01  
REFH  
REFL  
OGND  
0.1µF  
+
ENC  
ENC  
PAR/SER CS SCK SDI SDO  
2.2µF  
0.1µF  
0.1µF  
Figure 1. Functional Block Diagram  
225814fc  
17  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
CONVERTER OPERATION  
ANALOG INPUT  
TheLTC2258-14/LTC2257-14/LTC2256-14arelowpower  
14-bit 65Msps/40Msps/25Msps A/D converters that are  
poweredbyasingle1.8Vsupply.Theanaloginputsshould  
be driven differentially. The encode input can be driven  
differentially, or single ended for lower power consump-  
tion. The digital outputs can be CMOS, double data rate  
CMOS (to halve the number of output lines), or double  
data rate LVDS (to reduce digital noise in the system.)  
Many additional features can be chosen by programming  
the mode control registers through a serial SPI port. See  
the Serial Programming Mode section.  
The analog input is a differential CMOS sample-and-hold  
circuit(Figure2).Theinputsshouldbedrivendifferentially  
around a common mode voltage set by the V output  
CM  
pin, which is nominally V /2. For the 2V input range,  
DD  
the inputs should swing from V – 0.5V to V + 0.5V.  
CM  
CM  
Thereshouldbe180°phasedifferencebetweentheinputs.  
LTC2258-14  
V
DD  
C
C
SAMPLE  
3.5pF  
R
ON  
10Ω  
10Ω  
25Ω  
+
A
A
IN  
C
PARASITIC  
1.8pF  
V
DD  
SAMPLE  
3.5pF  
R
25Ω  
ON  
IN  
C
PARASITIC  
1.8pF  
V
DD  
1.2V  
10k  
+
ENC  
ENC  
10k  
1.2V  
225814 F02  
Figure 2. Equivalent Input Circuit  
225814fc  
18  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
INPUT DRIVE CIRCUITS  
Transformer Coupled Circuits  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
Input filtering  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
showsanexampleofaninputRCfilter.TheRCcomponent  
values should be chosen based on the application’s input  
frequency.  
tap is biased with V , setting the A/D input at its optimal  
CM  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
50Ω  
V
CM  
50Ω  
V
CM  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+
A
ANALOG  
INPUT  
IN  
T2  
0.1µF  
T1  
1:1  
+
LTC2258-14  
25Ω  
T1  
A
IN  
ANALOG  
INPUT  
0.1µF  
25Ω  
25Ω  
LTC2258-14  
1.8pF  
0.1µF  
25Ω  
25Ω  
A
12pF  
IN  
25Ω  
A
IN  
225814 F05  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
225814 F03  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 5. Recommended Front-End Circuit for Input  
Frequencies from 170MHz to 270MHz  
50Ω  
50Ω  
V
V
CM  
CM  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+
2.7nH  
0.1µF  
+
A
A
A
ANALOG  
INPUT  
IN  
IN  
IN  
T2  
ANALOG  
INPUT  
LTC2258-14  
LTC2258-14  
T1  
0.1µF  
25Ω  
25Ω  
25Ω  
25Ω  
T1  
4.7pF  
2.7nH  
A
IN  
T1: MA/COM ETC1-1-13  
225814 F04  
225814 F06  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 4. Recommended Front-End Circuit for Input  
Frequencies from 70MHz to 170MHz  
Figure 6. Recommended Front-End Circuit for Input  
Frequencies Above 270MHz  
225814fc  
19  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
Amplifier Circuits  
LTC2258-14  
5Ω  
V
REF  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
1.25V BANDGAP  
REFERENCE  
1.25V  
1µF  
0.625V  
RANGE  
DETECT  
AND  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingle-ended,thenatransformercircuit(Figures 4  
to 6) should convert the signal to differential before driv-  
ing the A/D.  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
TIE TO GND FOR 1V RANGE;  
SENSE  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.65V < V  
SENSE  
< 1.300V  
INTERNAL ADC  
HIGH REFERENCE  
0.1µF  
REFH  
0.1µF  
Reference  
The LTC2258-14/2257-14/2256-14 has an internal 1.25V  
voltage reference. For a 2V input range using the internal  
reference, connect SENSE to V . For a 1V input range  
2.2µF  
0.1µF  
0.8x  
DIFF AMP  
DD  
REFL  
using the internal reference, connect SENSE to ground.  
For a 2V input range with an external reference, apply a  
1.25V reference voltage to SENSE (Figure 9.)  
INTERNAL ADC  
LOW REFERENCE  
225814 F08  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
Figure 8. Reference Circuit  
will then be 1.6 • V  
.
SENSE  
The V , REFH and REFL pins should be bypassed as  
REF  
V
REF  
shown in Figure 8. The 0.1µF capacitor between REFH  
and REFL should be as close to the pins as possible (not  
on the back side of the circuit board).  
1µF  
LTC2258-14  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1µF  
225814 F09  
V
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
Figure 9. Using an External 1.25V Reference  
200Ω 200Ω  
25Ω  
0.1µF  
0.1µF  
+
A
IN  
LTC2258-14  
ANALOG  
INPUT  
+
+
12pF  
25Ω  
A
IN  
12pF  
225814 F07  
Figure 7. Front-End Circuit Using a High Speed  
Differential Amplifier  
225814fc  
20  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
Encode Input  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10) and the single-ended encode mode  
(Figure 11).  
+
to ground and ENC is driven with a square wave encode  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
DD  
+
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
is0.9V. ForgoodjitterperformanceENC shouldhavefast  
+
rise and fall times.  
Clock Duty Cycle Stabilizer  
The differential encode mode is recommended for sinu-  
soidal, PECL or LVDS encode inputs (Figures 12, 13). The  
encode inputs are internally biased to 1.2V through 10k  
equivalent resistance. The encode inputs can be taken  
For good performance the encode signal should have a  
50%( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency or is turned off, the duty cycle  
stabilizer circuit requires one hundred clock cycles to lock  
onto the input clock. The duty cycle stabilizer is enabled  
above V (up to 3.6V), and the common mode range  
DD  
is from 1.1V to 1.6V. In the differential encode mode,  
ENC should stay at least 200mV above ground to avoid  
falselytriggeringthesingle-endedencodemode.Forgood  
+
jitter performance ENC and ENC should have fast rise  
and fall times.  
LTC2258-14  
0.1µF  
V
DD  
+
25Ω  
ENC  
T1  
1:4  
DIFFERENTIAL  
COMPARATOR  
100Ω  
100Ω  
V
DD  
D1  
LTC2258-14  
ENC  
15k  
30k  
+
ENC  
0.1µF  
225814 F12  
T1: COILCRAFT WBC4 - 1WL  
D1: AVAGO HSMS - 2822  
ENC  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 12. Sinusoidal Encode Drive  
225814 F10  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
0.1µF  
+
ENC  
LTC2258-14  
+
1.8V TO 3.3V  
0V  
ENC  
PECL OR  
LTC2258-14  
LVDS  
CLOCK  
30k  
ENC  
0.1µF  
CMOS LOGIC  
BUFFER  
ENC  
225814 F11  
225814 F13  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
Figure 13. PECL or LVDS Encode Drive  
225814fc  
21  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
by mode control register A2 (serial programming mode),  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
or by CS (parallel programming mode).  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
to make the sampling clock have a 50%( 5%) duty cycle.  
The duty cycle stabilizer should not be used below 5Msps.  
Double Data Rate LVDS Mode  
In double data rate LVDS mode, two data bits are  
multiplexed and output on each differential output pair.  
+
There are 7 LVDS output pairs (D0_1 /D0_1 through  
+
D12_13 /D12_13 ) for the digital output data. Overflow  
(OF /OF )andthedataoutputclock(CLKOUT /CLKOUT )  
each have an LVDS output pair.  
+
+
DIGITAL OUTPUTS  
Digital Output Modes  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
TheLTC2258-14/LTC2257-14/LTC2256-14canoperatein  
three digital output modes: full rate CMOS, double data  
rateCMOS(tohalvethenumberofoutputlines), ordouble  
data rate LVDS (to reduce digital noise in the system). The  
output mode is set by mode control register A3 (serial  
programming mode), or by SCK (parallel programming  
mode).NotethatdoubledatarateCMOScannotbeselected  
in the parallel programming mode.  
The outputs are powered by OV and OGND which are  
DD  
isolated from the A/D core power and ground. In LVDS  
mode, OV must be 1.8V.  
DD  
Full-Rate CMOS Mode  
Programmable LVDS Output Current  
In full-rate CMOS mode the 14 digital outputs (D0-D13),  
+
In LVDS mode, the default output driver current is 3.5mA.  
Thiscurrentcanbeadjustedbyseriallyprogrammingmode  
control register A3. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
overflow (OF), and the data output clocks (CLKOUT ,  
CLKOUT ) have CMOS output levels. The outputs are  
powered by OV and OGND which are isolated from the  
DD  
A/D core power and ground. OV can range from 1.1V  
DD  
to 1.9V, allowing 1.2V through 1.8V CMOS logic outputs.  
Optional LVDS Driver Internal Termination  
For good performance, the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
In most cases using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is increased by 1.6x to maintain about the same output  
voltage swing.  
Double Data Rate CMOS Mode  
In double data rate CMOS mode, two data bits are  
multiplexed and output on each data pin. This reduces the  
number of data lines by seven, simplifying board routing  
and reducing the number of input pins needed to receive  
the data. The 7 digital outputs (D0_1, D2_3, D4_5, D6_7,  
D8_9, D10_11, D12_13), overflow (OF), and the data  
output clocks (CLKOUT , CLKOUT ) have CMOS output  
levels. TheoutputsarepoweredbyOV andOGNDwhich  
are isolated from the A/D core power and ground. OV  
Overflow Bit  
+
The overflow output bit (OF) outputs a logic high when  
the analog input is either overranged or underranged. The  
overflow bit has the same pipeline latency as the data bits.  
DD  
DD  
can range from 1.1V to 1.9V, allowing 1.2V through 1.8V  
CMOS logic outputs.  
225814fc  
22  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
Phase Shifting the Output Clock  
DATA FORMAT  
In full-rate CMOS mode the data output bits normally  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
+
change at the same time as the falling edge of CLKOUT ,  
+
so the rising edge of CLKOUT can be used to latch the  
output data. In double data rate CMOS and LVDS modes  
the data output bits normally change at the same time as  
+
thefallingandrisingedgesofCLKOUT .To allowadequate  
Table 1. Output Codes vs Input Voltage  
+
setup-and-hold time when latching the data, the CLKOUT  
+
A
IN  
– A  
D13-D0  
D13-D0  
IN  
signal may need to be phase shifted relative to the data  
outputbits. MostFPGAshavethisfeature;thisisgenerally  
the best place to adjust the timing.  
(2V Range)  
>1.000000V  
+0.999878V  
+0.999756V  
+0.000122V  
+0.000000V  
–0.000122V  
–0.000244V  
–0.999878V  
–1.000000V  
≤–1.000000V  
OF (OFFSET BINARY)  
(2’s COMPLEMENT)  
1
0
0
0
0
0
0
0
0
1
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
TheLTC2258-14/LTC2257-14/LTC2256-14canalsophase  
+
shift the CLKOUT /CLKOUT signals by serially program-  
ming mode control register A2. The output clock can be  
shifted by 0°, 45°, 90° or 135°. To use the phase shifting  
feature the clock duty cycle stabilizer must be turned  
on. Another control register bit can invert the polarity of  
+
CLKOUT and CLKOUT , independently of the phase shift.  
Thecombinationofthesetwofeaturesenablesphaseshifts  
of 45° up to 315° (Figure 14).  
+
ENC  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
CLKPHASE1 CLKPHASE0  
0°  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
225814 F14  
Figure 14. Phase Shifting CLKOUT  
225814fc  
23  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
Digital Output Randomizer  
Alternate Bit Polarity  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
Anotherfeaturethatreducesdigitalfeedbackonthecircuit  
board is the alternate bit polarity mode. When this mode  
is enabled, all of the odd bits (D1, D3, D5, D7, D9, D11,  
D13) are inverted before the output buffers. The even bits  
(D0, D2, D4, D6, D8, D10, D12), OF and CLKOUT are not  
affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
The digital output is “randomized” by applying an  
exclusive-OR logic operation between the LSB and all  
other data output bits. To decode, the reverse opera-  
tion is applied—an exclusive-OR operation is applied  
between the LSB and all other bits. The LSB, OF and  
CLKOUT outputs are not affected. The output random-  
izer is enabled by serially programming mode control  
register A4.  
When there is a very small signal at the input of the A/D  
thatiscenteredaroundmid-scale,thedigitaloutputstoggle  
between mostly 1s and mostly 0s. This simultaneous  
switchingofmostofthebitswillcauselargecurrentsinthe  
ground plane. By inverting every other bit, the alternate bit  
polarity mode makes half of the bits transition high while  
half of the bits transition low. To first order, this cancels  
currentflowinthegroundplane,reducingthedigitalnoise.  
PC BOARD  
FPGA  
CLKOUT  
CLKOUT  
CLKOUT  
OF  
OF  
OF  
D13/D0  
D13  
D13/D0  
D12/D0  
D13  
D12  
D12/D0  
D12  
D2  
LTC2258-14  
D2/D0  
D1/D0  
D2/D0  
D1/D0  
D2  
D1  
D0  
RANDOMIZER  
ON  
D1  
D0  
D0  
D0  
225814 F16  
225814 F15  
Figure 15. Functional Equivalent of Digital Output Randomizer  
Figure 16. Unrandomizing a Randomized Digital  
Output Signal  
225814fc  
24  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
The digital output is decoded at the receiver by invert-  
ing the odd bits (D1, D3, D5, D7, D9, D11, D13.) The  
alternate bit polarity mode is independent of the digital  
output randomizer—either, both or neither function  
can be on at the same time. When alternate bit polarity  
mode is on, the data format is offset binary and the 2’s  
complement control bit has no effect. The alternate bit  
polarity mode is enabled by serially programming mode  
control register A4.  
depends on the size of the bypass capacitors on V  
REFH, and REFL. For the suggested values in Figure 8,  
the A/D will stabilize after 2ms.  
,
REF  
In nap mode the A/D core is powered down while the  
internal reference circuits stay active, allowing faster  
wake-up than from sleep mode. Recovering from nap  
mode requires at least 100 clock cycles. If the applica-  
tion demands very accurate DC settling then an additional  
50µs should be allowed so the on-chip references can  
settle from the slight temperature shift caused by the  
change in supply current as the A/D leaves nap mode.  
Nap mode is enabled by mode control register A1 in the  
serial programming mode.  
Digital Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D13-D0) to known values:  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2258-14/LTC2257-14/  
LTC2256-14 can be programmed by either a parallel  
interface or a simple serial interface. The serial interface  
has more flexibility and can program all available modes.  
Theparallelinterfaceismorelimitedandcanonlyprogram  
some of the more commonly used modes.  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples  
Checkerboard:Outputschangefrom101010101010101  
to 010101010101010 on alternating samples  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement, randomizer, alternate-bit-polarity.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
inputs that set certain operating modes. These pins can  
Output Disable  
be tied to V or ground, or driven by 1.8V, 2.5V or 3.3V  
DD  
CMOS logic. Table 2 shows the modes set by CS, SCK  
The digital outputs may be disabled by serially program-  
mingmodecontrolregisterA3.Alldigitaloutputsincluding  
OFandCLKOUTaredisabled.Thehighimpedancedisabled  
state is intended for long periods of inactivity—it is too  
slow to multiplex a data bus between multiple converters  
at full speed.  
and SDI.  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Digital Output Mode Control Bit  
0 = Full-Rate CMOS Output Mode  
Sleep and Nap Modes  
SCK  
SDI  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire A/D converter is powered  
down,resultingin0.5mWpowerconsumption.Sleepmode  
is enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
1 = Double Data Rate LVDS Output Mode  
(3.5mA LVDS Current, Internal Termination Off)  
Power Down Control Bit  
0 = Normal Operation  
1 = Sleep Mode  
225814fc  
25  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
Serial Programming Mode  
diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Table 3 shows a map of the mode control registers.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset SPI  
write command is complete, bit D7 is automatically set  
back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the timing  
Table 3. Serial Programming Mode Register Map  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers are Reset to 00h. This Bit is Automatically Set Back to Zero at the end of the SPI  
Write Command.  
The Reset Register is Write Only.  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
X
PWROFF1  
PWROFF0  
Bits 7-2  
Unused, Don’t Care Bits.  
Bits 1-0  
PWROFF1:PWROFF0  
00 = Normal Operation  
01 = Nap Mode  
Power Down Control Bits  
10 = Not Used  
11 = Sleep Mode  
225814fc  
26  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
D2  
D1  
D0  
X
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, Don’t Care Bits.  
Bit 3  
CLKINV  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (As Shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (As Shown in the Timing Diagrams)  
+
+
+
01 = CLKOUT /CLKOUT Delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT /CLKOUT Delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT /CLKOUT Delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT Phase Delay Feature is Used, the Clock Duty Cycle Stabilizer Must Also be Turned On  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE1  
OUTMODE0  
Bit 7  
Unused, Don’t Care Bit.  
Bits 6-4  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 3  
TERMON  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 1.6× the Current Set by ILVDS2:ILVDS0  
LVDS Internal Termination Bit  
Bit 2  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are Enabled  
1 = Digital Outputs are Disabled and Have High Output Impedance  
Bits 1-0  
OUTMODE1:OUTMODE0  
Digital Output Mode Control Bits  
00 = Full-Rate CMOS Output Mode  
01 = Double Data Rate LVDS Output Mode  
10 = Double Data Rate CMOS Output Mode  
11 = Not Used  
225814fc  
27  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
applicaTions inForMaTion  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
X
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
RAND  
TWOSCOMP  
Bit 7-6  
Unused, Don’t Care Bits.  
Bits 5-3  
OUTTEST2:OUTTEST0  
Digital Output Test Pattern Bits  
000 = Digital Output Test Patterns Off  
001 = All Digital Outputs = 0  
011 = All Digital Outputs = 1  
101 = Checkerboard Output Pattern. OF, D13-D0 Alternate Between 101 0101 0101 0101 and 010 1010 1010 1010  
111 = Alternating Output Pattern. OF, D13-D0 Alternate Between 000 0000 0000 0000 and 111 1111 1111 1111  
Note: Other Bit Combinations are not Used  
Bit 2  
Bit 1  
Bit 0  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Note: ABP = 1 Forces the Output Format to be Offset Binary  
GROUNDING AND BYPASSING  
The V capacitor should be located as close to the pin  
CM  
as possible. To make space for this the capacitor on V  
REF  
The LTC2258-14/LTC2257-14/LTC2256-14 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane is rec-  
ommended. Layout for the printed circuit board should  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
can be further away or on the back of the PC board. The  
traces connecting the pins and bypass capacitors must  
be kept short and should be made as wide as possible.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
High quality ceramic bypass capacitors should be used at  
HEAT TRANSFER  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1µF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2µF capacitor  
between REFH and REFL can be somewhat further away.  
Most of the heat generated by the ADC is transferred from  
the diethrough the bottom-side exposed pad and package  
leadsontotheprintedcircuitboard.Forgoodelectricaland  
thermal performance, the exposed pad must be soldered  
to a large grounded pad on the PC board.  
225814fc  
28  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical applicaTions  
LTC2258 Schematic  
T2  
MABAES0060  
R9 10Ω  
SENSE  
C23  
1µF  
R39  
ANALOG INPUT  
33.2Ω  
1%  
R14  
1k  
C51  
4.7pF  
R40  
33.2Ω  
1%  
C17  
1µF  
R10 10Ω  
R16  
100Ω  
R15 100Ω  
V
DD  
C12  
0.1µF  
C13  
1µF  
C19  
0.1µF  
DIGITAL  
OUTPUTS  
40  
39  
38  
37  
36  
+
35  
34  
33  
32  
31  
V
SENSE V  
V
CM  
OF  
OF D13 D12 D11 D10  
DD  
REF  
R27 10Ω  
R28 10Ω  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+
AIN  
D9  
AIN  
D8  
+
3
GND  
CLKOUT  
4
REFH  
REFH  
REFL  
REFL  
CLKOUT  
U2  
LTC2258CUJ  
5
C15  
0.1µF  
0V  
OV  
DD  
DD  
C20  
2.2µF  
C37  
0.1µF  
6
OGND  
7
D7  
D6  
D5  
D4  
8
PAR/SER  
C21  
0.1µF  
PAR/SER  
9
V
DD  
DD  
10  
V
DD  
V
C18  
0.1µF  
+
GND ENC ENC CS SCK SDI SDO D0 D1 D2 D3  
DIGITAL  
OUTPUTS  
41  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R13  
100Ω  
ENCODE CLOCK  
225814 TA02  
SPI BUS  
225814fc  
29  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical applicaTions  
Top Side  
Silkscreen Top  
225814 TA04  
225814 TA03  
Inner Layer 2 GND  
Inner Layer 3  
225814 TA04  
225814 TA06  
225814fc  
30  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
Typical applicaTions  
Inner Layer 4  
Inner Layer 5 Power  
225814 TA08  
225814 TA07  
Bottom Side  
225814 TA09  
225814fc  
31  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.ꢀ0 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
6.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
39 40  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ NOTCH  
R = 0.45 OR  
0.35 × 45°  
CHAMFER  
4.42 0.ꢀ0  
4.50 REF  
(4-SIDES)  
4.42 0.ꢀ0  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
ꢀ. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
225814fc  
32  
For more information www.linear.com/LTC2258-14  
LTC2258-14  
LTC2257-14/LTC2256-14  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
08/12 Corrected IO  
to I  
11, 12, 14  
VDD  
OVDD  
Corrected RESET REGISTER A0, D7 description  
26  
29  
20  
Attached V to pins 9, 10 and 40 on schematic  
DD  
C
1/14  
Corrected "external reference” to "internal reference” for 1V input range.  
225814fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
33  
LTC2258-14  
LTC2257-14/LTC2256-14  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1993-2  
LT1994  
High Speed Differential Op Amp  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
Low Noise, Low Distortion Fully Differential Input/  
Output Amplifier/Driver  
LTC2202  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
LTC2208  
LTC2209  
LTC2220  
LTC2220-1  
LTC2224  
LTC2249  
LTC2250  
LTC2251  
LTC2252  
LTC2253  
LTC2254  
LTC2255  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
16-Bit, 25Msps, 3.3V ADC, Lowest Noise  
16-Bit, 40Msps, 3.3V ADC  
140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
220mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
480mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
590mW, 79dB SNR, 100dB SFDR, 48-Pin QFN  
725mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
900mW, 77.9dB SNR, 100dB SFDR, 48-Pin QFN  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Pin QFN  
1450mW, 77.1dB SNR, 100dB SFDR, 64-Pin QFN  
890mW, 67.5dB SNR, 9mm × 9mm QFN Package  
910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
230mW, 73dB SNR, 5mm × 5mm QFN Package  
320mW, 61.6dB SNR, 5mm × 5mm QFN Package  
395mW, 61.6dB SNR, 5mm × 5mm QFN Package  
320mW, 70.2dB SNR, 5mm × 5mm QFN Package  
395mW, 70.2dB SNR, 5mm × 5mm QFN Package  
320mW, 72.5dB SNR, 5mm × 5mm QFN Package  
395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN  
16-Bit, 65Msps, 3.3V ADC  
16-Bit, 80Msps, 3.3V ADC  
16-Bit, 105Msps, 3.3V ADC  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
16-Bit, 160Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 170Msps ADC  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High IF Sampling  
14-Bit, 80Msps ADC  
10-Bit, 105Msps ADC  
10-Bit, 125Msps ADC  
12-Bit, 105Msps ADC  
12-Bit, 125Msps ADC  
14-Bit, 105Msps ADC  
14-Bit, 125Msps, 3V ADC, Lowest Power  
12-Bit, 25/40/65Msps 1.8V ADCs, Ultralow Power  
LTC2256-12/  
LTC2257-12/  
LTC2258-12  
34mW/47mW/79mW, 71.1dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/  
CMOS Outputs, 6mm × 6mm QFN Package  
LTC2259-12/  
LTC2260-12/  
LTC2261-12  
12-Bit, 80/105/125Msps 1.8V ADCs, Ultralow  
Power  
87mW/103mW/124mW, 70.8dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/  
CMOS Outputs, 6mm × 6mm QFN Package  
LTC2259-14/  
LTC2260-14/  
LTC2261-14  
14-Bit, 80/105/125Msps 1.8V ADCs, Ultralow  
Power  
89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/  
CMOS Outputs, 6mm × 6mm QFN Package  
LTC2284  
LTC2299  
LT5517  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
Dual 14-Bit, 80Msps ADC  
540mW, 72.4dB SNR, 88dB SFDR, 64-Pin QFN  
230mW, 71.6dB SNR, 5mm x 5mm QFN Package  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
LT5527  
400MHz to 3.7GHz High Linearity Downconverting  
Mixer  
24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
LT5557  
400MHz to 3.8GHz High Linearity Downconverting  
Mixer  
23.7dBm IIP3 at 2.6GHz, 23.5dBm IIP3 at 3.5GHz, NF = 13.2dB,  
3.3V Supply Operation, Integrated Transformer  
LT5575  
800MHz to 2.7GHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator  
Integrated RF and LO Transformer  
LTC6400-20  
1.8GHz Low Noise, Low Distortion Differential ADC Fixed Gain 10V/V, 2.1nV√Hz Total Input Noise, 3mm × 3mm QFN-16 Package  
Driver for 300MHz IF  
LT6604-2.5/  
LT6604-5/  
LT6604-10/  
LT6604-15  
Dual Matched 2.5MHz, 5MHz, 10MHz, 15MHz Filter Dual Matched 4th Order LP Filters with Differential Drivers. Low Noise, Low  
with ADC Driver  
Distortion Amplifiers  
225814fc  
LT 0114 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
34  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2257CUJ-12-PBF

12-Bit, 65/40/2 5Msps Ultralow Power 1.8V ADCs
Linear

LTC2257CUJ-12-TRPBF

12-Bit, 65/40/2 5Msps Ultralow Power 1.8V ADCs
Linear

LTC2257CUJ-14#PBF

LTC2257-14 - 14-Bit, 40Msps Ultralow Power 1.8V ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2257CUJ-14#TRPBF

LTC2257-14 - 14-Bit, 40Msps Ultralow Power 1.8V ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2257CUJ-14-PBF

14-Bit, 65/40/25Msps Ultralow Power 1.8V ADCs
Linear

LTC2257CUJ-14-TRPBF

14-Bit, 65/40/25Msps Ultralow Power 1.8V ADCs
Linear

LTC2257IUJ-12#PBF

暂无描述
Linear

LTC2257IUJ-12#TRPBF

LTC2257-12 - 12-Bit, 40Msps Ultralow Power 1.8V ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2257IUJ-12-PBF

12-Bit, 65/40/2 5Msps Ultralow Power 1.8V ADCs
Linear

LTC2257IUJ-12-TRPBF

12-Bit, 65/40/2 5Msps Ultralow Power 1.8V ADCs
Linear

LTC2257IUJ-14#PBF

LTC2257-14 - 14-Bit, 40Msps Ultralow Power 1.8V ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2257IUJ-14-PBF

14-Bit, 65/40/25Msps Ultralow Power 1.8V ADCs
Linear