LTC2259CUJ-16#TRPBF [Linear]

LTC2259-16 - 16-Bit, 80Msps Ultralow Power 1.8V ADC; Package: QFN; Pins: 40; Temperature Range: 0°C to 70°C;
LTC2259CUJ-16#TRPBF
型号: LTC2259CUJ-16#TRPBF
厂家: Linear    Linear
描述:

LTC2259-16 - 16-Bit, 80Msps Ultralow Power 1.8V ADC; Package: QFN; Pins: 40; Temperature Range: 0°C to 70°C

文件: 总28页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2259-16  
16-Bit, 80Msps Ultralow  
Power 1.8V ADC  
FEATURES  
DESCRIPTION  
The LTC®2259-16 is a sampling 16-bit A/D converter de-  
signed for digitizing high frequency, wide dynamic range  
signals. It is perfect for demanding communications ap-  
plications with AC performance that includes 73.1dB SNR  
and 88dB spurious free dynamic range (SFDR). Ultralow  
n
73.1dB SNR  
n
88dB SFDR  
n
Low Power: 89mW  
n
Single 1.8V Supply  
n
CMOS, DDR CMOS or DDR LVDS Outputs  
n
jitterof0.17ps  
allowsundersamplingofIFfrequencies  
Selectable Input Ranges: 1V to 2V  
RMS  
P-P  
P-P  
n
n
n
n
n
n
with excellent noise performance.  
800MHz Full-Power Bandwidth S/H  
Optional Data Output Randomizer  
Optional Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
DC specs include 4LSB INL (typical) and 0.5LSB DNL  
(typical).  
The digital outputs can be either full-rate CMOS, double-  
data rate CMOS, or double-data rate LVDS. A separate  
output power supply allows the CMOS output swing to  
range from 1.2V to 1.8V.  
Serial SPI Port for Configuration  
40-Pin (6mm × 6mm) QFN Package  
APPLICATIONS  
+
The ENC and ENC inputs may be driven differentially or  
single ended with a sine wave, PECL, LVDS, TTL or CMOS  
inputs. An optional clock duty cycle stabilizer allows high  
performance at full speed for a wide range of clock duty  
cycles.  
n
Communications  
n
Cellular Base Stations  
n
Software Defined Radios  
Portable Medical Imaging  
Multi-Channel Data Acquisition  
Nondestructive Testing  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
TYPICAL APPLICATION  
1.8V  
2-Tone FFT, fIN = 70MHz and 75MHz  
0
1.2V  
TO 1.8V  
V
DD  
OV  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
D15  
+
16-BIT  
PIPELINED  
ADC CORE  
CMOS  
OR  
LVDS  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
OGND  
–80  
–90  
CLOCK/DUTY  
CYCLE  
CONTROL  
–100  
–110  
–120  
225916 TA01a  
GND  
0
20  
30  
40  
10  
80MHz  
CLOCK  
FREQUENCY (MHz)  
225916 TA01b  
225916f  
1
LTC2259-16  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Supply Voltages (V , OV )....................... –0.3V to 2V  
Digital Output Voltage................0.3V to (OV + 0.3V)  
DD  
DD  
DD  
+
Analog Input Voltage (A , A  
,
Operating Temperature Range:  
IN  
IN  
PAR/SER, SENSE) (Note 3).......... –0.3V to (V + 0.2V)  
LTC2259C................................................ 0°C to 70°C  
LTC2259I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
DD  
+
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4)............................................. –0.3V to 3.9V  
PIN CONFIGURATION  
DOUBLE DATA RATE CMOS OUTPUT MODE  
TOP VIEW  
FULL-RATE CMOS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
40 39 38 37 36 35 34 33 32 31  
+
A
A
1
2
30  
29  
28  
D11  
IN  
A
A
1
2
30  
29  
28  
D10_11  
DNC  
IN  
D10  
IN  
IN  
+
+
GND  
REFH  
3
CLKOUT  
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
REFH  
41  
GND  
5
26 OV  
DD  
41  
GND  
REFL  
6
25  
OGND  
24 D9  
23  
REFL  
6
25  
OGND  
REFL  
7
REFL  
7
24 D8_9  
PAR/SER  
8
D8  
22 D7  
21  
PAR/SER  
8
23  
22  
21  
DNC  
D6_7  
DNC  
V
DD  
9
V
DD  
9
V
10  
D6  
DD  
V
DD  
10  
11 12 13 14 15 16 17 18 19 20  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm s 6mm) PLASTIC QFN  
UJ PACKAGE  
40-LEAD (6mm s 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
T
= 150°C, θ = 32°C/W  
JMAX JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
DOUBLE DATA RATE LVDS OUTPUT MODE  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
+
+
A
A
1
2
30  
29  
28  
D10_11  
D10_11  
IN  
IN  
+
GND  
REFH  
3
CLKOUT  
4
27 CLKOUT  
REFH  
5
26 OV  
DD  
41  
GND  
REFL  
6
25  
OGND  
+
REFL  
7
24 D8_9  
+
PAR/SER  
8
23  
D8_9  
22 D6_7  
21  
V
DD  
9
V
DD  
10  
D6_7  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm s 6mm) PLASTIC QFN  
T
= 150°C, θ = 32°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
225916f  
2
LTC2259-16  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2259CUJ-16#PBF  
LTC2259IUJ-16#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2259UJ-16  
LTC2259UJ-16  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2259CUJ-16#TRPBF  
LTC2259IUJ-16#TRPBF  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
CONVERTER CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–12  
–1  
4
12  
1.2  
9
LSB  
LSB  
mV  
0.5  
1.5  
–9  
Gain Error  
Internal Reference  
External Reference  
1.5  
0.4  
%FS  
%FS  
l
–1.5  
1.5  
Offset Drift  
20  
μV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
External Reference  
5
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
– 100mV  
0.625  
V
CM  
V
+ 100mV  
1.300  
V
INCM  
SENSE  
INCM  
IN1  
IN  
IN  
CM  
CM  
External Voltage Reference Applied to SENSE External Reference Mode  
1.250  
100  
V
μA  
μA  
μA  
μA  
ns  
I
I
I
I
t
t
Analog Input Common Mode Current  
Analog Input Leakage Current  
Per Pin, 80Msps  
+
l
l
l
0 < A , A < V , No Encode  
–1  
–3  
–6  
1
3
6
IN  
IN  
DD  
PAR/SER Input Leakage Current  
SENSE Input Leakage Current  
0 < PAR/SER < V  
IN2  
DD  
0.625 < SENSE < 1.3V  
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
0
AP  
0.17  
80  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
Figure 6 Test Circuit  
800  
MHz  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
SYMBOL PARAMETER  
SNR Signal-to-Noise Ratio  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5MHz Input  
70MHz Input  
140MHz Input  
73.1  
72.9  
72.4  
dBFS  
dBFS  
dBFS  
l
70.9  
225916f  
3
LTC2259-16  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SFDR  
Spurious Free Dynamic Range 2nd or 3rd  
5MHz Input  
88  
85  
82  
dBFS  
dBFS  
dBFS  
l
l
l
Harmonic  
70MHz Input  
140MHz Input  
79  
Spurious Free Dynamic Range 4th Harmonic or  
Higher  
5MHz Input  
70MHz Input  
140MHz Input  
90  
90  
90  
dBFS  
dBFS  
dBFS  
85  
S/(N+D) Signal-to-Noise Plus Distortion Ratio  
5MHz Input  
70MHz Input  
140MHz Input  
72.9  
72.6  
72  
dBFS  
dBFS  
dBFS  
70.4  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600μA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400μA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
(Note 8)  
V
kΩ  
pF  
IN  
R
10  
IN  
C
Input Capacitance  
3.5  
IN  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
0.6  
3.6  
DD  
+
ENC to GND  
(See Figure 11)  
(Note 8)  
V
R
30  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
3.5  
DIGITAL INPUTS (CS, SDI, SCK)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
DD  
V
DD  
V
IN  
= 1.8V  
1.3  
V
V
IH  
IL  
= 1.8V  
0.6  
10  
I
IN  
= 0V to 3.6V  
–10  
μA  
C
IN  
Input Capacitance  
(Note 8)  
3
pF  
225916f  
4
LTC2259-16  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
200  
4
MAX  
UNITS  
SDO OUTPUT (Open-Drain Output. Requires 2k Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
DD  
= 1.8V, SDO = 0V  
Ω
μA  
pF  
OL  
l
I
OH  
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
C
OUT  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL DATA RATE AND DOUBLE-DATA RATE)  
OV = 1.8V  
DD  
l
l
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.750  
1.790  
0.010  
V
V
O
I = 500μA  
O
0.050  
OV = 1.5V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.488  
0.010  
V
V
O
I = 500μA  
O
OV = 1.2V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.185  
0.010  
V
V
O
I = 500μA  
O
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
350  
175  
454  
mV  
mV  
OD  
V
OS  
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.250  
1.250  
1.375  
V
V
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CMOS Output Modes: Full Data Rate and Double-Data Rate  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
(Note 10)  
(Note 10)  
1.7  
1.1  
1.8  
1.9  
1.9  
V
V
DD  
OV  
DD  
I
DC Input  
Sine Wave Input  
49.2  
50.2  
58.1  
mA  
mA  
VDD  
I
Digital Supply Current  
Power Dissipation  
Sine Wave Input, OV =1.2V  
2.5  
mA  
OVDD  
DD  
l
P
DC Input  
89  
93  
105  
mW  
mW  
DISS  
Sine Wave Input, OV =1.2V  
DD  
LVDS Output Mode  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
(Note 10)  
1.7  
1.7  
1.8  
1.9  
1.9  
V
V
DD  
OV  
(Note 10)  
DD  
I
I
Sine Wave Input  
53.8  
63.5  
mA  
VDD  
OVDD  
l
l
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
20.7  
40.5  
26  
47.8  
mA  
mA  
(0V = 1.8V)  
DD  
l
l
P
DISS  
Power Dissipation  
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
134  
170  
161  
201  
mW  
mW  
All Output Modes  
P
P
P
Sleep Mode Power  
Nap Mode Power  
0.5  
9
mW  
mW  
mW  
SLEEP  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No increase for Nap or Sleep Modes)  
10  
DIFFCLK  
225916f  
5
LTC2259-16  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
t
Sampling Frequency  
(Note 10)  
1
80  
MHz  
S
L
l
l
ENC Low Time (Note 8)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
5.93  
2.00  
6.25  
6.25  
500  
500  
ns  
ns  
l
l
t
t
ENC High Time (Note 8)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
5.93  
2.00  
6.25  
6.25  
500  
500  
ns  
ns  
H
Sample-and-Hold Acquisition Delay  
Time  
0
ns  
AP  
Digital Data Outputs (CMOS Modes: Full Data Rate and Double-Data Rate)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.7  
1.4  
0.3  
3.1  
2.6  
0.6  
ns  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
SKEW  
D
C
Full Data Rate Mode  
Double-Data Rate Mode  
5.0  
5.5  
Cycles  
Cycles  
Digital Data Outputs (LVDS Mode)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.8  
1.5  
0.3  
5.5  
3.2  
2.7  
0.6  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
ns  
SKEW  
D
C
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
125  
SDO  
PULLUP  
Note 5: V = OV = 1.8V, f = 80MHz, LVDS outputs with internal  
SAMPLE  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
DD  
DD  
+
termination disabled, differential ENC /ENC = 2V sine wave, input  
P-P  
range = 2V with differential drive, unless otherwise noted.  
P-P  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 0000 0000 0000 0000 and 1111 1111  
1111 1111 in 2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
DD  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 8: Guaranteed by design, not subject to test.  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
+
DD  
Note 9: V = 1.8V, f  
wave, ENC = 0V, input range = 2V with differential drive, 5pF load on  
= 80MHz, ENC = single-ended 1.8V square  
DD  
SAMPLE  
P-P  
each digital output unless otherwise noted.  
Note 10: Recommended operating conditions.  
225916f  
6
LTC2259-16  
TIMING DIAGRAMS  
Full-Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D15  
t
C
+
CLKOUT  
CLKOUT  
225916 TD01  
Double-Data Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
t
D
D0_1  
D0  
D1  
D0  
D1  
N-4  
D0  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-3  
N-3  
N-2  
D14_15  
D14  
D15  
D14  
D15  
D14  
D15  
D14  
D15  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
t
t
C
C
+
CLKOUT  
CLKOUT  
225916 TD02  
225916f  
7
LTC2259-16  
TIMING DIAGRAMS  
Double-Data Rate LVDS Output Mode Timing  
All Outputs Are Differential and Have LVDS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
t
D
+
D0_1  
D0  
D1  
D0  
D1  
N-4  
D0  
D1  
D0  
D1  
N-2  
N-5  
N-5  
N-4  
N-3  
N-3  
N-2  
D0_1  
+
D14_15  
D14  
D15  
D14  
D15  
D14  
D15  
D14  
D15  
N-2  
N-5  
N-5  
N-4  
N-4  
N-3  
N-3  
N-2  
D14_15  
t
t
C
C
+
CLKOUT  
CLKOUT  
225916 TD03  
SPI Port Timing (Readback Mode)  
t
t
DS  
t
t
t
H
S
DH  
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
226114 TD04  
HIGH IMPEDANCE  
225916f  
8
LTC2259-16  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2259-16: 8k Point FFT,  
fIN = 5MHz –1dBFS, 80Msps  
LTC2259-16: Integral  
Non-Linearity (INL)  
LTC2259-16: Differential  
Non-Linearity (DNL)  
1.0  
0.8  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
4
3
0.6  
2
0.4  
1
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–80  
–90  
–100  
–110  
–120  
0
32768  
49152  
65536  
16384  
0
20  
30  
40  
10  
0
32768  
49152  
65536  
16384  
OUTPUT CODE  
FREQUENCY (MHz)  
OUTPUT CODE  
225916 G02  
225916 G03  
225916 G01  
LTC2259-16: 8k Point FFT,  
fIN = 30MHz –1dBFS, 80Msps  
LTC2259-16: 8k Point FFT,  
fIN = 70MHz –1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
0
20  
30  
40  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
225916 G04  
225916 G05  
LTC2259-16: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
80Msps  
LTC2259-16: 8k Point FFT,  
IN = 140MHz –1dBFS, 80Msps  
f
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
10  
0
20  
30  
40  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
225916 G07  
225916 G06  
225916f  
9
LTC2259-16  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2259-16: SNR vs Input  
Frequency, 1dBFS, 2V Range,  
80Msps  
LTC2259-16: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
80Msps  
LTC2259-16: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 80Msps  
110  
100  
90  
74  
73  
72  
71  
70  
95  
90  
85  
80  
75  
70  
65  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
69  
68  
67  
66  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
50  
225916 G10  
225916 G08  
225916 G09  
LTC2259-16: IOVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS,  
5pF on Each Data Output  
LTC2259-16: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2259-16: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
55  
50  
45  
45  
40  
35  
30  
25  
20  
15  
74  
73  
72  
71  
70  
69  
3.5mA LVDS  
LVDS OUTPUTS  
CMOS OUTPUTS  
1.75mA LVDS  
40  
35  
68  
67  
66  
10  
5
1.2V CMOS  
1.8V CMOS  
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
225916 G11  
225916 G12  
225916 G13  
225916f  
10  
LTC2259-16  
PIN FUNCTIONS  
PINS THAT ARE THE SAME FOR ALL DIGITAL OUTPUT  
MODES  
SCK (Pin 14): In serial programming mode, (PAR/SER =  
0V), SCK is the serial interface clock input. In the parallel  
programming mode (PAR/SER = V ), SCK controls the  
DD  
+
A
A
(Pin 1): Positive Differential Analog Input.  
(Pin 2): Negative Differential Analog Input.  
IN  
IN  
digital output mode. When SCK is low, the full-rate CMOS  
output mode is enabled. When SCK is high, the double-  
data rate LVDS output mode (with 3.5mA output current)  
is enabled. SCK can be driven with 1.8V to 3.3V logic.  
GND (Pin 3, Exposed Pad Pin 41): ADC Power Ground.  
REFH (Pins 4, 5): ADC High Reference. Bypass to Pins  
6, 7 with a 2.2μF ceramic capacitor and to ground with a  
0.1μF ceramic capacitor.  
SDI (Pin 15): In serial programming mode, (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI is  
clocked into the mode control registers on the rising edge  
of SCK. In the parallel programming mode (PAR/SER =  
REFL (Pins 6, 7): ADC Low Reference. Bypass to Pins  
4, 5 with a 2.2μF ceramic capacitor and to ground with a  
0.1μF ceramic capacitor.  
V ), SDI can be used to power down the part. When SDI  
DD  
is low, the part operates normally. When SDI is high, the  
part enters sleep mode. SDI can be driven with 1.8V to  
3.3V logic.  
PAR/SER(Pin8):ProgrammingModeSelectionPin. Con-  
nect to ground to enable the serial programming mode.  
CS, SCK, SDI, SDO become a serial interface that control  
SDO (Pin 16): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control registers  
and can be latched on the falling edge of SCK. SDO is an  
open-drain NMOS output that requires an external 2k  
pull-up resistor to 1.8V-3.3V. If read back from the mode  
control registers is not needed, the pull-up resistor is not  
necessaryandSDOcanbeleftunconnected.Intheparallel  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, SCK, SDI become  
parallel logic inputs that control a reduced set of the A/D  
operating modes. PAR/SER should be connected directly  
to ground or the V of the part and not be driven by a  
DD  
logic signal.  
V
(Pins 9, 10, 40): 1.8V Analog Power Supply. Bypass  
DD  
programming mode (PAR/SER = V ), SDO is not used  
DD  
to ground with 0.1μF ceramic capacitors. Pins 9 and 10  
and should not be connected.  
can share a bypass capacitor.  
OGND (Pin 25): Output Driver Ground.  
+
ENC (Pin 11): Encode Input. Conversion starts on the  
OV (Pin 26): Output Driver Supply. Bypass to ground  
DD  
rising edge.  
with a 0.1μF ceramic capacitor.  
ENC (Pin 12): Encode Complement Input. Conversion  
V
(Pin 37): Common Mode Bias Output, Nominally  
CM  
starts on the falling edge.  
Equal to V /2. V should be used to bias the common  
DD  
CM  
CS (Pin 13): In serial programming mode, (PAR/SER =  
0V), CS is the serial interface chip select input. When  
CS is low, SCK is enabled for shifting data on SDI into  
the mode control registers. In the parallel programming  
mode of the analog inputs. Bypass to ground with a 0.1μF  
ceramic capacitor.  
V
(Pin38):ReferenceVoltageOutput.Bypasstoground  
REF  
with a 1μF ceramic capacitor, nominally 1.25V.  
mode (PAR/SER = V ), CS controls the clock duty cycle  
DD  
stabilizer. When CS is low, the clock duty cycle stabilizer is  
turned off. When CS is high, the clock duty cycle stabilizer  
is turned on. CS can be driven with 1.8V to 3.3V logic.  
SENSE(Pin39):ReferenceProgrammingPin.Connecting  
SENSEtoV selectstheinternalreferenceanda 1Vinput  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a 0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
input range of 0.8 • V  
.
SENSE  
225916f  
11  
LTC2259-16  
PIN FUNCTIONS  
FULL-RATE CMOS OUTPUT MODE  
+
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
normally transition at the same time as the falling and ris-  
+
+
All Pins Below Have CMOS Output Levels (OGND to  
ing edges of CLKOUT . The phase of CLKOUT can also  
be delayed relative to the digital outputs by programming  
the mode control registers.  
OV )  
DD  
D0 to D15 (Pins 35, 36, 17-24, 29-34): Digital Outputs.  
D15 is the MSB. D0 is the LSB.  
DNC (Pins 17, 19, 21, 23, 29, 31, 33, 35): Do not con-  
nect these pins.  
+
CLKOUT (Pin 27): Inverted Version of CLKOUT .  
+
CLKOUT (Pin 28): Data Output Clock. The digital outputs  
DOUBLE-DATA RATE LVDS OUTPUT MODE  
normally transition at the same time as the falling edge  
+
+
of CLKOUT . The phase of CLKOUT can also be delayed  
relative to the digital outputs by programming the mode  
control registers.  
All Pins Below Have LVDS Output Levels. The Output  
Current Level is Programmable. There is an Optional  
Internal 100Ω Termination Resistor Between the Pins  
of Each LVDS Output Pair.  
DOUBLE-DATA RATE CMOS OUTPUT MODE  
+
+
D0_1 /D0_1 to D14_15 /D14_15 (Pins 35/36, 17/18,  
19/20, 21/22, 23/24, 29/30, 31/32, 33/34): Double-Data  
Rate Digital Outputs. Two data bits are multiplexed onto  
each differential output pair. The even data bits (D0, D2,  
All Pins Below Have CMOS Output Levels (OGND to  
OV )  
DD  
+
D0_1 to D14_15 (Pins 36,18, 20, 22, 24, 30, 32, 34):  
Double-Data Rate Digital Outputs. Two data bits are multi-  
plexed onto each output pin. The even data bits (D0, D2, D4,  
D4, D6, D8, D10, D12, D14) appear when CLKOUT is low.  
The odd data bits (D1, D3, D5, D7, D9, D11, D13, D15)  
+
appear when CLKOUT is high.  
+
D6, D8, D10, D12, D14) appear when CLKOUT is low. The  
+
CLKOUT /CLKOUT (Pins 27/28): Data Output Clock.  
odd data bits (D1, D3, D5, D7, D9, D11, D13, D15) appear  
The digital outputs normally transition at the same time  
+
when CLKOUT is high.  
+
as the falling and rising edges of CLKOUT . The phase of  
+
+
CLKOUT (Pin 27): Inverted Version of CLKOUT .  
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
by programming the mode control registers.  
225916f  
12  
LTC2259-16  
FUNCTIONAL BLOCK DIAGRAM  
+
A
IN  
V
DD  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
A
IN  
GND  
V
CM  
V
/2  
DD  
0.1μF  
V
REF  
1.25V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
1μF  
RANGE  
SELECT  
REFH  
REFL INTERNAL CLOCK SIGNALS  
REF  
BUF  
OV  
DD  
SENSE  
D15  
DIFF  
CLOCK/DUTY  
CYCLE  
CONTROL  
MODE  
OUTPUT  
DRIVERS  
REF  
CONTROL  
AMP  
REGISTERS  
D0  
+
CLKOUT  
CLKOUT  
225916 F01  
REFH  
REFL  
0.1μF  
2.2μF  
OGND  
+
PAR/SER  
SCK SDI  
SDO  
ENC  
ENC  
CS  
0.1μF  
0.1μF  
Figure 1. Functional Block Diagram  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
LTC2259-16  
10Ω  
V
DD  
C
C
The LTC2259-16 is a low power 16-bit 80Msps A/D  
converter that is powered by a single 1.8V supply. The  
analog inputs should be driven differentially. The encode  
input can be driven differentially, or single ended for lower  
power consumption. The digital outputs can be CMOS,  
double-data rate CMOS (to halve the number of output  
lines), or double-data rate LVDS (to reduce digital noise  
in the system.) Many additional features can be chosen by  
programming the mode control registers through a serial  
SPI port. See the Serial Programming Mode section.  
SAMPLE  
3.5pF  
R
ON  
25Ω  
+
A
A
IN  
IN  
C
PARASITIC  
1.8pF  
V
DD  
SAMPLE  
3.5pF  
R
25Ω  
ON  
10ꢀ  
C
PARASITIC  
1.8pF  
V
DD  
1.2V  
10k  
ANALOG INPUT  
+
ENC  
The analog input is a differential CMOS sample-and-hold  
circuit(Figure2).Theinputsshouldbedrivendifferentially  
ENC  
10k  
around a common mode voltage set by the V output  
CM  
1.2V  
pin, which is nominally V /2. For the 2V input range, the  
DD  
225916 F02  
inputs should swing from V – 0.5V to V + 0.5V. There  
CM  
CM  
Figure 2. Equivalent Input Circuit  
should be 180° phase difference between the inputs.  
225916f  
13  
LTC2259-16  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Input Filtering  
Transformer-Coupled Circuits  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
tap is biased with V , setting the A/D input at its optimal  
CM  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
50Ω  
V
50Ω  
V
CM  
CM  
0.1μF  
0.1μF  
0.1μF  
+
0.1μF  
T1  
1:1  
A
IN  
ANALOG  
INPUT  
T2  
+
25Ω  
A
IN  
ANALOG  
INPUT  
LTC2259-16  
T1  
0.1μF  
25Ω  
25Ω  
LTC2259-16  
0.1μF  
25Ω  
25Ω  
4.7pF  
12pF  
0.1μF  
A
IN  
25Ω  
A
IN  
225916 F04  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
225916 F03  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 4. Recommended Front-End Circuit for  
Input Frequencies from 70MHz to 170MHz  
50Ω  
V
50Ω  
V
CM  
CM  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
+
2.7nH  
0.1μF  
+
A
A
A
ANALOG  
INPUT  
IN  
T2  
IN  
ANALOG  
INPUT  
LTC2259-16  
T1  
LTC2259-16  
0.1μF  
25Ω  
25Ω  
25Ω  
25Ω  
T1  
1.8pF  
0.1μF  
0.1μF  
2.7nH  
A
IN  
IN  
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
225916 F05  
225916 F06  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
Figure 5. Recommended Front-End Circuit for  
Input Frequencies from 170MHz to 270MHz  
Figure 6. Recommended Front-End Circuit for  
Input Frequencies Above 270MHz  
225916f  
14  
LTC2259-16  
APPLICATIONS INFORMATION  
Amplifier Circuits  
LTC2259-16  
5Ω  
V
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
1μF  
0.625V  
RANGE  
DETECT  
AND  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
blockissingle-ended,thenatransformercircuit(Figures 4  
to 6) should convert the signal to differential before driv-  
ing the A/D.  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
TIE TO GND FOR 1V RANGE;  
SENSE  
RANGE = 1.6 • V  
FOR  
SENSE  
BUFFER  
0.65V < V  
SENSE  
< 1.300V  
INTERNAL ADC  
HIGH REFERENCE  
0.1μF  
REFH  
0.1μF  
Reference  
The LTC2259-16 has an internal 1.25V voltage reference.  
For a 2V input range using the internal reference, connect  
SENSE to V . For a 1V input range using the internal  
2.2μF  
0.1μF  
0.8x  
DIFF AMP  
DD  
REFL  
reference, connect SENSE to ground. For a 2V input range  
withanexternalreference, applya1.25Vreferencevoltage  
to SENSE (Figure 9.)  
INTERNAL ADC  
LOW REFERENCE  
225916 F08  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
Figure 8. Reference Circuit  
will then be 1.6 • V  
.
SENSE  
The V , REFH and REFL pins should be bypassed as  
V
REF  
REF  
shown in Figure 8. The 0.1μF capacitor between REFH  
and REFL should be as close to the pins as possible (not  
on the back side of the circuit board).  
1μF  
LTC2259-16  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1μF  
225916 F09  
V
CM  
Figure 9. Using an External 1.25V Reference  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1μF  
200Ω 200Ω  
25Ω  
0.1μF  
0.1μF  
+
A
IN  
LTC2259-16  
ANALOG  
INPUT  
+
+
12pF  
25Ω  
A
IN  
225916 F07  
Figure 7. Front-End Circuit Using a High  
Speed Differential Amplifier  
225916f  
15  
LTC2259-16  
APPLICATIONS INFORMATION  
Encode Input  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10) and the single-ended encode mode  
(Figure 11).  
+
to ground and ENC is driven with a square wave encode  
+
input. ENC can be taken above V (up to 3.6V) so 1.8V  
DD  
+
to3.3VCMOSlogiclevelscanbeused.TheENC threshold  
+
is 0.9V. For good jitter performance ENC should have fast  
rise and fall times.  
Clock Duty Cycle Stabilizer  
The differential encode mode is recommended for sinu-  
soidal, PECL or LVDS encode inputs (Figures 12, 13). The  
encode inputs are internally biased to 1.2V through 10k  
equivalent resistance. The encode inputs can be taken  
For good performance the encode signal should have a  
50%( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency or is turned off, the duty cycle  
stabilizer circuit requires one hundred clock cycles to lock  
onto the input clock. The duty cycle stabilizer is enabled  
by mode control register A2 (serial programming mode),  
or by CS (parallel programming mode).  
above V (up to 3.6V), and the common mode range  
DD  
is from 1.1V to 1.6V. In the differential encode mode,  
ENC should stay at least 200mV above ground to avoid  
falselytriggeringthesingle-endedencodemode.Forgood  
+
jitter performance ENC and ENC should have fast rise  
and fall times.  
LTC2259-16  
V
DD  
0.1μF  
+
DIFFERENTIAL  
COMPARATOR  
25Ω  
ENC  
T1  
1:4  
V
DD  
100Ω  
100Ω  
D1  
LTC2259-16  
15k  
30k  
+
ENC  
ENC  
0.1μF  
225916 F12  
ENC  
T1: COILCRAFT WBC4 - 1WL  
D1: AVAGO HSMS - 2822  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
225916 F10  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
Figure 12. Sinusoidal Encode Drive  
0.1μF  
+
LTC2259-16  
+
ENC  
1.8V TO 3.3V  
0V  
ENC  
ENC  
PECL OR  
LTC2259-16  
LVDS  
30k  
CLOCK  
0.1μF  
CMOS LOGIC  
BUFFER  
ENC  
225916 F11  
225916 F13  
Figure 13. PECL or LVDS Encode Drive  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
225916f  
16  
LTC2259-16  
APPLICATIONS INFORMATION  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
thedutycyclestabilizerisdisabled,careshouldbetakento  
makethesamplingclockhavea50%( 5%)dutycycle.The  
duty cycle stabilizer should not be used below 5Msps.  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
Double-Data Rate LVDS Mode  
In double-data rate LVDS mode, two data bits are multi-  
plexed and output on each differential output pair. There  
DIGITAL OUTPUTS  
+
+
are8LVDSoutputpairs(D0_1 /D0_1 throughD14_15 /  
Digital Output Modes  
D14_15 )forthedigitaloutputdata.Thedataoutputclock  
+
(CLKOUT /CLKOUT ) has an LVDS output pair.  
The LTC2259-16 can operate in three digital output  
modes: full-rate CMOS, double-data rate CMOS (to halve  
the number of output lines), or double-data rate LVDS  
(to reduce digital noise in the system). The output mode  
is set by mode control register A3 (serial programming  
mode), orbySCK(parallelprogrammingmode). Notethat  
double-data rate CMOS cannot be selected in the parallel  
programming mode.  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100ꢀ differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
The outputs are powered by OV and OGND which are  
DD  
isolated from the A/D core power and ground. In LVDS  
Full-Rate CMOS Mode  
mode, OV must be 1.8V.  
DD  
In full-rate CMOS mode the 16 digital outputs (D0-D15),  
+
and the data output clocks (CLKOUT , CLKOUT ) have  
Programmable LVDS Output Current  
CMOS output levels. The outputs are powered by OV  
DD  
In LVDS mode, the default output driver current is 3.5mA.  
Thiscurrentcanbeadjustedbyseriallyprogrammingmode  
control register A3. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
and OGND which are isolated from the A/D core power  
and ground. OV can range from 1.1V to 1.9V, allowing  
DD  
1.2V through 1.8V CMOS logic outputs.  
For good performance, the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
Optional LVDS Driver Internal Termination  
In most cases using just an external 100ꢀ termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100ꢀ termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is increased by 1.6x to maintain about the same output  
voltage swing.  
Double-Data Rate CMOS Mode  
In double-data rate CMOS mode, two data bits are mul-  
tiplexed and output on each data pin. This reduces the  
number of data lines by eight, simplifying board routing  
and reducing the number of input pins needed to receive  
the data. The 8 digital outputs (D0_1, D2_3, D4_5, D6_7,  
D8_9, D10_11, D12_13, D14_15), and the data output  
+
clocks (CLKOUT , CLKOUT ) have CMOS output levels.  
The outputs are powered by OV and OGND which are  
DD  
isolated from the A/D core power and ground. OV can  
DD  
rangefrom1.1Vto1.9V,allowing1.2Vthrough1.8VCMOS  
logic outputs.  
225916f  
17  
LTC2259-16  
APPLICATIONS INFORMATION  
Phase-Shifting the Output Clock  
DATA FORMAT  
Table 1 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A4. Note that when the analog input is  
outside the normal operating range the two LSBs (D1,  
D0) can change and should be ignored.  
In full-rate CMOS mode the data output bits normally  
+
change at the same time as the falling edge of CLKOUT ,  
+
so the rising edge of CLKOUT can be used to latch the  
output data. In double-data rate CMOS and LVDS modes  
the data output bits normally change at the same time as  
+
thefallingandrisingedgesofCLKOUT .Toallowadequate  
+
setup-and-hold time when latching the data, the CLKOUT  
signal may need to be phase shifted relative to the data  
outputbits. MostFPGAshavethisfeature;thisisgenerally  
the best place to adjust the timing.  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D15-D0  
(OFFSET BINARY)  
D15-D0  
(2s COMPLEMENT)  
IN  
IN  
(2V Range)  
+
>1.000000V  
+0.999970V  
+0.999939V  
+0.999909V  
+0.999978V  
1111 1111 1111 11XX  
1111 1111 1111 1111  
1111 1111 1111 1110  
1111 1111 1111 1101  
1111 1111 1111 1100  
0111 1111 1111 11XX  
0111 1111 1111 1111  
0111 1111 1111 1110  
0111 1111 1111 1101  
0111 1111 1111 1100  
The LTC2259-16 can also phase shift the CLKOUT /CLK-  
OUT signals by serially programming mode control  
register A2. The output clock can be shifted by 0°, 45°,  
90° or 135°. To use the phase shifting feature the clock  
duty cycle stabilizer must be turned on. Another con-  
+0.000030V  
+0.000000V  
+0.000030V  
+0.000061V  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1110  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1110  
+
trol register bit can invert the polarity of CLKOUT and  
CLKOUT , independently of the phase shift. The combina-  
–0.999878V  
–0.999909V  
–0.999939V  
–1.000000V  
< –1.000000V  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
0000 0000 0000 00XX  
1000 0000 0000 0011  
1000 0000 0000 0010  
1000 0000 0000 0001  
1000 0000 0000 0000  
1000 0000 0000 00XX  
tion of these two features enables phase shifts of 45° up  
to 315° (Figure 14).  
Note: X means data could be 1 or 0.  
+
ENC  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
0
CLKPHASE1 CLKPHASE0  
0°  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
0
0
0
1
1
1
1
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
225916 F14  
Figure 14. Phase-Shifting CLKOUT  
225916f  
18  
LTC2259-16  
APPLICATIONS INFORMATION  
Digital Output Randomizer  
Alternate Bit Polarity  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
Anotherfeaturethatreducesdigitalfeedbackonthecircuit  
board is the alternate bit polarity mode. When this mode  
is enabled, all of the odd bits (D1, D3, D5, D7, D9, D11,  
D13, D15)areinvertedbeforetheoutputbuffers. Theeven  
bits (D0, D2, D4, D6, D8, D10, D12, D14) and CLKOUT are  
not affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
Thedigitaloutputisrandomized byapplyinganexclusive-  
OR logic operation between D2 and all other data output  
bits. To decode, the reverse operation is applied—an ex-  
clusive-OR operation is applied between D2 and all other  
bits. The D2 and CLKOUT outputs are not affected. The  
output randomizer is enabled by serially programming  
mode control register A4.  
When there is a very small signal at the input of the A/D  
thatiscenteredaroundmid-scale,thedigitaloutputstoggle  
between mostly 1s and mostly 0s. This simultaneous  
switching of most of the bits will cause large currents in  
the ground plane. By inverting every other bit, the alter-  
nate bit polarity mode makes half of the bits transition  
high while half of the bits transition low. To first order,  
this cancels current flow in the ground plane, reducing  
the digital noise.  
PC BOARD  
CLKOUT  
D15  
CLKOUT  
FPGA  
CLKOUT  
D15 „ D2  
D14 „ D2  
D15 „ D2  
D15  
D14  
D14  
D14 „ D2  
D3  
D3 „ D2  
D2  
LTC2259-16  
D3 „ D2  
D3  
D2  
D2  
D1  
D2  
D1 „ D2  
D1 „ D2  
D1  
D0  
D0  
D0 „ D2  
D0 „ D2  
RANDOMIZER  
ON  
D2  
225916 F15  
225916 F16  
Figure 15. Functional Equivalent of Digital Output Randomizer  
Figure 16. De-Randomizing a Randomized  
Digital Output Signal  
225916f  
19  
LTC2259-16  
APPLICATIONS INFORMATION  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11, D13, D15). The  
alternate bit polarity mode is independent of the digital  
output randomizer—either, both or neither function can  
be on at the same time. When alternate bit polarity mode  
is on, the data format is offset binary and the 2’s comple-  
ment control bit has no effect. The alternate bit polarity  
mode is enabled by serially programming mode control  
register A4.  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
depends on the size of the bypass capacitors on V  
,
REF  
REFH, and REFL. For the suggested values in Figure 8,  
the A/D will stabilize after 2ms.  
In nap mode the A/D core is powered down while the  
internal reference circuits stay active, allowing faster  
wake-up than from sleep mode. Recovering from nap  
mode requires at least 100 clock cycles. If the application  
demands very accurate DC settling then an additional  
50μs should be allowed so the on-chip references can  
settle from the slight temperature shift caused by the  
change in supply current as the A/D leaves nap mode.  
Nap mode is enabled by mode control register A1 in the  
serial programming mode.  
Digital Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force most of the  
A/D data outputs (D15-D2) to known values. Note that the  
two LSBs, D1 and D0, are not controlled in the test pattern  
mode and can have unknown values.  
All 1s: Outputs are 1111 1111 1111 11XX  
All 0s: Outputs are 0000 0000 0000 00XX  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2259-16 can be pro-  
grammed by either a parallel interface or a simple serial  
interface. The serial interface has more flexibility and  
can program all available modes. The parallel interface  
is more limited and can only program some of the more  
commonly used modes.  
Alternating: On alternating samples, the outputs  
change from 1111 1111 1111 11XX to 0000 0000  
0000 00XX.  
Checkerboard: On alternating samples, the outputs  
change from 1010 1010 1010 10XX to 0101 0101  
0101 01XX.  
Parallel Programming Mode  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement, randomizer, alternate-bit-polarity.  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
inputs that set certain operating modes. These pins can  
be tied to V or ground, or driven by 1.8V, 2.5V or 3.3V  
DD  
CMOS logic. Table 2 shows the modes set by CS, SCK  
Output Disable  
and SDI.  
The digital outputs may be disabled by serially program-  
mingmodecontrolregisterA3.Alldigitaloutputsincluding  
CLKOUT are disabled. The high impedance disabled state  
is intended for long periods of inactivity—it is too slow  
to multiplex a data bus between multiple converters at  
full speed.  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Digital Output Mode Control Bit  
0 = Full-Rate CMOS Output Mode  
SCK  
SDI  
Sleep and Nap Modes  
1 = Double-Data Rate LVDS Output Mode  
(3.5mA LVDS Current, Internal Termination Off)  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire A/D converter is powered  
down,resultingin0.5mWpowerconsumption.Sleepmode  
is enabled by mode control register A1 (serial program-  
Power Down Control Bit  
0 = Normal Operation  
1 = Sleep Mode  
225916f  
20  
LTC2259-16  
APPLICATIONS INFORMATION  
Serial Programming Mode  
diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D mode control  
registers. Data is written to a register with a 16-bit serial  
word. Data can also be read back from a register to verify  
its contents.  
The SDO pin is an open-drain output that pulls to ground  
with a 200ꢀ impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and read back is not needed,  
then SDO can be left floating and no pull-up resistor is  
needed.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Table 3 shows a map of the mode control registers.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset is  
complete, bit D7 is automatically set back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the timing  
Table 3. Serial Programming Mode Register Map  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All mode control registers are reset to 00h. This bit is automatically set back to zero after the reset is complete.  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
X
PWROFF1  
PWROFF0  
Bits 7-2  
Bits 1-0  
Unused, Don’t Care Bits.  
PWROFF1:PWROFF0  
00 = Normal Operation  
01 = Nap Mode  
10 = Not Used  
11 = Sleep Mode  
Power-Down Control Bits  
225916f  
21  
LTC2259-16  
APPLICATIONS INFORMATION  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
D5  
X
D4  
X
D3  
D2  
D1  
D0  
X
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, Don’t Care Bits.  
Bit 3  
CLKINV  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (as shown in the timing diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (as shown in the timing diagrams)  
+
+
+
01 = CLKOUT /CLKOUT Delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT /CLKOUT Delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT /CLKOUT Delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT phase delay feature is used, the clock duty cycle stabilizer must also be turned on.  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE1  
OUTMODE0  
Bit 7  
Unused, Don’t Care Bit.  
Bits 6-4  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 3  
TERMON  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS output driver current is 1.6× the current set by ILVDS2:ILVDS0.  
LVDS Internal Termination Bit  
Bit 2  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are enabled.  
1 = Digital Outputs are disabled and have high output impedance.  
Bits 1-0  
OUTMODE1:OUTMODE0  
Digital Output Mode Control Bits  
00 = Full-Rate CMOS Output Mode  
01 = Double-Data Rate LVDS Output Mode  
10 = Double-Data Rate CMOS Output Mode  
11 = Not Used  
225916f  
22  
LTC2259-16  
APPLICATIONS INFORMATION  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
X
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
RAND  
TWOSCOMP  
Bit 7-6  
Unused, Don’t Care Bits.  
Bits 5-3  
OUTTEST2:OUTTEST0  
Digital Output Test Pattern Bits  
000 = Digital Output Test Patterns Off  
001 = Digital Outputs = 0000 0000 0000 00XX  
011 = Digital Outputs = 1111 1111 1111 11XX  
101 = Checkerboard Output Pattern. D15-D0 alternate between 0101 0101 0101 01XX and 1010 1010 1010 10XX.  
111 = Alternating Output Pattern. D15-D0 alternate between 0000 0000 0000 00XX and 1111 1111 1111 11XX.  
Note: Other bit combinations are not used. D1 and D0 are not controlled by the digital output test patterns.  
Bit 2  
Bit 1  
Bit 0  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Note: ABP = 1 forces the output format to be offset binary.  
GROUNDING AND BYPASSING  
The V capacitor should be located as close to the pin  
CM  
as possible. To make space for this the capacitor on V  
REF  
The LTC2259-16 requires a printed circuit board with a  
clean unbroken ground plane. A multilayer board with an  
internal ground plane in the first layer beneath the ADC is  
recommended. Layoutfortheprintedcircuitboardshould  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
can be further away or on the back of the PC board. The  
traces connecting the pins and bypass capacitors must be  
kept short and should be made as wide as possible.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
High quality ceramic bypass capacitors should be used at  
HEAT TRANSFER  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1μF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2μF capacitor  
between REFH and REFL can be somewhat further away.  
MostoftheheatgeneratedbytheLTC2259-16istransferred  
from the die through the bottom-side exposed pad and  
package leads onto the printed circuit board. For good  
electricalandthermalperformance,theexposedpadmust  
be soldered to a large grounded pad on the PC board. This  
pad should be connected to the internal ground planes by  
an array of vias.  
225916f  
23  
LTC2259-16  
TYPICAL APPLICATIONS  
LTC2259-16 Schematic  
T2  
C23  
1μF  
SENSE  
MABAES0060  
R9 10Ω  
R39  
33.2Ω  
1%  
ANALOG INPUT  
R14  
1k  
C51  
4.7pF  
R40  
33.2Ω  
1%  
C17  
1μF  
R10 10Ω  
R15 100Ω  
C12  
0.1μF  
C13  
1μF  
C19  
0.1μF  
DIGITAL  
OUTPUTS  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
V
SENSE V  
V
CM  
D1 D0 D15 D14 D13 D12  
DD  
REF  
R27 10Ω  
R28 10Ω  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+
AIN  
AIN  
D11  
D10  
+
3
GND  
CLKOUT  
4
REFH  
REFH  
REFL  
REFL  
CLKOUT  
5
C15  
0.1μF  
0V  
DD  
OV  
DD  
C20  
2.2μF  
LTC2259-16  
C37  
0.1μF  
6
OGND  
7
D9  
D8  
D7  
D6  
8
PAR/SER  
C21  
0.1μF  
PAR/SER  
9
V
V
DD  
DD  
10  
C18  
0.1μF  
+
DIGITAL  
OUTPUTS  
GND ENC ENC CS SCK SDI SDO D2 D3 D4 D5  
41  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R13  
100Ω  
ENCODE CLOCK  
225916 TA02  
SPI BUS  
225916f  
24  
LTC2259-16  
TYPICAL APPLICATIONS  
Top Side  
Silkscreen Top  
225916 TA04  
225916 TA03  
Inner Layer 2 GND  
Inner Layer 3  
225916 TA04  
225916 TA06  
225916f  
25  
LTC2259-16  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5 Power  
225916 TA08  
225916 TA07  
Bottom Side  
225916 TA09  
225916f  
26  
LTC2259-16  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.10 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.115  
TYP  
6.00 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 s 45°  
CHAMFER  
4.42 0.10  
4.50 REF  
(4-SIDES)  
4.42 0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
225916f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2259-16  
TYPICAL APPLICATION  
T2  
C23  
1μF  
SENSE  
MABAES0060  
R9 10Ω  
R39  
33.2Ω  
1%  
ANALOG INPUT  
R14  
1k  
C51  
4.7pF  
R40  
33.2Ω  
1%  
C17  
1μF  
R10 10Ω  
R15 100Ω  
C12  
0.1μF  
C13  
1μF  
C19  
0.1μF  
DIGITAL  
OUTPUTS  
40  
39  
38  
37  
36  
35  
34  
33 32  
31  
V
SENSE V  
V
CM  
D1 D0 D15 D14 D13 D12  
DD  
REF  
R27 10Ω  
R28 10Ω  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
+
AIN  
D11  
2
3
AIN  
D10  
+
GND  
CLKOUT  
4
REFH  
REFH  
REFL  
REFL  
CLKOUT  
OV  
5
C15  
0.1μF  
0V  
DD  
DD  
C20  
2.2μF  
LTC2259-16  
C37  
0.1μF  
6
OGND  
7
D9  
D8  
D7  
D6  
8
PAR/SER  
C21  
0.1μF  
PAR/SER  
9
V
V
DD  
DD  
10  
C18  
0.1μF  
+
DIGITAL  
OUTPUTS  
GND ENC ENC CS SCK SDI SDO D2 D3 D4 D5  
41  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R13  
100Ω  
ENCODE CLOCK  
225916 TA10  
SPI BUS  
RELATED PARTS  
PART NUMBER  
LTC1993-2  
LTC1994  
DESCRIPTION  
High Speed Differential Op-Amp/ADC Driver  
COMMENTS  
800MHz 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
Low Noise, Low Distortion Fully Differential Input/Output  
Amplifier/Driver  
LTC6406  
3GHz, Low Noise, Rail-to-Rail Input Differential Amplifier/Driver Low Noise: 1.6nV/√Hz RTI  
LTC2259-14/  
LTC2260-14/  
LTC2261-14  
14-Bit, 80Msps/105Msps/125Msps Ultralow Power 1.8V ADCs  
89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR, DDR LVDS/DDR  
CMOS/CMOS Outputs, 6mm × 6mm QFN Package  
LTC2259-12/  
LTC2260-12/  
LTC2261-12  
12-Bit, 80Msps/105Msps/125Msps Ultralow Power 1.8V ADCs  
87mW/103mW/124mW, 70.8dB SNR, 85dB SFDR, DDR LVDS/DDR  
CMOS/CMOS Outputs, 6mm × 6mm QFN Package  
225916f  
LT 0310 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2259CUJ-16PBF

16-Bit, 80Msps Ultralow Power 1.8V ADC
Linear

LTC2259CUJ-16TRPBF

16-Bit, 80Msps Ultralow Power 1.8V ADC
Linear

LTC2259IUJ-12-PBF

12-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear

LTC2259IUJ-12-TRPBF

12-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear

LTC2259IUJ-14#PBF

LTC2259-14 - 14-Bit, 80Msps Ultra-Low Power 1.8V ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2259IUJ-14-PBF

14-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear

LTC2259IUJ-14-TRPBF

14-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear

LTC2259IUJ-16

16-Bit, 80Msps Ultralow Power 1.8V ADC
Linear

LTC2259IUJ-16PBF

16-Bit, 80Msps Ultralow Power 1.8V ADC
Linear

LTC2259IUJ-16TRPBF

16-Bit, 80Msps Ultralow Power 1.8V ADC
Linear

LTC2259UJ-12

12-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear

LTC2259UJ-14

14-Bit, 125/105/80Msps Ultralow Power 1.8V ADCs
Linear