LTC2267CUJ-12TRPBF [Linear]

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs; 12位,125Msps / 105MSPS / 80Msps的低功耗双通道ADC
LTC2267CUJ-12TRPBF
型号: LTC2267CUJ-12TRPBF
厂家: Linear    Linear
描述:

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
12位,125Msps / 105MSPS / 80Msps的低功耗双通道ADC

文件: 总32页 (文件大小:1053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2268-12/  
LTC2267-12/LTC2266-12  
12-Bit, 125Msps/105Msps/  
80Msps Low Power Dual ADCs  
FEATURES  
DESCRIPTION  
TheLTC®2268-12/LTC2267-12/LTC2266-12are2-channel,  
simultaneous sampling 12-bit A/D converters designed  
for digitizing high frequency, wide dynamic range signals.  
They are perfect for demanding communications applica-  
tions with AC performance that includes 70.6dB SNR and  
88dB spurious free dynamic range (SFDR). Ultralow jitter  
n
2-Channel Simultaneous Sampling ADC  
n
70.6dB SNR  
n
88dB SFDR  
n
Low Power: 292mW/2ꢀ8mW/200mW Total,  
146mW/119mW/100mW per Channel  
n
Single 1.8V Supply  
n
Serial LVDS Outputs: 1 or 2 Bits per Channel  
of0.15ps  
allowsundersamplingofIFfrequencieswith  
RMS  
n
Selectable Input Ranges: 1V to 2V  
excellent noise performance.  
P-P  
P-P  
n
n
n
n
n
800MHz Full Power Bandwidth S/H  
DC specs include 0.ꢀLSB INL (typ), 0.1LSB DNL (typ)  
and no missing codes over temperature. The transition  
Shutdown and Nap Modes  
Serial SPI Port for Configuration  
noise is a low 0.ꢀLSB  
.
RMS  
Pin Compatible 14-Bit and 12-Bit Versions  
The digital outputs are serial LVDS to minimize the num-  
ber of data lines. Each channel outputs two bits at a time  
(2-lane mode). At lower sampling rates there is a one bit  
per channel option (1-lane mode). The LVDS drivers have  
optional internal termination and adjustable output levels  
to ensure clean signal integrity.  
40-Pin (6mm × 6mm) QFN Package  
APPLICATIONS  
n
n
n
n
n
n
Communications  
Cellular Base Stations  
Software Defined Radios  
Portable Medical Imaging  
Multichannel Data Acquisition  
Nondestructive Testing  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL, or  
CMOS inputs. An internal clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC2268-12, 125Msps,  
1.8V  
V
1.8V  
OV  
2-Tone FFT, fIN = 70MHz and 75MHz  
DD  
DD  
0
–10  
–20  
–30  
–40  
CH.1  
ANALOG  
INPUT  
OUT1A  
OUT1B  
12-BIT  
S/H  
S/H  
ADC CORE  
SERIALIZED  
DATA  
SERIALIZER  
OUT2A  
OUT2B  
CH.2  
ANALOG  
INPUT  
–50  
–60  
–70  
12-BIT  
ADC CORE  
LVDS  
OUTPUTS  
DATA  
CLOCK  
OUT  
–80  
–90  
ENCODE  
INPUT  
PLL  
FRAME  
–100  
–110  
–120  
GND  
OGND  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
226812 TA01  
226812 TA01b  
22687612f  
1
LTC2268-12/  
LTC2267-12/LTC2266-12  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltages  
V , OV ................................................ –0.ꢀV to 2V  
DD  
DD  
+
Analog Input Voltage (A , A  
,
IN  
IN  
40 ꢀ9 ꢀ8 ꢀ7 ꢀ6 ꢀ5 ꢀ4 ꢀꢀ ꢀ2 ꢀ1  
+
PAR/SER, SENSE) (Note ꢀ).............–0.ꢀV to (V +0.2V)  
DD  
+
A
A
1
2
ꢀ0  
29  
28  
OUT1B  
+
IN1  
IN1  
Digital Input Voltage (ENC , ENC , CS,  
OUT1B  
SDI, SCK) (Note 4).................................... –0.ꢀV to ꢀ.9V  
SDO (Note 4) ............................................ –0.ꢀV to ꢀ.9V  
+
V
DCO  
CM1  
REFH  
REFH  
REFL  
REFL  
4
27 DCO  
26 OV  
Digital Output Voltage .................. –0.ꢀV to (OV +0.ꢀV)  
Operating Temperature Range  
LTC2268C, 2267C, 2266C........................ 0°C to 70°C  
LTC2268I, 2267I, 2266I ....................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
5
41  
GND  
DD  
DD  
6
25 OGND  
+
7
24 FR  
V
8
2ꢀ  
FR  
CM2  
+
+
A
9
22 OUT2A  
21  
IN2  
A
10  
OUT2A  
IN2  
11 12 1ꢀ 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 150°C, θ = ꢀ2°C/W  
JMAX  
JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2268CUJ-12#PBF  
LTC2268IUJ-12#PBF  
LTC2267CUJ-12#PBF  
LTC2267IUJ-12#PBF  
LTC2266CUJ-12#PBF  
LTC2266IUJ-12#PBF  
TAPE AND REEL  
LTC2268CUJ-12#TRPBF LTC2268UJ-12  
LTC2268IUJ-12#TRPBF LTC2268UJ-12  
LTC2267CUJ-12#TRPBF LTC2267UJ-12  
LTC2267IUJ-12#TRPBF LTC2267UJ-12  
LTC2266CUJ-12#TRPBF LTC2266UJ-12  
LTC2266IUJ-12#TRPBF LTC2266UJ-12  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
22687612f  
2
LTC2268-12/  
LTC2267-12/LTC2266-12  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2268-12  
TYP  
LTC2267-12  
TYP  
LTC2266-12  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
l
l
Resolution  
12  
12  
12  
Bits  
(No Missing Codes)  
Integral Linearity Error  
Differential Analog Input  
(Note 6)  
–1  
0.ꢀ  
1
–1  
0.ꢀ  
1
–1  
0.ꢀ  
1
LSB  
l
l
Differential Linearity Error  
Offset Error  
Differential Analog Input  
(Note 7)  
–0.5  
–12  
0.1  
0.5  
12  
–0.4  
–12  
0.1  
0.4  
12  
–0.4  
–12  
0.1  
0.4  
12  
LSB  
mV  
Gain Error  
Internal Reference  
External Reference  
–0.9  
–0.9  
–0.9  
–0.9  
–0.9  
–0.9  
%FS  
%FS  
l
–2.4  
0.6  
–2.4  
0.6  
–2.4  
0.6  
Offset Drift  
20  
20  
20  
μV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
ꢀ0  
10  
ꢀ0  
10  
ꢀ0  
10  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Noise  
External Reference  
0.2  
0.2  
0.2  
%FS  
mV  
External Reference  
0.ꢀ  
0.ꢀ  
0.ꢀ  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
V
V
V
Analog Input Range (A – A  
)
1.7V < V < 1.9V  
1 to 2  
V
P–P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A – A )/2  
Differential Analog Input (Note 8)  
V – 100mV  
CM  
0.625  
V
CM  
V
CM  
+100mV  
1.ꢀ  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE External Reference Mode  
1.25  
V
I
Analog Input Common Mode Current  
Per Pin, 125Msps  
Per Pin, 105Msps  
Per Pin, 80Msps  
155  
1ꢀ0  
100  
μA  
μA  
μA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A , A < V  
–1  
–ꢀ  
–6  
1
6
μA  
μA  
μA  
ns  
IN1  
IN  
IN  
DD  
0 < PAR/SER < V  
IN2  
DD  
SENSE Input Leakage Current  
0.625 < SENSE < 1.ꢀV  
INꢀ  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
0
AP  
0.15  
80  
ps  
RMS  
JITTER  
CMRR  
BW-ꢀB  
dB  
Figure 6 Test Circuit  
800  
MHz  
22687612f  
3
LTC2268-12/  
LTC2267-12/LTC2266-12  
DIGITAL ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2268-12  
LTC2267-12  
LTC2266-12  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN TYP MAX MIN  
TYP MAX MIN  
UNITS  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
70.6  
70.6  
69.2 70.5  
70.ꢀ  
70.6  
69.4 70.5  
70.ꢀ  
dBFS  
dBFS  
dBFS  
l
l
l
l
70MHz Input  
140MHz Input  
69.6 70.6  
70.ꢀ  
SFDR  
Spurious Free Dynamic Range  
5MHz Input  
70MHz Input  
140MHz Input  
88  
85  
82  
88  
88  
dBFS  
dBFS  
dBFS  
nd  
rd  
2
or ꢀ Harmonic  
75  
84  
69  
76  
82  
85  
82  
76  
84  
69  
85  
82  
Spurious Free Dynamic Range  
5MHz Input  
70MHz Input  
140MHz Input  
90  
90  
90  
90  
90  
90  
90  
90  
90  
dBFS  
dBFS  
dBFS  
th  
4
Harmonic or Higher  
S/(N+D) Signal-to-Noise Plus Distortion 5MHz Input  
70.6  
70.4  
70  
70.6  
68.8 70.4  
70  
70.4  
70.ꢀ  
69.9  
dBFS  
dBFS  
dBFS  
Ratio  
70MHz Input  
140MHz Input  
Crosstalk  
10MHz Input  
–105  
–105  
–105  
dBc  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 V  
±25  
4
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.V + 25mV  
0.5 V – 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600μA < I  
< 1mA  
< 1mA  
OUT  
I
= 0  
1.225  
1.25  
±25  
7
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400μA < I  
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
DIFFERENTIAL ENCODE MODE (ENC NOT TIED TO GND)  
l
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
V
Common Mode Input Voltage  
Internally Set  
1.2  
V
V
ICM  
l
l
Externally Set (Note 8)  
1.1  
0.2  
1.6  
ꢀ.6  
+
V
IN  
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
V
kΩ  
pF  
R
10  
IN  
IN  
C
Input Capacitance  
ꢀ.5  
SINGLE-ENDED ENCODE MODE (ENC TIED TO GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
=1.8V  
=1.8V  
1.2  
0
V
IH  
IL  
IN  
DD  
DD  
V
0.6  
ꢀ.6  
V
V
+
ENC to GND  
R
(See Figure 11)  
ꢀ0  
kΩ  
IN  
IN  
C
Input Capacitance  
ꢀ.5  
pF  
22687612f  
4
LTC2268-12/  
LTC2267-12/LTC2266-12  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
=1.8V  
1.ꢀ  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
V
=1.8V  
0.6  
10  
I
IN  
= 0V to ꢀ.6V  
–10  
μA  
pF  
C
Input Capacitance  
200  
IN  
SDO OUTPUT (Serial Programming Mode. Open Drain Output. Requires 2kΩ Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
DD  
=1.8V, SDO = 0V  
Ω
μA  
pF  
OL  
l
I
OH  
SDO = 0V to ꢀ.6V  
–10  
10  
C
OUT  
DIGITAL DATA OUTPUTS  
l
l
V
OD  
Differential Output Voltage  
100Ω Differential Load, ꢀ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
ꢀ50  
175  
454  
250  
mV  
mV  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, ꢀ.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.25  
1.25  
1.ꢀ75  
1.ꢀ75  
V
V
OS  
R
Termination Enabled, OV =1.8V  
100  
Ω
TERM  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2268-12  
TYP MAX MIN  
LTC2267-12  
TYP MAX MIN  
LTC2266-12  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
1.7  
UNITS  
l
l
l
V
DD  
Analog Supply Voltage (Note 10)  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
96  
1.9  
1.9  
V
V
OV  
Output Supply Voltage (Note 10)  
1.7  
DD  
I
I
Analog Supply Current Sine Wave Input  
146  
165  
116  
129  
109  
mA  
VDD  
OVDD  
l
l
Digital Supply Current 2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢀ.5mA Mode  
16  
ꢀ0  
20  
ꢀ4  
16  
29  
19  
ꢀꢀ  
15  
29  
18  
ꢀ2  
mA  
mA  
l
l
P
Power Dissipation  
2-Lane Mode, 1.75mA Mode  
2-Lane Mode, ꢀ.5mA Mode  
292  
ꢀ17  
ꢀꢀꢀ  
ꢀ58  
2ꢀ8  
261  
266  
292  
200  
225  
229  
254  
mW  
mW  
DISS  
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
70  
20  
70  
20  
70  
20  
NAP  
Power Increase with Differential Encode Mode Enabled  
(No Increase for Sleep Mode)  
DIFFCLK  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2268-12  
LTC2267-12  
TYP MAX MIN  
LTC2266-12  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP MAX MIN  
UNITS  
l
f
t
Sampling Frequency  
(Notes 10, 11)  
5
125  
5
105  
5
80  
MHz  
S
l
l
ENC Low Time (Note 8)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
ꢀ.8  
2
4
4
100  
100  
4.52 4.76  
4.76  
100  
100  
5.9ꢀ 6.25  
2
100  
100  
ns  
ns  
ENCL  
2
6.25  
l
l
t
Analog Supply Current  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
ꢀ.8  
2
4
4
100  
100  
4.52 4.76  
100  
100  
5.9ꢀ 6.25  
100  
100  
ns  
ns  
ENCH  
AP  
2
4.76  
2
6.25  
t
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
22687612f  
5
LTC2268-12/  
LTC2267-12/LTC2266-12  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 100Ω Differential, C = 2pF to GND on Each Output)  
MIN  
TYP  
MAX  
UNITS  
DIGITAL DATA OUTPUTS (R  
TERM  
L
t
Serial Data Bit Period  
2-Lanes, 16-Bit Serialization  
2-Lanes, 14-Bit Serialization  
2-Lanes, 12-Bit Serialization  
1-Lane, 16-Bit Serialization  
1-Lane, 14-Bit Serialization  
1-Lane, 12-Bit Serialization  
1/(8 • f )  
s
SER  
S
1/(7 • f )  
S
1/(6 • f )  
S
1/(16 • f )  
S
1/(14 • f )  
S
1/(12 • f )  
S
l
l
l
t
t
t
t
t
FR to DCO Delay  
DATA to DCO Delay  
Propagation Delay  
Output Rise Time  
Output Fall Time  
(Note 8)  
0.ꢀ5 • t  
0.ꢀ5 • t  
0.5 • t  
0.5 • t  
0.65 • t  
0.65 • t  
s
s
FRAME  
DATA  
PD  
SER  
SER  
SER  
SER  
SER  
(Note 8)  
SER  
(Note 8)  
0.7n + 2 • t  
1.1n + 2 • t  
1.5n + 2 • t  
SER  
s
SER  
SER  
Data, DCO, FR, 20% to 80%  
Data, DCO, FR, 20% to 80%  
0.17  
0.17  
60  
ns  
ns  
R
F
DCO Cycle-Cycle Jitter  
Pipeline Latency  
t
= 1ns  
ps  
P-P  
SER  
6
Cycles  
SPI PORT TIMING (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK falling to SDO Valid  
Readback Mode, C  
= 20pF, R  
125  
SDO  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 0000 0000 0000 and 1111 1111 1111 in  
2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V  
,
DD  
Note 8: Guaranteed by design, not subject to test.  
they will be clamped by internal diodes. This product can handle input  
Note 9: V = OV = 1.8V, f  
(LTC2267), or 80MHz (LTC2266), 2-lane output mode, ENC = single-  
ended 1.8V square wave, ENC = 0V, input range = 2V with differential  
= 125MHz (LTC2268), 105MHz  
DD  
DD  
SAMPLE  
+
currents of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
P-P  
clamped by internal diodes. When these pin voltages are taken above  
drive, unless otherwise noted. The supply current and power dissipation  
specifications are totals for the entire chip, not per channel.  
V
DD  
they will not be clamped by internal diodes. This product can handle  
input currents of greater than 100mA below GND without latchup.  
Note 10: Recommended operating conditions.  
Note 5: V = OV = 1.8V, f = 125MHz (LTC2268), 105MHz  
DD  
DD  
SAMPLE  
Note 11: The maximum sampling frequency depends on the speed grade  
of the part and also which serialization mode is used. The maximum serial  
+
(LTC2267), or 80MHz (LTC2266), 2-lane output mode, differential ENC /  
ENC = 2V sine wave, input range = 2V with differential drive, unless  
P-P  
P-P  
data rate is 1000Mbps so t  
must be greater than or equal to 1ns.  
SER  
otherwise noted.  
22687612f  
6
LTC2268-12/  
LTC2267-12/LTC2266-12  
TIMING DIAGRAMS  
2-Lane Output Mode, 16-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
Dꢀ  
D1  
D0  
D *  
0
0
D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D *  
0
D11 D9  
D10 D8  
D7  
X
X
+
OUT#A  
OUT#B  
D2  
D *  
Y
D10 D8  
D *  
Y
0
D6  
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
226812 TD01  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
2-Lane Output Mode, 14-Bit Serialization  
t
AP  
ANALOG  
INPUT  
N + 2  
N + 1  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D11 D9  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D11 D9  
D7  
D6  
X
X
X
+
OUT#A  
OUT#B  
D * D10 D8  
Y
D * D10 D8  
Y
D * D10 D8  
Y
+
OUT#B  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
SAMPLE N-ꢀ  
226812 TD02  
+
+
NOTE THAT IN THIS MODE, FR /FR HAS TWO TIMES THE PERIOD OF ENC /ENC  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
22687612f  
7
LTC2268-12/  
LTC2267-12/LTC2266-12  
TIMING DIAGRAMS  
2-Lane Output Mode, 12-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
SER  
DATA  
t
FRAME  
+
FR  
FR  
t
PD  
t
SER  
OUT#A  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1 D11 D9  
D7  
D6  
D5  
Dꢀ  
D2  
D1 D11 D9  
D7  
D6  
+
OUT#A  
OUT#B  
D0 D10 D8  
SAMPLE N-5  
D4  
D0 D10 D8  
SAMPLE N-4  
+
OUT#B  
SAMPLE N-6  
226812 TD0ꢀ  
1-Lane Output Mode, 16-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D * D *  
0
0
D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D *  
0
0
D11 D10 D9  
SAMPLE N-4  
D8  
X
Y
X
Y
+
OUT#A  
SAMPLE N-6  
226812 TD04  
+
OUT#B , OUT#B ARE DISABLED  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
22687612f  
8
LTC2268-12/  
LTC2267-12/LTC2266-12  
TIMING DIAGRAMS  
1-Lane Output Mode, 14-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
D1  
D0  
D * D * D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
D * D * D11 D10 D9  
D8  
X
Y
X
Y
+
OUT#A  
SAMPLE N-6  
SAMPLE N-5  
SAMPLE N-4  
226812 TD05  
+
OUT#B , OUT#B ARE DISABLED  
*D AND D ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT  
X
Y
VERSIONS OF THESE A/Ds. DURING NORMAL NON-OVERRANGED OPERATION D AND D ARE SET TO  
X
Y
LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.  
1-Lane Output Mode, 12-Bit Serialization  
t
AP  
N + 1  
ANALOG  
INPUT  
N
t
t
ENCL  
ENCH  
ENC  
+
ENC  
t
SER  
DCO  
+
DCO  
t
t
t
SER  
FRAME  
DATA  
FR  
+
FR  
t
PD  
t
SER  
OUT#A  
Dꢀ  
D2  
D1  
D0 D11 D10 D9  
SAMPLE N-5  
D8  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0 D11 D10 D9  
+
OUT#A  
SAMPLE N-6  
SAMPLE N-4  
+
226812 TD06  
OUT#B , OUT#B ARE DISABLED  
22687612f  
9
LTC2268-12/  
LTC2267-12/LTC2266-12  
TIMING DIAGRAMS  
SPI Port Timing (Readback Mode)  
t
t
DS  
t
DH  
t
t
H
S
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
Aꢀ  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
Dꢀ  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
Aꢀ  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
R/W  
SDO  
226812 TD07  
HIGH IMPEDANCE  
22687612f  
10  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2268-12: Integral  
Nonlinearity (INL)  
LTC2268-12: Differential  
Nonlinearity (DNL)  
LTC2268-12: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 125Msps  
1.0  
0.8  
1.0  
0.8  
0.6  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
0.4  
0.4  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–80  
–90  
–100  
–110  
–120  
–0.8  
–1.0  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
1024  
0
20  
30  
40  
50  
60  
10  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
226812 G01  
226812 G02  
226812 G03  
LTC2268-12: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 125Msps  
LTC2268-12: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 125Msps  
LTC2268-12: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226812 G04  
226812 G05  
226812 G06  
LTC2268-12: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
125Msps  
LTC2268-12: SNR vs Input  
LTC2268-12: Shorted Input  
Histogram  
Frequency, 1dBFS, 2V Range,  
125Msps  
18000  
16000  
14000  
12000  
10000  
8000  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
72  
71  
70  
69  
68  
67  
66  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
2041  
2042  
2043  
2044  
2045  
0
20  
30  
40  
50  
60  
10  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
OUTPUT CODE  
FREQUENCY (MHz)  
226812 G08  
226812 G07  
226812 G09  
22687612f  
11  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2268-12: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
125Msps  
LTC2268-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 125Msps  
LTC2268-12: SNR vs Input Level,  
fIN = 70MHz, 2V Range, 125Msps  
95  
90  
85  
80  
75  
70  
65  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
dBFS  
dBFS  
80  
dBc  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–60  
–50  
–40  
–30  
–20  
–10  
0
50  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
INPUT LEVEL (dBFS)  
226812 G10  
226812 G50  
226812 G12  
IOVDD vs Sample Rate, 5MHz Sine  
Wave Input, –1dBFS, 5pF on Each  
Data Output  
LTC2268-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
LTC2268-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
72  
71  
70  
69  
68  
67  
66  
30  
20  
10  
0
160  
150  
140  
130  
120  
110  
100  
2-LANE, 3.5mA  
1-LANE, 3.5mA  
2-LANE, 1.75mA  
1-LANE, 1.75mA  
0
25  
50  
75  
100  
125  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.ꢀ  
0
25  
50  
75  
100  
125  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
226812 G51  
226812 G15  
226812 G53  
LTC2267-12: Integral  
Nonlinearity (INL)  
LTC2267-12: Differential  
Nonlinearity (DNL)  
LTC2267-12: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 105Msps  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
1.0  
0.8  
0.6  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
–0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–90  
–100  
–110  
–120  
–0.4  
–0.6  
–0.8  
–1.0  
0
20  
ꢀ0  
40  
50  
0
2048  
ꢀ072  
4096  
10  
1024  
0
2048  
3072  
4096  
1024  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
226812 G2ꢀ  
22687612f  
226812 G22  
226812 G21  
12  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2267-12: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 105Msps  
LTC2267-12: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 105Msps  
LTC2267-12: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 105Msps  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
ꢀ0  
40  
50  
0
20  
ꢀ0  
40  
50  
10  
0
20  
ꢀ0  
40  
50  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226812 G24  
226812 G26  
226812 G25  
LTC2267-12: 8k Point 2-Tone FFT,  
IN = 70MHz, 75MHz, –1dBFS,  
105Msps  
LTC2267-12: SNR vs Input  
f
LTC2267-12: Shorted Input  
Histogram  
Frequency, 1dBFS, 2V Range,  
105Msps  
0
–10  
–20  
–ꢀ0  
–40  
–50  
–60  
–70  
18000  
16000  
14000  
12000  
72  
71  
70  
69  
68  
67  
10000  
8000  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
66  
0
20  
ꢀ0  
40  
50  
2044  
2045  
2046  
2047  
2048  
10  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
226812 G27  
226812 G28  
226812 G49  
LTC2267-12: SFDR vs Input  
Frequency, 1dBFS, 2V Range,  
105Msps  
LTC2267-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 105Msps  
LTC2267-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dB  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
130  
120  
110  
100  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
90  
80  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
50  
–70  
0
25  
50  
75  
100  
SAMPLE RATE (Msps)  
226812 G30  
226812 G32  
226812 G54  
22687612f  
13  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2267-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2266-12: Integral  
Nonlinearity (INL)  
LTC2266-12: Differential  
Nonlinearity (DNL)  
1.0  
0.8  
0.6  
72  
1.0  
0.8  
0.6  
0.4  
0.2  
0
71  
70  
69  
68  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
67  
66  
0
2048  
3072  
4096  
1024  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.ꢀ  
0
2048  
3072  
4096  
1024  
OUTPUT CODE  
SENSE PIN (V)  
OUTPUT CODE  
226812 G42  
226812 Gꢀ5  
226812 G41  
LTC2266-12: 8k Point FFT,  
fIN = 5MHz, –1dBFS, 80Msps  
LTC2266-12: 8k Point FFT,  
fIN = 30MHz, –1dBFS, 80Msps  
LTC2266-12: 8k Point FFT,  
fIN = 70MHz, –1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
10  
0
20  
30  
40  
0
20  
30  
40  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226812 G43  
226812 G44  
226812 G45  
LTC2266-12: 8k Point 2-Tone FFT,  
fIN = 70MHz, 75MHz, –1dBFS,  
80Msps  
LTC2266-12: 8k Point FFT,  
fIN = 140MHz, –1dBFS, 80Msps  
LTC2266-12:  
Shorted Input Histogram  
18000  
16000  
14000  
12000  
10000  
8000  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
4000  
2000  
0
–80  
–90  
–100  
–110  
–120  
–80  
–90  
–100  
–110  
–120  
2052  
2053  
2054  
2055  
2056  
0
20  
30  
40  
0
20  
30  
40  
10  
10  
OUTPUT CODE  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
226812 G48  
226812 G46  
226812 G47  
22687612f  
14  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2266-12: SNR vs Input  
Frequency, 1dBFS, 2V Range,  
80Msps  
LTC2266-12: SFDR vs Input  
LTC2266-12: SFDR vs Input Level,  
fIN = 70MHz, 2V Range, 80Msps  
Frequency, 1dBFS, 2V Range,  
80Msps  
72  
71  
70  
69  
68  
67  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
80  
70  
dBc  
60  
50  
40  
30  
20  
10  
0
66  
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
100 150 200 250 300 350  
INPUT FREQUENCY (MHz)  
50  
50  
226812 G35a  
226812 G52  
226812 G49  
LTC2266-12: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
LTC2266-12: IVDD vs Sample Rate,  
5MHz Sine Wave Input, –1dBFS  
DCO Cycle-Cycle Jitter vs Serial  
Data Rate  
350  
300  
250  
200  
150  
110  
100  
90  
72  
71  
70  
69  
68  
67  
66  
100  
50  
0
80  
70  
0
20  
40  
60  
80  
0
200  
400  
600  
800  
1000  
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.ꢀ  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
SERIAL DATA RATE (Mbps)  
226812 G55a  
226812 G52a  
226812 G55  
22687612f  
15  
LTC2268-12/  
LTC2267-12/LTC2266-12  
PIN FUNCTIONS  
+
A
(Pin 1): Channel 1 Positive Differential Analog  
SCK (Pin 16): In serial programming mode, (PAR/SER =  
IN1  
Input.  
0V), SCK is the serial interface clock input. In the parallel  
programming mode (PAR/SER= V ), SCK selects ꢀ.5mA  
DD  
A
(Pin 2): Channel 1 Negative Differential Analog  
IN1  
or 1.75mA LVDS output currents. SCK can be driven with  
Input.  
1.8V to ꢀ.ꢀV logic.  
V
(Pin3):CommonModeBiasOutput,NominallyEqual  
CM1  
SDI (Pin 17): In serial programming mode, (PAR/SER =  
0V), SDI is the serial interface data input. Data on SDI is  
clocked into the mode control registers on the rising edge  
of SCK. In the parallel programming mode (PAR/SER =  
to V /2. V should be used to bias the common mode  
DD  
CM  
of the analog inputs of channel 1. Bypass to ground with  
a 0.1μF ceramic capacitor.  
REFH (Pins 4,5): ADC High Reference. Bypass to pins 6, 7  
with a 2.2μF ceramic capacitor and to ground with a 0.1μF  
ceramic capacitor.  
V ), SDI can be used to power down the part. SDI can  
DD  
be driven with 1.8V to ꢀ.ꢀV logic.  
GND (Pins 18, 33, 37, Exposed Pad Pin 41): ADC Power  
Ground. The exposed pad must be soldered to the PCB  
ground.  
REFL (Pins 6,7): ADC Low Reference. Bypass to pins 4, 5  
with a 2.2μF ceramic capacitor and to ground with a 0.1μF  
ceramic capacitor.  
OGND (Pin 25): Output Driver Ground. Must be shorted  
to the ground plane by a very low inductance path. Use  
multiple vias close to the pin.  
V
(Pin8):CommonModeBiasOutput,NominallyEqual  
CM2  
to V /2. V should be used to bias the common mode  
DD  
CM  
of the analog inputs of channel 2. Bypass to ground with  
a 0.1μF ceramic capacitor.  
OV (Pin 26): Output Driver Supply, 1.7V to 1.9V. Bypass  
DD  
to ground with a 0.1μF ceramic capacitor.  
+
A
(Pin 9): Channel 2 Positive Differential Analog  
(Pin 10): Channel 2 Negative Differential Analog  
IN2  
SDO (Pin 34): In serial programming mode, (PAR/SER  
= 0V), SDO is the optional serial interface data output.  
Data on SDO is read back from the mode control registers  
and can be latched on the falling edge of SCK. SDO is an  
open-drain NMOS output that requires an external 2k  
pull-up resistor to 1.8V – ꢀ.ꢀV. If read back from the mode  
control registers is not needed, the pull-up resistor is not  
necessaryandSDOcanbeleftunconnected.Intheparallel  
Input.  
A
IN2  
Input.  
V
(Pins 11, 12, 39, 40): Analog Power Supply, 1.7V  
DD  
to 1.9V. Bypass to ground with 0.1μF ceramic capacitors.  
Adjacent pins can share a bypass capacitor.  
+
ENC (Pin 13): Encode Input. Conversion starts on the  
programmingmode(PAR/SER=V ),SDOisaninputthat  
DD  
rising edge.  
enables internal 100Ω termination resistors on the digital  
outputs. When used as an input, SDO can be driven with  
1.8V to ꢀ.ꢀV logic through a 1k series resistor.  
ENC (Pin 14): Encode Complement Input. Conversion  
starts on the falling edge.  
PAR/SER (Pin 35): Programming Mode Selection Pin.  
Connecttogroundtoenabletheserialprogrammingmode.  
CS, SCK, SDI, SDO become a serial interface that control  
CS(Pin15):Inserialprogrammingmode,(PAR/SER=0V),  
CS is the serial interface chip select input. When CS is low,  
SCKisenabledforshiftingdataonSDIintothemodecontrol  
registers. In the parallel programming mode (PAR/SER =  
the A/D operating modes. Connect to V to enable the  
DD  
parallel programming mode where CS, SCK, SDI, SDO  
become parallel logic inputs that control a reduced set of  
V ), CS selects 2-lane or 1-lane output mode. CS can  
DD  
be driven with 1.8V to ꢀ.ꢀV logic.  
22687612f  
16  
LTC2268-12/  
LTC2267-12/LTC2266-12  
PIN FUNCTIONS  
the A/D operating modes. PAR/SER should be connected  
LVDS Outputs  
directly to ground or the V of the part and not be driven  
DD  
All pins below are differential LVDS outputs. The output  
current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDS output pair.  
by a logic signal.  
V
(Pin36):ReferenceVoltageOutput.Bypasstoground  
REF  
with a 1μF ceramic capacitor, nominally 1.25V.  
+
+
SENSE(Pin38):ReferenceProgrammingPin.Connecting  
OUT2B /OUT2B , OUT2A /OUT2A (Pins 19/20,  
SENSEtoV selectstheinternalreferenceanda±1Vinput  
Pins 21/22): Serial Data Outputs for Channel 2. In 1-lane  
output mode only OUT2A /OUT2A are used.  
DD  
+
range. Connecting SENSE to ground selects the internal  
reference and a ±0.5V input range. An external reference  
between 0.625V and 1.ꢀV applied to SENSE selects an  
+
FR /FR (Pins 23/24): Frame Start Outputs.  
+
DCO /DCO (Pins 27/28): Data Clock Outputs.  
input range of ±0.8 • V  
.
SENSE  
+
+
OUT1B /OUT1B , OUT1A /OUT1A (Pins 29/30,  
Pins 31/32): Serial Data Outputs for Channel 1. In 1-lane  
+
output mode only OUT1A /OUT1A are used.  
22687612f  
17  
LTC2268-12/  
LTC2267-12/LTC2266-12  
BLOCK DIAGRAM  
1.8V  
1.8V  
+
OV  
DD  
V
ENC  
ENC  
DD  
+
OUT1A  
OUT1A  
PLL  
CHANNEL 1  
ANALOG INPUT  
+
+
OUT1B  
12-BIT  
ADC CORE  
OUT1B  
SAMPLE-  
AND-HOLD  
CHANNEL 1  
ANALOG INPUT  
+
OUT2A  
OUT2A  
CHANNEL 2  
DATA  
SERIALIZER  
+
ANALOG INPUT  
+
OUT2B  
OUT2B  
12-BIT  
ADC CORE  
SAMPLE-  
AND-HOLD  
CHANNEL 2  
ANALOG INPUT  
DATA  
+
CLOCK OUT  
DATA  
V
REF  
1.25V  
REFERENCE  
CLOCK OUT  
1μF  
+
FRAME  
RANGE  
SELECT  
FRAME  
OGND  
REFH  
REFL  
REF  
BUF  
SENSE  
V
DD  
/2  
DIFF  
REF  
AMP  
MODE  
CONTROL  
REGISTERS  
REFH  
0.1μF  
REFL  
VCM1  
VCM2  
PAR/SER  
CS  
SCK SDI  
SDO  
GND  
226812 F01  
0.1μF  
0.1μF  
2.2μF  
0.1μF  
0.1μF  
Figure 1. Functional Block Diagram  
22687612f  
18  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
ANALOG INPUT  
The analog inputs are differential CMOS sample-and-hold  
circuits(Figure2).Theinputsshouldbedrivendifferentially  
The LTC2268-12/LTC2267-12/LTC2266-12 are low power,  
2-channel, 12-bit, 125Msps/105Msps/80Msps A/D con-  
verters that are powered by a single 1.8V supply. The  
analog inputs should be driven differentially. The encode  
input can be driven differentially for optimal jitter perfor-  
mance, or single ended for lower power consumption.  
To minimize the number of data lines the digital outputs  
are serial LVDS. Each channel outputs two bits at a time  
(2-lane mode). At lower sampling rates there is a one bit  
perchanneloption(1-lanemode).Manyadditionalfeatures  
canbechosenbyprogrammingthemodecontrolregisters  
through a serial SPI port.  
around a common mode voltage set by the V  
or V  
CM1  
CM2  
output pins, which are nominally V /2. For the 2V input  
DD  
range, the inputs should swing from V – 0.5V to V  
CM  
CM  
+ 0.5V. There should be 180° phase difference between  
the inputs.  
Thetwochannelsaresimultaneouslysampledbyashared  
encode circuit (Figure 2).  
INPUT DRIVE CIRCUITS  
Input filtering  
LTC2268-12  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure ꢀ  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
V
DD  
C
C
SAMPLE  
ꢀ.5pF  
R
ON  
10Ω  
10ꢁ  
25Ω  
+
A
A
IN  
C
PARASITIC  
1.8pF  
V
DD  
SAMPLE  
ꢀ.5pF  
R
25Ω  
ON  
IN  
C
PARASITIC  
1.8pF  
V
DD  
50Ω  
V
CM  
0.1μF  
0.1μF  
T1  
1:1  
1.2V  
+
25Ω  
A
IN  
ANALOG  
INPUT  
10k  
LTC2268-12  
0.1μF  
25Ω  
25Ω  
+
ENC  
12pF  
ENC  
25Ω  
A
IN  
10k  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
226812 F0ꢀ  
1.2V  
226812 F02  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
Figure 2. Equivalent Input Circuit. Only One  
of the Two Analog Channels Is Shown  
22687612f  
19  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
Transformer Coupled Circuits  
Amplifier Circuits  
Figure ꢀ shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distor-  
tion.  
tap is biased with V , setting the A/D input at its optimal  
CM  
DC level. At higher input frequencies a transmission line  
balun transformer (Figures 4 to 6) has better balance,  
resulting in lower A/D distortion.  
At very high frequencies an RF gain block will often  
have lower distortion than a differential amplifier. If the  
gain block is single-ended, then a transformer circuit  
(Figures 4 to 6) should convert the signal to differential  
before driving the A/D.  
50Ω  
V
CM  
0.1μF  
0.1μF  
0.1μF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTC2268-12  
T1  
0.1μF  
25Ω  
25Ω  
50Ω  
V
CM  
4.7pF  
0.1μF  
A
IN  
0.1μF  
0.1μF  
2.7nH  
0.1μF  
+
A
A
IN  
IN  
ANALOG  
INPUT  
226812 F04  
LTC2268-12  
25Ω  
25Ω  
T1: MA/COM MABA-007159-000000  
T2: MA/COM MABAES0060  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
T1  
2.7nH  
T1: MA/COM ETC1-1-1ꢀ  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
226812 F06  
Figure 4.Recommended Front End Circuit for Input  
Frequencies from 70MHz to 170MHz  
Figure 6. Recommended Front End Circuit for Input  
Frequencies Above 300MHz  
50Ω  
V
CM  
0.1μF  
0.1μF  
0.1μF  
+
V
CM  
A
ANALOG  
INPUT  
IN  
T2  
LTC2268-12  
T1  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1μF  
0.1μF  
25Ω  
25Ω  
200Ω 200Ω  
25Ω  
0.1μF  
0.1μF  
1.8pF  
+
A
IN  
LTC2268-12  
A
ANALOG  
INPUT  
IN  
+
+
12pF  
226812 F05  
25Ω  
A
IN  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1LB  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
226812 F07  
Figure 7. Front End Circuit Using a High Speed  
Differential Amplifier  
Figure 5. Recommended Front End Circuit for Input  
Frequencies from 170MHz to 300MHz  
22687612f  
20  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
Reference  
The reference is shared by both ADC channels, so it is  
not possible to independently adjust the input range of  
individual channels.  
TheLTC2268-12/LTC2267-12/LTC2266-12hasaninternal  
1.25V voltage reference. For a 2V input range using the  
The V , REFH and REFL pins should be bypassed as  
internal reference, connect SENSE to V . For a 1V input  
REF  
DD  
shown in Figure 8. The 0.1μF capacitor between REFH  
and REFL should be as close to the pins as possible (not  
on the backside of the circuit board).  
range using the internal reference, connect SENSE to  
ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9).  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.ꢀ0V. The input range  
Encode Input  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should be  
treated as analog signals — do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
will then be 1.6 V  
.
SENSE  
LTC2268-12  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
1μF  
0.625V  
RANGE  
DETECT  
AND  
LTC2268-12  
V
DD  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
DIFFERENTIAL  
COMPARATOR  
RANGE = 1.6 • V  
FOR  
SENSE  
V
DD  
BUFFER  
0.625V < V  
< 1.ꢀ00V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
0.1μF  
15k  
ꢀ0k  
REFH  
0.1μF  
+
ENC  
ENC  
2.2μF  
0.8x  
DIFF AMP  
0.1μF  
REFL  
226812 F10  
INTERNAL ADC  
LOW REFERENCE  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
226812 F08  
Figure 8. Reference Circuit  
LTC2268-12  
+
1.8V TO ꢀ.ꢀV  
0V  
ENC  
ENC  
V
REF  
ꢀ0k  
1μF  
CMOS LOGIC  
BUFFER  
LTC2268-12  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1μF  
226812 F11  
226812 F09  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
Figure 9. Using an External 1.25V Reference  
22687612f  
21  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
The differential encode mode is recommended for sinu-  
soidal, PECL, or LVDS encode inputs (Figures 12 and 1ꢀ).  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance. The encode inputs can be  
Clock PLL and Duty Cycle Stabilizer  
Theencodeclockismultipliedbyaninternalphase-locked  
loop (PLL) to generate the serial digital output data. If the  
encode signal changes frequency or is turned off, the PLL  
requires 25μs to lock onto the input clock.  
taken above V (up to ꢀ.6V), and the common mode  
DD  
range is from 1.1V to 1.6V. In the differential encode  
A clock duty cycle stabilizer circuit allows the duty cycle  
of the applied encode signal to vary from ꢀ0% to 70%.  
In the serial programming mode it is possible to disable  
the duty cycle stabilizer, but this is not recommended. In  
the parallel programming mode the duty cycle stabilizer  
is always enabled.  
mode, ENC should stay at least 200mV above ground to  
avoid falsely triggering the single-ended encode mode.  
+
For good jitter performance ENC should have fast rise  
and fall times.  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected  
+
to ground and ENC is driven with a square wave encode  
+
DIGITAL OUTPUTS  
input. ENC can be taken above V (up to ꢀ.6V) so 1.8V  
DD  
+
to.ꢀVCMOSlogiclevelscanbeused.TheENC threshold  
The digital outputs of the LTC2268-12/LTC2267-12/  
LTC2266-12 are serialized LVDS signals. Each channel  
outputs two bits at a time (2-lane mode). At lower sam-  
pling rates there is a one bit per channel option (1-lane  
mode). The data can be serialized with 16-, 14-, or 12-bit  
serialization (see Timing Diagrams for details).  
+
is 0.9V. For good jitter performance ENC should have fast  
rise and fall times.  
0.1μF  
0.1μF  
+
T1  
ENC  
LTC2268-12  
50ꢁ  
50ꢁ  
The output data should be latched on the rising and falling  
edges of the data clock out (DCO). A data frame output  
(FR) can be used to determine when the data from a new  
conversionresultbegins. Inthe2-lane, 14-bitserialization  
mode, the frequency of the FR output is halved.  
100ꢁ  
0.1μF  
ENC  
226812 F12  
T1 = MA/COM ETC1-1-1ꢀ  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
The maximum serial data rate for the data outputs is  
1Gbps, so the maximum sample rate of the ADC will de-  
pend on the serialization mode as well as the speed grade  
of the ADC (see Table 1). The minimum sample rate for  
all serialization modes is 5Msps.  
Figure 12. Sinusoidal Encode Drive  
0.1μF  
+
ENC  
PECL OR  
LTC2268-12  
LVDS  
CLOCK  
0.1μF  
ENC  
226812 F1ꢀ  
Figure 13. PECL or LVDS Encode Drive  
22687612f  
22  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
Table 1. Maximum Sampling Frequency for All Serialization Modes. Note That These Limits Are for the LTC2268-12. The Sampling  
Frequency for the Slower Speed Grades Cannot Exceed 105MHz (LTC2267-12) or 80MHz (LTC2266-12).  
MAXIMUM SAMPLING  
SERIALIZATION MODE  
2-Lane  
FREQUENCY, f (MHz)  
DCO FREQUENCY  
4 • f  
FR FREQUENCY  
SERIAL DATA RATE  
S
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
16-Bit Serialization  
14-Bit Serialization  
12-Bit Serialization  
125  
125  
125  
62.5  
71.4  
8ꢀ.ꢀ  
f
8 • f  
7 • f  
6 • f  
S
S
S
S
S
2-Lane  
ꢀ.5 • f  
0.5 • f  
S
S
2-Lane  
ꢀ • f  
8 • f  
7 • f  
6 • f  
f
f
f
f
S
S
S
S
S
1-Lane  
16 • f  
14 • f  
12 • f  
S
S
S
S
S
S
1-Lane  
1-Lane  
By default the outputs are standard LVDS levels: ꢀ.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100ꢁ differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
DATA FORMAT  
Table 2 shows the relationship between the analog input  
voltage and the digital data output bits. By default the  
output data format is offset binary. The 2’s complement  
format can be selected by serially programming mode  
control register A1.  
The outputs are powered by OV and OGND which are  
DD  
In addition to the 12 data bits (D11 - D0), two additional  
bits (DX and DY) are sent out in the 14-bit and 16-bit  
serialization modes. These extra bits are to ensure com-  
plete software compatibility with the 14-bit versions of  
these A/Ds. During normal operation when the analog  
inputs are not overranged, DX and DY are always logic 0.  
When the analog inputs are overranged positive, DX and  
DYbecomelogic1.Whentheanaloginputsareoverranged  
negative, DX and DY become logic 0. DX and DY can also  
be controlled by the digital output test pattern. See the  
Timing Diagrams section for more information.  
isolated from the A/D core power and ground.  
Programmable LVDS Output Current  
The default output driver current is ꢀ.5mA. This current  
can be adjusted by control register A2 in the serial pro-  
gramming mode. Available current levels are 1.75mA,  
2.1mA, 2.5mA, ꢀmA, ꢀ.5mA, 4mA and 4.5mA. In the  
parallel programming mode the SCK pin can select either  
ꢀ.5mA or 1.75mA.  
Optional LVDS Driver Internal Termination  
Table 2. Output Codes vs Input Voltage  
In most cases using just an external 100ꢁ termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100ꢁ termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A2. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing.  
In the Parallel Programming Mode, the SDO pin enables  
internal termination. Internal termination should only be  
used with 1.75mA, 2.1mA or 2.5mA LVDS output current  
modes.  
+
A
– A  
D11-D0  
D11-D0  
IN  
IN  
(2V RANGE)  
>+1.000000V  
+0.999512V  
+0.999024V  
+0.000488V  
0.000000V  
(OFFSET BINARY)  
(2s COMPLEMENT)  
D , D  
X
Y
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
11  
00  
00  
00  
00  
00  
00  
00  
00  
00  
–0.000488V  
–0.000976V  
–0.999512V  
–1.000000V  
≤–1.000000V  
22687612f  
23  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
Digital Output Randomizer  
In nap mode any combination of A/D channels can be  
powereddownwhiletheinternalreferencecircuitsandthe  
PLL stay active, allowing faster wake-up than from sleep  
mode. Recovering from nap mode requires at least 100  
clock cycles. If the application demands very accurate DC  
settling then an additional 50μs should be allowed so the  
on-chip references can settle from the slight temperature  
shift caused by the change in supply current as the A/D  
leaves nap mode. Nap mode is enabled by mode control  
register A1 in the serial programming mode.  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The FR and DCO outputs are  
not affected. The output randomizer is enabled by serially  
programming mode control register A1.  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC2268-12/LTC2267-12/  
LTC2266-12 can be programmed by either a parallel  
interface or a simple serial interface. The serial interface  
has more flexibility and can program all available modes.  
Theparallelinterfaceismorelimitedandcanonlyprogram  
some of the more commonly used modes.  
Digital Output Test Pattern  
To allow in-circuit testing of the digital interface to the  
A/D, there is a test mode that forces the A/D data outputs  
Parallel Programming Mode  
(D11-D0, D , D ) of both channels to known values. The  
X
Y
To use the parallel programming mode, PAR/SER should  
digitaloutputtestpatternsareenabledbyseriallyprogram-  
ming mode control registers Aꢀ and A4. When enabled,  
the test patterns override all other formatting modes: 2’s  
complement and randomizer.  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven by 1.8V, 2.5V, or  
DD  
ꢀ.ꢀV CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table ꢀ shows the  
modes set by CS, SCK, SDI and SDO.  
Output Disable  
The digital outputs may be disabled by serially program-  
ming mode control register A2. The current drive for all  
digital outputs including DCO and FR are disabled to save  
powerorenablein-circuittesting.Whendisabledthecom-  
mon mode of each output pair becomes high impedance,  
but the differential impedance may remain low.  
Table 3. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
2-Lane/1-Lane Selection Bit  
0 = 2-Lane, 16-Bit Serialization Output Mode  
1 = 1-Lane, 14-Bit Serialization Output Mode  
LVDS Current Selection Bit  
0 = ꢀ.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
Power Down Control Bit  
SCK  
SDI  
Sleep and Nap Modes  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire device is powered down,  
resulting in 1mW power consumption. Sleep mode is  
enabled by mode control register A1 (serial program-  
ming mode), or by SDI (parallel programming mode).  
The amount of time required to recover from sleep mode  
0 = Normal Operation  
1 = Sleep Mode  
SDO  
Internal 100Ω Termination Selection Bit  
0 = Internal Termination Disabled  
1 = Internal Termination Enabled  
depends on the size of the bypass capacitors on V  
,
REF  
REFH, and REFL. For the suggested values in Figure 8,  
the A/D will stabilize after 2ms.  
22687612f  
24  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
Serial Programming Mode  
will be read back on the SDO pin (see the Timing Diagrams  
section). During a read back command the register is not  
updated and data on SDI is ignored.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that programs the A/D mode control  
registers. Data is written to a register with a 16-bit serial  
word. Data can also be read back from a register to verify  
its contents.  
The SDO pin is an open-drain output that pulls to ground  
with a 200ꢁ impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
Table 4 shows a map of the mode control registers.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset is  
complete, bit D7 is automatically set back to zero.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be written  
to the register set by the address bits (A6:A0). If the R/W bit  
is high, data in the register set by the address bits (A6:A0)  
Table 4. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
D4  
X
Dꢀ  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers Are Reset to 00h. The ADC is momentarily placed in SLEEP mode.  
This Bit Is Automatically Set Back to Zero After the Reset Is Complete  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
X
D1  
X
D0  
DCSOFF  
RAND  
TWOSCOMP  
SLEEP  
NAP_2  
NAP_1  
Bit 7  
Bit 6  
Bit 5  
DCSOFF  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer On  
1 = Clock Duty Cycle Stabilizer Off. This is Not Recommended.  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
Two’s Complement Mode Control Bit  
Bits 4,ꢀ,0  
SLEEP:NAP_2:NAP_1  
000 = Normal Operation  
Sleep/Nap Mode Control Bits  
0X1 = Channel 1 in Nap Mode  
01X = Channel 2 in Nap Mode  
1XX = Sleep Mode. Both Channels Are Disabled  
Note: Any Combination of Channels Can Be Placed in Nap Mode.  
Bits 2,1  
Unused, Don’t Care Bits.  
22687612f  
25  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
REGISTER A2: OUTPUT MODE REGISTER (ADDRESS 02h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE2  
OUTMODE1  
OUTMODE0  
Bits 7-5  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = ꢀ.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = ꢀ.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 4  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 2x the Current Set by ILVDS2:ILVDS0. Internal termination should only be  
used with 1.75mA, 2.1mA or 2.5mA LVDS output current modes.  
Bit ꢀ  
OUTOFF  
Output Disable Bit  
0 = Digital Outputs are enabled.  
1 = Digital Outputs are disabled.  
Bits 2-0  
OUTMODE2:OUTMODE0 Digital Output Mode Control Bits  
000 = 2-Lanes, 16-Bit Serialization  
001 = 2-Lanes, 14-Bit Serialization  
010 = 2-Lanes, 12-Bit Serialization  
011 = Not Used  
100 = Not Used  
101 = 1-Lane, 14-Bit Serialization  
110 = 1-Lane, 12-Bit Serialization  
111 = 1-Lane, 16-Bit Serialization  
REGISTER A3: TEST PATTERN MSB REGISTER (ADDRESS 03h)  
D7  
D6  
X
D5  
D4  
Dꢀ  
D2  
D1  
D0  
OUTTEST  
TP11  
TP10  
TP9  
TP8  
TP7  
TP6  
Bit 7  
OUTTEST  
Digital Output Test Pattern Control Bit  
0 = Digital Output Test Pattern Off  
1 = Digital Output Test Pattern On  
Bit 6  
Unused, Don’t Care Bit.  
Bits 5-0  
TP11:TP6  
Test Pattern Data Bits (MSB)  
TP11:TP6 Set the Test Pattern for Data Bit 11 (MSB) Through Data Bit 6.  
REGISTER A4: TEST PATTERN LSB REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
Dꢀ  
D2  
D1  
D0  
TP5  
TP4  
TPꢀ  
TP2  
TP1  
TP0  
TPX  
TPY  
Bits 7-2  
TP5:TP0  
Test Pattern Data Bits (LSB)  
TP5:TP0 Set the Test Pattern for Data Bit 5 Through Data Bit 0 (LSB).  
Bits 1-0  
TPX:TPY  
Set the Test Pattern for Extra Bits D and D . These Bits are for Compatibility with the 14-Bit Version of the A/D.  
X Y  
22687612f  
26  
LTC2268-12/  
LTC2267-12/LTC2266-12  
APPLICATIONS INFORMATION  
GROUNDING AND BYPASSING  
between REFH and REFL can be somewhat further away.  
Thetracesconnectingthepinsandbypasscapacitorsmust  
be kept short and should be made as wide as possible.  
The LTC2268-12/LTC2267-12/LTC2266-12 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane in the  
first layer beneath the ADC is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
HEAT TRANSFER  
High quality ceramic bypass capacitors should be used at  
MostoftheheatgeneratedbytheLTC2268-12/LTC2267-12/  
LTC2266-12 is transferred from the die through the  
bottom-side Exposed Pad and package leads onto the  
printed circuit board. For good electrical and thermal  
performance, theExposedPadmustbesolderedtoalarge  
grounded pad on the PC board. This pad should be con-  
nected to the internal ground planes by an array of vias.  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
capacitorsmustbelocatedasclosetothepinsaspossible.  
Of particular importance is the 0.1μF capacitor between  
REFH and REFL. This capacitor should be on the same  
side of the circuit board as the A/D, and as close to the  
device as possible (1.5mm or less). Size 0402 ceramic  
capacitors are recommended. The larger 2.2μF capacitor  
22687612f  
27  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL APPLICATIONS  
Silkscreen Top  
Top Side  
Inner Layer 2 GND  
Inner Layer 3  
22687612f  
28  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5 Power  
Bottom Side  
Silkscreen Bottom  
22687612f  
29  
LTC2268-12/  
LTC2267-12/LTC2266-12  
TYPICAL APPLICATIONS  
LTC2268 Schematic  
PAR/SER  
C4  
1μF  
SDO  
SENSE  
V
DD  
C5  
1μF  
40 ꢀ9 ꢀ8 ꢀ7 ꢀ6 ꢀ5 ꢀ4 ꢀꢀ ꢀ2 ꢀ1  
A
A
IN1  
IN1  
DIGITAL  
OUTPUTS  
1
2
ꢀ0  
29  
28  
27  
26  
25  
24  
2ꢀ  
22  
21  
+
+
+
C29  
OUT1B  
A
A
V
IN1  
IN1  
0.1μF  
OUT1B  
DCO  
DCO  
OV  
CM1  
4
REFH  
REFH  
REFL  
REFL  
5
LTC2268  
OV  
DD  
DD  
C1  
2.2μF  
Cꢀ0  
0.1μF  
6
C16  
0.1μF  
C2  
0.1μF  
OGND  
7
+
FR  
8
Cꢀ  
0.1μF  
FR  
V
A
A
CM2  
9
+
+
C59  
0.1μF  
OUT2A  
IN2  
10  
OUT2A  
IN2  
A
A
IN2  
IN2  
DIGITAL  
OUTPUTS  
11 12 1ꢀ 14 15 16 17 18 19 20  
V
DD  
C7  
0.1μF  
SPI BUS  
C47  
0.1μF  
C46  
0.1μF  
226812 TA02  
ENCODE  
CLOCK  
ENCODE  
CLOCK  
22687612f  
30  
LTC2268-12/  
LTC2267-12/LTC2266-12  
PACKAGE DESCRIPTION  
UJ Package  
40-Lead (6mm × 6mm) Plastic QFN  
(Reference LTC DWG # 05-08-1728)  
0.70 p 0.05  
6.50 p 0.05  
5.10 p 0.05  
4.42 p 0.05  
4.50 p 0.05  
(4 SIDES)  
4.42 p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p 0.05  
R = 0.115  
TYP  
6.00 p 0.10  
(4 SIDES)  
R = 0.10  
TYP  
ꢀ9 40  
0.40 p 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.ꢀ5 s 45o  
CHAMFER  
4.42 p 0.10  
4.50 REF  
(4-SIDES)  
4.42 p 0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
ꢀ. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
22687612f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC2268-12/  
LTC2267-12/LTC2266-12  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2170-14/LTC2171-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2172-14 Quad ADCs, Ultralow Power  
178mW/2ꢀ4mW/ꢀ60mW, 7ꢀ.4dB SNR, 88dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC2170-12/LTC2171-12/ 12-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2172-12 Quad ADCs, Ultralow Power  
178mW/2ꢀ4mW/ꢀ60mW, 70.5dB SNR, 88dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC217ꢀ-14/LTC2174-14/ 14-Bit, 80Msps/105Msps/125Msps  
LTC2175-14 1.8V Quad ADCs, Ultralow Power  
ꢀ7ꢀmW/445mW/551mW, 7ꢀ.2 dB SNR, 88dB SFDR, Serial LVDS Outputs,  
7mm × 8mm QFN-52  
LTC217ꢀ-12/LTC2174-12/ 12-Bit, 80Msps/105Msps/125Msps 1.8V 412mW/481mW/567mW, 70.5 dB SNR, 88dB SFDR, Serial LVDS Outputs,  
LTC2175-12  
LTC2256-14/LTC2257-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2258-14 ADCs, Ultralow Power  
Quad ADCs, Ultralow Power  
7mm × 8mm QFN-52  
ꢀ5mW/49mW/81mW, 74dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-ꢀ6  
LTC2259-14/LTC2260-14/ 14-Bit, 80Msps/105Msps/125Msps 1.8V 89mW/106mW/127mW, 7ꢀ.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/CMOS  
LTC2261-14  
ADCs, Ultralow Power  
Outputs, 6mm × 6mm QFN-ꢀ6  
LTC2262-14  
14-Bit, 150Msps 1.8V ADC, Ultralow Power 149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-ꢀ6  
LTC226ꢀ-14/LTC2264-14/ 14-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2265-14 Dual ADCs, Ultralow Power  
99mW/126mW/191mW, 7ꢀ.4dB SNR, 88dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-ꢀ6  
LTC226ꢀ-12/LTC2264-12/ 12-Bit, 25Msps/40Msps/65Msps 1.8V  
LTC2265-12 Dual ADCs, Ultralow Power  
99mW/126mW/191mW, 70.5dB SNR, 88dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-ꢀ6  
LTC2266-14/LTC2267-14/ 14-Bit, 80Msps/105Msps/125Msps  
216mW/250mW/29ꢀmW, 7ꢀ.4dB SNR, 88dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-ꢀ6  
LTC2268-14  
1.8V Dual ADCs, Ultralow Power  
RF Mixers/Demodulators  
LT5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIPꢀ: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LT5527  
LT5557  
LT5575  
400MHz to ꢀ.7GHz High Linearity  
Downconverting Mixer  
24.5dBm IIPꢀ at 900MHz, 2ꢀ.5dBm IIPꢀ at ꢀ.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
400MHz to ꢀ.8GHz High Linearity  
Downconverting Mixer  
2ꢀ.7dBm IIPꢀ at 2.6GHz, 2ꢀ.5dBm IIPꢀ at ꢀ.5GHz, NF = 1ꢀ.2dB, ꢀ.ꢀV Supply  
Operation, Integrated Transformer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIPꢀ: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, ꢀ1dB Range, Analog-Controlled Continuously Adjustable Gain Control, ꢀ5dBm OIPꢀ at 240MHz, 10dB Noise  
Variable Gain Amplifier  
Figure, 4mm × 4mm QFN-24  
LTC6420-20  
LTC6421-20  
1.8GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers for ꢀ00MHz IF  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply Current per Amplifier,  
ꢀmm × 4mm QFN-20  
1.ꢀGHz Dual Low Noise, Low Distortion  
Differential ADC Drivers  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 40mA Supply Current per Amplifier,  
ꢀmm × 4mm QFN-20  
LTC6605-7/ LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz Filters Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
LTC6605-14  
with ADC Drivers  
Pin-Programmable Gain, 6mm × ꢀmm DFN-22  
LTM9002  
14-Bit Dual Channel IF/Baseband Receiver Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
Subsystem  
22687612f  
LT 1009 • PRINTED IN USA  
LinearTechnology Corporation  
16ꢀ0 McCarthy Blvd., Milpitas, CA 950ꢀ5-7417  
32  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 4ꢀ2-1900 FAX: (408) 4ꢀ4-0507 www.linear.com  

相关型号:

LTC2267CUJ-14

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-14PBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267CUJ-14TRPBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-12PBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-12TRPBF

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14#PBF

LTC2267-14 - 14-Bit, 105Msps Low Power Dual ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2267IUJ-14#TRPBF

LTC2267-14 - 14-Bit, 105Msps Low Power Dual ADCs; Package: QFN; Pins: 40; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2267IUJ-14PBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2267IUJ-14TRPBF

14-Bit, 125Msps/105Msps/80Msps Low Power Dual ADCs
Linear

LTC2268-12

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear

LTC2268-12_15

12-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs
Linear