LTC2297CUP#TR [Linear]

LTC2297 - Dual 14-Bit, 40Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: 0°C to 70°C;
LTC2297CUP#TR
型号: LTC2297CUP#TR
厂家: Linear    Linear
描述:

LTC2297 - Dual 14-Bit, 40Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: 0°C to 70°C

转换器
文件: 总28页 (文件大小:751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2298/LTC2297/LTC2296  
Dual 14-Bit, 65/40/25Msps  
Low Power 3V ADCs  
U
FEATURES  
DESCRIPTIO  
The LTC®2298/LTC2297/LTC2296 are 14-bit 65Msps/  
40Msps/25Msps, low power dual 3V A/D converters de-  
signed for digitizing high frequency, wide dynamic range  
signals. The LTC2298/LTC2297/LTC2296 are perfect for  
demanding imaging and communications applications  
with AC performance that includes 74.3dB SNR and 90dB  
SFDR for signals at the Nyquist frequency.  
Integrated Dual 14-Bit ADCs  
Sample Rate: 65Msps/40Msps/25Msps  
Single 3V Supply (2.7V to 3.4V)  
Low Power: 400mW/235mW/150mW  
74.3dB SNR  
90dB SFDR  
110dB Channel Isolation at 100MHz  
Multiplexed or Separate Data Bus  
DC specs include ±1.2LSB INL (typ), ±0.5LSB DNL (typ)  
Flexible Input: 1VP-P to 2VP-P Range  
and no missing codes over temperature. The transition  
575MHz Full Power Bandwidth S/H  
noise is a low 1LSBRMS  
.
Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
A single 3V supply allows low power operation. A separate  
output supply allows the outputs to drive 0.5V to 3.6V  
logic. An optional multiplexer allows both channels to  
share a digital output bus.  
Pin Compatible Family  
105Msps: LTC2282 (12-Bit), LTC2284 (14-Bit)  
80Msps: LTC2294 (12-Bit), LTC2299 (14-Bit)  
65Msps: LTC2293 (12-Bit), LTC2298 (14-Bit)  
40Msps: LTC2292 (12-Bit), LTC2297 (14-Bit)  
25Msps: LTC2291 (12-Bit), LTC2296 (14-Bit)  
10Msps: LTC2290 (12-Bit), LTC2295 (14-Bit)  
Asingle-endedCLKinputcontrolsconverteroperation.An  
optional clock duty cycle stabilizer allows high perfor-  
mance at full speed for a wide range of clock duty cycles.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
64-Pin (9mm × 9mm) QFN Package  
U
APPLICATIO S  
Wireless and Wired Broadband Communication  
Imaging Systems  
Spectral Analysis  
Portable Instrumentation  
U
TYPICAL APPLICATIO  
LTC2298: SNR vs Input Frequency,  
–1dB, 2V Range, 65Msps  
OV  
DD  
+
14-BIT  
PIPELINED  
ADC CORE  
75  
74  
73  
72  
71  
70  
INPUT  
S/H  
ANALOG  
INPUT A  
D13A  
OUTPUT  
DRIVERS  
D0A  
OGND  
CLOCK/DUTY CYCLE  
CONTROL  
CLK A  
CLK B  
MUX  
CLOCK/DUTY CYCLE  
CONTROL  
OV  
DD  
D13B  
+
50  
100  
150  
0
200  
OUTPUT  
DRIVERS  
14-BIT  
PIPELINED  
ADC CORE  
ANALOG  
INPUT B  
INPUT  
S/H  
INPUT FREQUENCY (MHz)  
D0B  
229876 TA01b  
OGND  
229876 TA01  
229876fa  
1
LTC2298/LTC2297/LTC2296  
W W  
U W  
ABSOLUTE AXI U RATI GS  
OV = V (Notes 1, 2)  
SuDpDply Voltage (VDD)................................................. 4V  
Digital Output Ground Voltage (OGND) .......0.3V to 1V  
Analog Input Voltage (Note 3) ..... –0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... –0.3V to (VDD + 0.3V)  
Power Dissipation............................................ 1500mW  
Operating Temperature Range  
DD  
LTC2298C, LTC2297C, LTC2296C........... 0°C to 70°C  
LTC2298I, LTC2297I, LTC2296I ..........–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
U
Digital Output Voltage................0.3V toW(OVDD + 0.3V)  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
QFN PART*  
MARKING  
+
A
1
2
48 DA7  
47 DA6  
46 DA5  
45 DA4  
44 DA3  
43 DA2  
42 DA1  
41 DA0  
40 OFB  
39 DB13  
38 DB12  
37 DB11  
36 DB10  
35 DB9  
34 DB8  
33 DB7  
INA  
A
INA  
REFHA 3  
REFHA 4  
REFLA 5  
REFLA 6  
LTC2298UP  
LTC2297UP  
LTC2296UP  
LTC2298CUP  
LTC2298IUP  
LTC2297CUP  
LTC2297IUP  
LTC2296CUP  
LTC2296IUP  
V
7
DD  
CLKA 8  
CLKB 9  
65  
V
10  
DD  
REFLB 11  
REFLB 12  
REFHB 13  
REFHB 14  
A
A
15  
16  
INB  
INB  
+
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
UP PACKAGE  
64-LEAD (9mm × 9mm) PLASTIC QFN  
T
= 125°C, θ = 20°C/W  
JMAX JA  
EXPOSED PAD (PIN 65) IS GND AND MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
U
CO VERTER CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2298  
TYP  
LTC2297  
TYP  
LTC2296  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
Resolution  
(No Missing Codes)  
14  
14  
14  
Bits  
Integral Linearity Error Differential Analog Input (Note 5)  
–5  
–1  
±1.2  
±0.5  
5
1
–5  
–1  
±1.2  
±0.5  
5
1
–5  
–1  
±1.2  
±0.5  
5
1
LSB  
LSB  
Differential  
Differential Analog Input  
Linearity Error  
Offset Error  
Gain Error  
(Note 6)  
–12  
±2  
±0.5  
±10  
±30  
±5  
±0.3  
±2  
1
12  
–12  
±2  
±0.5  
±10  
±30  
±5  
±0.3  
±2  
1
12  
–12  
±2  
±0.5  
±10  
±30  
±5  
±0.3  
±2  
1
12  
mV  
%FS  
External Reference  
–2.5  
2.5  
–2.5  
2.5  
–2.5  
2.5  
Offset Drift  
Full-Scale Drift  
µV/°C  
ppm/°C  
ppm/°C  
%FS  
Internal Reference  
External Reference  
Gain Matching  
Offset Matching  
Transition Noise  
mV  
SENSE = 1V  
LSB  
RMS  
229876fa  
2
LTC2298/LTC2297/LTC2296  
U
U
A ALOG I PUT  
The  
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
Analog Input Range (A –A  
CONDITIONS  
MIN  
TYP  
±0.5V to ±1V  
1.5  
MAX  
UNITS  
V
+
V
V
)
2.7V < V < 3.4V (Note 7)  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A +A )/2  
Differential Input (Note 7)  
Single Ended Input (Note 7)  
1
1.9  
2
V
IN,CM  
IN  
IN  
0.5  
–1  
–3  
–3  
1.5  
V
+
I
I
I
t
t
Analog Input Leakage Current  
0V < A , A < V  
DD  
1
µA  
µA  
µA  
ns  
IN  
IN  
IN  
SENSEA, SENSEB Input Leakage  
MODE Input Leakage Current  
0V < SENSEA, SENSEB < 1V  
0V < MODE < V  
3
SENSE  
MODE  
AP  
3
DD  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
0
0.2  
80  
ps  
RMS  
JITTER  
CMRR  
dB  
Figure 8 Test Circuit  
575  
MHz  
U W  
DY A IC ACCURACY  
The  
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C. A = –1dBFS. (Note 4)  
A
IN  
LTC2298  
TYP  
LTC2297  
TYP  
LTC2296  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
SNR  
Signal-to-Noise Ratio 5MHz Input  
12.5MHz Input  
74.3  
74.4  
74.5  
74.2  
72.7  
20MHz Input  
72.4  
74.4  
30MHz Input  
72.1  
74.3  
74.3  
73.9  
90  
70MHz Input  
73.9  
73.3  
90  
73.4  
73  
140MHz Input  
SFDR  
SFDR  
S/(N+D)  
5MHz Input  
90  
Spurious Free  
Dynamic Range  
2nd or 3rd  
12.5MHz Input  
20MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
76  
80  
90  
75  
80  
90  
Harmonic  
75  
78  
90  
85  
80  
90  
85  
80  
90  
85  
80  
90  
90  
Spurious Free  
Dynamic Range  
4th Harmonic  
or Higher  
12.5MHz Input  
20MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
5MHz Input  
90  
90  
90  
90  
90  
90  
90  
90  
Signal-to-Noise  
Plus Distortion  
Ratio  
74.3  
74.4  
74.5  
74.2  
12.5MHz Input  
20MHz Input  
30MHz Input  
70MHz Input  
140MHz Input  
72.2  
71.9  
74.3  
71.6  
74.2  
74.1  
71.9  
90  
73.6  
71.9  
90  
73.4  
71.8  
90  
I
Intermodulation  
Distortion  
f = Nyquist,  
IN  
Nyquist + 1MHz  
MD  
Crosstalk  
f
= Nyquist  
–110  
–110  
–110  
dB  
IN  
229876fa  
3
LTC2298/LTC2297/LTC2296  
U U  
U
(Note 4)  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
1.475 1.500 1.525  
CM  
CM  
CM  
CM  
OUT  
±25  
3
ppm/°C  
mV/V  
2.7V < V < 3.3V  
DD  
–1mA < I  
< 1mA  
4
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2
TYP  
MAX  
UNITS  
LOGIC INPUTS (CLK, OE, SHDN, MUX)  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 3V  
V
V
IH  
IL  
DD  
DD  
IN  
= 3V  
0.8  
10  
I
= 0V to V  
–10  
µA  
pF  
IN  
DD  
C
Input Capacitance  
(Note 7)  
3
IN  
LOGIC OUTPUTS  
OV = 3V  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
OE = High (Note 7)  
3
pF  
mA  
mA  
OZ  
I
I
V
V
= 0V  
= 3V  
50  
50  
SOURCE  
SINK  
OUT  
OUT  
V
High Level Output Voltage  
I = –10µA  
O
2.995  
2.99  
V
V
OH  
O
I = –200µA  
2.7  
V
Low Level Output Voltage  
I = 10µA  
0.005  
0.09  
V
V
OL  
O
I = 1.6mA  
0.4  
O
OV = 2.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
2.49  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
OV = 1.8V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
1.79  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
229876fa  
4
LTC2298/LTC2297/LTC2296  
W U  
POWER REQUIRE E TS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 8)  
A
LTC2298  
TYP  
LTC2297  
TYP  
LTC2296  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
Analog Supply  
Voltage  
(Note 9)  
2.7  
3
3.4  
2.7  
3
3.4  
2.7  
3
3.4  
V
DD  
OV  
Output Supply  
Voltage  
(Note 9)  
0.5  
3
3.6  
0.5  
3
3.6  
0.5  
3
3.6  
V
DD  
IV  
Supply Current  
Both ADCs at f  
133  
400  
2
150  
450  
78  
235  
2
95  
50  
150  
2
60  
mA  
mW  
mW  
DD  
S(MAX)  
S(MAX)  
P
P
Power Dissipation Both ADCs at f  
285  
180  
DISS  
Shutdown Power  
(Each Channel)  
SHDN = H,  
OE = H, No CLK  
SHDN  
P
Nap Mode Power  
(Each Channel)  
SHDN = H,  
OE = L, No CLK  
15  
15  
15  
mW  
NAP  
W U  
TI I G CHARACTERISTICS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2298  
TYP  
LTC2297  
TYP  
LTC2296  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
f
t
Sampling Frequency (Note 9)  
1
65  
1
40  
1
25  
MHz  
s
CLK Low Time  
CLK High Time  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
(Note 7)  
7.3  
5
7.7  
7.7  
500  
500  
11.8  
5
12.5  
12.5  
500  
500  
18.9  
5
20  
20  
500  
500  
ns  
ns  
L
t
t
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
(Note 7)  
7.3  
5
7.7  
7.7  
500  
500  
11.8  
5
12.5  
12.5  
500  
500  
18.9  
5
20  
20  
500  
500  
ns  
ns  
H
Sample-and-Hold  
Aperture Delay  
0
0
0
ns  
AP  
t
t
CLK to DATA Delay C = 5pF (Note 7)  
1.4  
1.4  
2.7  
2.7  
4.3  
5.4  
5.4  
10  
1.4  
1.4  
2.7  
2.7  
4.3  
5.4  
5.4  
10  
1.4  
1.4  
2.7  
2.7  
4.3  
5.4  
5.4  
10  
ns  
ns  
ns  
D
L
MUX to DATA Delay C = 5pF (Note 7)  
MD  
L
Data Access Time  
C = 5pF (Note 7)  
L
After OE  
BUS Relinquish Time (Note 7)  
3.3  
5
8.5  
3.3  
5
8.5  
3.3  
5
8.5  
ns  
Pipeline  
Latency  
Cycles  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground with GND and OGND  
wired together (unless otherwise noted).  
Note 5: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 6: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and  
11 1111 1111 1111.  
Note 3: When these pin voltages are taken below GND or above V , they  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Guaranteed by design, not subject to test.  
DD  
Note 8: V = 3V, f  
= 65MHz (LTC2298), 40MHz (LTC2297), or  
DD  
SAMPLE  
of greater than 100mA below GND or above V without latchup.  
DD  
25MHz (LTC2296), input range = 1V with differential drive. The supply  
P-P  
Note 4: V = 3V, f  
= 65MHz (LTC2298), 40MHz (LTC2297), or  
current and power dissipation are the sum total for both channels with  
both channels active.  
Note 9: Recommended operating conditions.  
DD  
SAMPLE  
25MHz (LTC2296), input range = 2V with differential drive, unless  
P-P  
otherwise noted.  
229876fa  
5
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2298/LTC2297/LTC2296:  
Crosstalk vs Input Frequency  
LTC2298: Typical INL,  
2V Range, 65Msps  
LTC2298: Typical DNL,  
2V Range, 65Msps  
–100  
–105  
2.0  
1.5  
1.00  
0.75  
0.50  
0.25  
0
1.0  
–110  
–115  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
–120  
–125  
–130  
0
20  
40  
60  
80  
100  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
INPUT FREQUENCY (MHz)  
CODE  
CODE  
2298 G01  
2298 G02  
229876 G01  
LTC2298: 8192 Point FFT,  
= 70MHz, –1dB, 2V Range,  
LTC2298: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2298: 8192 Point FFT,  
= 5MHz, –1dB, 2V Range,  
f
f
f
IN  
IN  
IN  
65Msps  
65Msps  
65Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
30  
30  
30  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2298 G03  
2298 G04  
2298 G05  
LTC2298: 8192 Point FFT,  
= 140MHz, –1dB, 2V Range,  
LTC2298: 8192 Point 2-Tone FFT,  
f = 28.2MHz and 26.8MHz,  
IN  
–1dB, 2V Range, 65Msps  
LTC2298: Grounded Input  
Histogram, 65Msps  
f
IN  
65Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
25000  
20000  
15000  
10000  
5000  
0
21824  
20412  
10224  
9042  
2116  
172  
1596  
121  
30  
0
5
10  
15  
20  
25  
30  
8196 8197 8198 8199 8200 8201 8202 8203  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CODE  
2298 G08  
2298 G06  
2298 G06a  
229876fa  
6
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2298: SNR and SFDR vs  
Sample Rate, 2V Range,  
IN  
LTC2298: SNR vs Input Frequency,  
–1dB, 2V Range, 65Msps  
LTC2298: SFDR vs Input Frequency,  
–1dB, 2V Range, 65Msps  
f
= 5MHz, –1dB  
75  
74  
73  
72  
71  
70  
100  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
80  
70  
60  
0
50  
100  
150  
0
50  
INPUT FREQUENCY (MHz)  
100  
150  
200  
200  
0
10 20 30 40 50 60 70 80 90 100 110  
INPUT FREQUENCY (MHz)  
SAMPLE RATE (Msps)  
2298 G09  
2298 G10  
2298 G11  
LTC2298: SNR vs Input Level,  
= 30MHz, 2V Range, 65Msps  
LTC2298: SFDR vs Input Level,  
IN  
LTC2298: SNR and SFDR vs  
Clock Duty Cycle, 65Msps  
f
= 30MHz, 2V Range, 65Msps  
f
IN  
120  
110  
100  
90  
100  
80  
dBFS  
SFDR: DCS ON  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
95  
90  
85  
80  
75  
70  
80  
SFDR: DCS OFF  
dBc  
dBc  
70  
90dBc SFDR  
REFERENCE LINE  
60  
50  
40  
SNR: DCS ON  
SNR: DCS OFF  
30  
20  
–10  
–60  
50  
40  
–30  
–20  
0
30  
50  
60 65  
–10  
35 40 45  
55  
70  
–60  
50  
40  
–30  
–20  
0
INPUT LEVEL (dBFS)  
CLOCK DUTY CYCLE (%)  
INPUT LEVEL (dBFS)  
2298 G14  
2298 G13  
2298 G12  
LTC2298: I  
vs Sample Rate,  
OVDD  
LTC2298: I  
vs Sample Rate,  
5MHz Sine Wave Input, –1dB,  
= 1.8V  
VDD  
5MHz Sine Wave Input, –1dB  
O
VDD  
155  
145  
135  
125  
115  
105  
95  
12  
10  
8
1V RANGE  
6
2V RANGE  
4
2
0
0
40  
60 70  
10 20 30  
50  
80  
0
40  
60 70  
10 20 30  
50  
80  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
2298 G15  
2298 G16  
229876fa  
7
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2297: 8192 Point FFT,  
f = 5MHz, –1dB, 2V Range,  
IN  
40Msps  
LTC2297: Typical INL,  
2V Range, 40Msps  
LTC2297: Typical DNL,  
2V Range, 40Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
2.0  
1.5  
1.00  
0.75  
0.50  
0.25  
0
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
5
10  
15  
20  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
FREQUENCY (MHz)  
CODE  
CODE  
2297 G03  
2297 G01  
2297 G02  
LTC2297: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2297: 8192 Point FFT,  
= 70MHz, –1dB, 2V Range,  
LTC2297: 8192 Point FFT,  
f = 140MHz, –1dB, 2V Range,  
IN  
40Msps  
f
f
IN  
IN  
40Msps  
40Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2297 G04  
2297 G05  
2297 G06  
LTC2297: 8192 Point 2-Tone FFT,  
= 21.6MHz and 23.6MHz,  
f
LTC2297: Grounded Input  
Histogram, 40Msps  
LTC2297: SNR vs Input Frequency,  
–1dB, 2V Range, 40Msps  
IN  
–1dB, 2V Range, 40Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
30000  
25000  
20000  
15000  
10000  
5000  
0
75  
74  
73  
72  
71  
70  
24558  
15714  
14833  
4641  
4520  
640  
546  
36  
30  
0
5
10  
15  
20  
100  
INPUT FREQUENCY (MHz)  
0
50  
150  
200  
8184 81858186 8187818881898190 81918192  
FREQUENCY (MHz)  
CODE  
2297 G07  
2297 G09  
2297 G08  
229876fa  
8
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2297: SNR and SFDR vs  
LTC2297: SNR vs Input Level,  
IN  
LTC2297: SFDR vs Input Frequency,  
–1dB, 2V Range, 40Msps  
Sample Rate, 2V Range,  
f
= 5MHz, 2V Range, 40Msps  
f
IN  
= 5MHz, –1dB  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
SFDR  
dBc  
80  
SNR  
70  
60  
–10  
–60  
50  
40  
–30  
–20  
0
0
20  
40  
60  
80  
50  
100  
200  
0
150  
INPUT LEVEL (dBFS)  
SAMPLE RATE (Msps)  
INPUT FREQUENCY (MHz)  
2297 G12  
2297 G11  
2297 G10  
LTC2297: I  
vs Sample Rate,  
OVDD  
LTC2297: SFDR vs Input Level,  
IN  
LTC2297: I  
vs Sample Rate,  
5MHz Sine Wave Input, –1dB,  
VDD  
f
= 5MHz, 2V Range, 40Msps  
5MHz Sine Wave Input, –1dB  
O
= 1.8V  
VDD  
120  
110  
100  
90  
100  
90  
80  
70  
60  
8
6
4
2
0
dBFS  
80  
2V RANGE  
1V RANGE  
dBc  
70  
90dBc SFDR  
60  
REFERENCE LINE  
50  
40  
30  
20  
–10  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
–60  
50  
40  
–30  
–20  
0
INPUT LEVEL (dBFS)  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
2297 G14  
2297 G15  
2297 G13  
LTC2296: 8192 Point FFT,  
= 5MHz, –1dB, 2V Range,  
LTC2296: Typical INL,  
2V Range, 25Msps  
LTC2296: Typical DNL,  
2V Range, 25Msps  
f
IN  
25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
1.00  
0.75  
0.50  
0.25  
0
2.0  
1.5  
1.0  
0.5  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.5  
–1.0  
–1.5  
–2.0  
12  
0
2
4
6
8
10  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
FREQUENCY (MHz)  
CODE  
CODE  
2296 G02  
2296 G03  
2296 G01  
229876fa  
9
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2296: 8192 Point FFT,  
= 70MHz, –1dB, 2V Range,  
LTC2296: 8192 Point FFT,  
f = 140MHz, –1dB, 2V Range,  
IN  
25Msps  
LTC2296: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
f
f
IN  
IN  
25Msps  
25Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
12  
0
2
4
6
8
10  
12  
12  
0
2
4
6
8
10  
0
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2296 G05  
2296 G04  
2296 G06  
LTC2296: 8192 Point 2-Tone FFT,  
= 10.9MHz and 13.8MHz,  
f
LTC2296: Grounded Input  
Histogram, 25Msps  
LTC2296: SNR vs Input Frequency,  
–1dB, 2V Range, 25Msps  
IN  
–1dB, 2V Range, 25Msps  
25000  
20000  
15000  
10000  
5000  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
75  
74  
73  
72  
71  
70  
22016  
18803  
13373  
6919  
3227  
853  
43  
278  
12  
0
2
4
6
8
10  
50  
100  
150  
8179 8180 8181 8182 8183 8184 8185 8186  
0
200  
FREQUENCY (MHz)  
CODE  
INPUT FREQUENCY (MHz)  
2296 G07  
2296 G08  
2296 G09  
LTC2296: SFDR vs Input  
Frequency, –1dB, 2V Range,  
25Msps  
LTC2296: SNR and SFDR vs  
Sample Rate, 2V Range,  
IN  
LTC2296: SNR vs Input Level,  
f = 5MHz, 2V Range, 25Msps  
IN  
f
= 5MHz, –1dB  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
110  
100  
90  
dBFS  
SFDR  
dBc  
80  
SNR  
70  
60  
–60 –50  
–10  
50  
100  
200  
–40  
–30  
–20  
0
0
150  
0
10  
20  
30  
40  
50  
INPUT LEVEL (dBFS)  
INPUT FREQUENCY (MHz)  
SAMPLE RATE (Msps)  
2296 G12  
2296 G10  
2296 G11  
229876fa  
10  
LTC2298/LTC2297/LTC2296  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2296: I  
vs Sample Rate,  
OVDD  
LTC2296: SFDR vs Input Level,  
IN  
LTC2296: I vs Sample Rate,  
VDD  
5MHz Sine Wave Input, –1dB,  
f
= 5MHz, 2V Range, 25Msps  
5MHz Sine Wave Input, –1dB  
O
= 1.8V  
VDD  
70  
60  
50  
40  
30  
120  
110  
100  
90  
6
4
2
0
dBFS  
dBc  
80  
2V RANGE  
1V RANGE  
70  
90dBc SFDR  
60  
REFERENCE LINE  
50  
40  
30  
20  
30  
0
20  
25  
30  
0
5
10 15  
20  
25  
35  
–10  
5
10 15  
35  
–60 –50 –40 –30 –20  
INPUT LEVEL (dBFS)  
0
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
2296 G13  
2296 G14  
2296 G15  
U
U
U
PI FU CTIO S  
+
AINA (Pin 1): Channel A Positive Differential Analog  
chipcapacitorasclosetothepinaspossible.Alsobypass  
to Pins 13, 14 with an additional 2.2µF ceramic chip ca-  
pacitor and to ground with a 1µF ceramic chip capacitor.  
Input.  
AINA (Pin 2): Channel A Negative Differential Analog  
Input.  
REFHB (Pins 13, 14): Channel B High Reference. Short  
together and bypass to Pins 11, 12 with a 0.1µF ceramic  
chipcapacitorasclosetothepinaspossible.Alsobypass  
to Pins 11, 12 with an additional 2.2µF ceramic chip ca-  
pacitor and to ground with a 1µF ceramic chip capacitor.  
REFHA (Pins 3, 4): Channel A High Reference. Short  
together and bypass to Pins 5, 6 with a 0.1µF ceramic chip  
capacitor as close to the pin as possible. Also bypass to  
Pins 5, 6 with an additional 2.2µF ceramic chip capacitor  
and to ground with a 1µF ceramic chip capacitor.  
AINB (Pin 15): Channel B Negative Differential Analog  
Input.  
REFLA (Pins 5, 6): Channel A Low Reference. Short  
together and bypass to Pins 3, 4 with a 0.1µF ceramic chip  
capacitor as close to the pin as possible. Also bypass to  
Pins 3, 4 with an additional 2.2µF ceramic chip capacitor  
and to ground with a 1µF ceramic chip capacitor.  
+
AINB (Pin 16): Channel B Positive Differential Analog  
Input.  
GND (Pins 17, 64): ADC Power Ground.  
SENSEB(Pin19):ChannelBReferenceProgrammingPin.  
ConnectingSENSEBtoVCMB selectstheinternalreference  
and a ±0.5V input range. VDD selects the internal reference  
and a ±1V input range. An external reference greater than  
0.5V and less than 1V applied to SENSEB selects an input  
range of ±VSENSEB. ±1V is the largest valid input range.  
VDD (Pins 7, 10, 18, 63): Analog 3V Supply. Bypass to  
GND with 0.1µF ceramic chip capacitors.  
CLKA (Pin 8): Channel A Clock Input. The input sample  
starts on the positive edge.  
CLKB (Pin 9): Channel B Clock Input. The input sample  
starts on the positive edge.  
VCMB (Pin 20): Channel B 1.5V Output and Input Common  
Mode Bias. Bypass to ground with 2.2µF ceramic chip  
REFLB (Pins 11, 12): Channel B Low Reference. Short  
together and bypass to Pins 13, 14 with a 0.1µF ceramic  
capacitor. Do not connect to VCMA  
.
229876fa  
11  
LTC2298/LTC2297/LTC2296  
U
U
U
PI FU CTIO S  
MUX (Pin 21): Digital Output Multiplexer Control. If MUX  
isHigh,ChannelAcomesoutonDA0-DA13,OFA;Channel B  
comes out on DB0-DB13, OFB. If MUX is Low, the output  
busses are swapped and Channel A comes out on DB0-  
DB13, OFB; Channel B comes out on DA0-DA13, OFA. To  
multiplex both channels onto a single output bus, connect  
MUX, CLKA and CLKB together.  
SHDNA (Pin 59): Channel A Shutdown Mode Selection  
Pin. Connecting SHDNA to GND and OEA to GND results  
in normal operation with the outputs enabled. Connecting  
SHDNA to GND and OEA to VDD results in normal opera-  
tion with the outputs at high impedance. Connecting  
SHDNA to VDD and OEA to GND results in nap mode with  
the outputs at high impedance. Connecting SHDNA to VDD  
and OEA to VDD results in sleep mode with the outputs at  
high impedance.  
SHDNB (Pin 22): Channel B Shutdown Mode Selection  
Pin. Connecting SHDNB to GND and OEB to GND results  
in normal operation with the outputs enabled. Connecting  
SHDNB to GND and OEB to VDD results in normal opera-  
tion with the outputs at high impedance. Connecting  
SHDNB to VDD and OEB to GND results in nap mode with  
the outputs at high impedance. Connecting SHDNB to VDD  
and OEB to VDD results in sleep mode with the outputs at  
high impedance.  
MODE (Pin 60): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Note that MODE controls both  
channels. Connecting MODE to GND selects offset binary  
output format and turns the clock duty cycle stabilizer off.  
1/3 VDD selects offset binary output format and turns the  
clock duty cycle stabilizer on. 2/3 VDD selects 2’s comple-  
ment output format and turns the clock duty cycle stabi-  
lizer on. VDD selects 2’s complement output format and  
turns the clock duty cycle stabilizer off.  
OEB (Pin 23): Channel B Output Enable Pin. Refer to  
SHDNB pin function.  
VCMA (Pin 61): Channel A 1.5V Output and Input Common  
Mode Bias. Bypass to ground with 2.2µF ceramic chip  
DB0 – DB13 (Pins 24 to 30, 33 to 39): Channel B Digital  
Outputs. DB13 is the MSB.  
capacitor. Do not connect to VCMB  
.
OGND (Pins 31, 50): Output Driver Ground.  
SENSEA(Pin62):ChannelAReferenceProgrammingPin.  
ConnectingSENSEAtoVCMA selectstheinternalreference  
and a ±0.5V input range. VDD selects the internal reference  
and a ±1V input range. An external reference greater than  
0.5V and less than 1V applied to SENSEA selects an input  
range of ±VSENSEA. ±1V is the largest valid input range.  
OVDD (Pins 32, 49): Positive Supply for the Output Driv-  
ers. Bypass to ground with 0.1µF ceramic chip capacitor.  
OFB (Pin 40): Channel B Overflow/Underflow Output.  
High when an overflow or underflow has occurred.  
DA0 – DA13 (Pins 41 to 48, 51 to 56): Channel A Digital  
Outputs. DA13 is the MSB.  
GND (Exposed Pad) (Pin 65): ADC Power Ground. The  
Exposed Pad on the bottom of the package needs to be  
soldered to ground.  
OFA (Pin 57): Channel A Overflow/Underflow Output.  
High when an overflow or underflow has occurred.  
OEA (Pin 58): Channel A Output Enable Pin. Refer to  
SHDNA pin function.  
229876fa  
12  
LTC2298/LTC2297/LTC2296  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
+
A
IN  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
SIXTH PIPELINED  
ADC STAGE  
A
IN  
V
CM  
1.5V  
REFERENCE  
SHIFT REGISTER  
AND CORRECTION  
2.2µF  
RANGE  
SELECT  
REFH  
REFL  
INTERNAL CLOCK SIGNALS  
OV  
DD  
REF  
BUF  
SENSE  
OF  
D13  
D0  
CLOCK/DUTY  
CYCLE  
CONTROL  
DIFF  
REF  
AMP  
CONTROL  
LOGIC  
OUTPUT  
DRIVERS  
229876 F01  
REFH  
REFL  
0.1µF  
2.2µF  
OGND  
SHDN  
CLK  
MODE  
OE  
1µF  
1µF  
Figure 1. Functional Block Diagram (Only One Channel is Shown)  
229876fa  
13  
LTC2298/LTC2297/LTC2296  
W U  
W
TI I G DIAGRA S  
Dual Digital Output Bus Timing  
(Only One Channel is Shown)  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 1  
N + 3  
N + 5  
t
t
H
L
CLK  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
D0-D13, OF  
229876 TD01  
Multiplexed Digital Output Bus Timing  
t
APA  
A + 4  
A + 2  
ANALOG  
INPUT A  
A
A + 1  
B + 1  
A + 3  
B + 3  
t
APB  
B + 4  
B + 2  
ANALOG  
INPUT B  
B
t
t
H
L
CLKA = CLKB = MUX  
A – 5  
B – 5  
A – 5  
A – 4  
B – 4  
B – 4  
A – 3  
B – 3  
B – 3  
A – 2  
B – 2  
B – 2  
A – 1  
D0A-D13A, OFA  
D0B-D13B, OFB  
t
t
MD  
D
B – 5  
A – 4  
A – 3  
A – 2  
B – 1  
229876 TD02  
229876fa  
14  
LTC2298/LTC2297/LTC2296  
W U U  
APPLICATIO S I FOR ATIO  
U
DYNAMIC PERFORMANCE  
2fb + fa, 2fa – fb and 2fb – fa. The intermodulation  
distortion is defined as the ratio of the RMS value of either  
input tone to the RMS value of the largest 3rd order  
intermodulation product.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band limited  
to frequencies above DC to below half the sampling  
frequency.  
Spurious Free Dynamic Range (SFDR)  
Spurious free dynamic range is the peak harmonic or  
spurious noise that is the largest spectral component  
excluding the input signal and DC. This value is expressed  
in decibels relative to the RMS value of a full scale input  
signal.  
Signal-to-Noise Ratio  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC.  
Input Bandwidth  
The input bandwidth is that input frequency at which the  
amplitude of the reconstructed fundamental is reduced by  
3dB for a full scale input signal.  
Total Harmonic Distortion  
Aperture Delay Time  
Total harmonic distortion is the ratio of the RMS sum of all  
harmonicsoftheinputsignaltothefundamentalitself.The  
out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency. THD is  
expressed as:  
The time from when CLK reaches midsupply to the instant  
that the input signal is held by the sample and hold circuit.  
Aperture Delay Jitter  
THD = 20Log ( )  
(V22 + V32 + V42 + . . . Vn2)/V1  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
secondthroughnthharmonics. TheTHDcalculatedinthis  
data sheet uses all the harmonics up to the fifth.  
Thevariationintheaperturedelaytimefromconversionto  
conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
SNRJITTER = –20log (2π • fIN • tJITTER  
)
Crosstalk  
Intermodulation Distortion  
Crosstalk is the coupling from one channel (being driven  
by a full-scale signal) onto the other channel (being driven  
by a –1dBFS signal).  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
CONVERTER OPERATION  
AsshowninFigure1,theLTC2298/LTC2297/LTC2296are  
dual CMOS pipelined multistep converters. The convert-  
ers have six pipelined ADC stages; a sampled analog input  
will result in a digitized value five cycles later (see the  
Timing Diagram section). For optimal AC performance the  
analog inputs should be driven differentially. For cost  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,  
etc. The 3rd order intermodulation products are 2fa + fb,  
229876fa  
15  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
sensitive applications, the analog inputs can be driven  
single-ended with slightly worse harmonic distortion. The  
CLK input is single-ended. The LTC2298/LTC2297/  
LTC2296havetwophasesofoperation, determinedbythe  
state of the CLK input pin.  
third, fourth and fifth stages, resulting in a fifth stage  
residue that is sent to the sixth stage ADC for final  
evaluation.  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally synchronized such  
thattheresultscanbeproperlycombinedinthecorrection  
logic before being sent to the output buffer.  
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage residue amplifier.  
In operation, the ADC quantizes the input to the stage and  
the quantized value is subtracted from the input by the  
DAC to produce a residue. The residue is amplified and  
outputbytheresidueamplifier.Successivestagesoperate  
out of phase so that when the odd stages are outputting  
their residue, the even stages are acquiring that residue  
and vice versa.  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Sample/Hold Operation  
Figure 2 shows an equivalent circuit for the LTC2298/  
LTC2297/LTC2296 CMOS differential sample-and-hold.  
The analog inputs are connected to the sampling capaci-  
tors (CSAMPLE) through NMOS transistors. The capacitors  
shownattachedtoeachinput(CPARASITIC)arethesumma-  
tion of all other capacitance associated with each input.  
WhenCLKislow, theanaloginputissampleddifferentially  
directly onto the input sample-and-hold capacitors, inside  
the “Input S/H” shown in the block diagram. At the instant  
that CLK transitions from low to high, the sampled input is  
held. While CLK is high, the held input voltage is buffered  
by the S/H amplifier which drives the first pipelined ADC  
stage. The first stage acquires the output of the S/H during  
this high phase of CLK. When CLK goes back low, the first  
stage produces its residue which is acquired by the  
second stage. At the same time, the input S/H goes back  
to acquiring the analog input. When CLK goes back high,  
the second stage produces its residue which is acquired  
by the third stage. An identical process is repeated for the  
During the sample phase when CLK is low, the transistors  
connect the analog inputs to the sampling capacitors and  
they charge to and track the differential input voltage.  
When CLK transitions from low to high, the sampled input  
voltageisheldonthesamplingcapacitors.Duringthehold  
phase when CLK is high, the sampling capacitors are  
disconnectedfromtheinputandtheheldvoltageispassed  
to the ADC core for processing. As CLK transitions from  
high to low, the inputs are reconnected to the sampling  
LTC2298/LTC2297/LTC2296  
V
DD  
C
C
SAMPLE  
4pF  
15  
15Ω  
+
A
A
IN  
IN  
C
PARASITIC  
1pF  
V
DD  
SAMPLE  
4pF  
C
PARASITIC  
1pF  
V
DD  
CLK  
229876 F02  
Figure 2. Equivalent Input Circuit  
229876fa  
16  
LTC2298/LTC2297/LTC2296  
W U U  
APPLICATIO S I FOR ATIO  
U
capacitors to acquire a new sample. Since the sampling  
capacitors still hold the previous sample, a charging glitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. If the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. If the input change is large, such as  
the change seen with input frequencies near Nyquist, then  
a larger charging glitch will be seen.  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
For the best performance, it is recommended to have a  
source impedance of 100or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
Input Drive Circuits  
Single-Ended Input  
Figure 3 shows the LTC2298/LTC2297/LTC2296 being  
driven by an RF transformer with a center tapped second-  
ary. The secondary center tap is DC biased with VCM  
For cost sensitive applications, the analog inputs can be  
driven single-ended. With a single-ended input the har-  
monic distortion and INL will degrade, but the SNR and  
,
setting the ADC input signal at its optimum DC level.  
Terminating on the transformer secondary is desirable, as  
this provides a common mode path for charging glitches  
caused by the sample and hold. Figure 3 shows a 1:1 turns  
ratio transformer. Other turns ratios can be used if the  
sourceimpedanceseenbytheADCdoesnotexceed100Ω  
for each ADC input. A disadvantage of using a transformer  
is the loss of low frequency response. Most small RF  
transformers have poor performance at frequencies be-  
low 1MHz.  
+
DNLwillremainunchanged.Forasingle-endedinput,AIN  
should be driven with the input signal and AINshould be  
connected to 1.5V or VCM  
.
Common Mode Bias  
For optimal performance the analog inputs should be  
driven differentially. Each input should swing ±0.5V for  
the 2V range or ±0.25V for the 1V range, around a  
common mode voltage of 1.5V. The VCM output pin may  
be used to provide the common mode bias level. VCM can  
be tied directly to the center tap of a transformer to set the  
DC input level or as a reference level to an op amp  
differentialdrivercircuit. TheVCM pinmustbebypassedto  
ground close to the ADC with a 2.2µF or greater capacitor.  
V
CM  
2.2µF  
0.1µF T1  
+
25Ω  
A
IN  
1:1  
ANALOG  
INPUT  
LTC2298  
LTC2297  
LTC2296  
0.1µF  
25Ω  
25Ω  
Input Drive Impedance  
12pF  
A
As with all high performance, high speed ADCs, the  
dynamicperformanceoftheLTC2298/LTC2297/LTC2296  
can be influenced by the input drive circuitry, particularly  
the second and third harmonics. Source impedance and  
reactance can influence SFDR. At the falling edge of CLK,  
the sample-and-hold circuit will connect the 4pF sampling  
capacitor to the input pin and start the sampling period.  
The sampling period ends when CLK rises, holding the  
sampled input on the sampling capacitor. Ideally the input  
circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
1/(2FENCODE);however, thisisnotalwayspossibleandthe  
incomplete settling may degrade the SFDR. The sampling  
IN  
25Ω  
T1 = MA/COM ETC1-1T  
229876 F03  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 3. Single-Ended to Differential Conversion  
Using a Transformer  
Figure 4 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. Theadvantageofthismethodisthatitprovideslow  
frequencyinputresponse;however,thelimitedgainband-  
width of most op amps will limit the SFDR at high input  
frequencies.  
229876fa  
17  
LTC2298/LTC2297/LTC2296  
W U U  
U
APPLICATIO S I FOR ATIO  
V
V
CM  
CM  
2.2µF  
2.2µF  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
0.1µF  
+
+
25  
25Ω  
12  
A
A
IN  
IN  
ANALOG  
INPUT  
LTC2298  
LTC2297  
LTC2296  
LTC2298  
LTC2297  
LTC2296  
ANALOG  
INPUT  
+
+
0.1µF  
25Ω  
25Ω  
T1  
8pF  
A
CM  
12pF  
A
0.1µF  
12Ω  
IN  
IN  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
229876 F04  
229876 F06  
Figure 4. Differential Drive with an Amplifier  
Figure 6. Recommended Front End Circuit for  
Input Frequencies Between 70MHz and 170MHz  
Figure 5 shows a single-ended input circuit. The imped-  
ance seen by the analog inputs should be matched. This  
circuit is not recommended if low distortion is required.  
V
CM  
2.2µF  
V
CM  
0.1µF  
0.1µF  
+
A
A
IN  
IN  
ANALOG  
INPUT  
LTC2298  
2.2µF  
LTC2297  
LTC2296  
1k  
1k  
25Ω  
0.1µF  
25Ω  
25Ω  
0.1µF  
+
T1  
A
IN  
IN  
ANALOG  
INPUT  
LTC2298  
LTC2297  
LTC2296  
12pF  
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
229876 F07  
25Ω  
A
229876 F05  
0.1µF  
Figure 7. Recommended Front End Circuit for  
Input Frequencies Between 170MHz and 300MHz  
Figure 5. Single-Ended Drive  
V
CM  
The25resistorsand12pFcapacitorontheanaloginputs  
serve two purposes: isolating the drive circuitry from the  
sample-and-hold charging glitches and limiting the  
wideband noise at the converter input.  
2.2µF  
0.1µF  
0.1µF  
+
6.8nH  
A
IN  
IN  
ANALOG  
INPUT  
LTC2298  
LTC2297  
LTC2296  
0.1µF  
25Ω  
25Ω  
T1  
For input frequencies above 70MHz, the input circuits of  
Figure 6, 7 and 8 are recommended. The balun trans-  
former gives better high frequency response than a flux  
coupled center tapped transformer. The coupling capaci-  
tors allow the analog inputs to be DC biased at 1.5V. In  
Figure 8, the series inductors are impedance matching  
elements that maximize the ADC bandwidth.  
6.8nH  
A
T1 = MA/COM, ETC 1-1-13  
RESISTORS, CAPACITORS, INDUCTORS  
ARE 0402 PACKAGE SIZE  
229876 F08  
Figure 8. Recommended Front End Circuit for  
Input Frequencies Above 300MHz  
229876fa  
18  
LTC2298/LTC2297/LTC2296  
W U U  
APPLICATIO S I FOR ATIO  
Reference Operation  
U
The difference amplifier generates the high and low refer-  
ence for the ADC. High speed switching circuits are  
connected to these outputs and they must be externally  
bypassed. Each output has two pins. The multiple output  
pins are needed to reduce package inductance. Bypass  
capacitors must be connected as shown in Figure 9. Each  
ADC channel has an independent reference with its own  
bypass capacitors. The two channels can be used with the  
same or different input ranges.  
Figure 9 shows the LTC2298/LTC2297/LTC2296 refer-  
ence circuitry consisting of a 1.5V bandgap reference, a  
difference amplifier and switching and control circuit. The  
internal voltage reference can be configured for two pin  
selectable input ranges of 2V (±1V differential) or 1V  
(±0.5V differential). Tying the SENSE pin to VDD selects  
the 2V range; tying the SENSE pin to VCM selects the 1V  
range.  
Other voltage ranges between the pin selectable ranges  
can be programmed with two external resistors as shown  
inFigure10.Anexternalreferencecanbeusedbyapplying  
its output directly or through a resistor divider to SENSE.  
It is not recommended to drive the SENSE pin with a logic  
device. The SENSE pin should be tied to the appropriate  
levelasclosetotheconverteraspossible. IftheSENSEpin  
is driven externally, it should be bypassed to ground as  
close to the device as possible with a 1µF ceramic capacitor.  
Forthebestchannelmatching, connectanexternalreference  
to SENSEA and SENSEB.  
The 1.5V bandgap reference serves two functions: its  
output provides a DC bias point for setting the common  
mode voltage of any external input circuitry; additionally,  
the reference is used with a difference amplifier to gener-  
ate the differential reference levels needed by the internal  
ADC circuitry. An external bypass capacitor is required for  
the 1.5V reference output, VCM. This provides a high  
frequency low impedance path to ground for internal and  
external circuitry.  
LTC2298/LTC2297/LTC2296  
4  
1.5V  
V
CM  
V
CM  
1.5V BANDGAP  
REFERENCE  
1.5V  
2.2µF  
2.2µF  
12k  
1V  
0.5V  
LTC2298  
LTC2297  
LTC2296  
0.75V  
12k  
SENSE  
RANGE  
DETECT  
AND  
1µF  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
229876 F10  
SENSE  
REFH  
TIE TO V FOR 1V RANGE;  
CM  
RANGE = 2 • V  
FOR  
< 1V  
SENSE  
SENSE  
BUFFER  
0.5V < V  
Figure 10. 1.5V Range ADC  
INTERNAL ADC  
HIGH REFERENCE  
1µF  
Input Range  
The input range can be set based on the application. The  
2Vinputrangewillprovidethebestsignal-to-noiseperfor-  
mance while maintaining excellent SFDR. The 1V input  
range will have better SFDR performance, but the SNR will  
degrade by 5.8dB. See the Typical Performance Charac-  
teristics section.  
2.2µF  
1µF  
0.1µF  
DIFF AMP  
REFL  
INTERNAL ADC  
LOW REFERENCE  
229876 F09  
Driving the Clock Input  
The CLK inputs can be driven directly with a CMOS or TTL  
levelsignal. Asinusoidalclockcanalsobeusedalongwith  
a low jitter squaring circuit before the CLK pin (Figure 11).  
Figure 9. Equivalent Reference Circuit  
229876fa  
19  
LTC2298/LTC2297/LTC2296  
W U U  
U
APPLICATIO S I FOR ATIO  
CLEAN  
CLEAN  
SUPPLY  
SUPPLY  
4.7µF  
4.7µF  
FERRITE  
BEAD  
FERRITE  
BEAD  
0.1µF  
0.1µF  
1k  
0.1µF  
LTC2298  
LTC2297  
LTC2296  
SINUSOIDAL  
CLOCK  
LTC2298  
LTC2297  
LTC2296  
CLK  
CLK  
INPUT  
100  
501k  
NC7SVU04  
229876 F11  
229876 F12  
IF LVDS USE FIN1002 OR FIN1018.  
FOR PECL, USE AZ1000ELT21 OR SIMILAR  
Figure 11. Sinusoidal Single-Ended CLK Drive  
Figure 12. CLK Drive Using an LVDS or PECL to CMOS Converter  
ThenoiseperformanceoftheLTC2298/LTC2297/LTC2296  
can depend on the clock signal quality as much as on the  
analog input. Any noise present on the clock signal will  
resultinadditionalaperturejitterthatwillbeRMSsummed  
with the inherent ADC aperture jitter.  
ETC1-1T  
CLK  
LTC2298  
LTC2297  
LTC2296  
5pF-30pF  
In applications where jitter is critical, such as when digitiz-  
ing high input frequencies, use as large an amplitude as  
possible. Also, if the ADC is clocked with a sinusoidal  
signal, filter the CLK signal to reduce wideband noise and  
distortion products generated by the source.  
DIFFERENTIAL  
CLOCK  
INPUT  
229876 F13  
0.1µF  
FERRITE  
BEAD  
V
CM  
It is recommended that CLKA and CLKB are shorted  
together and driven by the same clock source. If a small  
time delay is desired between when the two channels  
sample the analog inputs, CLKA and CLKB can be driven  
by two different signals. If this delay exceeds 1ns, the  
performance of the part may degrade. CLKA and CLKB  
should not be driven by asynchronous signals.  
Figure 13. LVDS or PECL CLK Drive Using a Transformer  
The transformer in the example may be terminated with  
the appropriate termination for the signaling in use. The  
use of a transformer with a 1:4 impedance ratio may be  
desirable in cases where lower voltage differential signals  
are considered. The center tap may be bypassed to  
ground through a capacitor close to the ADC if the  
differential signals originate on a different plane. The use  
of a capacitor at the input may result in peaking, and  
depending on transmission line length may require a 10Ω  
to 20ohm series resistor to act as both a low pass filter  
for high frequency noise that may be induced into the  
clock line by neighboring digital signals, as well as a  
damping mechanism for reflections.  
Figures 12 and 13 show alternatives for converting a  
differential clock to the single-ended CLK input. The use of  
a transformer provides no incremental contribution to  
phase noise. The LVDS or PECL to CMOS translators  
provide little degradation below 70MHz, but at 140MHz  
will degrade the SNR compared to the transformer solu-  
tion. The nature of the received signals also has a large  
bearing on how much SNR degradation will be experi-  
enced. For high crest factor signals such as WCDMA or  
OFDM,wherethenominalpowerlevelmustbeatleast6dB  
to 8dB below full scale, the use of these translators will  
have a lesser impact.  
229876fa  
20  
LTC2298/LTC2297/LTC2296  
Table 1. Output Codes vs Input Voltage  
Maximum and Minimum Conversion Rates  
+
A
IN  
– A  
D13 – D0  
D13 – D0  
(2’s Complement)  
IN  
ThemaximumconversionratefortheLTC2298/LTC2297/  
LTC2296 is 65Msps (LTC2298), 40Msps (LTC2297), and  
25Msps (LTC2296). For the ADC to operate properly, the  
CLK signal should have a 50% (±5%) duty cycle. Each half  
cycle must have at least 7.3ns (LTC2298), 11.8ns  
(LTC2297), and 18.9ns (LTC2296) for the ADC internal  
circuitrytohaveenoughsettlingtimeforproperoperation.  
(2V Range)  
OF  
(Offset Binary)  
>+1.000000V  
+0.999878V  
+0.999756V  
1
0
0
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
+0.000122V  
0.000000V  
–0.000122V  
–0.000244V  
0
0
0
0
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
–0.999878V  
–1.000000V  
<–1.000000V  
0
0
1
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
An optional clock duty cycle stabilizer circuit can be used  
if the input clock has a non 50% duty cycle. This circuit  
uses the rising edge of the CLK pin to sample the analog  
input. The falling edge of CLK is ignored and the internal  
falling edge is generated by a phase-locked loop. The  
input clock duty cycle can vary from 40% to 60% and the  
clock duty cycle stabilizer will maintain a constant 50%  
internal duty cycle. If the clock is turned off for a long  
period of time, the duty cycle stabilizer circuit will require  
a hundred clock cycles for the PLL to lock onto the input  
clock. Tousetheclockdutycyclestabilizer, theMODEpin  
should be connected to 1/3VDD or 2/3VDD using external  
resistors. The MODE pin controls both Channel A and  
Channel B—the duty cycle stabilizer is either on of off for  
both channels.  
Digital Output Buffers  
Figure 14 shows an equivalent circuit for a single output  
buffer. Each buffer is powered by OVDD and OGND, iso-  
lated from the ADC power and ground. The additional  
N-channel transistor in the output driver allows operation  
down to low voltages. The internal resistor in series with  
the output makes the output appear as 50to external  
circuitry and may eliminate the need for external damping  
resistors.  
LTC2298/LTC2297/LTC2296  
OV  
DD  
0.5V  
TO 3.6V  
ThelowerlimitoftheLTC2298/LTC2297/LTC2296sample  
rate is determined by droop of the sample-and-hold cir-  
cuits. The pipelined architecture of this ADC relies on  
storing analog signals on small valued capacitors. Junc-  
tion leakage will discharge the capacitors. The specified  
minimumoperatingfrequencyfortheLTC2298/LTC2297/  
LTC2296 is 1Msps.  
V
V
DD  
DD  
0.1µF  
OV  
DD  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
43  
TYPICAL  
DATA  
OUTPUT  
OE  
OGND  
229876 F14  
DIGITAL OUTPUTS  
Figure 14. Digital Output Buffer  
Table 1 shows the relationship between the analog input  
voltage, the digital data bits, and the overflow bit.  
Aswithallhighspeed/highresolutionconverters, thedigi-  
tal output loading can affect the performance. The digital  
outputsoftheLTC2298/LTC2297/LTC2296shoulddrivea  
minimal capacitive load to avoid possible interaction  
between the digital outputs and sensitive input circuitry.  
229876fa  
21  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
The output should be buffered with a device such as an  
ALVCH16373 CMOS latch. For full speed operation the  
capacitive load should be kept under 10pF.  
Output Enable  
Theoutputsmaybedisabledwiththeoutputenablepin,OE.  
OEhighdisablesalldataoutputsincludingOF.Thedataac-  
cess and bus relinquish times are too slow to allow the  
outputs to be enabled and disabled during full speed op-  
eration.TheoutputHi-Zstateisintendedforuseduringlong  
periods of inactivity. Channels A and B have independent  
output enable pins (OEA, OEB).  
Lower OVDD voltages will also help reduce interference  
from the digital outputs.  
Data Format  
Using the MODE pin, the LTC2298/LTC2297/LTC2296  
parallel digital output can be selected for offset binary or  
2’s complement format. Note that MODE controls both  
Channel A and Channel B. Connecting MODE to GND or  
1/3VDD selects offset binary output format. Connecting  
MODE to 2/3VDD or VDD selects 2’s complement output  
format. An external resistor divider can be used to set the  
1/3VDD or 2/3VDD logic values. Table 2 shows the logic  
states for the MODE pin.  
Sleep and Nap Modes  
The converter may be placed in shutdown or nap modes  
to conserve power. Connecting SHDN to GND results in  
normaloperation. ConnectingSHDNtoVDD andOEtoVDD  
results in sleep mode, which powers down all circuitry  
includingthereferenceandtypicallydissipates1mW.When  
exiting sleep mode it will take milliseconds for the output  
datatobecomevalidbecausethereferencecapacitorshave  
torechargeandstabilize. ConnectingSHDNtoVDD andOE  
to GND results in nap mode, which typically dissipates  
30mW. In nap mode, the on-chip reference circuit is kept  
on,sothatrecoveryfromnapmodeisfasterthanthatfrom  
sleepmode,typicallytaking100clockcycles.Inbothsleep  
and nap modes, all digital outputs are disabled and enter  
the Hi-Z state.  
Table 2. MODE Pin Function  
Clock Duty  
MODE Pin  
Output Format  
Cycle Stabilizer  
0
Offset Binary  
Off  
On  
On  
Off  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
V
DD  
Channels A and B have independent SHDN pins (SHDNA,  
SHDNB). Channel A is controlled by SHDNA and OEA, and  
ChannelBiscontrolledbySHDNBandOEB.Thenap,sleep  
andoutputenablemodesofthetwochannelsarecompletely  
independent, so it is possible to have one channel operat-  
ing while the other channel is in nap or sleep mode.  
Overflow Bit  
When OF outputs a logic high the converter is either  
overranged or underranged.  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OVDD, should be tied  
to the same power supply as for the logic being driven. For  
example,iftheconverterisdrivingaDSPpoweredbya1.8V  
supply,thenOVDD shouldbetiedtothatsame1.8Vsupply.  
Digital Output Multiplexer  
ThedigitaloutputsoftheLTC2298/LTC2297/LTC2296can  
be multiplexed onto a single data bus. The MUX pin is a  
digitalinputthatswapsthetwodatabusses.IfMUXisHigh,  
ChannelAcomesoutonDA0-DA13,OFA;ChannelBcomes  
out on DB0-DB13, OFB. If MUX is Low, the output busses  
areswappedandChannelAcomesoutonDB0-DB13,OFB;  
ChannelBcomesoutonDA0-DA13,OFA.Tomultiplexboth  
channelsontoasingleoutputbus,connectMUX,CLKAand  
CLKBtogether(seetheTimingDiagramforthemultiplexed  
mode). The multiplexed data is available on either data  
OVDD can be powered with any voltage from 500mV up to  
3.6V.OGNDcanbepoweredwithanyvoltagefromGNDup  
to 1V and must be less than OVDD. The logic outputs will  
swing between OGND and OVDD.  
bus—the unused data bus can be disabled with its OE pin.  
229876fa  
22  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
Grounding and Bypassing  
a 3V canned oscillator from vendors such as Saronix or  
Vectron can be placed close to the ADC and simply  
connected directly to the ADC. If there is any distance to  
the ADC, some source termination to reduce ringing that  
may occur even over a fraction of an inch is advisable. You  
must not allow the clock to overshoot the supplies or  
performance will suffer. Do not filter the clock signal with  
a narrow band filter unless you have a sinusoidal clock  
source, as the rise and fall time artifacts present in typical  
digital clock signals will be translated into phase noise.  
The LTC2298/LTC2297/LTC2296 requires a printed cir-  
cuit board with a clean, unbroken ground plane. A multilayer  
board with an internal ground plane is recommended.  
Layout for the printed circuit board should ensure that  
digital and analog signal lines are separated as much as  
possible. In particular, care should be taken not to run any  
digital track alongside an analog signal track or under-  
neath the ADC.  
High quality ceramic bypass capacitors should be used at  
theVDD, OVDD, VCM, REFH, andREFLpins. Bypasscapaci-  
tors must be located as close to the pins as possible. Of  
particular importance is the 0.1µF capacitor between  
REFH and REFL. This capacitor should be placed as close  
to the device as possible (1.5mm or less). A size 0402  
ceramic capacitor is recommended. The large 2.2µF ca-  
pacitor between REFH and REFL can be somewhat further  
away. The traces connecting the pins and bypass capaci-  
tors must be kept short and should be made as wide as  
possible.  
The lowest phase noise oscillators have single-ended  
sinusoidal outputs, and for these devices the use of a filter  
close to the ADC may be beneficial. This filter should be  
close to the ADC to both reduce roundtrip reflection times,  
as well as reduce the susceptibility of the traces between  
thefilterandtheADC. Ifyouaresensitivetoclose-inphase  
noise, the power supply for oscillators and any buffers  
must be very stable, or propagation delay variation with  
supply will translate into phase noise. Even though these  
clock sources may be regarded as digital devices, do not  
operate them on a digital supply. If your clock is also used  
todrivedigitaldevicessuchasanFPGA, youshouldlocate  
the oscillator, and any clock fan-out devices close to the  
ADC, and give the routing to the ADC precedence. The  
clock signals to the FPGA should have series termination  
at the driver to prevent high frequency noise from the  
FPGA disturbing the substrate of the clock fan-out device.  
If you use an FPGA as a programmable divider, you must  
re-time the signal using the original oscillator, and the re-  
timing flip-flop as well as the oscillator should be close to  
the ADC, and powered with a very quiet supply.  
TheLTC2298/LTC2297/LTC2296differentialinputsshould  
run parallel and close to each other. The input traces  
should be as short as possible to minimize capacitance  
and to minimize noise pickup.  
Heat Transfer  
Most of the heat generated by the LTC2298/LTC2297/  
LTC2296 is transferred from the die through the bottom-  
side exposed pad and package leads onto the printed  
circuit board. For good electrical and thermal perfor-  
mance, the exposed pad should be soldered to a large  
grounded pad on the PC board. It is critical that all ground  
pins are connected to a ground plane of sufficient area.  
For cases where there are multiple ADCs, or where the  
clock source originates some distance away, differential  
clock distribution is advisable. This is advisable both from  
the perspective of EMI, but also to avoid receiving noise  
from digital sources both radiated, as well as propagated  
in the waveguides that exist between the layers of multi-  
layer PCBs. The differential pairs must be close together  
and distanced from other signals. The differential pair  
should be guarded on both sides with copper distanced at  
least 3x the distance between the traces, and grounded  
with vias no more than 1/4 inch apart.  
Clock Sources for Undersampling  
Undersampling raises the bar on the clock source and the  
higher the input frequency, the greater the sensitivity to  
clock jitter or phase noise. A clock source that degrades  
SNR of a full-scale signal by 1dB at 70MHz will degrade  
SNR by 3dB at 140MHz, and 4.5dB at 190MHz.  
In cases where absolute clock frequency accuracy is  
relatively unimportant and only a single ADC is required,  
229876fa  
23  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
D D  
D D  
O V  
O V  
O G N D  
3 2  
4 9  
O G N D  
3 1  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
D A 8  
D A 9  
D A 1 0  
D B 6  
3 0  
D B 5  
2 9  
D B 4  
2 8  
D A 1 1  
D A 1 2  
D A 1 3  
D B 3  
2 7  
D B 2  
2 6  
D B 1  
2 5  
O F A  
O E A  
S H D N A  
D B 0  
2 4  
O E B  
2 3  
S H D N B  
2 2  
M O D E  
V C M A  
M U X  
2 1  
V C M B  
2 0  
S E N S E A  
S E N S E B  
1 9  
D D  
V
D D  
V
G N D  
1 8  
G N D  
1 7  
229876fa  
24  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
Silkscreen Top  
Top Side  
229876fa  
25  
LTC2298/LTC2297/LTC2296  
U
W U U  
APPLICATIO S I FOR ATIO  
Inner Layer 3 Power  
Inner Layer 2 GND  
Bottom Side  
229876fa  
26  
LTC2298/LTC2297/LTC2296  
U
PACKAGE DESCRIPTIO  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705)  
0.70 ±0.05  
7.15 ±0.05  
8.10 ±0.05 9.50 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.75 ± 0.05  
R = 0.115  
TYP  
9 .00 ± 0.10  
(4 SIDES)  
63 64  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
7.15 ± 0.10  
(4-SIDES)  
(UP64) QFN 1003  
0.25 ± 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
BOTTOM VIEW—EXPOSED PAD  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
229876fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
27  
LTC2298/LTC2297/LTC2296  
RELATED PARTS  
PART NUMBER  
LTC1748  
DESCRIPTION  
COMMENTS  
14-Bit, 80Msps 5V ADC  
76.3dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
Up to 500MHz IF Undersampling, 90dB SFDR  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
LTC1750  
LT®1993-2  
14-Bit, 80Msps, 5V Wideband ADC  
High Speed Differential Op Amp  
LT1994  
Low Noise, Low Distortion Fully Differential Input/Output  
Amplifier/Driver  
LTC2202  
LTC2208  
LTC2220-1  
LTC2224  
LTC2255  
LTC2280  
LTC2282  
LTC2284  
LTC2286  
LTC2287  
LTC2288  
LTC2289  
LTC2290  
LTC2291  
LTC2292  
LTC2293  
LTC2294  
LTC2295  
LTC2296  
LTC2297  
LTC2298  
LTC2299  
LT5512  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
150mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN  
1250mW, 78dB SNR, 100dB SFDR, 64-Pin QFN  
910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN  
395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN  
320mW, 61.6dB SNR, 85dB SFDR, 64-Pin QFN  
540mW, 70.1dB SNR, 88dB SFDR, 64-Pin QFN  
540mW, 72.4dB SNR, 88dB SFDR, 64-Pin QFN  
150mW, 61.8dB SNR, 85dB SFDR, 64-Pin QFN  
235mW, 61.8dB SNR, 85dB SFDR, 64-Pin QFN  
400mW, 61.8dB SNR, 85dB SFDR, 64-Pin QFN  
422mW, 61.6dB SNR, 85dB SFDR, 64-Pin QFN  
120mW, 71.3dB SNR, 90dB SFDR, 64-Pin QFN  
150mW, 71.4dB SNR, 90dB SFDR, 64-Pin QFN  
235mW, 71.4dB SNR, 90dB SFDR, 64-Pin QFN  
400mW, 71.3dB SNR, 90dB SFDR, 64-Pin QFN  
422mW, 70.6dB SNR, 90dB SFDR, 64-Pin QFN  
120mW, 74.4dB SNR, 90dB SFDR, 64-Pin QFN  
150mW, 74.5dB SNR, 90dB SFDR, 64-Pin QFN  
235mW, 74.4dB SNR, 90dB SFDR, 64-Pin QFN  
400mW, 74.3dB SNR, 90dB SFDR, 64-Pin QFN  
444mW, 73dB SNR, 90dB SFDR, 64-Pin QFN  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High IF Sampling  
14-Bit, 125Msps, 3V ADC, Lowest Power  
10-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
10-Bit, Dual, 25Msps, 3V ADC, Low Crosstalk  
10-Bit, Dual, 40Msps, 3V ADC, Low Crosstalk  
10-Bit, Dual, 65Msps, 3V ADC, Low Crosstalk  
10-Bit, Dual, 80Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 10Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 25Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 40Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 65Msps, 3V ADC, Low Crosstalk  
12-Bit, Dual, 80Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 10Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 25Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 40Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 65Msps, 3V ADC, Low Crosstalk  
14-Bit, Dual, 80Msps, 3V ADC, Low Crosstalk  
DC-3GHz High Signal Level Downconverting Mixer  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
450MHz to 1dB BW, 47dB OIP3, Digital Gain Control 10.5dB to 33dB  
in 1.5dB/Step  
LT5515  
LT5516  
LT5517  
LT5522  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator High IIP3: 20dBm at 1.9GHz, Integrated LO Quadrature Generator  
800MHz to 1.5GHz Direct Conversion Quadrature Demodulator High IIP3: 21.5dBm at 900MHz, Integrated LO Quadrature Generator  
40MHz to 900MHz Direct Conversion Quadrature Demodulator High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
600MHz to 2.7GHz High Linearity Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz. NF = 12.5dB, 50Ω  
Single Ended RF and LO Ports  
229876fa  
RD/LT 0106 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC2297IUP

Dual 14-Bit, 65/40/25Msps Low Power 3V ADCs
Linear

LTC2297IUP#TR

LTC2297 - Dual 14-Bit, 40Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2297IUP#TRPBF

暂无描述
Linear

LTC2297UP

Dual 14-Bit, 65/40/25Msps Low Power 3V ADCs
Linear

LTC2297_15

Dual 14-Bit, 65/40/25Msps Low Power 3V ADCs
Linear

LTC2298

14-Bit, 125/105Msps Low Power 3V ADCs
Linear

LTC2298CUP

Dual 14-Bit, 65/40/25Msps Low Power 3V ADCs
Linear

LTC2298CUP#PBF

LTC2298 - Dual 14-Bit, 65Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2298CUP#TRPBF

LTC2298 - Dual 14-Bit, 65Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2298IUP

Dual 14-Bit, 65/40/25Msps Low Power 3V ADCs
Linear

LTC2298IUP#PBF

LTC2298 - Dual 14-Bit, 65Msps Low Power 3V ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2298IUP#TR

暂无描述
Linear