LTC2302CDDXPBF [Linear]

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs; 低噪声, 500KSPS , 1 / 2通道,12位ADC
LTC2302CDDXPBF
型号: LTC2302CDDXPBF
厂家: Linear    Linear
描述:

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
低噪声, 500KSPS , 1 / 2通道,12位ADC

文件: 总20页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2302/LTC2306  
Low Noise, 500ksps,  
1-/2-Channel, 12-Bit ADCs  
FEATURES  
DESCRIPTION  
TheLTC®2302/LTC2306arelownoise,500ksps,1-/2-chan-  
nel, 12-bit ADCs with an SPI/MICROWIRE compatible  
serial interface. These ADCs include a fully differential  
sample-and-hold circuit to reduce common mode noise.  
The internal conversion clock allows the external serial  
output data clock (SCK) to operate at any frequency up  
to 40MHz.  
n
12-Bit Resolution  
n
500ksps Sampling Rate  
n
Low Noise: SINAD = 72.8dB  
n
Guaranteed No Missing Codes  
n
Single 5V Supply  
n
Auto-Shutdown Scales Supply Current with Sample  
Rate  
n
Low Power: 14mW at 500ksps  
The LTC2302/LTC2306 operate from a single 5V supply  
and draw just 2.8mA at a sample rate of 500ksps. The  
auto-shutdownfeaturereducesthesupplycurrentto14μA  
at a sample rate of 1ksps.  
70μW at 1ksps  
35μW Sleep Mode  
n
1-Channel (LTC2302) and 2-Channel (LTC2306)  
Versions  
n
The LTC2302/LTC2306 are packaged in a tiny 10-pin 3mm  
× 3mm DFN. The low power consumption and small size  
make the LTC2302/LTC2306 ideal for battery-operated  
and portable applications, while the 4-wire SPI compat-  
ible serial interface makes these ADCs a good match for  
isolated or remote data acquisition systems.  
Unipolar or Bipolar Input Ranges (Software  
Selectable)  
Internal Conversion Clock  
n
n
n
n
n
SPI/MICROWIRE Compatible Serial Interface  
Separate Output Supply OV (2.7V to 5.25V)  
DD  
Software Compatible with the LTC2308  
10-Pin (3mm × 3mm) DFN Package  
NUMBER OF INPUT CHANNELS  
1
2
8
TYPE  
APPLICATIONS  
Int Reference  
Ext Reference  
LTC2308  
LTC2302  
LTC2306  
n
High Speed Data Acquisition  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
Industrial Process Control  
n
Motor Control  
n
Accelerometer Measurements  
n
Battery-Operated Instruments  
n
Isolated and/or Remote Data Acquisition  
TYPICAL APPLICATION  
8192 Point FFT, f = 1kHz (LTC2306)  
IN  
5V  
0
–10  
2.7V TO 5.25V  
f
= 500kHz  
SMPL  
10μF  
0.1μF  
0.1μF  
SINAD = 72.8dB  
THD = –88.7dB  
–20  
–30  
LTC2302  
LTC2306  
–40  
–50  
V
DD  
OV  
DD  
–60  
SDI  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
ANALOG INPUTS  
0V TO 4.096V UNIPOLAR  
2.048V BIPOLAR  
+
ANALOG  
INPUT  
MUX  
CH0 (IN )  
12-BIT  
500ksps  
ADC  
+
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTER  
SDO  
SERIAL  
PORT  
CH1 (IN )  
SCK  
CONVST  
V
REF  
PIN NAMES IN PARENTHESIS  
REFER TO LTC2302  
GND  
0.1μF  
10μF  
0
50  
100  
150  
200  
250  
23026 TA01  
FREQUENCY (kHz)  
23026 TA01b  
23026f  
1
LTC2302/LTC2306  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Digital Output Voltage ... (GND – 0.3V) to (OV + 0.3V)  
Supply Voltage (V , OV )......................... –0.3V to 6V  
DD  
DD  
DD  
Power Dissipation...............................................500mW  
Analog Input Voltage (Note 3)  
+
Operating Temperature Range  
CH0(IN )-CH1(IN ),  
LTC2302C/LTC2306C ............................... 0°C to 70°C  
LTC2302I/LTC2306I.............................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
REF ..............................(GND – 0.3V) to (V + 0.3V)  
DD  
Digital Input Voltage  
(Note 3).............................(GND – 0.3V) to (V + 0.3V)  
DD  
PIN CONFIGURATION  
LTC2302  
LTC2306  
TOP VIEW  
TOP VIEW  
SDO  
1
2
3
4
5
10 OV  
SDO  
1
2
3
4
5
10 OV  
DD  
DD  
CONVST  
9
8
7
6
SCK  
SDI  
GND  
CONVST  
9
8
7
6
SCK  
SDI  
GND  
11  
11  
V
V
DD  
DD  
+
IN  
CH0  
CH1  
IN  
V
REF  
V
REF  
DD PACKAGE  
10-LEAD (3mm s 3mm) PLASTIC DFN  
DD PACKAGE  
10-LEAD (3mm s 3mm) PLASTIC DFN  
T
= 150°C, θ = 43°C/W  
T
= 150°C, θ = 43°C/W  
JMAX  
JA  
JMAX JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2302CDD#PBF  
LTC2302IDD#PBF  
LTC2306CDD#PBF  
LTC2306IDD#PBF  
TAPE AND REEL  
PART MARKING*  
LDGV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2302CDD#TRPBF  
LTC2302IDD#TRPBF  
LTC2306CDD#TRPBF  
LTC2306IDD#TRPBF  
0°C to 70°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LDGV  
–40°C to 85°C  
0°C to 70°C  
LDGW  
LDGW  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
23026f  
2
LTC2302/LTC2306  
CONVERTER AND MULTIPLEXER CHARACTERISTICS The  
l
denotes the specifications  
which apply over the full operating temperature range, otherwise specifications are at T = 25°C. (Notes 4, 5)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
12  
(Note 6)  
0.3  
0.25  
1
1
1
6
LSB  
Differential Linearity Error  
Bipolar Zero Error  
LSB  
(Note 7)  
LSB  
Bipolar Zero Error Drift  
0.002  
1
LSB/°C  
LSB  
l
Unipolar Zero Error  
(Note 7)  
6
Unipolar Zero Error Drift  
Unipolar Zero Error Match (LTC2306)  
Bipolar Full-Scale Error  
0.002  
0.3  
LSB/°C  
LSB  
3
8
l
l
(Note 8)  
(Note 8)  
1.5  
LSB  
Bipolar Full-Scale Error Drift  
Unipolar Full-Scale Error  
Unipolar Full-Scale Error Drift  
Unipolar Full-Scale Error Match (LTC2306)  
0.05  
1.2  
LSB/°C  
LSB  
6
3
0.05  
0.3  
LSB/°C  
LSB  
ANALOG INPUT The  
l
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
l
V
IN  
V
IN  
Absolute Input Range (CH0, CH1, IN )  
(Note 9)  
–0.05  
V
V
DD  
l
l
Absolute Input Range (CH0, CH1, IN )  
Unipolar (Note 9)  
Bipolar (Note 9)  
–0.05  
–0.05  
V
/2  
V
V
DD  
V
DD  
+
+
l
l
V
IN  
– V  
Input Differential Voltage Range  
V
IN  
V
IN  
= V – V (Unipolar)  
0 to V  
REF  
V
V
IN  
IN  
IN  
+
= V – V (Bipolar)  
V
/2  
REF  
IN  
IN  
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
1
μA  
IN  
C
Sample Mode  
Hold Mode  
55  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
70  
dB  
REFERENCE INPUT The  
l
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
Input Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
0.1  
V
DD  
V
REF  
l
l
I
Reference Input Current  
f
f
= 0ksps, V = 4.096V  
50  
230  
80  
260  
μA  
μA  
REF  
SMPL  
SMPL  
REF  
= 500ksps, V = 4.096V  
REF  
C
REF  
Reference Input Capacitance  
55  
pF  
23026f  
3
LTC2302/LTC2306  
DYNAMIC ACCURACY The  
l
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C. A = –1dBFS. (Notes 4, 10)  
A
IN  
SYMBOL  
SINAD  
SNR  
PARAMETER  
CONDITIONS  
MIN  
71  
TYP  
72.8  
73.2  
–88  
89  
MAX  
UNITS  
dB  
l
l
l
l
Signal-to-(Noise + Distortion) Ratio  
Signal-to-Noise Ratio  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 1kHz  
= 1kHz  
71  
dB  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Channel-to-Channel Isolation  
Full Linear Bandwidth  
= 1kHz, First 5 Harmonics  
–78  
dB  
SFDR  
= 1kHz  
= 1kHz  
79  
dB  
–109  
700  
25  
dB  
(Note 11)  
kHz  
MHz  
ns  
–3dB Input Linear Bandwidth  
Aperature Delay  
13  
Transient Response  
Full-Scale Step  
240  
ns  
DIGITAL INPUTS AND DIGITAL OUTPUTS The  
l
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
V
V
= 5.25V  
= 4.75V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
IN  
= V  
μA  
pF  
DD  
C
V
5
IN  
OV = 4.75V, I  
OV = 4.75V, I  
= –10μA  
= –200μA  
4.74  
V
V
OH  
DD  
DD  
OUT  
OUT  
l
4
V
Low Level Output Voltage  
OV = 4.75V, I  
DD  
= 160μA  
= 1.6mA  
0.05  
V
V
OL  
DD  
OUT  
OUT  
l
l
OV = 4.75V, I  
0.4  
10  
I
OZ  
Hi-Z Output Leakage  
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
V
OUT  
= 0V to OV , CONVST High  
μA  
pF  
DD  
C
OZ  
CONVST High  
15  
–10  
10  
I
I
V
OUT  
V
OUT  
= 0V  
= OV  
mA  
mA  
SOURCE  
SINK  
DD  
POWER REQUIREMENTS The  
l
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.75  
2.7  
TYP  
MAX  
5.25  
5.25  
UNITS  
l
l
V
Supply Voltage  
5
V
V
DD  
OV  
Output Driver Supply Voltage  
DD  
l
l
I
DD  
Supply Current  
Sleep Mode  
C = 25pF  
2.8  
7
3.5  
15  
mA  
μA  
L
CONVST = 5V, Conversion Done  
P
Power Dissipation  
Sleep Mode  
14  
35  
mW  
μW  
D
23026f  
4
LTC2302/LTC2306  
TIMING CHARACTERISTICS The  
l
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
500  
40  
UNITS  
kHz  
MHz  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Shift Clock Frequency  
CONVST High Time  
SMPL(MAX)  
SCK  
(Note 9)  
20  
2.5  
0
WHCONV  
HD  
ns  
Hold Time SDI After SCK↑  
Setup Time SDI Stable Before SCK↑  
SCK High Time  
ns  
SUDI  
WHCLK  
WLCLK  
WLCONVST  
HCONVST  
CONV  
ACQ  
f
f
= f  
= f  
10  
10  
410  
20  
ns  
SCK  
SCK  
SCK(MAX)  
SCK(MAX)  
SCK Low Time  
ns  
CONVST Low Time During Data Transfer (Note 9)  
ns  
(Note 9)  
ns  
Hold Time CONVST Low After Last SCK↓  
Conversion Time  
1.3  
1.6  
μs  
Acquisition Time  
240  
4
ns  
7th SCKto CONVST(Note 9)  
C = 25pF (Note 9)  
L
10.8  
12.5  
ns  
SDO Data Valid After SCK↓  
SDO Hold Time SCK↓  
SDO Valid After CONVST↓  
Bus Relinquish Time  
SDO Rise Time  
dDO  
C = 25pF  
L
ns  
hDO  
C = 25pF  
L
11  
11  
4
15  
15  
ns  
en  
C = 25pF  
L
ns  
dis  
C = 25pF  
L
ns  
r
SDO Fall Time  
C = 25pF  
L
4
ns  
f
Total Cycle Time  
2
μs  
CYC  
Note 7: Bipolar zero error is the offset voltage measured from –0.5LSB  
when the output code flickers between 0000 0000 0000 and 1111 1111  
1111. Unipolar zero error is the offset voltage measured from +0.5LSB  
when the output code flickers between 0000 0000 0000 and 0000 0000  
0001.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground with V and OV  
DD  
DD  
Note 8: Full-scale bipolar error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions and includes the effect  
of offset error. Unipolar full-scale error is the deviation of the last code  
transition from ideal and includes the effect of offset error.  
wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below ground or above V  
they will be clamped by internal diodes. These products can handle input  
currents greater than 100mA below ground or above V without latchup.  
,
DD  
DD  
Note 9: Guaranteed by design, not subject to test.  
Note 4: V = 5V, OV = 5V, V = 4.096V, f  
= 500ksps, unless  
DD  
DD  
REF  
SMPL  
Note 10: All specifications in dB are referred to a full-scale 2.048V input  
otherwise specified.  
with a 4.096V reference voltage.  
Note 11: Full linear bandwidth is defined as the full-scale input frequency  
at which the SINAD degrades to 60dB or 10 bits of accuracy.  
Note 5: Linearity, offset and full-scale specifications apply for a single-  
+
ended analog input with respect to GND for the LTC2306 and IN with  
respect to IN tied to GND for the LTC2302.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
23026f  
5
LTC2302/LTC2306  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC2302) T = 25°C, V = OV = 5V, V  
= 4.096V, f  
= 500ksps, unless otherwise noted.  
SMPL  
A
DD  
DD  
REF  
Integral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
1kHz Sine Wave  
8192 Point FFT Plot  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
SNR = 73.2dB  
SINAD = 72.8dB  
THD = –89.5dB  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
–90  
–100  
–110  
–120  
–130  
–140  
50  
100  
150  
250  
0
200  
2048  
2048  
0
1024  
3072  
4096  
0
1024  
3072  
4096  
FREQUENCY (kHz)  
OUTPUT CODE  
OUTPUT CODE  
23026 G03  
23026 G01  
23026 G02  
SINAD vs Input Frequency  
THD vs Input Frequency  
SNR vs Input Frequency  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
23026 G06  
23026 G04  
23026 G05  
Supply Current vs  
Sampling Frequency  
Supply Current vs Temperature  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–50  
0
25  
50  
75 100 125  
–25  
1
10  
100  
1000  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (ksps)  
23026 G07  
23026 G08  
23026f  
6
LTC2302/LTC2306  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC2302) T = 25°C, V = OV = 5V, V  
= 4.096V, f  
= 500ksps, unless otherwise noted.  
A
DD  
DD  
REF  
SMPL  
Analog Input Leakage Current vs  
Temperature  
Sleep Current vs Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
9
8
7
6
5
4
3
2
1
0
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
23026 G10  
23026 G09  
Offset Error vs Temperature  
Full-Scale Error vs Temperature  
2.0  
2.5  
2.0  
1.5  
1.0  
BIPOLAR  
1.5  
1.0  
UNIPOLAR  
0.5  
0
BIPOLAR  
0.5  
0
UNIPOLAR  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–25  
0
50  
75 100 125  
–50  
25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
23026 G12  
23026 G11  
23026f  
7
LTC2302/LTC2306  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC2306) T = 25°C, V = OV = 5V, V  
= 4.096V, f  
= 500ksps, unless otherwise noted.  
SMPL  
A
DD  
DD  
REF  
Integral Nonlinearity vs  
Output Code  
Differential Nonlinearity vs  
Output Code  
1kHz Sine Wave  
8192 Point FFT Plot  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
SNR = 73.2dB  
SINAD = 72.8dB  
THD = –88.7dB  
–80  
–90  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
–100  
–110  
–120  
–130  
–140  
50  
100  
150  
250  
2048  
2048  
0
200  
0
1024  
3072  
4096  
0
1024  
3072  
4096  
FREQUENCY (kHz)  
OUTPUT CODE  
OUTPUT CODE  
23026 G15  
23026 G13  
23026 G14  
SNR vs Input Frequency  
SINAD vs Input Frequency  
THD vs Input Frequency  
80  
75  
70  
65  
60  
55  
50  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
80  
75  
70  
65  
60  
55  
50  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
23026 G18  
23026 G16  
23026 G17  
Supply Current vs  
Sampling Frequency  
Supply Current vs Temperature  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
10  
100  
1000  
–50  
0
25  
50  
75  
125  
–25  
100  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (ksps)  
23026 G19  
23026 G20  
23026f  
8
LTC2302/LTC2306  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LTC2306) T = 25°C, V = OV = 5V, V  
= 4.096V, f  
= 500ksps, unless otherwise noted.  
A
DD  
DD  
REF  
SMPL  
Analog Input Leakage Current vs  
Temperature  
Sleep Current vs Temperature  
10  
9
8
7
6
5
4
3
2
1
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
23026 G21  
23026 G22  
Offset Error vs Temperature  
Full-Scale Error vs Temperature  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
UNIPOLAR  
BIPOLAR  
UNIPOLAR  
BIPOLAR  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.0  
–25  
0
50  
75 100 125  
–50  
25  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
23026 G23  
23026 G24  
23026f  
9
LTC2302/LTC2306  
PIN FUNCTIONS  
LTC2302  
LTC2306  
SDO (Pin 1): Three-State Serial Data Out. SDO outputs  
the data from the previous conversion. SDO is shifted  
out serially on the falling edge of each SCK pulse. SDO is  
enabled by a low level on CONVST.  
SDO (Pin 1): Three-State Serial Data Out. SDO outputs  
the data from the previous conversion. SDO is shifted  
out serially on the falling edge of each SCK pulse. SDO is  
enabled by a low level on CONVST.  
CONVST (Pin 2): Conversion Start. A rising edge at  
CONVST begins a conversion. For best performance,  
ensure that CONVST returns low within 40ns after the  
CONVST (Pin 2): Conversion Start. A rising edge at  
CONVST begins a conversion. For best performance,  
ensure that CONVST returns low within 40ns after the  
conversion starts or after the conversion ends.  
conversion starts or after the conversion ends  
.
V
(Pin3):5VSupply. TherangeofV is4.75Vto5.25V.  
DD  
V
(Pin3):5VSupply. TherangeofV is4.75Vto5.25V.  
DD  
DD  
DD  
Bypass V to GND with a 0.1μF ceramic capacitor and a  
Bypass V to GND with a 0.1μF ceramic capacitor and a  
DD  
DD  
10μF tantalum capacitor in parallel.  
10μF tantalum capacitor in parallel.  
+
+
CH0, CH1 (Pin 4, Pin 5): Channel 0 and Channel 1 Analog  
Inputs. CH0, CH1 can be configured as single-ended or  
differential input channels. See the Analog Input Multi-  
plexer section.  
IN , IN (Pin 4, Pin 5): Positive (IN ) and Negative (IN )  
Differential Analog Inputs.  
V
(Pin 6): Reference Input. Connect an external refer-  
REF  
ence at V . The range of the external reference is 0.1V  
REF  
V
(Pin 6): Reference Input. Connect an external refer-  
to V . Bypass to GND with a minimum 10μF tantalum  
REF  
DD  
ence at V .The range of the external reference is 0.1V  
capacitor in parallel with a 0.1μF ceramic capacitor.  
REF  
to V . Bypass to GND with a minimum 10μF tantalum  
capacitor in parallel with a 0.1μF ceramic capacitor.  
DD  
GND (Pin 7): Ground. All GND pins must be connected to  
a solid ground plane.  
GND (Pin 7): Ground. All GND pins must be connected to  
a solid ground plane.  
SDI (Pin 8): Serial Data Input. The SDI serial bit stream  
configures the ADC and is latched on the rising edge of  
the first 6 SCK pulses.  
SDI (Pin 8): Serial Data Input. The SDI serial bit stream  
configures the ADC and is latched on the rising edge of  
the first 6 SCK pulses.  
SCK (Pin 9): Serial Data Clock. SCK synchronizes the  
serial data transfer. The serial data input at SDI is latched  
on the rising edge of SCK. The serial data output at SDO  
transitions on the falling edge of SCK.  
SCK (Pin 9): Serial Data Clock. SCK synchronizes the  
serial data transfer. The serial data input at SDI is latched  
on the rising edge of SCK. The serial data output at SDO  
transitions on the falling edge of SCK.  
OV (Pin 10): Output Driver Supply. Bypass OV to  
DD  
DD  
GND with a 0.1μF ceramic capacitor close to the pin. The  
OV (Pin 10): Output Driver Supply. Bypass OV to  
range of OV is 2.7V to 5.25V.  
DD  
DD  
DD  
OGND with a 0.1μF ceramic capacitor close to the pin.  
Exposed Pad (Pin 11): Exposed Pad Ground. Must be  
soldered directly to ground plane.  
The range of OV is 2.7V to 5.5V.  
DD  
Exposed Pad (Pin 11): Exposed Pad Ground. Must be  
soldered directly to ground plane.  
23026f  
10  
LTC2302/LTC2306  
BLOCK DIAGRAM  
V
OV  
DD  
DD  
LTC2302  
LTC2306  
SDI  
+
ANALOG  
INPUT  
MUX  
CH0 (IN )  
12-BIT  
500ksps  
ADC  
+
SDO  
SERIAL  
PORT  
CH1 (IN )  
SCK  
CONVST  
V
PIN NAMES IN PARENTHESIS  
REFER TO LTC2302  
REF  
23026 BD  
GND  
TEST CIRCUITS  
Load Circuit for t Waveform 1  
Load Circuit for t Waveform 2, t  
dis en  
dis  
V
DD  
3k  
SDO  
TEST POINT  
L
SDO  
TEST POINT  
C
L
C
3k  
23026 TC01  
23026 TC02  
TIMING DIAGRAMS  
Voltage Waveforms for SDO Delay Times, t  
and t  
Voltage Waveforms for t  
dis  
dDO  
hDO  
SCK  
V
IH  
CONVST  
V
IL  
t
dDO  
t
SDO  
WAVEFORM 1  
(SEE NOTE 1)  
hDO  
90%  
10%  
V
V
OH  
OL  
SDO  
t
dis  
SDO  
WAVEFORM 2  
(SEE NOTE 2)  
23026 TD01  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL  
23026 TD02  
23026f  
11  
LTC2302/LTC2306  
TIMING DIAGRAMS  
t
(SCK Low Time)  
(SCK High Time)  
Voltage Waveforms for t  
en  
WLCLK  
WHCLK  
t
t
(Hold Time SDI After SCK)  
HD  
CONVST  
SDO  
t
(Setup Time SDI Stable Before SCK)  
SUDI  
t
t
WHCLK  
23026 TD04  
WLCLK  
t
en  
SCK  
t
HD  
Voltage Waveforms for SDO Rise and Fall Times t, t  
r
f
SDI  
23026 TD03  
t
SUDI  
V
OH  
SDO  
V
OL  
t
r
t
23004 TD05  
f
APPLICATIONS INFORMATION  
Overview  
The acquire phase requires a minimum time of 240ns  
for the sample-and-hold capacitors to acquire the analog  
input signal.  
TheLTC2302/LTC2306arelownoise,500ksps,1-/2-chan-  
nel, 12-bit successive approximation register (SAR) A/D  
converters. The LTC2306 includes a 2-channel analog  
input multiplexer (MUX) while the LTC2302 includes an  
input MUX that allows the polarity of the differential input  
to be selected. Both ADCs include an SPI-compatible se-  
rial port for easy data transfers and can operate in either  
unipolar or bipolar mode. Unipolar mode should be used  
forsingle-endedoperationwiththeLTC2306,sincesingle-  
ended input signals are always referenced to GND. The  
LTC2302/LTC2306 can be put into a power-down sleep  
mode during idle periods to save power.  
During the conversion, the internal 12-bit capacitive  
charge-redistribution DAC output is sequenced through a  
successive approximation algorithm by the SAR starting  
from the most significant bit (MSB) to the least significant  
bit (LSB). The sampled input is successively compared  
with binary weighted charges supplied by the capacitive  
DACusingadifferentialcomparator.Attheendofaconver-  
sion, the DAC output balances the analog input. The SAR  
contents (a 12-bit data word) that represent the sampled  
analog input are loaded into 12 output latches that allow  
the data to be shifted out.  
Conversions are initiated by a rising edge on the CONVST  
input. Once a conversion cycle has begun, it cannot be  
Programming the LTC2306 and LTC2302  
restarted. Between conversions, a 6-bit input word (D )  
IN  
ThesoftwarecompatibleLTC2302/LTC2306/LTC2308fam-  
at the SDI input configures the MUX and programs vari-  
ily features a 6-bit D word to program various modes of  
ous modes of operation. As the D bits are shifted in,  
IN  
IN  
operation. Don’t care bits (X) are ignored. The SDI data  
bits are loaded on the rising edge of SCK, with the S/D bit  
loaded on the first rising edge (see Figure 6 in the Timing  
data from the previous conversion is shifted out on SDO.  
After the 6 bits of the D word have been shifted in, the  
IN  
ADC begins acquiring the analog input in preparation for  
the next conversion as the rest of the data is shifted out.  
23026f  
12  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
and Control section). The input data word for the LTC2306  
is defined as follows:  
Table 1. Channel Configuration  
for the LTC2306  
S/D O/S CH0 CH1  
S/D O/S  
X
X
UNI  
X
0
0
1
1
0
1
0
1
+
+
+
S/D = SINGLE-ENDED/DIFFERENTIAL BIT  
O/S = ODD/SIGN BIT  
WITH RESPECT  
TO GND  
+
NOTE: UNIPOLAR MODE SHOULD BE USED  
FOR SINGLE-ENDED OPERATION, SINCE INPUT  
SIGNALS ARE ALWAYS REFERENCED TO GND  
UNI = UNIPOLAR/BIPOLAR BIT  
X = DON’T CARE  
For the LTC2302, the input data word is defined as:  
Table 2. Channel Configuration  
for the LTC2302  
X
O/S  
X
X
UNI  
X
+
O/S IN  
IN  
0
1
+
+
Analog Input Multiplexer  
The analog input MUX is programmed by the S/D and O/S  
Driving the Analog Inputs  
bits of the D word for the LTC2306 and the O/S bit of the  
IN  
D word for the LTC2302. Table 1 and Table 2 list MUX  
The analog inputs of the LTC2302/LTC2306 are easy to  
drive. Each of the analog inputs of the LTC2306 (CH0  
and CH1) can be used as a single-ended input relative  
to GND or as a differential pair. The analog inputs of the  
IN  
configurations for all combinations of the configuration  
bits.Figure1ashowsseveralpossibleMUXconfigurations  
and Figure 1b shows how the MUX can be reconfigured  
from one conversion to the next.  
+
LTC2302 (IN , IN ) are always configured as a differential  
pair. Regardless of the MUX configuration, the “+” and “–”  
inputs are sampled at the same instant. Any unwanted  
signal that is common to both inputs will be reduced by  
the common mode rejection of the sample-and-hold cir-  
cuit. The inputs draw only one small current spike while  
1 Differential  
2 Single-Ended  
CH0  
CH1  
+ (  
)
)
CH0  
CH1  
+
+
{
(
+
LTC2306  
LTC2306  
(–) GND  
1st Conversion  
2nd Conversion  
CH0  
CH1  
+
CH0  
CH1  
+
+
{
1 Differential  
LTC2306  
LTC2306  
+
IN  
IN  
+ (  
)
)
+
{
(
(–) GND  
LTC2302  
23026 F01b  
Figure 1b. Changing the MUX Assignment “On the Fly”  
23026 F01a  
Figure 1a. Example MUX Configurations  
23026f  
13  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
chargingthesample-and-holdcapacitorsduringtheacquire  
mode. In conversion mode, the analog inputs draw only  
a small leakage current. If the source impedance of the  
drivingcircuitislow, theADCinputscanbedrivendirectly.  
Otherwise, more acquisition time should be allowed for a  
source with higher impedance.  
should be filtered prior to the analog inputs to minimize  
noise. A simple 1-pole RC filter is sufficient for many  
applications.  
TheanaloginputsoftheLTC2302/LTC2306canbemodeled  
as a 55pF capacitor (C ) in series with a 100Ω resistor  
IN  
(R ) as shown in Figure 2a. C gets switched to the  
ON  
IN  
selected input once during each conversion. Large filter  
RC time constants will slow the settling of the inputs. It  
is important that the overall RC time constants be short  
enough to allow the analog inputs to completely settle to  
Reference  
A low noise, stable reference is required to ensure full  
performance. The LT®1790 and LT6660 are adequate  
for most applications. The LT6660 is available in 2.5V,  
3V, 3.3V and 5V versions, and the LT1790 is available in  
1.25V, 2.048V, 2.5V, 3V, 3.3V, 4.096V and 5V versions. The  
exceptionally low input noise allows the input range to be  
optimized for the application by changing the reference  
12-bit resolution within the acquisition time (t ) if DC  
ACQ  
accuracy is important.  
When using a filter with a large C  
value (e.g., 1μF),  
FILTER  
theinputsdonotcompletelysettleandthecapacitiveinput  
switching currents are averaged into a net DC current  
voltage. The V  
input must be decoupled with a 10μF  
REF  
(I ). In this case, the analog input can be modeled by  
DC  
capacitor in parallel with a 0.1μF capacitor, so verify that  
the device providing the reference voltage is stable with  
capacitive loads.  
an equivalent resistance (R = 1/(f  
• C )) in series  
EQ  
SMPL  
IN  
with an ideal voltage source (V /2) as shown in Figure  
REF  
2b. ThemagnitudeoftheDCcurrentisthenapproximately  
If the voltage reference is 5V and can supply 5mA, it can  
I
= (V – V /2)/R , which is roughly proportional  
DC  
IN REF EQ  
be used for both V  
and V . V must be connected  
REF  
DD DD  
to V . To prevent large DC drops across the resistor  
IN  
to a clean analog supply, and a quiet 5V reference voltage  
R
, a filter with a small resistor and large capacitor  
FILTER  
makes a convenient supply for this purpose.  
should be chosen. When running at the minimum cycle  
time of 2μs, the input current equals 106μA at V = 5V,  
IN  
Input Filtering  
which amounts to a full-scale error of 0.5LSB when using  
a filter resistor (R  
) of 4.7Ω. Applications requiring  
The noise and distortion of the input amplifier and other  
circuitry must be considered since they will add to the  
ADC noise and distortion. Therefore, noisy input circuitry  
FILTER  
lower sample rates can tolerate a larger filter resistor for  
the same amount of full-scale error.  
LTC2302  
LTC2306  
INPUT  
LTC2302  
(CH0, CH1  
INPUT  
LTC2306  
+
I
IN , IN )  
(CH0, CH1  
DC  
R
FILTER  
R
+
ON  
IN , IN )  
R
V
100Ω  
SOURCE  
IN  
R
V
EQ  
IN  
C
FILTER  
C
1/(f  
• C )  
SMPL IN  
IN  
C1  
55pF  
+
V
/2  
REF  
23026 F02a  
23026 F02b  
Figure 2b. Analog Input Equivalent Circuit for  
Large Filter Capacitances  
Figure 2a. Analog Input Equivalent Circuit  
23026f  
14  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
Figures 3a and 3b show respective examples of input  
filtering for single-ended and differential inputs. For the  
single-ended case in Figure 3a, a 50Ω source resistor  
and a 2000pF capacitor to ground on the input will limit  
the input bandwidth to 1.6MHz. High quality capacitors  
and resistors should be used in the RC filter since these  
components can add distortion. NPO and silver mica type  
dielectriccapacitorshaveexcellentlinearity.Carbonsurface  
mount resistors can generate distortion from self heating  
and from damage that may occur during soldering. Metal  
film surface mount resistors are much less susceptible  
to both problems.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 4 shows a typical SINAD of 72.8dB with  
a500kHzsamplingrateanda1kHzinput. ASNRof73.2dB  
can be achieved with the LTC2302/LTC2306.  
0
–10  
–20  
–30  
–40  
SNR = 73.2dB  
SINAD = 72.8dB  
THD = –88.7dB  
Dynamic Performance  
–50  
FFT(fastfouriertransform)testtechniquesareusedtotest  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
andanalyzingthedigitaloutputusinganFFTalgorithm,the  
ADC’s spectral content can be examined for frequencies  
outside the fundamental.  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
50  
100  
150  
250  
0
200  
FREQUENCY (kHz)  
50Ω  
ANALOG  
INPUT  
23026 F04  
CH0, CH1  
5V  
2000pF  
0.1μF  
Figure 4. 1kHz Sine Wave 8192 Point FFT Plot (LTC2306)  
LTC2306  
V
IN  
LT1790A-4.096  
Total Harmonic Distortion (THD)  
V
V
OUT  
REF  
10μF  
0.1μF  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
bandbetweenDCandhalfthesamplingfrequency(f  
THD is expressed as:  
23026 F03a  
Figure 3a. Optional RC Input Filtering for Single-Ended Input  
/2).  
SMPL  
1000pF  
2
50Ω  
V22 + V32 + V42...+ VN  
+
CH0, IN  
THD = 20log  
5V  
DIFFERENTIAL  
V1  
LTC2302  
LTC2306  
ANALOG  
INPUTS  
1000pF  
50Ω  
0.1μF  
V
IN  
CH1, IN  
where V is the RMS amplitude of the fundamental fre-  
quencyandV throughV aretheamplitudesofthesecond  
1
1000pF  
LT1790A-4.096  
2
N
V
V
OUT  
REF  
through Nth harmonics.  
10μF  
0.1μF  
23026 F03b  
Figure 3b. Optional RC Input Filtering for Differential Inputs  
23026f  
15  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
Internal Conversion Clock  
Example 2 (Figure 7) shows CONVST returning low be-  
fore the conversion ends. In this mode, the ADC and all  
internal circuitry remain powered up. When the conver-  
sion is complete, the MSB of the output data sequence  
at SDO becomes valid after the data bus is enabled. At  
The internal conversion clock is factory trimmed to  
achieve a typical conversion time (t ) of 1.3ꢀs and a  
CONV  
maximum conversion time of 1.6ꢀs over the full operating  
temperature range. With a minimum acquisition time of  
240ns, a throughput sampling rate of 500ksps is tested  
and guaranteed.  
this point(t  
1.3μs after the rising edge of CONVST),  
CONV  
pulsing SCK will shift data out at SDO and load configura-  
tion data (D ) into the LTC2302/LTC2306 at SDI. The first  
IN  
SCK rising edge loads the S/D bit. SDO transitions on the  
Digital Interface  
falling edge of each SCK pulse.  
The LTC2302/LTC2306 communicate via a standard  
4-wire SPI compatible digital interface. The rising edge  
of CONVST initiates a conversion. After the conversion  
is finished, pull CONVST low to enable the serial output  
(SDO). The ADC then shifts out the digital data in 2’s  
complement format when operating in bipolar mode or  
in straight binary format when in unipolar mode, based  
on the setting of the UNI bit.  
Figures 8 and 9 are the transfer characteristics for the  
bipolar and unipolar modes. Data is output at SDO in 2’s  
complement format for bipolar readings or in straight  
binary for unipolar readings.  
Sleep Mode  
The ADC enters sleep mode when CONVST is held high  
after the conversion is complete (t ). The supply cur-  
CONV  
For best performance, ensure that CONVST returns low  
within40nsaftertheconversionstarts(i.e.,beforetherst  
bit decision) or after the conversion ends. If CONVST is  
low when the conversion ends, the MSB bit will appear at  
SDO at the end of the conversion and the ADC will remain  
powered up.  
rentdecreasesto7Ainsleepmodebetweenconversions,  
thereby reducing the average power dissipation as the  
sampleratedecreases.Forexample,theLTC2302/LTC2306  
draw an average of 14μA with a 1ksps sampling rate. The  
LTC2302/LTC2306 power down all circuitry when in sleep  
mode.  
Timing and Control  
Board Layout and Bypassing  
The start of a conversion is triggered by the rising edge  
of CONVST. Once initiated, a new conversion cannot be  
restarteduntilthecurrentconversioniscomplete.Figures6  
and7showthetimingdiagramsfortwodifferentexamples  
of CONVST pulses. Example 1 (Figure 6) shows CONVST  
staying HIGH after the conversion ends. If CONVST is high  
Toobtainthebestperformance,aprintedcircuitboardwith  
a solid ground plane is required. Layout for the printed  
circuit board should ensure digital and analog signal lines  
are separated as much as possible. Care should be taken  
not to run any digital signal alongside an analog signal.  
All analog inputs should be shielded by GND. V  
and  
REF  
after the t  
period, the LTC2302/LTC2306 enter sleep  
CONV  
V
should be bypassed to the ground plane as close to  
DD  
mode (see Sleep Mode for more details).  
the pin as possible. Maintaining a low impedance path  
for the common return of these bypass capacitors is  
essential to the low noise operation of the ADC. These  
traces should be as wide as possible. See Figure 5 for a  
suggested layout.  
When CONVST returns low, the ADC wakes up and the  
most significant bit (MSB) of the output data sequence at  
SDO becomes valid after the serial data bus is enabled. All  
other data bits from SDO transition on the falling edge of  
eachSCKpulse. Configurationdata(D )isloadedintothe  
IN  
LTC2302/LTC2306 at SDI, starting with the first SCK rising  
edge after CONVST returns low. The S/D bit is loaded on  
the first SCK rising edge.  
23026f  
16  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
V
, BYPASS  
DD  
INPUT FILTER  
CAPACITORS  
0.1μF||10μF, 0603  
SOLID GROUND  
PLANE  
OV , BYPASS  
DD  
0.1μF, 0603  
23026 F05  
V
, BYPASS  
REF  
0.1μF||10μF 0603  
Figure 5. Suggested Layout  
t
WLCONVST  
t
ACQ  
CONVST  
t
SLEEP  
CONV  
t
CYC  
1
2
3
4
5
6
7
8
9
10 11 12  
SCK  
SDI  
S/D BIT IS A DONT CARE (X) FOR THE LTC2302  
S/D O/S  
MSB  
UNI  
LSB  
Hi-Z  
Hi-Z  
SDO  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
23026 F06  
Figure 6. LTC2302/LTC2306 Timing with a Long CONVST Pulse  
23026f  
17  
LTC2302/LTC2306  
APPLICATIONS INFORMATION  
t
t
HCONVST  
WHCONV  
t
ACQ  
CONVST  
t
CYC  
t
CONV  
1
2
3
4
5
6
7
8
9
10 11 12  
SCK  
SDI  
S/D BIT IS A DONT CARE (X) FOR THE LTC2302  
S/D O/S  
UNI  
MSB  
B11  
LSB  
B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
Hi-Z  
Hi-Z  
SDO  
23026 F07  
Figure 7. LTC2302/LTC2306 Timing with a Short CONVST Pulse  
011...111  
011...110  
111...111  
BIPOLAR  
ZERO  
111...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
011...111  
011...110  
UNIPOLAR  
ZERO  
FS = 4.096V  
1LSB = FS/2  
FS = 4.096V  
1LSB = FS/2  
100...001  
100...000  
000...001  
000...000  
N
N
1LSB = 1mV  
1LSB = 1mV  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
–FS/2  
FS/2 – 1LSB  
0V  
FS – 1LSB  
LSB  
INPUT VOLTAGE (V)  
23026 F08  
20026 F09  
Figure 8. LTC2302/LTC2306 Bipolar Transfer Characteristics  
(2s Complement)  
Figure 9. LTC2302/LTC2306 Unipolar Transfer Characteristics  
(Straight Binary)  
23026f  
18  
LTC2302/LTC2306  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 0.10  
TYP  
6
10  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
23026f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2302/LTC2306  
TYPICAL APPLICATION  
Clock Squaring/Level Shifting Circuit Allows Testing with RF Sine Generator,  
Convert Re-Timing Flip-Flop Preserves Low Jitter Clock Timing  
10μF  
0.1μF  
0.1μF  
LTC2302  
LTC2306  
V
OV  
DD  
DD  
SDI  
SDO  
+
ANALOG  
INPUT  
MUX  
CH0 (IN )  
12-BIT  
500ksps  
ADC  
V
CC  
+
SERIAL  
PORT  
SCK  
CH1 (IN )  
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CONVST  
PRE  
Q
D
NL17SZ74  
Q
CLR  
CONVERT ENABLE  
V
REF  
GND  
0.1μF  
10μF  
V
CC  
1k  
1k  
0.1μF  
MASTER  
CLOCK  
RF SIGNAL  
GENERATOR  
OR OTHER LOW  
JITTER SOURCE  
23026 TA02  
50Ω  
NC7SVU04P5X  
MASTER  
CLOCK  
• • • • • •  
• • • • • •  
• • • • • •  
• • • • • •  
CONVERT  
ENABLE  
JITTER  
CONVST  
• • • • • •  
• • • • • •  
DATA TRANSFER  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1417  
14-Bit, 400ksps Serial ADC  
20mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
Low Input Offset: 75μV/125μV  
LTC1468/LT1469  
LTC1609  
Single/Dual 90MHz, 22V/μs, 16-Bit Accurate Op Amps  
16-Bit, 200ksps Serial ADC  
65mW, Configurable Bipolar and Unipolar Input Ranges, 5V Supply  
60μA Supply Current, 10ppm/°C, SOT-23 Package  
LTC1790  
Micropower Low Dropout Reference  
LTC1850/LTC1851  
LTC1852/LTC1853  
LTC1860/LTC1861  
LTC1860L/LTC1861L  
LTC1863/LTC1867  
LTC1863L/LTC1867L  
LTC1864/LTC1865  
LTC1864L/LTC1865L  
LTC2308  
10-Bit/12-Bit, 8-channel, 1.25Msps ADCs  
10-Bit/12-Bit, 8-channel, 400ksps ADCs  
12-Bit, 1-/2-Channel 250ksps ADCs in MSOP  
3V, 12-bit, 1-/2-Channel 150ksps ADCs  
12-/16-Bit, 8-Channel 200ksps ADCs  
3V, 12-/16-bit, 8-Channel 175ksps ADCs  
16-Bit, 1-/2-Channel 250ksps ADCs in MSOP  
3V, 16-Bit, 1-/2-Channel 150ksps ADCs in MSOP  
12-Bit, 8-Channel 500ksps ADC  
Parallel Output, Programmable MUX and Sequencer, 5V Supply  
Parallel Output, Programmable MUX and Sequencer, 3V or 5V Supply  
850μA at 250ksps, 2μA at 1ksps, SO-8 and MSOP Packages  
450μA at 150ksps, 10μA at 1ksps, SO-8 and MSOP Packages  
6.5mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
2mW, Unipolar or Bipolar, Internal Reference, SSOP-16 Package  
850μA at 250ksps, 2μA at 1ksps, SO-8 and MSOP Packages  
450μA at 150ksps, 10μA at 1ksps, SO-8 and MSOP Packages  
5V, Internal Reference, 4mm × 4mm QFN Packages  
23026f  
LT 0108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2302CDDXTRPBF

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2302IDD#PBF

LTC2302 - Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADC; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LTC2302IDD-PBF

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2302IDD-TRPBF

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2302IDDXPBF

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2302IDDXTRPBF

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2302_15

Low Noise, 500ksps, 1-/2-Channel, 12-Bit ADCs
Linear

LTC2305

1-/2-Channel, 12-Bit ADCs with I2C Compatible Interface
Linear

LTC2305CDE-PBF

1-/2-Channel, 12-Bit ADCs with I2C Compatible Interface
Linear

LTC2305CDE-TRPBF

1-/2-Channel, 12-Bit ADCs with I2C Compatible Interface
Linear

LTC2305CDEXPBF

1-/2-Channel, 12-Bit ADCs with I2C Compatible Interface
Linear

LTC2305CDEXTRPBF

1-/2-Channel, 12-Bit ADCs with I2C Compatible Interface
Linear