LTC2325CUKG-12#PBF [Linear]

LTC2325-12 - Quad, 12-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0°C to 70°C;
LTC2325CUKG-12#PBF
型号: LTC2325CUKG-12#PBF
厂家: Linear    Linear
描述:

LTC2325-12 - Quad, 12-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0°C to 70°C

转换器
文件: 总30页 (文件大小:1341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2325-12  
Quad, 12-Bit+Sign, 5Msps/Ch  
Simultaneous Sampling ADC  
FeaTures  
DescripTion  
The LTC®2325-12 is a low noise, high speed quad 12-bit  
+ sign successive approximation register (SAR) ADC with  
differential inputs and wide input common mode range.  
Operatingfromasingle3.3Vor5Vsupply,theLTC2325-12  
n
5Msps/Ch Throughput Rate  
n
Four Simultaneously Sampling Channels  
n
Guaranteed 12-Bit, No Missing Codes  
n
8V Differential Inputs with Wide Input  
P-P  
Common Mode Range  
has an 8V differential input range, making it ideal for  
P-P  
n
n
n
n
n
77dB SNR (Typ) at f = 2.2MHz  
applications which require a wide dynamic range with  
high common mode rejection. The LTC2325-12 achieves  
±±.5LSꢀ INL typical, no missing codes at 12 bits and  
77dꢀ SNR.  
IN  
IN  
–86dB THD (Typ) at f = 2.2MHz  
Guaranteed Operation to 125°C  
Single 3.3V or 5V Supply  
Low Drift (2±ppm/°C Max) 2.±48V or 4.±96V  
Internal Reference  
TheLTC2325-12hasanonboardlowdrift(2±ppm/°Cmax)  
2.±48V or 4.±96V temperature-compensated reference.  
The LTC2325-12 also has a high speed SPI-compatible  
serial interface that supports CMOS or LVDS. The fast  
5Msps per channel throughput with one cycle latency  
makes the LTC2325-12 ideally suited for a wide variety  
of high speed applications. The LTC2325-12 dissipates  
only 45mW per channel and offers nap and sleep modes  
to reduce the power consumption to 26μW for further  
power savings during inactive periods.  
n
n
n
n
1.8V to 2.5V I/O Voltages  
CMOS or LVDS SPI-Compatible Serial I/O  
Power Dissipation 45mW/Ch (Typ)  
Small 52-Lead (7mm × 8mm) QFN Package  
applicaTions  
n
High Speed Data Acquisition Systems  
n
Communications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Analog Devices, Inc. All other trademarks are the property of their  
respective owners.  
n
Optical Networking  
Multiphase Motor Control  
n
Typical applicaTion  
32k Point FFT fSMPL = 5Msps,  
10µF  
1µF  
TRUE DIFFERENTIAL INPUTS  
NO CONFIGURATION REQUIRED  
fIN = 2.2MHz  
3.3V OR 5V  
1.8V TO 2.5V  
+
0
IN , IN  
SNR = 77.1dB  
V
GND  
GND  
O
V
DD  
DD  
THD = –85.7dB  
SINAD = 76.2dB  
SFDR = 90.3dB  
ARBITRARY  
DIFFERENTIAL  
–20  
–40  
12-BIT  
+SIGN  
SAR ADC  
+
V
V
DD  
0V  
DD  
0V  
A
IN1  
CMOS/LVDS  
SDR/DDR  
REFBUFEN  
S/H  
A
IN1  
12-BIT  
+SIGN  
SAR ADC  
+
A
A
IN2  
IN2  
S/H  
SDO1  
SDO2  
SDO3  
SDO4  
CLKOUT  
SCK  
–60  
LTC2325-12  
–80  
12-BIT  
+
A
A
BIPOLAR  
UNIPOLAR  
IN3  
IN3  
+SIGN  
S/H  
V
V
DD  
DD  
–100  
–120  
–140  
SAR ADC  
CNV  
SAMPLE  
12-BIT  
+SIGN  
SAR ADC  
+
CLOCK  
A
A
IN4  
IN4  
S/H  
0V  
0V  
REF REFOUT1 REFOUT2 REFOUT3 REFOUT4  
1µF 10µF 10µF 10µF 10µF  
0
0.5  
1
1.5  
2
2.5  
FOUR SIMULTANEOUS  
SAMPLING CHANNELS  
FREQUENCY (MHz)  
232512 TA01b  
232512 TA01a  
232512f  
1
For more information www.linear.com/LTC2325-12  
LTC2325-12  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (OV )................................................3V  
DD  
Analog Input Voltage  
52 51 50 49 48 47 46 45 44 43 42 41  
A
, A (Note 3) ................... –±.3V to (V + ±.3V)  
IN DD  
+
IN  
A
A
1
2
40 DNC/SDOD  
IN4  
+
+
+
REFOUT1,2,3,4........................ .–±.3V to (V + ±.3V)  
39 SDO4/SDOD  
IN4  
DD  
DD  
GND  
GND  
OV  
3
38  
37  
CNV........................................ –±.3V to (OV + ±.3V)  
A
4
IN3  
DD  
Digital Input Voltage  
+
A
IN3  
5
36 DNC/SDOC  
SDO3/SDOC  
35  
(Note 3).......................... (GND – ±.3V) to (OV + ±.3V)  
DD  
REFOUT3  
GND  
6
7
34 CLKOUTEN/CLKOUT  
Digital Output Voltage  
53  
GND  
+
REF  
8
33 CLKOUT/CLKOUT  
(Note 3).......................... (GND – ±.3V) to (OV + ±.3V)  
DD  
REFOUT2  
9
32 GND  
Operating Temperature Range  
A
A
10  
11  
31 OV  
DD  
IN2  
+
LTC2325C................................................ ±°C to 7±°C  
LTC2325I .............................................–4±°C to 85°C  
LTC2325H.......................................... –4±°C to 125°C  
Storage Temperature Range .................. –65°C to 15±°C  
30 DNC/SDOB  
IN2  
+
+
GND 12  
29 SDO2/SDOB  
A
A
13  
14  
28 DNC/SDOA  
IN1  
+
27 SDO1/SDOA  
IN1  
15 16 17 18 19 20 21 22 23 24 25 26  
UKG PACKAGE  
52-LEAD (7mm × 8mm) PLASTIC QFN  
T
JMAX  
= 15±°C, θ = 31°C/W  
JA  
EXPOSED PAD (PIN 53) IS GND, MUST ꢀE SOLDERED TO PCꢀ  
http://www.linear.com/product/LTC2325-12#orderinfo  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC2325UKG-12  
LTC2325UKG-12  
LTC2325UKG-12  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
±°C to 7±°C  
LTC2325CUKG-12#PꢀF  
LTC2325IUKG-12#PꢀF  
LTC2325HUKG-12#PꢀF  
LTC2325CUKG-12#TRPꢀF  
LTC2325IUKG-12#TRPꢀF  
LTC2325HUKG-12#TRPꢀF  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
–4±°C to 85°C  
–4±°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 5±± unit reels through  
designated sales channels with #TRMPꢀF suffix.  
232512f  
2
For more information www.linear.com/LTC2325-12  
LTC2325-12  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
Absolute Input Range (A to A  
CONDITIONS  
(Note 5)  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
l
l
+
+
+
V
V
V
V
)
±
V
DD  
V
DD  
IN  
IN  
IN  
IN  
IN  
IN  
+
Absolute Input Range (A to A  
)
(Note 5)  
±
V
IN  
+
= V – V  
IN  
– V  
Input Differential Voltage Range  
Common Mode Input Range  
V
V
–REFOUT1,2,3,4  
REFOUT1,2,3,4  
V
IN  
IN  
IN  
+
= (V – V )/2  
±
V
DD  
V
CM  
CM  
IN  
IN  
I
IN  
Analog Input DC Leakage Current  
Analog Input Capacitance  
–1  
1
μA  
pF  
dꢀ  
V
C
IN  
1±  
CMRR  
Input Common Mode Rejection Ratio  
CNV High Level Input Voltage  
CNV Low Level Input Voltage  
CNV Input Current  
f
IN  
= 2.2MHz  
1±2  
l
l
l
V
V
1.5  
IHCNV  
ILCNV  
INCNV  
±.5  
1±  
V
I
–1±  
μA  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
No Missing Codes  
12  
ꢀits  
Transition Noise  
±.3  
±±.5  
±±.4  
±
LSꢀ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
–1  
–±.99  
–1  
1
±.99  
1
LSꢀ  
DNL  
ꢀZE  
LSꢀ  
LSꢀ  
±.±1  
LSꢀ/°C  
LSꢀ  
l
FSE  
V
V
= 4.±96V (REFꢀUFEN Grounded) (Note 7)  
= 4.±96V (REFꢀUFEN Grounded)  
–2  
2
REFOUT1,2,3,4  
15  
ppm/°C  
REFOUT1,2,3,4  
232512f  
3
For more information www.linear.com/LTC2325-12  
LTC2325-12  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS (Notes 4, 8).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
76  
MAX  
UNITS  
dꢀ  
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio f = 2.2MHz, V  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
= 4.±96V, Internal Reference  
= 5V, External Reference  
74  
IN  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
REFOUT1,2,3,4  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 2.2MHz, V  
= 2.2MHz, V  
= 2.2MHz, V  
= 2.2MHz, V  
= 2.2MHz, V  
= 2.2MHz, V  
= 2.2MHz, V  
76.5  
77  
dꢀ  
SNR  
Signal-to-Noise Ratio  
75  
76  
dꢀ  
77.6  
–86  
–85  
93  
dꢀ  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–76  
dꢀ  
dꢀ  
SFDR  
dꢀ  
93  
dꢀ  
–3dꢀ Input ꢀandwidth  
Aperture Delay  
95  
MHz  
ps  
5±±  
5±±  
1
Aperture Delay Matching  
Aperture Jitter  
ps  
ps  
RMS  
Transient Response  
Full-Scale Step  
3±  
ns  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Internal Reference Output Voltage  
4.75V < V < 5.25V  
4.±78  
2.±34  
4.±96  
2.±48  
4.115  
2.±64  
V
V
REFOUT1,2,3,4  
DD  
3.13V < V < 3.47V  
DD  
l
V
Temperature Coefficient  
(Note 14)  
3
2±  
ppm/°C  
REF  
REFOUT1,2,3,4 Output Impedance  
Line Regulation  
±.25  
±.3  
V
4.75V < V < 5.25V  
mV/V  
REFOUT1,2,3,4  
DD  
I
External Reference Current  
REFꢀUFEN = ±V  
REFOUT1,2,3,4  
REFOUT1,2,3,4 = 4.±96V  
REFOUT1,2,3,4 = 2.±48V  
(Notes 9, 1±)  
5±±  
3±±  
μA  
μA  
232512f  
4
For more information www.linear.com/LTC2325-12  
LTC2325-12  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL PARAMETER  
CONDITIONS  
CMOS/LVDS = GND  
MIN  
±.8 OV  
–1±  
TYP  
MAX  
UNITS  
CMOS Digital Inputs and Outputs  
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
IH  
IL  
DD  
±.2 OV  
DD  
I
IN  
V
IN  
= ±V to OV  
DD  
1±  
μA  
pF  
C
IN  
Digital Input Capacitance  
5
l
l
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –5±±μA  
OV – ±.2  
V
V
OH  
O
DD  
I = 5±±μA  
O
±.2  
1±  
OL  
l
l
l
I
I
I
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
V
OUT  
V
OUT  
V
OUT  
= ±V to OV  
DD  
–1±  
μA  
mA  
mA  
OZ  
= ±V  
= OV  
–1±  
1±  
SOURCE  
SINK  
DD  
LVDS Digital Inputs and Outputs  
CMOS/LVDS = OV  
DD  
l
l
l
l
l
l
V
V
V
V
V
V
LVDS Differential Input Voltage  
LVDS Common Mode Input Voltage  
LVDS Differential Output Voltage  
LVDS Common Mode Output Voltage  
1±±Ω Differential Termination  
DD  
24±  
1
6±±  
1.45  
6±±  
1.4  
mV  
V
ID  
OV = 2.5V  
1±±Ω Differential Termination  
OV = 2.5V  
DD  
IS  
1±±Ω Differential Termination  
OV = 2.5V  
DD  
22±  
±.85  
1±±  
±.85  
35±  
1.2  
2±±  
1.2  
mV  
V
OD  
1±±Ω Differential Termination  
OV = 2.5V  
DD  
OS  
Low Power LVDS Differential Output  
Voltage  
1±±Ω Differential Termination  
OV = 2.5V  
DD  
35±  
1.4  
mV  
V
OD_LP  
OS_LP  
Low Power LVDS Common Mode Output 1±±Ω Differential Termination  
Voltage  
OV = 2.5V  
DD  
232512f  
5
For more information www.linear.com/LTC2325-12  
LTC2325-12  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Supply Voltage  
5V Operation  
3.3V Operation  
4.75  
3.13  
5.25  
3.47  
V
V
DD  
+
l
IV  
DD  
Supply Current  
5Msps Sample Rate (IN = IN = ±V)  
31  
44.5  
mA  
CMOS I/O Mode: CMOS/LVDS = GND  
l
l
l
l
OV  
Supply Voltage  
1.71  
2.63  
15.5  
6.4  
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
Supply Current  
5Msps Sample Rate (C = 5pF)  
4.4  
5.3  
2±  
L
Nap Mode Current  
Sleep Mode Current  
Power Dissipation  
Conversion Done (I  
)
VDD  
Sleep Mode (I + I  
)
9±  
SLEEP  
VDD OVDD  
l
l
l
P
V
= 3.3V, 5Msps Sample Rate  
DD  
1±2  
18  
2±  
181  
21.1  
288  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 5Msps Sample Rate  
162  
27  
3±  
261  
32  
424  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
LVDS I/O Mode: CMOS/LVDS = OV , OV = 2.5V  
DD  
DD  
l
l
l
l
OV  
Supply Voltage  
2.37  
2.63  
32  
V
mA  
mA  
µA  
DD  
OVDD  
NAP  
I
I
I
Supply Current  
5Msps Sample Rate (C = 5pF, R = 1±±Ω)  
26  
5.3  
2±  
L
L
Nap Mode Current  
Conversion Done (I  
)
6.4  
9±  
VDD  
Sleep Mode Current  
Power Dissipation  
Sleep Mode (I  
+ I  
)
OVDD  
SLEEP  
VDD  
l
l
l
P
V
= 3.3V, 5Msps Sample Rate  
DD  
151  
52  
8±  
218  
58.6  
288  
mW  
mW  
µW  
D_3.3V  
Nap Mode  
Sleep Mode  
l
l
l
P
D_5V  
Power Dissipation  
V
= 5V, 5Msps Sample Rate  
214  
5±  
4±  
3±3  
69.2  
424  
mW  
mW  
µW  
DD  
Nap Mode  
Sleep Mode  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
±.2  
3±  
TYP  
MAX  
5
UNITS  
Msps  
µs  
l
l
l
l
f
t
t
t
t
t
Maximum Sampling Frequency  
Time ꢀetween Conversions  
Conversion Time  
SMPL  
(Note 11) t  
= t  
+ t  
CONV  
1±±±  
17±  
CYC  
CYC  
CNVH  
ns  
CONV  
CNV High Time  
ns  
CNVH  
Sampling Aperture  
(Note 11) t  
= t  
– t  
CONV  
28  
5±  
ns  
ACQUISITION  
WAKE  
ACQUISITION  
CYC  
REFOUT1,2,3,4 Wake-Up Time  
C
= 1±µF  
ms  
REFOUT1,2,3,4  
CMOS I/O Mode: SDR, CMOS/LVDS = GND, SDR/ DDR = GND  
l
l
l
l
l
t
t
t
t
t
SCK Period  
(Note 13)  
9.1  
4.1  
4.1  
±
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
HSDO_SDR  
DSCKCLKOUT  
L
SCK to CLKOUT Delay  
(Note 12)  
2.5  
232512f  
6
For more information www.linear.com/LTC2325-12  
LTC2325-12  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C (Note 4).  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 11)  
(Note 11)  
(Note 11)  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
l
t
t
t
ꢀus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
3
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
ns  
±
ns  
CMOS I/O Mode: DDR, CMOS/LVDS = GND, SDR/ DDR = OV  
DD  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SCK Period  
18.2  
8.2  
8.2  
±
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4.5  
3
HSDO_DDR  
DSCKCLKOUT  
DCNVSDOZ  
DCNVSDOV  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
(Note 11)  
(Note 11)  
2
ꢀus Relinquish Time After CNV↑  
SDO Valid Delay from CNV↓  
SCK Delay Time to CNV↑  
3
±
LVDS I/O Mode: SDR, CMOS/LVDS = OV , SDR/DDR = GND  
DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
9.1  
4.1  
4.1  
±
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4
HSDO_SDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
2
SCK Delay Time to CNV↑  
±
LVDS I/O Mode: DDR, CMOS/LVDS = OV , SDR/DDR = OV = 2.5V  
DD  
DD  
l
l
l
l
l
l
t
t
t
t
t
t
SCK Period  
18.2  
8.2  
8.2  
±
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK High Time  
SCK Low Time  
SCKH  
SCKL  
SDO Data Remains Valid Delay from CLKOUTC = 5pF (Note 12)  
1.5  
4
HSDO_DDR  
DSCKCLKOUT  
DSCKHCNVH  
L
SCK to CLKOUT Delay  
(Note 12)  
(Note 11)  
2
SCK Delay Time to CNV↑  
±
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note 8: All specifications in dꢀ are referred to a full-scale ±4.±96V input  
with REF = 4.±96V.  
Note 2: All voltage values are with respect to ground.  
Note 9: When REFOUT1,2,3,4 is overdriven, the internal reference buffer  
Note 3: When these pin voltages are taken below ground, or above V or  
must be turned off by setting REFꢀUFEN = ±V.  
DD  
OV , they will be clamped by internal diodes. This product can handle input  
DD  
Note 10: f  
= 5MHz, I  
varies proportionally with sample rate.  
SMPL  
REFOUT1,2,3,4  
currents up to 1±±mA below ground, or above V or OV , without latch-up.  
DD  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V and OV = 2.5V.  
Note 13: t  
rising edge capture.  
Note 14: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 15: CNV is driven from a low jitter digital source, typically at OV  
logic levels.  
Note 4: V = 5V, OV = 2.5V, REFOUT1,2,3,4 = 4.±96V, f = 5MHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
of 9.1ns allows a shift clock frequency up to 1±5MHz for  
SCK  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 7: ꢀipolar zero error is the offset voltage measured from –±.5LSꢀ  
when the output code flickers between ± ±±±± ±±±± ±±±± and 1 1111  
1111 1111. Full-scale bipolar error is the worst-case of –FS or +FS  
DD  
232512f  
7
For more information www.linear.com/LTC2325-12  
LTC2325-12  
aDc TiMing characTerisTics  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
232512 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 1. Voltage Levels for Timing Specifications  
232512f  
8
For more information www.linear.com/LTC2325-12  
LTC2325-12  
Typical perForMance characTerisTics  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
= 4.096V, fSMPL = 5Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
1.0  
0.5  
1.0  
0.5  
200000  
σ = 0.3  
160000  
120000  
80000  
40000  
0
0
0
–0.5  
–0.5  
–1.0  
–1.0  
–4096  
–2048  
0
2048  
4096  
–4096  
–2048  
0
2048  
4096  
–3  
–2  
–1  
0
1
2
3
OUTPUT CODE  
OUTPUT CODE  
CODE  
232512 G02  
232512 G01  
232512 G03  
THD, Harmonics vs Input  
32k Point FFT, fSMPL = 5Msps,  
fIN = 2.2MHz  
SNR, SINAD vs Input Frequency  
(1kHz to 2.2MHz)  
Frequency (1kHz to 2.2MHz)  
0
–20  
78.0  
77.7  
77.4  
77.1  
76.8  
76.5  
76.2  
75.9  
75.6  
75.3  
75.0  
–80  
–84  
SNR = 77.1dB  
THD = –85.7dB  
SINAD = 76.2dB  
SFDR = 90.3dB  
THD  
–88  
SNR  
–40  
–92  
–96  
SINAD  
–60  
HD3  
–100  
–104  
–108  
–112  
–116  
–120  
–80  
HD2  
–100  
–120  
–140  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
232512 G04  
232512 G05  
232512 G06  
THD, Harmonics vs Input Common  
Mode  
SNR, SINAD vs Reference Voltage,  
fIN = 2.2MHz  
32k Point FFT, IMD, fSMPL = 5Msps,  
AIN+ = 1.2MHz, AIN= 2.2MHz  
–80  
–83  
78  
77  
76  
75  
74  
73  
72  
71  
70  
0
–20  
THD = 85dB  
f = 2.2MHz  
f = 2.2MHz  
SNR  
V
= 1MHz, 4V  
CM  
P-P  
–86  
THD  
SINAD  
–40  
–89  
–92  
–60  
HD3  
–95  
–80  
–98  
–101  
–104  
–107  
–110  
–100  
–120  
–140  
HD2  
1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
INPUT COMMON MODE (V)  
V
(V)  
REFOUT  
FREQUENCY (MHz)  
232512 G07  
232512 G08  
232512 G09  
232512f  
9
For more information www.linear.com/LTC2325-12  
LTC2325-12  
Typical perForMance characTerisTics  
TA = 25°C, VDD = 5V, OVDD = 2.5V, REFOUT1,2,3,4  
= 4.096V, fSMPL = 5Msps, unless otherwise noted.  
Step Response  
(Large Signal Settling)  
4096  
CMRR vs Input Frequency  
Crosstalk vs Input Frequency  
–105  
–107  
–109  
–111  
–113  
–115  
–117  
–119  
–121  
–123  
–125  
120  
112  
104  
96  
V
= 4V  
P-P  
CM  
3072  
2048  
4.096V RANGE  
1024  
88  
0
+
IN = 5MHz SQUARE WAVE  
IN = 0V  
80  
–1024  
0
0.5  
1
1.5  
2
2.5  
0
500  
1000  
1500  
2000  
2500  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
SETTLING TIME (ns)  
232512 G11  
232512 G10  
232512 G12  
Step Response  
(Fine Settling)  
External Reference Supply  
Current vs Sample Frequency  
REF Output vs Temperature  
20  
10  
700  
600  
500  
400  
300  
200  
100  
0
1.00  
0.50  
REFBUFEN = 0V  
4.096V RANGE  
+
(EXT REF BUF  
IN = 5MHz  
OVERDRIVING REF BUF)  
SQUARE WAVE  
V
= 3.3V  
DD  
IN = 0V  
0
–0.50  
–1.00  
–1.50  
–2.00  
–2.50  
–3.00  
V
= 4.096V  
0
REFOUT1,2,3,4  
V
= 5V  
DD  
–10  
V
= 2.048V  
REFOUT1,2,3,4  
–20  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
0
1
2
3
4
5
–55 –35 –15  
5
25 45 65 85 105 125  
SETTLING TIME (ns)  
SAMPLE FREQUENCY (Msps)  
TEMPERATURE (°C)  
232512 G13  
232512 G14  
232512 G15  
Supply Current  
vs Sample Frequency  
OVDD Current vs SCK Frequency,  
CLOAD = 10pF  
Offset Error vs Temperature  
8
7
6
5
4
3
2
1
0
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
1.0  
0.5  
40  
35  
30  
25  
20  
15  
FULL SCALE SINUSOIDAL INPUT  
LVDS  
V
DD  
= 5V  
CMOS(2.5V)  
0
V
= 3.3V  
DD  
CMOS(1.8V)  
–0.5  
LOW POWER LVDS  
–1.0  
0
22  
44  
66  
88  
110  
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
4
5
SCK FREQUENCY (MHz)  
TEMPERATURE (°C)  
SAMPLE FREQUENCY (Msps)  
232512 G18  
232512 G16  
232512 G17  
232512f  
10  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
pin FuncTions  
PINS THAT ARE THE SAME FOR ALL DIGITAL I/O MODES  
REFOUT1(Pin22):ReferenceBuffer1Output.Anonboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
+
AIN4 , AIN4 (Pins 2, 1): Analog Differential Input Pins.  
+
Full-scale range (AIN4 – AIN4 ) is ±REFOUT4 voltage.  
These pins can be driven from V to GND.  
DD  
GND (Pins 3, 7, 12, 18, 26, 32, 38, 46, 49): Ground.  
These pins and exposed pad (Pin 53) must be tied directly  
to a solid ground plane.  
SDR/DDR (Pin 23): Double Data Rate Input. Controls the  
frequency of SCK and CLKOUT. Tie to GND for the falling  
edge of SCK to shift each serial data output (Single Data  
+
AIN3 , AIN3 (Pins 5, 4): Analog Differential Input Pins.  
+
Full-scale range (AIN3 – AIN3 ) is ±REFOUT3 voltage.  
These pins can be driven from V to GND.  
Rate, SDR). Tie to OV to shift serial data output on each  
DD  
DD  
edge of SCK (Double Data Rate, DDR). CLKOUT will be a  
REFOUT3 (Pin 6): Reference Buffer 3 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
delayed version of SCK for both pin states.  
CNV (Pin 24): Convert Input. This pin, when high, defines  
the acquisition phase. When this pin is driven low, the  
conversion phase is initiated and output data is clocked  
out. This input must be driven at OV levels with a low  
DD  
jitter pulse. This pin is unaffected by the CMOS/LVDS pin.  
REF (Pin 8): Common 4.096V reference output. Decouple  
to GND with a 1μF low ESR ceramic capacitor. May be  
overdriven with a single external reference to establish a  
common reference for ADC cores 1 through 4.  
CMOS/LVDS (Pin 25): I/O Mode Select. Ground this pin  
to enable CMOS mode, tie to OV to enable LVDS mode.  
DD  
Float this pin to enable low power LVDS mode.  
OV (Pins 31, 37): I/O Interface Digital Power. The range  
DD  
REFOUT2 (Pin 9): Reference Buffer 2 Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
of OV is 1.71V to 2.63V. This supply is nominally set  
DD  
to the same supply as the host interface (CMOS: 1.8V or  
2.5V, LVDS: 2.5V). Bypass OV to GND (Pins 32 and 38)  
DD  
with 0.1µF capacitors.  
REFBUFEN (Pin 43): Reference Buffer Output Enable. Tie  
to V when using the internal reference. Tie to ground  
DD  
to disable the internal REFOUT1–4 buffers for use with  
+
AIN2 ,AIN2 (Pins11,10):AnalogDifferentialInputPins.  
external voltage references. This pin has a 500k internal  
+
Full-scale range (AIN2 – AIN2 ) is ±REFOUT2 voltage.  
These pins can be driven from V to GND.  
pull-up to V .  
DD  
DD  
REFOUT4 (Pin45):ReferenceBuffer4Output.Anonboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 10µF (X5R, 0805 size) ceramic capacitor. The  
internal buffer driving this pin may be disabled by ground-  
ing the REFBUFEN pin. If the buffer is disabled, an external  
reference may drive this pin in the range of 1.25V to 5V.  
+
AIN1 ,AIN1 (Pins14,13):AnalogDifferentialInputPins.  
+
Full-scale range (AIN1 – AIN1 ) is ±REFOUT1 voltage.  
These pins can be driven from V to GND.  
DD  
V
(Pins 15, 21, 44, 52): Power Supply. Bypass V to  
DD  
DD  
GND with a 10µF ceramic capacitor and a 0.1µF ceramic  
capacitorclosetothepart. TheV pinsshouldbeshorted  
together and driven from the same supply.  
DD  
Exposed Pad (Pin 53): Ground. Solder this pad to ground.  
232512f  
11  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
pin FuncTions  
CMOS DATA OUTPUT OPTION (CMOS/LVDS = LOW)  
LVDS DATA OUTPUT OPTION (CMOS/LVDS = HIGH OR  
FLOAT)  
SDO1 (Pin 27): CMOS Serial Data Output for ADC Channel  
1. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 13-bit conversion  
data to be read from SDO1 in SDR mode, 8 SCK edges  
in DDR mode.  
+
SDOA , SDOA (Pins 27, 28): LVDS Serial Data Output  
for ADC Channel 1. The conversion result is shifted CH1  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 13-bit conversion data to be read from SDOA in SDR  
mode, 8 SCK edges in DDR mode. Terminate with a 100Ω  
resistor at the receiver (FPGA).  
SDO2 (Pin 29): CMOS Serial Data Output for ADC Channel  
2. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 13-bit conversion  
data to be read from SDO2 in SDR mode, 8 SCK edges  
in DDR mode.  
+
SDOB , SDOB (Pins 29, 30): LVDS Serial Data Output  
for ADC Channel 2. The conversion result is shifted CH2  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 13-bit conversion data to be read from SDOB in SDR  
mode, 8 SCK edges in DDR mode. Terminate with a 100Ω  
resistor at the receiver (FPGA).  
SDO3 (Pin 35): CMOS Serial Data Output for ADC Channel  
3. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 13-bit conversion  
data to be read from SDO3 in SDR mode, 8 SCK edges  
in DDR mode.  
+
CLKOUT ,CLKOUT (Pins33,34):SerialDataClockOutput.  
CLKOUT provides a skew-matched clock to latch the SDO  
outputatthereceiver.ThesepinsechotheinputatSCKwith  
a small delay. These pins must be differentially terminated  
by an external 100Ω resistor at the receiver (FPGA).  
SDO4 (Pin 39): CMOS Serial Data Output for ADC Channel  
4. The conversion result is shifted MSB first on each fall-  
ing edge of SCK in SDR mode and each SCK edge in DDR  
mode. 16 SCK edges are required for 13-bit conversion  
data to be read from SDO4 in SDR mode, 8 SCK edges  
in DDR mode.  
+
SDOC , SDOC (Pins 35, 36): LVDS Serial Data Output  
for ADC channel 3. The conversion result is shifted CH3  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 13-bit conversion data to be read from SDOA in SDR  
mode, 8 SCK edges in DDR mode. Terminate with a 100Ω  
resistor at the receiver (FPGA).  
CLKOUT (Pin 33): Serial Data Clock Output. CLKOUT  
provides a skew-matched clock to latch the SDO output  
at the receiver (FPGA). The logic level is determined by  
+
OV . This pin echoes the input at SCK with a small delay.  
SDOD , SDOD (Pins 39, 40): LVDS Serial Data Output  
for ADC Channel 4. The conversion result is shifted CH4  
MSB first on each falling edge of SCK in SDR mode and  
each SCK edge in DDR mode. 16 SCK edges are required  
for 13-bit conversion data to be read from SDOA in SDR  
mode, 8 SCK edges in DDR mode. Terminate with a 100Ω  
resistor at the receiver (FPGA).  
DD  
CLKOUTEN (Pin 34): CLKOUT can be disabled by tying  
Pin 34 to OV for a small power savings. If CLKOUT is  
DD  
used, ground this pin.  
SCK (Pin 41): Serial Data Clock Input. The falling edge  
of this clock shifts the conversion result MSB first onto  
the SDO pins in SDR mode (DDR = LOW). In DDR mode  
(SDR/DDR = HIGH) each edge of this clock shifts the  
conversion result MSB first onto the SDO pins. The logic  
+
SCK , SCK (Pins 41, 42): Serial Data Clock Input. The  
falling edge of this clock shifts the conversion result MSB  
first onto the SDO pins in SDR mode (SDR/DDR = LOW).  
In DDR mode (SDR/DDR = HIGH) each edge of this clock  
shifts the conversion result MSB first onto the SDO pins.  
Thesepinsmustbedifferentiallyterminatedbyanexternal  
level is determined by OV .  
DD  
DNC (Pins 28, 30, 36, 40, 42): In CMOS mode, do not  
connect this pin.  
100Ω resistor at the receiver (ADC).  
232512f  
12  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
FuncTional block DiagraM  
CMOS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
A
+
SDO1  
DNC  
IN1  
+
27  
28  
14  
13  
12-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
A
IN1  
REFOUT1  
×1  
REF  
22  
A
A
+
IN2  
SDO2  
DNC  
+
11  
10  
29  
30  
12-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN2  
REFOUT2  
×1  
REF  
9
CLKOUT  
SCK  
41  
42  
33  
34  
CMOS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
CLKOUTEN  
DNC  
SDR/DDR  
23  
A
A
+
IN3  
SDO3  
DNC  
+
5
4
35  
36  
12-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN3  
REFOUT3  
×1  
REF  
6
A
A
+
IN4  
SDO4  
DNC  
+
2
1
39  
40  
12-BIT+SIGN  
SAR ADC  
CMOS  
I/O  
S/H  
IN4  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232512 BDa  
232512f  
13  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
FuncTional block DiagraM  
LVDS IO Mode  
V
GND  
DD  
24  
CNV  
(15, 21, 44, 52)  
(3, 7, 12, 18, 26, 32, 38, 46, 49, 53)  
+
A
+
SDOA  
SDOA  
IN1  
+
27  
28  
14  
13  
LVDS  
I/O  
12-BIT+SIGN  
SAR ADC  
S/H  
A
IN1  
REFOUT1  
×1  
REF  
22  
+
A
A
+
SDOB  
IN2  
+
11  
10  
29  
30  
LVDS  
I/O  
12-BIT+SIGN  
SAR ADC  
S/H  
SDOB  
IN2  
REFOUT2  
×1  
REF  
9
+
+
CLKOUT  
SCK  
SCK  
41  
42  
33  
34  
LVDS  
RECEIVERS  
OUTPUT  
CLOCK DRIVER  
CLKOUT  
SDR/DDR  
23  
+
A
+
SDOC  
IN3  
+
5
4
35  
36  
LVDS  
I/O  
12-BIT+SIGN  
SAR ADC  
S/H  
A
SDOC  
IN3  
REFOUT3  
×1  
REF  
6
+
A
A
+
SDOD  
IN4  
+
2
1
39  
40  
LVDS  
I/O  
12-BIT+SIGN  
SAR ADC  
S/H  
SDOD  
IN4  
REFOUT4  
×1  
REF  
45  
250μA  
OV (31, 37)  
DD  
REF  
×1.7  
×3.4  
8
1.2V INT REF  
REFBUFEN  
43  
25  
CMOS/LVDS  
232512 BDb  
232512f  
14  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
TiMing DiagraM  
SDR Mode, CMOS  
SAMPLE N  
SAMPLE N+1  
CNV  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
Hi-Z  
Hi-Z  
CLKOUT  
Hi-Z  
Hi-Z  
SDO1  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[12:0] CORRESPOND TO PREVIOUS CONVERSION OF CH1  
Hi-Z  
Hi-Z  
SDO4  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[12:0] CORRESPOND TO PREVIOUS CONVERSION OF CH4  
ACQUIRE  
CONVERSION AND READOUT  
232512 TD01  
DDR Mode, CMOS  
SAMPLE N  
SAMPLE N+1  
CNV  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
Hi-Z  
Hi-Z  
CLKOUT  
Hi-Z  
Hi-Z  
SDO1  
D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[12:0] CORRESPOND TO PREVIOUS CONVERSION OF CH1  
Hi-Z  
Hi-Z  
SDO4  
D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[12:0] CORRESPOND TO PREVIOUS CONVERSION OF CH4  
232512 TD02  
ACQUIRE  
CONVERSION AND READOUT  
232512f  
15  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
TiMing DiagraM  
SDR Mode, LVDS  
SAMPLE N  
SAMPLE N+1  
CNV  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
CLKOUT  
SDOA  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[15:0] CORRESPOND TO PREVIOUS CONVERSION OF CH1  
SDOD  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[15:0] CORRESPOND TO PREVIOUS CONVERSION OF CH4  
ACQUIRE  
CONVERSION AND READOUT  
232512 TD03  
DDR Mode, LVDS  
SAMPLE N  
SAMPLE N+1  
CNV  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCK  
CLKOUT  
SDOA  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[15:0] CORRESPOND TO PREVIOUS CONVERSION OF CH1  
SDOD  
D12  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SERIAL DATA BITS D[15:0] CORRESPOND TO PREVIOUS CONVERSION OF CH4  
232512 TD04  
ACQUIRE  
CONVERSION AND READOUT  
232512f  
16  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
applicaTions inForMaTion  
OVERVIEW  
TRANSFER FUNCTION  
The LTC2325-12 is a low noise, high speed 12-bit succes-  
sive approximation register (SAR) ADC with differential  
inputs and a wide input common mode range. Operating  
from a single 3.3V or 5V supply, the LTC2325-12 has a  
The LTC2325-12 digitizes the full-scale voltage of 2  
13  
REFOUT1,2,3,4 into 2 levels, resulting in an LSꢀ size of  
1mVwithREF=4.±96V.Theidealtransferfunctionisshown  
in Figure 2. The output data is in 2’s complement format.  
When driven by fully differential inputs, the transfer func-  
4V or 8V differential input range, making it ideal for  
P-P  
P-P  
13  
applications which require a wide dynamic range. The  
LTC2325-12 achieves ±±.5LSꢀ INL typical, no missing  
codes at 12 bits and 77dꢀ SNR.  
tion spans 2 codes. When driven by pseudo-differential  
12  
inputs, the transfer function spans 2 codes.  
TheLTC2325-12hasanonboardreferencebufferandlow  
drift(2±ppm/°Cmax)4.±96Vtemperature-compensated  
reference. The LTC2325-12 also has a high speed SPI-  
compatible serial interface that supports CMOS or LVDS.  
The fast 5Msps per channel throughput with one-cycle  
latency makes the LTC2325-12 ideally suited for a wide  
variety of high speed applications. The LTC2325-12 dis-  
sipates only 45mW per channel. Nap and sleep modes  
are also provided to reduce the power consumption  
of the LTC2325-12 during inactive periods for further  
power savings.  
0 1111 1111 1111  
0 1111 1111 1110  
0 0000 0000 0001  
0 0000 0000 0000  
1 1111 1111 1111  
1LSB = 2 • REFOUT1,2  
1 0000 0000 0001  
8192  
1 0000 0000 0000  
–REFOUT  
–1LSB 0 1LSB  
REFOUT  
–1LSB  
INPUT VOLTAGE (V)  
232512 F02  
Figure 2. LTC2325-12 Transfer Function  
CONVERTER OPERATION  
The LTC2325-12 operates in two phases. During the ac-  
quisition phase, the sample capacitor is connected to the  
V
DD  
C
IN  
R
15Ω  
ON  
10pF  
analog input pins A and A to sample the differential  
+
IN  
IN  
A
A
+
IN  
analoginputvoltage,asshowninFigure3.Afallingedgeon  
the CNV pin initiates a conversion. During the conversion  
phase,the13-bitCDACissequencedthroughasuccessive  
approximationalgorithmeffectivelycomparingthesampled  
input with binary-weighted fractions of the reference volt-  
BIAS  
VOLTAGE  
V
DD  
C
IN  
R
15Ω  
ON  
10pF  
232512 F03  
age (e.g., V /2, V  
REFOUT  
/4 … V  
REFOUT  
/32768) using  
REFOUT  
IN  
adifferentialcomparator. Attheendofconversion, aCDAC  
output approximates the sampled analog input. The ADC  
control logic then prepares the 13-bit digital output code  
for serial transfer.  
Figure 3. The Equivalent Circuit for the Differential  
Analog Input of the LTC2325-12  
Table 1. Code Ranges for the Analog Input Operational Modes  
+
MODE  
SPAN (V – V  
)
IN  
MIN CODE  
MAX CODE  
IN  
Fully Differential  
–REFOUT to +REFOUT  
–REFOUT/2 to +REFOUT/2  
± to REFOUT  
1 ±±±± ±±±± ±±±±  
1 1±±± ±±±± ±±±±  
± ±±±± ±±±± ±±±±  
± 1111 1111 1111  
± ±111 1111 1111  
± 1111 1111 1111  
Pseudo-Differential ꢀipolar  
Pseudo-Differential Unipolar  
232512f  
17  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
Analog Input  
is connected to the input. Any unwanted signal that is  
common to both inputs will be reduced by the common  
mode rejection of the ADC sampler. The inputs of the  
ADC core draw a small current spike while charging the  
The differential inputs of the LTC2325-12 provide great  
flexibility to convert a wide variety of analog signals with  
no configuration required. The LTC2325-12 digitizes the  
C capacitors during acquisition.  
IN  
difference voltage between the A and A pins while  
+
IN  
IN  
supporting a wide common mode input range. The analog  
Single-Ended Signals  
input signals can have an arbitrary relationship to each  
Single-ended signals can be directly digitized by the  
LTC2325-12. These signals should be sensed pseudo-  
differentially for improved common mode rejection. ꢀy  
connecting the reference signal (e.g., ground sense) of  
other, provided that they remain between V and GND.  
DD  
The LTC2325-12 can also digitize more limited classes of  
analog input signals such as pseudo-differential unipolar/  
bipolarandfullydifferentialwithnoconfigurationrequired.  
the main analog signal to the other A pin, any noise or  
IN  
The analog inputs of the LTC2325-12 can be modeled  
by the equivalent circuit shown in Figure 3. The back-  
to-back diodes at the inputs form clamps that provide  
disturbance common to the two signals will be rejected  
by the high CMRR of the ADC. The LTC2325-12 flexibility  
handles both pseudo-differential unipolar and bipolar  
signals,withnoconfigurationrequired.Thewidecommon  
mode input range relaxes the accuracy requirements of  
anysignalconditioningcircuitspriortotheanaloginputs.  
ESD protection. In the acquisition phase, 1±pF (C )  
IN  
from the sampling capacitor in series with approximately  
15Ω(R )fromtheon-resistanceofthesamplingswitch  
ON  
V
REF  
V
REF  
LT1819  
LTC2325-12  
25Ω  
25Ω  
+
0V  
0V  
A
+
REFOUT1  
REF  
IN1  
10µF  
1µF  
V
REF  
220pF  
10k  
V
/2  
REF  
+
V
/2  
REF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
SDO1  
CLKOUT  
SCK  
IN1  
10k  
1µF  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232512 F04  
Figure 4. Pseudo-Differential Bipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
4095  
2047  
A
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
–2048  
–4096  
232512 F05  
Figure 5. Pseudo-Differential Bipolar Transfer Function  
232512f  
18  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
Pseudo-Differential Bipolar Input Range  
Pseudo-Differential Unipolar Input Range  
The pseudo-differential bipolar configuration represents  
driving one of the analog inputs at a fixed voltage, typically  
The pseudo-differential unipolar configuration represents  
driving one of the analog inputs at ground and applying a  
V
/2, and applying a signal to the other A pin. In this  
signal to the other A pin. In this case, the analog input  
REF  
IN  
IN  
case the analog input swings symmetrically around the  
fixedinputyieldingbipolartwo’scomplementoutputcodes  
with an ADC span of half of full-scale. This configuration  
is illustrated in Figure 4, and the corresponding transfer  
function in Figure 5. The fixed analog input pin need not  
be set at V /2, but at some point within the V rails  
swings between ground and V yielding unipolar two’s  
REF  
complement output codes with an ADC span of half of  
full-scale. This configuration is illustrated in Figure 6, and  
thecorrespondingtransferfunctioninFigure7.Iftheinput  
signal (A – A ) swings negative, valid codes will be  
+
IN  
IN  
generated by the ADC and must be clamped by the user,  
if necessary.  
REF  
DD  
allowingthealternateinputtoswingsymmetricallyaround  
thisvoltage.Iftheinputsignal(A A )swingsbeyond  
+
IN  
IN  
±REFOUT1,2,3,4/2, valid codes will be generated by the  
ADC and must be clamped by the user, if necessary.  
V
REF  
LT1818  
LTC2325-12  
V
REF  
25Ω  
25Ω  
+
0V  
A
A
+
REFOUT1  
IN1  
0V  
10µF  
1µF  
REF  
220pF  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
SDO1  
CLKOUT  
SCK  
IN1  
232512 F06  
Figure 6. Pseudo-Differential Unipolar Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
4095  
2047  
A
IN  
(A + – A )  
IN IN  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
DOTTED REGIONS AVAILABLE  
–2048  
–4096  
232512 F07  
Figure 7. Pseudo-Differential Unipolar Transfer Function  
232512f  
19  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
Single-Ended-to-Differential Conversion  
signal can span the maximum full-scale of the ADC, up to  
±REFOUT1,2,3,4. The common mode input voltage can  
Whilesingle-endedsignalscanbedirectlydigitizedaspre-  
viously discussed, single-ended to differential conversion  
circuits may also be used when higher dynamic range is  
desired. ꢀy producing a differential signal at the inputs of  
the LTC2325-12, the signal swing presented to the ADC is  
maximized, thus increasing the achievable SNR.  
The LT®1819 high speed dual operational amplifier is  
recommendedforperformingsingle-ended-to-differential  
conversions, as shown in Figure 8. In this case, the first  
amplifier is configured as a unity-gain buffer and the  
single-ended input signal directly drives the high imped-  
ance input of this amplifier.  
span the entire supply range up to V , limited by the  
DD  
input signal swing. The fully-differential configuration is  
illustrated in Figure 1±, with the corresponding transfer  
function illustrated in Figure 11.  
INPUT DRIVE CIRCUITS  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2325-12 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when during acquisition.  
Fully-Differential Inputs  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2325-12. The amplifier  
provides low output impedance to minimize gain error  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC inputs, which draw a small  
current spike during acquisition.  
To achieve the best distortion performance of the  
LTC2325-12, we recommend driving a fully-differential  
signal through LT1819 amplifiers configured as two  
unity-gain buffers, as shown in Figure 9. This circuit  
achieves the full data sheet THD specification of –88dꢀ at  
input frequencies up to 5±±kHz. A fully-differential input  
V
V
REF  
REF  
0V  
LT1819  
LT1819  
V
V
REF  
REF  
+
+
0V  
0V  
0V  
V
REF  
0V  
V
V
REF  
REF  
V
REF  
/2  
+
+
200Ω  
0V  
0V  
200Ω  
232512 F09  
232512 F08  
Figure 8. Single-Ended to Differential Driver  
Figure 9. LT1819 Buffering a Fully-Differential Signal Source  
232512f  
20  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
Input Filtering  
the input bandwidth to the ADC core to 11±MHz. A buffer  
amplifier with a low noise density must be selected to  
minimize the degradation of the SNR over this bandwidth.  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter  
to minimize noise. The simple 1-pole RC lowpass filter  
shown in Figure 12 is sufficient for many applications.  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
The sampling switch on-resistance (R ) and the sample  
ON  
capacitor (C ) form a second lowpass filter that limits  
IN  
V
V
REF  
REF  
0V  
LT1819  
LTC2325-12  
25Ω  
25Ω  
+
0V  
A
+
REFOUT1  
REF  
IN1  
10µF  
1µF  
220pF  
V
V
REF  
0V  
REF  
+
0V  
TO CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
A
SDO1  
CLKOUT  
SCK  
IN1  
ONLY CHANNEL 1 SHOWN FOR CLARITY  
232512 F10  
Figure 10. Fully-Differential Application Circuit  
ADC CODE  
(2’s COMPLEMENT)  
4095  
2047  
A
IN  
(A + – A )  
INn  
INn  
–V  
–V /2  
REF  
0
V
REF  
/2  
V
REF  
REF  
–2048  
–4096  
232512 F11  
Figure 11. Fully-Differential Transfer Function  
232512f  
21  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
ADC REFERENCE  
the four internal reference buffers with a current limited  
output (25±μA) so it may be easily overdriven with an  
external reference in the range of 1.25V to 5V. ꢀypass  
REF to GND with a 1μF (X5R, ±8±5 size) ceramic capacitor  
to compensate the reference buffer and minimize noise.  
The 1μF capacitor should be as close as possible to the  
LTC2325-12 package to minimize wiring inductance. The  
voltage on the REF pin must be externally buffered if used  
for external circuitry.  
Internal Reference  
The LTC2325-12 has an on-chip, low noise, low  
drift (2±ppm/°C max), temperature compensated band-  
gap reference. It is internally buffered and is available  
at REF (Pin 8). The reference buffer gains the internal  
reference voltage to 4.±96V for supply voltages V = 5V  
DD  
and to 2.±48V for V = 3.3V. The REF pin also drives  
DD  
SINGLE-ENDED  
INPUT SIGNAL  
50Ω  
+
IN  
LTC2325  
IN  
3.3nF  
SINGLE-ENDED  
TO DIFFERENTIAL  
232512 F12  
DRIVER  
BW = 1MHz  
Figure 12. Input Signal Chain  
Table 2. Reference Configurations and Ranges  
REFOUT1,2,3,4  
PIN  
DIFFERENTIAL  
INPUT RANGE  
REFERENCE CONFIGURATION  
V
REFBUFEN  
5V  
REF PIN  
4.±96V  
DD  
Internal Reference with Internal ꢀuffers  
5V  
3.3V  
5V  
4.±96V  
±4.±96V  
3.3V  
5V  
2.±48V  
2.±48V  
±2.±48V  
Common External Reference with Internal ꢀuffer (REF Pin  
Externally Overdriven)  
1.25V to 5V  
1.25V to 5V  
4.±96V  
1.25V to 3.3V  
1.25V to 3.3V  
1.25V to 5V  
1.25V to 3.3V  
±1.25V to ±5V  
±1.25V to ±3.3V  
±1.25V to ±5V  
±1.25V to ±3.3V  
3.3V  
5V  
3.3V  
±V  
External Reference with REF ꢀuffers Disabled  
3.3V  
±V  
2.±48V  
232512f  
22  
For more information www.linear.com/LTC2325-12  
 
LTC2325-12  
applicaTions inForMaTion  
External Reference  
recommendedwhenoverdrivingREFOUT. TheLTC6655-5  
offers the same small size, accuracy, drift and extended  
temperature range as the LTC6655-4.±96. ꢀy using a 5V  
reference, a higher SNR can be achieved. We recommend  
bypassing the LTC6655-5 with a 1±μF ceramic capacitor  
(X5R, ±8±5 size) close to each of the REFOUT1,2,3,4  
pins. If the REF pin voltage is used as a REFOUT refer-  
ence when REFꢀUFEN is connected to GND, it should be  
buffered externally.  
The internal REFOUT1,2,3,4 buffers can also be over-  
driven from 1.25V to 5V with an external reference at  
REFOUT1,2,3,4 as shown in Figure 13 (c). To do so,  
REFꢀUFEN must be grounded to disable the REF buffers.  
A 55k internal resistance loads the REFOUT1,2,3,4 pins  
when the REF buffers are disabled. To maximize the input  
signal swing and corresponding SNR, the LTC6655-5 is  
V
3.3V TO 5V  
DD  
V
+5V  
DD  
5V TO  
13.2V  
REFBUFEN  
REF  
REFBUFEN  
REF  
LTC6655-4.096  
V
V
IN  
OUT_F  
V
OUT_S  
1µF  
LTC2325-12  
SHDN  
LTC2325-12  
10µF  
10µF  
0.1µF  
REFOUT1  
REFOUT2  
REFOUT3  
REFOUT4  
REFOUT1  
REFOUT2  
REFOUT3  
REFOUT4  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
GND  
GND  
232512 F13a  
232512 F13b  
(13a) LTC2325-12 Internal Reference Circuit  
(13b) LTC2325-12 with a Shared External Reference Circuit  
V
+5V  
DD  
REFBUFEN  
REF  
1µF  
5V TO 13.2V  
5V TO 13.2V  
5V TO 13.2V  
5V TO 13.2V  
LTC6655-4.096  
V
V
IN  
OUT_F  
V
OUT_S  
REFOUT1  
SHDN  
10µF  
10µF  
10µF  
10µF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
LTC2325-12  
LTC6655-2.048  
V
V
REFOUT2  
REFOUT3  
IN  
OUT_F  
V
OUT_S  
SHDN  
LTC6655-2.5  
V
V
IN  
OUT_F  
SHDN  
V
OUT_S  
LTC6655-3  
V
V
IN  
OUT_F  
V
OUT_S  
REFOUT4  
SHDN  
GND  
232512 F13c  
(13c) LTC2325-12 with Different External Reference Voltages  
Figure 13. Reference Connections  
232512f  
23  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
applicaTions inForMaTion  
Internal Reference Buffer Transient Response  
The REFOUT1,2,3,4 pins of the LTC2325-12 draw charge  
DYNAMIC PERFORMANCE  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2325-12 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
(Q  
) from the external bypass capacitors during  
CONV  
each conversion cycle. If the internal reference buffer is  
overdriven, the external reference must provide all of this  
charge with a DC current equivalent to I = Q  
/t  
.
REF  
CONV CYC  
Thus, the DC current draw of I  
depends  
REFOUT1,2,3,4  
on the sampling rate and output code. In applications  
where a burst of samples is taken after idling for long  
periods, as shown in Figure 14 , I  
quickly goes  
REFꢀUF  
Signal-to-Noise and Distortion Ratio (SINAD)  
from approximately ~75µA to a maximum of 5±±µA for  
REFOUT = 5V at 5Msps. This step in DC current draw  
triggers a transient response in the external reference that  
must be considered since any deviation in the voltage at  
REFOUT will affect the accuracy of the output code. Due  
to the one-cycle conversion latency, the first conversion  
result at the beginning of a burst sampling period will  
be invalid. If an external reference is used to overdrive  
REFOUT1,2,3,4, the fast settling LTC6655 reference is  
recommended.  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is bandlimited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure16showsthattheLTC2325-12achieves  
a typical SINAD of 76dꢀ at a 5MHz sampling rate with a  
2.2MHz input.  
Signal-to-Noise Ratio (SNR)  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 16 shows  
that the LTC2325-12 achieves a typical SNR of 77dꢀ at a  
5MHz sampling rate with a 2.2MHz input.  
CNV  
IDLE  
PERIOD  
232512 F14  
Figure 14. CNV Waveform Showing Burst Sampling  
0
16384  
SNR = 77.1dB  
THD = –87.2dB  
–20  
SINAD = 76.2dB  
SFDR = 90.3dB  
12288  
–40  
8192  
–60  
–80  
4.096V RANGE  
4096  
–100  
–120  
–140  
0
+
IN = 5MHz SQUARE WAVE  
IN = 0V  
–4096  
0
0.5  
1
1.5  
2
2.5  
–20 –10  
0
10 20 30 40 50 60 70 80 90  
FREQUENCY (MHz)  
SETTLING TIME (ns)  
232512 F16  
232512 F15  
Figure 15. Transient Response of the LTC2325-12  
Figure 16. 32k Point FFT of the LTC2325-12  
232512f  
24  
For more information www.linear.com/LTC2325-12  
 
 
LTC2325-12  
applicaTions inForMaTion  
Total Harmonic Distortion (THD)  
allows the LTC2325-12 to communicate with any digital  
logic operating between 1.8V and 2.5V. When using LVDS  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
I/O, the OV supply must be set to 2.5V.  
DD  
Power Supply Sequencing  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
The LTC2325-12 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2325-12  
has a power-on-reset (POR) circuit that will reset the  
LTC2325-12 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 1±ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
V22 +V32 +V42 +…+VN2  
THD=2±log  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics.  
POWER CONSIDERATIONS  
The LTC2325-12 requires two power supplies: the 3.3V  
to 5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
40  
35  
30  
25  
20  
15  
V
DD  
= 5V  
V
= 3.3V  
DD  
0
1
2
3
4
5
SAMPLE FREQUENCY (Msps)  
232516 F17  
Figure 17. Power Supply Current of the LTC2325-12 Versus Sampling Rate  
232512f  
25  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
applicaTions inForMaTion  
TIMING AND CONTROL  
capture the SDO output eases timing requirements at the  
receiver. For low throughput speed applications, CLKOUT  
CNV Timing  
can be disabled by tying Pin 34 to OV .  
DD  
The LTC2325-12 sampling and conversion is controlled  
by CNV. A rising edge on CNV will start sampling and the  
fallingedgestartstheconversionandreadoutprocess.The  
conversion process is timed by the SCK input clock. For  
optimum performance, CNV should be driven by a clean  
low jitter signal. The Typical Application at the back of the  
data sheet illustrates a recommended implementation to  
reduce the relatively large jitter from an FPGA CNV pulse  
source. Note the low jitter input clock times the falling  
edge of the CNV signal. The rising edge jitter of CNV is  
much less critical to performance. The typical pulse width  
of the CNV signal is 3±ns with < 1.5ns rise and fall times  
at a 5Msps conversion rate.  
Nap/Sleep Modes  
Nap mode is a method to save power without sacrificing  
power-updelaysforsubsequentconversions. Sleepmode  
has substantial power savings, but a power-up delay is  
incurred to allow the reference and power systems to  
become valid. To enter nap mode on the LTC2325-12,  
the SCK signal must be held high or low and a series of  
two CNV pulses must be applied. This is the case for both  
CMOS and LVDS modes. The second rising edge of CNV  
initiates the nap state. The nap state will persist until either  
asinglerisingedgeofSCKisapplied,orfurtherCNVpulses  
are applied. The SCK rising edge will put the LTC2325-12  
back into the operational (full-power) state. When in nap  
mode, two additional pulses will put the LTC2325-12 in  
sleep mode. When configured for CMOS I/O operation, a  
single rising edge of SCK can return the LTC2325-12 into  
operational mode. A 1±ms delay is necessary after exiting  
sleep mode to allow the reference buffer to recharge the  
external filter capacitor. In LVDS mode, exit sleep mode  
by supplying a fifth CNV pulse. The fifth pulse will return  
the LTC2325-12 to operational mode, and further SCK  
pulses will keep the part from re-entering nap and sleep  
modes. The fifth SCK pulse also works in CMOS mode  
as a method to exit sleep. In the absence of SCK pulses,  
repetitive CNV pulses will cycle the LTC2325-12 between  
operational, nap and sleep modes indefinitely.  
SCK Serial Data Clock Input  
In SDR mode (SDR/DDR Pin 23 = GND), the falling edge  
of this clock shifts the conversion result MSꢀ first onto  
the SDO pins. A 1±±MHz external clock must be applied  
at the SCK pin to achieve 5Msps throughput using all four  
SDO outputs. In DDR mode (SDR/DDR Pin 23 = OV ),  
DD  
each input edge of SCK shifts the conversion result MSꢀ  
first onto the SDO pins. A 5±MHz external clock must be  
applied at the SCK pin to achieve 5Msps throughput using  
all five SDO1 through SDO4 outputs.  
CLKOUT Serial Data Clock Output  
The CLKOUT output provides a skew-matched clock to  
latch the SDO output at the receiver. The timing skew  
of the CLKOUT and SDO outputs are matched. For high  
throughput applications, using CLKOUT instead of SCK to  
RefertothetimingdiagramsinFigure18,Figure19,Figure2±  
and Figure 21 for more detailed timing information about  
sleep and nap modes.  
CNV  
1
2
NAP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
Z
WAKE ON 1ST SCK EDGE  
SDO1 – 4  
Z
232512 F18  
Figure 18. CMOS and LVDS Mode NAP and WAKE Using SCK  
232512f  
26  
For more information www.linear.com/LTC2325-12  
 
LTC2325-12  
applicaTions inForMaTion  
REFOUT  
RECOVERY  
REFOUT1 – 4  
4.096V  
4.096V  
t
WAKE  
CNV  
1
2
3
4
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
WAKE ON 1ST SCK EDGE  
SDO1 – 4  
Z
Z
Z
Z
232512 F19  
Figure 19. CMOS Mode SLEEP and WAKE Using SCK  
REFOUT  
RECOVERY  
REFOUT1 – 4  
4.096V  
4.096V  
t
WAKE  
WAKE ON 5TH  
CNV EDGE  
CNV  
1
2
3
4
5
NAP MODE  
SLEEP MODE  
FULL POWER MODE  
SCK  
HOLD STATIC HIGH OR LOW  
SDO1 – 4  
Z
Z
Z
Z
Z
232512 F20  
Figure 20. LVDS and CMOS Mode SLEEP and WAKE Using CNV  
SDR MODE TIMING  
DDR MODE TIMING  
t
t
CYC  
CYC  
t
t
t
READOUT  
CNVH  
CONV  
t
t
t
CNVH  
CONV  
READOUT  
t
DSCKCNVH  
t
DSCKCNVH  
CNV  
CNV  
t
t
SCKH  
t
SCK  
SCKH  
t
SCK  
SCK  
SCK  
1
2
3
14  
15  
16  
1
2
3
14  
15  
16  
t
SCKL  
t
SCKL  
CLKOUT  
CLKOUT  
1
2
3
14  
15  
16  
1
2
3
14  
15  
16  
t
DSCKCLKOUT  
t
DSCKCLKOUT  
t
t
t
t
DCNVSDOV  
DCNVSDOZ  
DCNVSDOZ  
t
t
HSDO  
HSDO  
DCNVSDOV  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
SDO  
D12  
D11  
D10  
X
X
X
D12  
SDO  
D12  
D11  
D10  
X
X
X
D12  
232512 F21  
Figure 21. LTC2325-12 Timing Diagram  
232512f  
27  
For more information www.linear.com/LTC2325-12  
 
 
 
LTC2325-12  
applicaTions inForMaTion  
DIGITAL INTERFACE  
SDR/DDR Modes  
The LTC2325-12 features a serial digital interface that  
The LTC2325-12 has an SDR (single data rate) and DDR  
(double data rate) mode for reading conversion data from  
theSDOpins. Inbothmodes, CLKOUTisadelayedversion  
of SCK. In SDR mode, each negative edge of SCK shifts  
the conversion data out the SDO pins. In DDR mode,  
each edge of the SCK input shifts the conversion data  
out. In DDR mode, the required SCK frequency is half of  
what is required in SDR mode. Tie SDR/DDR to ground  
to configure for SDR mode and to OVDD for DDR mode.  
The CLKOUT signal is a delayed version of the SCK input  
and is phase aligned with the SDO data. In SDR mode, the  
SDO transitions on the falling edge of CLKOUT as illus-  
trated in Figure 21. We recommend using the rising edge  
of CLKOUT to latch the SDO data into the FPGA register  
in SDR mode. In DDR mode, the SDO transitions on each  
input edge of SCK. We recommend using the CLKOUT ris-  
ing and falling edges to latch the SDO data into the FPGA  
registers in DDR mode. Since the CLKOUT and SDO data  
are phase aligned, we recommend digitally delaying the  
SDO data in the FPGA to provide adequate setup and hold  
timing margins in DDR mode.  
is simple and straightforward to use. The flexible OV  
DD  
supply allows the LTC2325-12 to communicate with any  
digital logic operating between 1.8V and 2.5V. In addi-  
tion to a standard CMOS SPI interface, the LTC2325-12  
provides an optional LVDS SPI interface to support low  
noise digital design. The CMOS /LVDS pin is used to select  
the digital interface mode. The SCK input clock shifts the  
conversion result MSB first on the SDO pins. CLKOUT  
provides a skew-matched clock to latch the SDO output  
at the receiver. The timing skew of the CLKOUT and SDO  
outputs are matched. For high throughput applications,  
using CLKOUT instead of SCK to capture the SDO output  
eases timing requirements at the receiver. In CMOS mode,  
use the SDO1 – SDO4, and CLKOUT pins as outputs. Use  
+
the SCK pin as an input. In LVDS mode, use the SDOA /  
+
+
SDOA through SDOD /SDOD and CLKOUT /CLKOUT  
pins as differential outputs. Each LVDS lane yields one  
channel worth of data: SDOA yields CH1 data, SDOB  
yields CH2 data, SDOC yields CH3 data and SDOD yields  
CH4 data. These pins must be differentially terminated  
by an external 100Ω resistor at the receiver (FPGA).  
+
The SCK /SCK pins are differential inputs and must be  
terminated differentially by an external 100Ω resistor at  
the receiver(ADC).  
BOARD LAYOUT  
To obtain the best performance from the LTC2325-12,  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals adjacent to analog signals or underneath  
the ADC.  
2.5V  
LTC2325-12  
FPGA OR DSP  
OV  
DD  
+
+
SCK  
SCK  
100Ω  
100Ω  
+
+
SDOD  
SDOD  
+
+
Supply bypass capacitors should be placed as close as  
possible to the supply pins. Low impedance common re-  
turns for these bypass capacitors are essential to the low  
noise operation of the ADC. A single solid ground plane  
is recommended for this purpose. When possible, screen  
the analog input traces using ground.  
SDOC  
SDOC  
100Ω  
100Ω  
100Ω  
100Ω  
2.5V  
CMOS/LVDS  
+
+
CLKOUT  
CLKOUT  
+
+
SDOB  
SDOB  
+
+
SDOA  
SDOA  
Recommended Layout  
RETIMING  
FLIP-FLOP  
For a detailed look at the reference design for this con-  
verter, including schematics and PCB layout, please refer  
to DC2395A, the evaluation kit for the LTC2325-12.  
CNV  
232512 F22  
Figure 22. LTC2325-12 Using the LVDS Interface  
232512f  
28  
For more information www.linear.com/LTC2325-12  
LTC2325-12  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2325-12#packaging for the most recent package drawings.  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC DWG # 05-08-1729 Rev Ø)  
7.50 ±0.05  
6.10 ±0.05  
5.50 REF  
(2 SIDES)  
0.70 ±0.05  
6.45 ±0.05  
6.50 REF  
(2 SIDES)  
7.10 ±0.05 8.50 ±0.05  
5.41 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.50 REF  
(2 SIDES)  
0.75 ±0.05  
7.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
0.00 – 0.05  
51  
52  
0.40 ±0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45°C  
CHAMFER  
6.45 ±0.10  
8.00 ±0.10  
(2 SIDES)  
6.50 REF  
(2 SIDES)  
5.41 ±0.10  
(UKG52) QFN REV  
Ø 0306  
R = 0.10  
TYP  
0.25 ±0.05  
0.50 BSC  
TOP VIEW  
SIDE VIEW  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 ±0.05  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
232512f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
29  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2325-12  
Typical applicaTion  
Low Jitter Clock Timing with RF Sine Generator Using Clock Squaring/Level-Shifting Circuit and Retiming Flip-Flop  
V
CC  
NC7SVUO4P5X  
0.1µF  
1k  
MASTER_CLOCK  
V
CC  
50Ω  
1k  
D
PRE  
NC7SV74K8X  
CONV  
Q
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
CLR  
CONV ENABLE  
CNV  
LTC2325-12  
SCK  
10Ω  
10Ω  
CLKOUT  
GND  
GND  
CMOS/LVDS  
SDR/DDR  
SDO1 – 4  
232512 TA02  
NC7SVU04P5X (× 5)  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2311-16/LTC2311-14/ 16-/14-/12-Bit, 5Msps Simultaneous Sampling ADC 3.3V Supply, 1-Channel 40mW, 20ppm/°C Internal Reference, Flexible  
LTC2311-12  
Inputs, 16-Lead MSOP Package  
LTC2323-16/LTC2323-14/ 16-14-/12-Bit Dual Simultaneous Sampling ADC  
LTC2323-12  
3V/5V Supply, 40mW/Ch, 20ppm/°C Max Internal Reference, Flexible  
Inputs, 4mm × 5mm QFN-28 Package  
LTC2321-16/LTC2321-14/ 16-/14-/12-Bit, Dual 2Msps, Simultaneous  
3.3V/5V Supply, 33mW/Ch, 20ppm°C Max Internal Reference,  
Flexible Inputs, 4mm × 5mm QFN-28 Package  
LTC2321-12  
Sampling ADCs  
LTC2320-16/LTC2320-14/ 16-/14-12-Bit Octal, 1.5Msps/Ch Simultaneous  
LTC2320-12 Sampling ADC  
3.3V/5V Supply, 20mW/Ch, 20ppm/°C Internal Reference,  
Flexible Inputs, 7mm × 8mm QFN-52 Package  
LTC2324-16/LTC2324-14/ 16-/14-12-Bit Quad, 2Msps/Ch Simultaneous  
3.3V/5V Supply, 40mW/Ch, 20ppm/°C Internal Reference,  
Flexible Inputs, 7mm × 8mm QFN-52 Package  
LTC2324-12  
Sampling ADC  
DACs  
LTC2632  
Dual 12-/10-/8-Bit, SPI V  
Reference  
DACs with Internal  
DACs with External  
2.7V to 5.5V Supply Range, 10ppm/°C Reference, External REF Mode,  
Rail-to-Rail Output, 8-Pin ThinSOT™ Package  
OUT  
LTC2602/LTC2612/  
LTC2622  
Dual 16-/14-/12-Bit SPI V  
Reference  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output, 8-Lead  
MSOP Package  
OUT  
References  
LTC6655  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm  
Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift, Low Noise Buffered Reference 5V/4.096V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm  
Peak-to-Peak Noise, MSOP-8 Package  
Amplifiers  
LT1818/LT1819  
400MHz, 2500V/µs, 9mA Single/Dual Operational  
Amplifiers  
–85dBc Distortion at 5MHz, 6nV/√Hz Input Noise Voltage, 9mA Supply  
Current, Unity-Gain Stable  
LT1806  
LT6200  
325MHz, Single, Rail-to-Rail Input and Output, Low –80dBc Distortion at 5MHz, 3.5nV/√Hz Input Noise Voltage,  
Distortion, Low Noise Precision Op Amps 9mA Supply Current, Unity-Gain Stable  
165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Low Distortion, Unity-Gain Stable  
Low Noise, Op Amp Family  
232512f  
LT 0417 • PRINTED IN USA  
www.linear.com/LTC2325-12  
30  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

LTC2325CUKG-14#PBF

LTC2325-14 - Quad, 14-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2325HUKG-14#PBF

LTC2325-14 - Quad, 14-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2325IUKG-12#PBF

LTC2325-12 - Quad, 12-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2325IUKG-14#PBF

LTC2325-14 - Quad, 14-Bit + Sign, 5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2326

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2326-16

16-Bit, 250ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR
Linear

LTC2326-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2326CMS-18#PBF

LTC2326-18 - 18-Bit, 250ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2327

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2327-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2327HMS-18#PBF

LTC2327-18 - 18-Bit, 500ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2327IMS-16#PBF

LTC2327-16 - 16-Bit, 500ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear