LTC2377-18 [Linear]

18-Bit, 1.6Msps, Pseudo-Differential Unipolar SAR; 18位, 1.6Msps伪差分SAR单极
LTC2377-18
型号: LTC2377-18
厂家: Linear    Linear
描述:

18-Bit, 1.6Msps, Pseudo-Differential Unipolar SAR
18位, 1.6Msps伪差分SAR单极

文件: 总24页 (文件大小:879K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2369-18  
18-Bit, 1.6Msps, Pseudo-  
Differential Unipolar SAR  
ADC with 96.5dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2369-18 is a low noise, low power, high speed  
18-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2369-18 has a 0V  
n
1.6Msps Throughput Rate  
n
2.ꢀ5Sꢁ IN5 ꢂMaꢃx  
n
Guaranteed 18-ꢁit No Missing Codes  
n
5ow Power: 18mW at 1.6Msps, 18μW at 1.6ksps  
to V pseudo-differential unipolar input range with V  
REF  
REF  
n
96.ꢀdꢁ SNR ꢂTypx at f = 2kHz  
rangingfrom2.5Vto5.1V.TheLTC2369-18consumesonly  
18mW and achieves 2.5LSꢀ ꢁIL maximum, no missing  
codes at 18 bits with 96.5dꢀ SIR.  
IN  
IN  
n
120dꢁ THD ꢂTypx at f = 2kHz  
n
Guaranteed Operation to 125°C  
n
2.5V Supply  
The LTC2369-18 has a high speed SPꢁ-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic while  
also featuring a daisy-chain mode. The fast 1.6Msps  
throughput with no cycle latency makes the LTC2369-18  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2369-18 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
n
Pseudo-Differential Unipolar ꢁnput Range: 0V to V  
REF  
n
n
n
n
n
n
V
ꢁnput Range from 2.5V to 5.1V  
REF  
Io Pipeline Delay, Io Cycle Latency  
1.8V to 5V ꢁ/O Voltages  
SPꢁ-Compatible Serial ꢁ/O with Daisy-Chain Mode  
ꢁnternal Conversion Clock  
16-Lead MSOP and 4mm × 3mm DFI Packages  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 7705765.  
n
Medical ꢁmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢁnstrumentation  
ꢁndustrial Process Control  
Low Power ꢀattery-Operated ꢁnstrumentation  
ATE  
n
n
n
TYPICAL APPLICATION  
32k Point FFT fS = 1.6Msps, fIN = 2kHz  
0
2.5V 1.8V TO 5V  
10μF  
SIR = 96.5dꢀ  
–20  
–40  
THD = –127dꢀ  
SꢁIAD = 96.5dꢀ  
SFDR = 134dꢀ  
0.1μF  
V
REF  
–60  
+
V
OV  
DD  
DD  
5.1Ω  
CHAꢁI  
RDL/SDꢁ  
SDO  
SCK  
ꢀUSY  
CIV  
0V  
+
–80  
LT®6202  
ꢁI  
–100  
–120  
–140  
–160  
–180  
10nF  
LTC2369-18  
ꢁI  
SAMPLE CLOCK  
REF  
GID  
236918 TA01a  
2.5V TO 5.1V  
47μF  
(X5R, 0805 SꢁZE)  
0
100 200 300 400 500 600 700 800  
FREQUEICY (kHz)  
236918 TA01b  
236918fa  
1
LTC2369-18  
ABSOLUTE MAXIMUM RATINGS ꢂNotes 1, 2x  
Supply Voltage (V )...............................................2.8V  
Power Dissipation.............................................. 500mW  
DD  
Supply Voltage (OV )................................................6V  
Operating Temperature Range  
DD  
Reference ꢁnput (REF).................................................6V  
LTC2369C................................................ 0°C to 70°C  
LTC2369ꢁ .............................................–40°C to 85°C  
LTC2369H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Analog ꢁnput Voltage (Iote 3)  
+
ꢁI , ꢁI .........................(GID – 0.3V) to (REF + 0.3V)  
Digital ꢁnput Voltage  
(Iote 3).......................... (GID – 0.3V) to (OV + 0.3V)  
DD  
Digital Output Voltage  
(Iote 3).......................... (GID – 0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VꢁEW  
CHAꢁI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GID  
OV  
TOP VꢁEW  
V
DD  
DD  
CHAꢁI 1  
16 GID  
GID  
SDO  
V
2
15 OV  
DD  
DD  
+
GID 3  
14 SDO  
13 SCK  
17  
GID  
ꢁI  
SCK  
+
ꢁI  
ꢁI  
4
5
ꢁI  
RDL/SDꢁ  
ꢀUSY  
GID  
12 RDL/SDꢁ  
11 ꢀUSY  
10 GID  
GID  
REF  
REF  
GID 6  
REF 7  
REF 8  
9
CIV  
CIV  
MS PACKAGE  
16-LEAD PLASTꢁC MSOP  
DE PACKAGE  
T
JMAX  
= 150°C, θ = 110°C/W  
16-LEAD (4mm w 3mm) PLASTꢁC DFI  
JA  
T
= 150°C, θ = 40°C/W  
JMAX  
JA  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
ORDER INFORMATION  
5EAD FREE FINISH  
LTC2369CMS-18#PꢀF  
LTC2369ꢁMS-18#PꢀF  
LTC2369HMS-18#PꢀF  
LTC2369CDE-18#PꢀF  
LTC2369ꢁDE-18#PꢀF  
TAPE AND REE5  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2369CMS-18#TRPꢀF 236918  
LTC2369ꢁMS-18#TRPꢀF 236918  
LTC2369HMS-18#TRPꢀF 236918  
LTC2369CDE-18#TRPꢀF 23698  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2369ꢁDE-18#TRPꢀF  
23698  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
236918fa  
2
LTC2369-18  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5  
V +  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
–0.1  
–0.1  
0
TYP  
MAX  
+ 0.1  
REF  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
V
V
V
ꢁI  
V
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
0.1  
ꢁI  
V + – V – ꢁnput Differential Voltage Range  
V
ꢁI  
= V + – V –  
V
REF  
V
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
1
μA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
CMRR  
ꢁnput Common Mode Rejection Ratio  
f
ꢁI  
= 800kHz  
80  
dꢀ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5 PARAMETER  
CONDITIONS  
MIN  
18  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
18  
ꢀits  
Transition Ioise  
1.3  
0.5  
0.1  
0
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
Zero-Scale Error  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–2.5  
–0.5  
–11  
2.5  
0.5  
11  
LSꢀ  
DIL  
ZSE  
LSꢀ  
LSꢀ  
Zero-Scale Error Drift  
Full-Scale Error  
0.04  
5
LSꢀ/°C  
LSꢀ  
l
FSE  
–50  
50  
Full-Scale Error Drift  
0.15  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 2ꢀ°C and AIN = –1dꢁFS. ꢂNotes 4, 8x  
SYMꢁO5 PARAMETER  
CONDITIONS  
MIN  
92.2  
91.7  
TYP  
96.5  
96.5  
MAX  
UNITS  
dꢀ  
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
REF  
= 2kHz, V = 5V, (H-Grade)  
dꢀ  
REF  
l
l
Signal-to-Ioise Ratio  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
92.6  
87  
96.5  
90.7  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V, (H-Grade)  
92  
86.4  
96.5  
90.7  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
l
THD  
Total Harmonic Distortion  
f
ꢁI  
f
ꢁI  
= 2kHz, V = 5V  
–120  
–107  
–103  
–103  
dꢀ  
dꢀ  
REF  
= 2kHz, V = 2.5V  
REF  
l
SFDR  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
f
ꢁI  
= 2kHz, V = 5V  
103  
122  
34  
dꢀ  
MHz  
ps  
REF  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
200  
ns  
236918fa  
3
LTC2369-18  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
5.1  
UNITS  
V
l
l
V
Reference Voltage  
Reference ꢁnput Current  
2.5  
REF  
REF  
(Iote 9)  
0.85  
1.1  
mA  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5 PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
0.8 • OV  
ꢁH  
ꢁL  
DD  
0.2 • OV  
10  
V
DD  
V
ꢁI  
= 0V to OV  
DD  
–10  
μA  
pF  
ꢁI  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –500μA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢁ = 500μA  
O
0.2  
10  
V
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
8.6  
UNITS  
l
l
l
V
DD  
2.5  
V
V
OV  
DD  
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
1.6Msps Sample Rate  
7.2  
0.7  
0.9  
0.9  
mA  
mA  
μA  
VDD  
OVDD  
PD  
1.6Msps Sample Rate (C = 20pF)  
L
+ ꢁ  
+ ꢁ  
l
l
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ , V > 2V)  
REF REF  
90  
140  
VDD  
VDD  
OVDD  
OVDD  
REF REF  
+ ꢁ , V > 2V, H-Grade)  
μA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
1.6Msps Sample Rate  
18  
2.25  
2.25  
21.5  
225  
315  
mW  
μW  
μW  
D
Conversion Done (ꢁ  
Conversion Done (ꢁ  
+ ꢁ  
OVDD  
+ ꢁ  
OVDD  
+ ꢁ , V > 2V)  
REF REF  
VDD  
VDD  
REF REF  
+ ꢁ , V > 2V, H-Grade)  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.6  
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
360  
200  
625  
20  
412  
Acquisition Time  
t
= t  
– t  
– t (Iote 10)  
ꢀUSYLH  
ns  
ACQ  
CYC  
COIV  
Time ꢀetween Conversions  
CIV High Time  
ns  
CYC  
ns  
CIVH  
ꢀUSYLH  
CIVL  
QUꢁET  
SCK  
C = 20pF  
L
13  
ns  
CIVto ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Quiet Time from CIV↑  
SCK Period  
(Iote 11)  
(Iote 10)  
20  
20  
10  
4
ns  
ns  
(Iotes 11, 12)  
ns  
SCK High Time  
ns  
SCKH  
236918fa  
4
LTC2369-18  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 2ꢀ°C. ꢂNote 4x  
SYMꢁO5  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SCK Low Time  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK↑  
SDꢁ Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from ꢀUSY↓  
ꢀus Enable Time After RDL↓  
ꢀus Relinquish Time After RDL↑  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢀUSYL  
EI  
(Iote 11)  
(Iote 11)  
16  
13  
ns  
ns  
DꢁS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 7: Zero-scale error is the offset voltage measured from 0.5LSꢀ  
when the output code flickers between 00 0000 0000 0000 0000 and  
00 0000 0000 0000 0001. Full-scale error is the deviation of the last code  
transition from ideal and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above REFor  
Note 8: All specifications in dꢀ are referred to a full-scale 5V input with a  
5V reference voltage.  
OV , they will be clamped by internal diodes. This product can handle  
DD  
Note 9: f  
= 1.6MHz, ꢁ varies proportionately with sample rate.  
SMPL REF  
input currents up to 100mA below ground or above REFor OV without  
latch-up.  
DD  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
DD  
DD  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, f = 1.6MHz.  
SMPL  
DD  
DD  
and OV = 5.25V.  
DD  
Note ꢀ: Recommended operating conditions.  
Note 12: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
Note 6: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
100MHz for rising capture.  
0.8*OV  
DD  
t
WꢁDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
236918 F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
DD  
0.2*OV  
Figure 1. Voltage 5evels for Timing Specifications  
236918fa  
5
LTC2369-18  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 2ꢀ°C, VDD = 2.ꢀV, OVDD = 2.ꢀV, REF = ꢀV,  
fSMP5 = 1.6Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
2.0  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
0.5  
0.4  
40000  
35000  
30000  
25000  
20000  
15000  
10000  
5000  
X = 1.3  
1.5  
1.0  
0.3  
0.2  
0.5  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
65536  
131072  
196608  
262144  
131067 131069 131071 131073 131075 131077  
CODE  
0
65536  
131072  
196608  
262144  
OUTPUT CODE  
OUTPUT CODE  
236918 G02  
236918 G01  
236918 G03  
THD, Harmonics  
32k Point FFT fS = 1.6Msps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
–60  
–70  
100  
95  
90  
85  
80  
75  
70  
SIR = 96.5dꢀ  
THD = –127dꢀ  
SꢁIAD = 96.5dꢀ  
SFDR = 134dꢀ  
–80  
–40  
SIR  
THD  
3RD  
–90  
–60  
2ID  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
SꢁIAD  
–80  
–100  
–120  
–140  
–160  
–180  
0
100 200 300 400 500 600 700 800  
125 150  
175 200  
0
25 50 75 100  
0
175  
200  
25 50 75 100 125 150  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
236918 G04  
236918 G05  
236918 G06  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
97  
96  
98.0  
97.5  
SIR  
95  
94  
93  
92  
91  
90  
SꢁIAD  
97.0  
96.5  
THD  
2ID  
SIR  
SꢁIAD  
3RD  
96.0  
95.5  
95.0  
3
3.5  
4
5
2.5  
4.5  
2.5  
3
4
4.5  
5
3.5  
–40  
–30  
–20  
–10  
0
REFEREICE VOLTAGE (V)  
REFEREICE VOLTAGE (V)  
ꢁIPUT LEVEL (dꢀ)  
236918 G08  
236918 G09  
236918 G07  
236918fa  
6
LTC2369-18  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 2ꢀ°C, VDD = 2.ꢀV, OVDD = 2.ꢀV, REF = ꢀV,  
fSMP5 = 1.6Msps, unless otherwise noted.  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
IN5/DN5 vs Temperature  
1.0  
0.5  
0
98.0  
97.5  
97.0  
96.5  
96.0  
95.5  
95.0  
94.5  
94.0  
–110  
–115  
MAX ꢁIL  
MAX DIL  
–120  
SIR  
THD  
SꢁIAD  
–125  
–130  
–135  
–140  
MꢁI DIL  
MꢁI ꢁIL  
2ID  
3RD  
–0.5  
–1.0  
–145  
–55 –35 –15  
5
25 45 65 85 105 125  
25 45  
TEMPERATURE (°C)  
–55  
5
45 65 85 105 125  
–55 –35 –15  
5
65 85 105 125  
–35 –15  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
236918 G12  
236918 G11  
236918 G10  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
Supply Current vs Temperature  
10  
8
8
7
6
5
4
3
2
1
0
20  
15  
VDD  
6
10  
4
5
2
0
0
–2  
–4  
–6  
–8  
–10  
–5  
–10  
–15  
–20  
REF  
OVDD  
25 45  
TEMPERATURE (°C)  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
236918 G14  
236918 G15  
236918 G13  
Reference Current  
vs Reference Voltage  
Shutdown Current vs Temperature  
CMRR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
+ ꢁ  
+ ꢁ  
VDD OVDD REF  
0
0
0
100 200 300 400 500 600 700 800  
–55 –35 –15  
5
25 45 65 85 105 125  
2.5  
4.5  
5
3
3.5  
4
FREQUEICY (kHz)  
TEMPERATURE (°C)  
REFEREICE VOLTAGE (V)  
236918 G16  
236918 G17  
236918 G18  
236918fa  
7
LTC2369-18  
PIN FUNCTIONS  
CHAIN ꢂPin 1x: Chain Mode Selector Pin. When low, the  
LTC2369-18 operates in normal mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2369-18 operates in chain mode and the RDL/SDꢁ  
pin functions as SDꢁ, the daisy-chain serial data input.  
ꢁUSY ꢂPin 11x: ꢀUSY ꢁndicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by OV .  
DD  
RD5/SDI ꢂPin 12x: When CHAꢁI is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAꢁI is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
Logic levels are determined by OV .  
DD  
V
ꢂPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGIDwitha1Fceramic  
DD  
capacitor.  
determined by OV .  
DD  
GND ꢂPins 3, 6, 10 and 16x: Ground.  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢀ  
+
+
IN ꢂPin 4x: Analog ꢁnput. ꢁI operates differential with  
+
respect to ꢁI with an ꢁI -ꢁI range of 0V to V  
.
REF  
first. Logic levels are determined by OV .  
DD  
IN ꢂPin ꢀx: Analog Ground Sense. ꢁI has an input range  
of 100mV with respect to GID and must be tied to the  
ground plane or a remote ground sense.  
SDO ꢂPin 14x: Serial Data Output. The conversion result  
or daisy-chain data is output on this pin on each rising  
edgeofSCKMSfirst. Theoutputdataisinstraightbinary  
REFPins7,8x:Referencenputs.TherangeofREFis2.5V  
to 5.1V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0805 size).  
format. Logic levels are determined by OV .  
DD  
OV ꢂPin 1ꢀx: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
CNV ꢂPin 9x: Convert ꢁnput. A rising edge on this input  
or 5V). ꢀypass OV to GID with a 0.1μF capacitor.  
DD  
powers up the part and initiates a new conversion. Logic  
GND ꢂEꢃposed Pad Pin 17, DFN Package Onlyx: Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
levels are determined by OV .  
DD  
236918fa  
8
LTC2369-18  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
CHAꢁI  
SDO  
RDL/SDꢁ  
SCK  
+
ꢁI  
+
SPꢁ  
PORT  
18-ꢀꢁT SAMPLꢁIG ADC  
ꢁI  
CIV  
COITROL LOGꢁC  
ꢀUSY  
GID  
236918 ꢀD  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAꢁI, RDL/SDꢁ = 0  
CIV  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
ꢀUSY  
SCK  
SDO  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
236918 TD01  
236918fa  
9
LTC2369-18  
APPLICATIONS INFORMATION  
OVERVIEW  
1LSB = FS/262144  
111...111  
111...110  
111...101  
111...100  
TheLTC2369-18isalownoise,lowpower,highspeed18-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2369-18 supports a  
0V to V  
REF  
pseudo-differential unipolar input range with  
REF  
V
ranging from 2.5V to 5.1V, making it ideal for high  
UNIPOLAR  
ZERO  
performance applications which require a wide dynamic  
range. The LTC2369-18 achieves 2.5LSꢀ ꢁIL max, no  
missing codes at 18 bits and 96.5dꢀ SIR.  
000...011  
000...010  
000...001  
000...000  
0V  
1
FS – 1LSB  
Fast 1.6Msps throughput with no cycle latency makes  
the LTC2369-18 ideally suited for a wide variety of high  
speed applications. An internal oscillator sets the con-  
version time, easing external timing considerations. The  
LTC2369-18 dissipates only 18mW at 1.6Msps, while an  
auto power-down feature is provided to further reduce  
power dissipation during inactive periods.  
LSB  
INPUT VOLTAGE (V)  
236918 F02  
Figure 2. 5TC2369-18 Transfer Function  
ANA5OG INPUT  
TheanaloginputsoftheLTC2369-18arepseudo-differential  
in order to reduce any unwanted signal that is common  
to both inputs. The analog inputs can be modeled by the  
equivalentcircuitshowninFigure3.Thediodesattheinput  
provide ESD protection. ꢁn the acquisition phase, each  
CONVERTER OPERATION  
The LTC2369-18 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
input sees approximately 45pF (C ) from the sampling  
ꢁI  
CDAC in series with 40Ω (R ) from the on-resistance  
OI  
+
+
converter (CDAC) is connected to the ꢁI and ꢁI pins to  
sample the pseudo-differential analog input voltage. A ris-  
ing edge on the CIV pin initiates a conversion. During the  
conversionphase,the18-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
of the sampling switch. The ꢁI input draws a current  
spike while charging the C capacitor during acquisition.  
ꢁI  
During conversion, the analog inputs draw only a small  
leakage current.  
REF  
C
ꢁI  
R
40Ω  
OI  
45pF  
reference voltage (e.g. V /2, V /4 … V /262144)  
REF  
REF  
REF  
+
ꢁI  
ꢁI  
using the differential comparator. At the end of conver-  
sion, the CDAC output approximates the sampled analog  
input. The ADC control logic then prepares the 18-bit  
digital output code for serial transfer.  
ꢀꢁAS  
VOLTAGE  
REF  
C
ꢁI  
R
40Ω  
OI  
45pF  
236918 F03  
TRANSFER FUNCTION  
The LTC2369-18 digitizes the full-scale voltage of REF  
18  
into 2 levels, resulting in an LSꢀ size of 19μV with  
Figure 3. The Equivalent Circuit for the  
Differential Analog Input of the 5TC2369-18  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in straight binary format.  
236918fa  
10  
LTC2369-18  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance input of the LTC2369-18 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC input  
draws a current spike when entering acquisition.  
Pseudo-Differential Unipolar Inputs  
For best performance, a buffer amplifier should be used  
to drive the analog input of the LTC2369-18. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC input draws.  
For most applications, we recommend the low power  
LT6202 ADC driver to drive the LTC2369-18. With a low  
noise density of 1.9nV/√Hz and a low supply current of  
3mA, the LT6202 is flexible and may be configured to  
convertsignals of variousamplitudes to the 0Vto5V input  
range of the LTC2369-18.  
To achieve the full distortion performance of the  
LTC2369-18, a low distortion single-ended signal source  
driven through the LT6202 configured as a unity-gain buf-  
fer as shown in Figure 4 can be used to get the full data  
sheet THD specification of –120dꢀ.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
The LT6202 can also be used to buffer and convert large  
true bipolar signals which swing below ground to the 0V  
to 5V input range of the LTC2369-18. Figure 5a shows the  
LT6202 being used to convert a 10V true bipolar signal  
for use by the LTC2369-18. ꢁn this case, the LT6202 is  
configured as an inverting amplifier stage, which acts to  
attenuateandlevelshifttheinputsignaltothe0Vto5Vinput  
rangeoftheLTC2369-18.ntheinvertingconfiguration,the  
single-ended input signal source no longer directly drives  
a high impedance input. The input impedance is instead  
LPF1  
50Ω  
LPF2  
V
REF  
+
5.1Ω  
10nF  
0V  
+
66nF  
ꢀW = 48kHz  
ꢁI  
ꢁI  
LT6202  
LTC2369-18  
236918 F04  
ꢀW = 3.2MHz  
Figure 4. Input Signal Chain  
. R must be chosen carefully based on  
set by resistor R  
ꢁI ꢁI  
the source impedance of the signal source. Higher values  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SIR.  
of R tend to degrade both the noise and distortion of  
ꢁI  
the LT6202 and LTC2369-18 as a system. Table 1 shows  
the resulting SIR and THD for several values of R , R1,  
ꢁI  
R2, R3 and R4 in this configuration. Figure 5b shows the  
resultingFFTwhenusingtheLT6202asshowninFigure5a.  
236918fa  
11  
LTC2369-18  
APPLICATIONS INFORMATION  
V
= V /2  
REF  
200pF  
ADC REFERENCE  
CM  
The LTC2369-18 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
ence is critical to achieving the full datasheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
many applications. With its small size, low power and  
highaccuracy, theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2369-18. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications. The LTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2369-18 up to 125°C. We recommend bypassing the  
LTC6655-5witha4Fceramiccapacitor(X5R,0805size)  
close to the REF pin.  
R2  
R4  
499Ω  
402Ω  
3
4
+
5V  
0V  
R3  
2k  
10μF  
LT6202  
R1  
1
R
ꢁI  
2k  
10V  
0V  
–10V  
499Ω  
200pF  
236918 F05a  
Figure ꢀa. 5T6202 Converting a 10V ꢁipolar Signal  
to a 0V to ꢀV Input Signal  
0
SIR = 96.1dꢀ  
–20  
–40  
THD = –97.3dꢀ  
SꢁIAD = 92.7dꢀ  
SFDR = 97.5dꢀ  
–60  
–80  
TheREFpinoftheLTC2369-18drawscharge(Q  
)from  
COIV  
the 47μF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
–100  
–120  
–140  
–160  
= Q  
/t . The DC current draw of the REF pin,  
REF  
REF  
COIV CYC  
, depends on the sampling rate and output code. ꢁf  
400 500  
the LTC2369-18 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢀs.  
1
100 200 300  
600 700 800  
FREQUEICY (kHz)  
236918 F05b  
Figure ꢀb. 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure ꢀa  
When idling, the REF pin on the LTC2369-18 draws only  
a small leakage current (< 1μA). ꢁn applications where a  
burst of samples is taken after idling for long periods as  
Table 1. SNR, THD vs RIN for 10V Input Signal  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
IN  
shown in Figure 6, ꢁ quickly goes from approximately  
REF  
ꢂΩx  
0μA to a maximum of 1.1mA at 1.6Msps. This step in DC  
current draw triggers a transient response in the reference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
2k  
499  
499  
2k  
402  
2k  
96.1  
96  
–97.3  
–92  
10k  
100k  
2.49k  
24.9k  
2.49k  
24.9k  
10k  
100k  
20k  
93.8  
–93.5  
CIV  
236918 F06  
ꢁDLE  
PERꢁOD  
ꢁDLE  
PERꢁOD  
Figure 6. CNV Waveform Showing ꢁurst Sampling  
236918fa  
12  
LTC2369-18  
APPLICATIONS INFORMATION  
code. ꢁn applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 8 shows  
that the LTC2369-18 achieves a typical SIR of 96.5dꢀ at  
a 1.6MHz sampling rate with a 2kHz input.  
ꢁn applications where power management is critical and  
the external reference may be powered down, it is rec-  
ommended that REF is kept greater than 2V in order to  
guaranteeamaximumshutdowncurrentof140μA.nsuch  
applications, a Schottky diode can be placed between REF  
0
SIR = 96.5dꢀ  
–20  
–40  
THD = –127dꢀ  
SꢁIAD = 96.5dꢀ  
SFDR = 134dꢀ  
–60  
and V , as shown in Figure 7.  
DD  
–80  
–100  
–120  
–140  
–160  
–180  
REF  
V
DD  
LTC2369-18  
0
100 200 300 400 500 600 700 800  
FREQUEICY (kHz)  
236918 F07  
236918 F08  
Figure 7. A Schottky Diode ꢁetween REF and VDD Maintains  
REF > 2V for Applications Where the Reference May ꢁe  
Powered Down  
Figure 8. 32k Point FFT with fIN = 2kHz of the 5TC2369-18  
Total Harmonic Distortion ꢂTHDx  
DYNAMIC PERFORMANCE  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2369-18 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VI2  
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
I
Signal-to-Noise and Distortion Ratio ꢂSINADx  
through Ith harmonics.  
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 8 shows that the LTC2369-18 achieves  
a typical SꢁIAD of 96.5dꢀ at a 1.6MHz sampling rate with  
a 2kHz input.  
POWER CONSIDERATIONS  
The LTC2369-18 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2369-18 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
Signal-to-Noise Ratio ꢂSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
236918fa  
13  
LTC2369-18  
APPLICATIONS INFORMATION  
Power Supply Sequencing  
power down, disable SDO and turn off SCK. The auto  
power-down feature will reduce the power dissipation of  
the LTC2369-18 as the sampling frequency is reduced.  
Since power is consumed only during a conversion, the  
LTC2369-18remainspowereddownforalargerfractionof  
The LTC2369-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2369-18  
has a power-on-reset (POR) circuit that will reset the  
LTC2369-18 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. Io conversions should be initiated  
until 20μs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 9.  
DIGITA5 INTERFACE  
The LTC2369-18 has a serial digital interface. The flexible  
OV supply allows the LTC2369-18 to communicate with  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
TIMING AND CONTRO5  
CNV Timing  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
100MHz,a1.6Mspsthroughputisstillachieved.Theserial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D17 remains valid till the first rising edge of SCK.  
The LTC2369-18 conversion is controlled by CIV. A ris-  
ing edge on CIV will start a conversion and power up the  
LTC2369-18.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CIV should be driven by a clean low jitter  
signal. Converter status is indicated by the ꢀUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CIV should occur within 40ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2369-18 powers down and begins acquiring the  
input signal.  
The serial interface on the LTC2369-18 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2369-18. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisy chained.  
8
7
6
5
Internal Conversion Clock  
VDD  
The LTC2369-18 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof412ns.Withamin-  
imum acquisition time of 200ns, throughput performance  
of1.6Mspsisguaranteedwithoutanyexternaladjustments.  
4
3
2
1
0
OVDD  
REF  
Auto Power-Down  
800 1000  
1200 1400 1600  
0
200 400 600  
SAMPLꢁIG RATE (kHz)  
The LTC2369-18 automatically powers down after a  
conversion has been completed and powers up once a  
new conversion is initiated on the rising edge of CIV.  
During power down, data from the last conversion can  
be clocked out. To minimize power dissipation during  
236918 F09  
Figure 9. Power Supply Current of the 5TC2369-18  
Versus Sampling Rate  
236918fa  
14  
LTC2369-18  
TIMING DIAGRAMS  
Normal Mode, Single Device  
Figure 10 shows a single LTC2369-18 operated in normal  
mode with CHAꢁI and RDL/SDꢁ tied to ground. With  
RDL/SDꢁ grounded, SDO is enabled and the MSꢀ(D17) of  
the new conversion data is available at the falling edge of  
ꢀUSY. ThisisthesimplestwaytooperatetheLTC2369-18.  
When CHAꢁI = 0, the LTC2369-18 operates in normal  
mode. ꢁn normal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
COIVERT  
DꢁGꢁTAL HOST  
ꢁRQ  
CIV  
CHAꢁI  
ꢀUSY  
LTC2369-18  
RDL/SDꢁ  
SDO  
DATA ꢁI  
CLK  
SCK  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
COIVERT  
CHAꢁI = 0  
RDL/SDꢁ = 0  
t
CYC  
t
CIVH  
t
CIVL  
CIV  
t
= t  
– t  
– t  
ACQ CYC COIV ꢀUSYLH  
t
t
COIV  
ACQ  
ꢀUSY  
t
SCK  
t
ꢀUSYLH  
t
t
QUꢁET  
SCKH  
1
2
3
16  
17  
18  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOꢀUSYL  
D17  
D16  
D15  
D1  
D0  
236918 F10  
Figure 10. Using a Single 5TC2369-18 in Normal Mode  
236918fa  
15  
LTC2369-18  
TIMING DIAGRAMS  
Normal Mode, Multiple Devices  
be used to allow only one LTC2369-18 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure11,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 11 shows multiple LTC2369-18 devices operating  
in normal mode (CHAꢁI = 0) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
RDL  
RDL  
A
COIVERT  
CIV  
CIV  
CHAꢁI  
ꢀUSY  
SDO  
ꢁRQ  
CHAꢁI  
LTC2369-18  
LTC2369-18  
A
DꢁGꢁTAL HOST  
SDO  
RDL/SDꢁ  
RDL/SDꢁ  
SCK  
SCK  
DATA ꢁI  
CLK  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
CHAꢁI = 0  
t
CIVL  
CIV  
t
COIV  
ꢀUSY  
t
ꢀUSYLH  
RDL/SDꢁ  
A
RDL/SDꢁ  
t
SCK  
t
t
QUꢁET  
SCKH  
19  
SCK  
SDO  
1
2
3
16  
17  
18  
20  
21  
34  
35  
36  
t
t
HSDO  
SCKL  
D17  
t
t
DSDO  
DꢁS  
D0  
t
EI  
Hi-Z  
Hi-Z  
Hi-Z  
D17  
D16  
D15  
D1  
A
D16  
D15  
D1  
D0  
A
A
A
A
236918 F11  
Figure 11. Normal Mode With Multiple Devices Sharing CNV, SCK and SDO  
236918fa  
16  
LTC2369-18  
TIMING DIAGRAMS  
Chain Mode, Multiple Devices  
number of converters. Figure 12 shows an example with  
two daisy-chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 18 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
When CHAꢁI = OV , the LTC2369-18 operates in  
DD  
chain mode. ꢁn chain mode, SDO is always enabled and  
RDL/SDꢁ serves as the serial data input pin (SDꢁ) where  
daisy-chain data output from another ADC can be input.  
This is useful for applications where hardware constraints  
maylimitthenumberoflinesneededtointerfacetoalarge  
COIVERT  
OV  
DD  
OV  
DD  
CIV  
CIV  
DꢁGꢁTAL HOST  
CHAꢁI  
CHAꢁI  
LTC2369-18  
LTC2369-18  
RDL/SDꢁ  
SDO  
RDL/SDꢁ  
ꢀUSY  
SDO  
ꢁRQ  
A
DATA ꢁI  
SCK  
SCK  
CLK  
POWER-DOWI  
AID ACQUꢁRE  
COIVERT  
POWER-DOWI AID ACQUꢁRE  
COIVERT  
CHAꢁI = OV  
DD  
RDL/SDꢁ = 0  
A
t
CYC  
t
CIVL  
CIV  
ꢀUSY  
t
COIV  
t
ꢀUSYLH  
t
SCKCH  
t
t
SCKH  
QUꢁET  
SCK  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
t
SCKL  
t
t
SSDꢁSCK  
HSDO  
t
t
DSDO  
HSDꢁSCK  
SDO = RDL/SDꢁ  
A
D17  
D17  
D16  
D16  
D15  
D1  
D0  
A
A
A
A
A
t
DSDOꢀUSYL  
D15  
D1  
D0  
D17  
D16  
D1  
D0  
A
SDO  
A
A
A
236918 F12  
Figure 12. Chain Mode Timing Diagram  
236918fa  
17  
LTC2369-18  
BOARD LAYOUT  
To obtain the best performance from the LTC2369-18  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible. ꢁn  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended 5ayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1813A, the  
evaluation kit for the LTC2369-18.  
Partial Top Silkscreen  
236918fa  
18  
LTC2369-18  
BOARD LAYOUT  
Partial 5ayer 1 Component Side  
Partial 5ayer 2 Ground Plane  
236918fa  
19  
LTC2369-18  
BOARD LAYOUT  
Partial 5ayer 3 PWR Plane  
Partial 5ayer 4 ꢁottom 5ayer  
236918fa  
20  
LTC2369-18  
BOARD LAYOUT  
Partial Schematic of Demoboard  
R E F  
8
R E F  
1
G I D  
7
1 5  
2
D D  
D D  
G I D 1 6  
O V  
G I D  
1 0  
V
G I D  
6
3
3
2
1
3
2
1
236918fa  
21  
LTC2369-18  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DE Package  
16-5ead Plastic DFN ꢂ4mm × 3mmx  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
R = 0.115  
TYP  
0.40 0.10  
4.00 0.10  
(2 SꢁDES)  
9
16  
R = 0.05  
0.70 0.05  
TYP  
3.30 0.05  
1.70 0.05  
3.30 0.10  
3.60 0.05  
2.20 0.05  
3.00 0.10  
(2 SꢁDES)  
1.70 0.10  
PꢁI 1 IOTCH  
R = 0.20 OR  
PꢁI 1  
TOP MARK  
(SEE IOTE 6)  
0.35 × 45°  
PACKAGE  
OUTLꢁIE  
CHAMFER  
(DE16) DFI 0806 REV Ø  
8
1
0.23 0.05  
0.45 ꢀSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 ꢀSC  
3.15 REF  
3.15 REF  
0.00 – 0.05  
ꢀOTTOM VꢁEW—EXPOSED PAD  
RECOMMEIDED SOLDER PAD PꢁTCH AID DꢁMEISꢁOIS  
APPLY SOLDER MASK TO AREAS THAT ARE IOT SOLDERED  
IOTE:  
1. DRAWꢁIG PROPOSED TO ꢀE MADE VARꢁATꢁOI OF VERSꢁOI (WGED-3) ꢁI JEDEC  
PACKAGE OUTLꢁIE MO-229  
2. DRAWꢁIG IOT TO SCALE  
3. ALL DꢁMEISꢁOIS ARE ꢁI MꢁLLꢁMETERS  
4. DꢁMEISꢁOIS OF EXPOSED PAD OI ꢀOTTOM OF PACKAGE DO IOT ꢁICLUDE  
MOLD FLASH. MOLD FLASH, ꢁF PRESEIT, SHALL IOT EXCEED 0.15mm OI AIY SꢁDE  
5. EXPOSED PAD SHALL ꢀE SOLDER PLATED  
6. SHADED AREA ꢁS OILY A REFEREICE FOR PꢁI 1 LOCATꢁOI OI THE  
TOP AID ꢀOTTOM OF PACKAGE  
MS Package  
16-5ead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
0.889 0.127  
(.035 .005)  
5.23  
(.206)  
MꢁI  
3.20 – 3.45  
(.126 – .136)  
4.039 0.102  
(.159 .004)  
(IOTE 3)  
0.50  
0.305 0.038  
(.0120 .0015)  
TYP  
(.0197)  
0.280 0.076  
(.011 .003)  
REF  
ꢀSC  
16151413121110  
9
RECOMMEIDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(IOTE 4)  
DETAꢁL “A”  
0° – 6° TYP  
4.90 0.152  
(.193 .006)  
0.254  
(.010)  
GAUGE PLAIE  
0.53 0.152  
(.021 .006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAꢁL “A”  
0.18  
(.007)  
SEATꢁIG  
PLAIE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.50  
(.0197)  
ꢀSC  
MSOP (MS16) 1107 REV Ø  
IOTE:  
1. DꢁMEISꢁOIS ꢁI MꢁLLꢁMETER/(ꢁICH)  
2. DRAWꢁIG IOT TO SCALE  
4. DꢁMEISꢁOI DOES IOT ꢁICLUDE ꢁITERLEAD FLASH OR PROTRUSꢁOIS.  
ꢁITERLEAD FLASH OR PROTRUSꢁOIS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
5. LEAD COPLAIARꢁTY (ꢀOTTOM OF LEADS AFTER FORMꢁIG) SHALL ꢀE 0.102mm (.004") MAX  
3. DꢁMEISꢁOI DOES IOT ꢁICLUDE MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS.  
MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
236918fa  
22  
LTC2369-18  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMꢁER  
A
03/12 Updated conditions for ꢁ and P in Power Requirements section  
4
PD  
D
Added Figure 7 and associated text  
13  
236918fa  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2369-18  
TYPICAL APPLICATION  
5T6202 Converting a 10V ꢁipolar Signal to a 0V to ꢀV Input Signal Into the 5TC2369-18  
LTC6655-5  
V
V
V
8V  
ꢁI  
OUT_F  
OUT_S  
5V  
200pF  
47μF  
R2  
3k  
5
R4  
402Ω  
LT6202  
+
2.5V  
V
5V  
0V  
3
4
+
REF  
V
5.1Ω  
DD  
R3  
2k  
+
10μF  
1
ꢁI  
ꢁI  
LTC2369-18  
10nF  
V
2
236918 TA02  
R
ꢁI  
2k  
R1  
–3V  
10V  
499Ω  
0V  
–10V  
220pF  
RELATED PARTS  
PART NUMꢁER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2379-18/LTC2378-18 18-ꢀit, 1.6Msps/1Msps/500ksps/250ksps Serial, Low 2.5V Supply, Differential ꢁnput, 101.2dꢀ SIR, 5V ꢁnput Range, DGC,  
LTC2377-18/LTC2376-18 Power ADC Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC2380-16/LTC2378-16 16-ꢀit, 2Msps/1Msps/500ksps/250ksps Serial, Low 2.5V Supply, Differential ꢁnput, 96.2dꢀ SIR, 5V ꢁnput Range, DGC,  
LTC2377-16/LTC2376-16 Power ADC  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC2383-16/LTC2382-16/ 16-ꢀit, 1Msps/500ksps/250ksps Serial, Low Power  
2.5V Supply, Differential ꢁnput, 92dꢀ SIR, 2.5V ꢁnput Range, Pin-  
Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC2381-16  
ADC  
LTC2393-16/LTC2392-16/ 16-ꢀit, 1Msps/500ksps/250ksps Parallel/Serial ADC 5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, Pin-  
LTC2391-16  
Compatible Family in 7mm × 7mm LQFP-48 and QFI-48 Packages  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-10 Package  
2.35V to 3.6V Supply 6- and 8-Lead TSOT-23 Packages  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
LTC2366  
DACS  
12-ꢀit, 3Msps Serial ADC  
LTC2757  
18-ꢀit, Single Parallel ꢁ  
SoftSpan™ DAC  
1LSꢀ ꢁIL/DIL, Software-Selectable Ranges, 7mm × 7mm  
LQFP-48 Package  
OUT  
LTC2641  
16-ꢀit/14-ꢀit/12-ꢀit Single Serial V  
DACs  
1LSꢀ ꢁIL/DIL, MSOP-8 Package, 0V to 5V Output  
OUT  
LTC2630  
12-ꢀit/10-ꢀit/8-ꢀit Single V  
DACs  
SC70 6-Pin Package, ꢁnternal Reference, 1LSꢀ ꢁIL (12 ꢀits)  
OUT  
References  
LTC6655  
Precision Low Drift Low Ioise ꢀuffered Reference  
Precision Low Drift Low Ioise ꢀuffered Reference  
5V/2.5V, 5ppm/°C, 0.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6652  
Amplifiers  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢁnput/Output Ioise 1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
Low Power Amplifiers  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at  
1MHz, TSOT23-6 Package  
LTC1992  
Low Power, Fully Differential ꢁnput/Output Amplifier/ 1mA Supply Current  
Driver Family  
LT6360  
Low Ioise SAR ADC Driver with True Zero Output  
Low Ioise ꢁntegrated Charge Pump  
236918fa  
LT 0312 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2377-20

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2377CDE-18#PBF

LTC2377-18 - 18-Bit, 500ksps, Low Power SAR ADC with 102dB SNR; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CDE-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CMS-16#PBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CMS-16#TRPBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377CMS-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2377IMS-16#PBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377IMS-16#TRPBF

LTC2377-16 - 16-Bit, 500ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377IMS-20#PBF

LTC2377-20 - 20-Bit, 500ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2378-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2378-16

16-Bit, 1Msps, Low Power SAR ADC with 97dB SNR
LINEAR_DIMENS

LTC2378-18

Precision, Low Power Rail-to-Rail Input/Output
Linear