LTC2381CMS-16#PBF [Linear]

LTC2381-16 - 16-Bit, 250ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2381CMS-16#PBF
型号: LTC2381CMS-16#PBF
厂家: Linear    Linear
描述:

LTC2381-16 - 16-Bit, 250ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总26页 (文件大小:1941K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2381-16  
16-Bit, 250ksps, Low Power  
SAR ADC with Serial Interface  
FEATURES  
DESCRIPTION  
The LTC®2381-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2381-16 has a  
2.5V fully differential input range. The LTC2381-16  
consumes only 3.25mW and achieves 2LSB INL max,  
no missing codes at 16-bits and 92dB SNR.  
n
250ksps Throughput Rate  
n
2LSB INL (Max)  
n
Guaranteed 16-Bit No Missing Codes  
n
Low Power: 3.25mW at 250ksps, 13µW at 1ksps  
n
92dB SNR (Typ) at f = 20kHz  
IN  
n
Extended Acquisition Time of 3.25µs Allows Use of  
Lower Power Drivers  
The LTC2381-16 has a high speed SPI-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisy-chain mode. The fast 250ksps  
throughput with no cycle latency makes the LTC2381-16  
ideally suited for a wide variety of high speed applications.  
Aninternaloscillatorsetstheconversiontime,easingexter-  
nal timing considerations. The LTC2381-16 automatically  
powers down between conversions, leading to reduced  
power dissipation that scales with the sampling rate.  
n
Guaranteed Operation to 125°C  
n
2.5V Supply  
n
Fully Differential Input Range 2.5V  
n
External 2.5V Reference Input  
n
No Pipeline Delay, No Cycle Latency  
n
1.8V to 5V I/O Voltages  
n
SPI-Compatible Serial I/O with Daisy-Chain Mode  
n
Internal Conversion Clock  
n
16-Pin MSOP and 4mm × 3mm DFN Packages  
The LTC2381-16 features a proprietary sampling archi-  
tecture that enables the ADC to begin acquiring the next  
sample during the current conversion. The resulting  
extended acquisition time of 3.25µs allows the use of  
extremely low power ADC drivers.  
APPLICATIONS  
n
Medical Imaging  
n
High Speed Data Acquisition  
n
Portable or Compact Instrumentation  
Industrial Process Control  
Low Power Battery-Operated Instrumentation  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
n
ATE  
TYPICAL APPLICATION  
32k Point FFT fS = 250ksps, fIN = 20kHz  
0
2.5V 1.8V TO 5V  
SNR = 91.8dB  
–20  
–40  
THD = –106dB  
SINAD = 91.6dB  
SFDR = 107dB  
10µF  
0.1µF  
ANALOG INPUT  
0V TO 2.5V  
–60  
V
OV  
DD  
50Ω  
50Ω  
100Ω  
3300pF  
100Ω  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
DD  
+
IN  
–80  
LT6350  
LTC2381-16  
–100  
–120  
–140  
–160  
–180  
IN  
SAMPLE CLOCK  
REF  
GND  
238116 TA01  
2.5V  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
47µF  
(X5R, 0805 SIZE)  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
238116 TA02a  
238116fa  
1
For more information www.linear.com/LTC2381-16  
LTC2381-16  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Digital Output Voltage  
Supply Voltage (V )...............................................2.8V  
DD  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
Supply Voltage (OV )................................................6V  
DD  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2381C ................................................ 0°C to 70°C  
LTC2381I .............................................–40°C to 85°C  
LTC2381H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Reference Input (REF)..............................................2.8V  
Analog Input Voltage (Note 3)  
+
IN , IN ......................... (GND –0.3V) to (REF + 0.3V)  
Digital Input Voltage  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
REF  
GND 6  
REF 7  
REF 8  
9
CNV  
CNV  
MS PACKAGE  
16-LEAD (4mm × 5mm) PLASTIC MSOP  
DE PACKAGE  
16-LEAD (4mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 110°C/W  
JA  
JMAX  
T
JMAX  
= 150°C, θ = 43°C/W  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
http://www.linear.com/product/LTC2381-16#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2381CMS-16#PBF  
LTC2381IMS-16#PBF  
LTC2381HMS-16#PBF  
LTC2381CDE-16#PBF  
LTC2381IDE-16#PBF  
LTC2381CMS-16#TRPBF 238116  
LTC2381IMS-16#TRPBF 238116  
LTC2381HMS-16#TRPBF 238116  
LTC2381CDE-16#TRPBF 23816  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead Plastic MSOP  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
LTC2381IDE-16#TRPBF  
23816  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
238116fa  
2
For more information www.linear.com/LTC2381-16  
LTC2381-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
V +  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
–0.05  
–0.05  
TYP  
MAX  
UNITS  
+
l
l
l
l
Absolute Input Range (IN )  
V
REF  
V
REF  
V
V
V
V
IN  
V
IN  
Absolute Input Range (IN )  
(Note 5)  
V + – V – Input Differential Voltage range  
V
IN  
= V + – V –  
–V  
+V  
REF  
IN  
IN  
IN  
IN  
REF  
V
CM  
Common-Mode Input Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
REF  
0.05  
0.05  
1
l
I
Analog Input Leakage Current  
Analog Input Capacitance  
µA  
IN  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
70  
dB  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
16  
Bits  
Transition Noise  
0.6  
0.9  
0.5  
0.25  
3
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero-Scale Error  
Bipolar Zero-Scale Error Drift  
Bipolar Full-Scale Error  
Bipolar Full-Scale Error Drift  
(Note 6)  
(Note 7)  
(Note 7)  
–2  
–1  
–6  
2
1
6
LSB  
DNL  
BZE  
LSB  
LSB  
mLSB/°C  
LSB  
l
FSE  
–14  
3
14  
0.1  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS. (Notes 4, 8)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
88.5  
89  
TYP  
92  
MAX  
UNITS  
dB  
l
l
l
SINAD  
SNR  
Signal-to-(Noise + Distortion) Ratio  
f
f
f
f
= 20kHz  
IN  
IN  
IN  
IN  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–3dB Input Bandwidth  
Aperture Delay  
= 20kHz  
92  
dB  
THD  
= 20kHz, First 5 Harmonics  
= 20kHz  
–106  
107  
30  
–99  
dB  
SFDR  
dB  
MHz  
ns  
2
Aperture Jitter  
30  
ps  
Transient Response  
Full-Scale Step  
250  
ns  
238116fa  
3
For more information www.linear.com/LTC2381-16  
LTC2381-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 5)  
MIN  
TYP  
MAX  
2.6  
UNITS  
V
l
l
V
Reference Voltage  
Load Current  
2.4  
REF  
REF  
I
(Note 9)  
285  
µA  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 • OV  
IH  
IL  
DD  
0.2 • OV  
10  
V
DD  
I
V
= 0V to OV  
DD  
–10  
µA  
pF  
IN  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500 µA  
O
OV – 0.2  
DD  
V
OH  
OL  
I = 500 µA  
O
0.2  
10  
V
I
I
I
V
V
V
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
UNITS  
l
V
DD  
2.5  
V
V
OV  
DD  
l
l
l
I
DD  
Supply Current  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
1.3  
0.5  
0.5  
1.7  
40  
110  
mA  
µA  
µA  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
250ksps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
3.25  
1.25  
1.25  
4.25  
100  
275  
mW  
µW  
µW  
D
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
250  
3
UNITS  
ksps  
µs  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
2
Acquisition Time  
t
= t  
– t (Note 10)  
HOLD  
3.25  
µs  
ACQ  
CYC  
Maximum Time Between Acquisitions  
Time Between Conversions  
CNV High Time  
750  
20  
ns  
HOLD  
CYC  
4
us  
20  
ns  
CNVH  
BUSYLH  
CNVL  
SCK  
CNV to BUSY Delay  
Minimum Low Time for CNV  
SCK Period  
C = 20pF (Note 11)  
L
ns  
(Note 11)  
200  
10  
ns  
(Notes 11, 12)  
ns  
238116fa  
4
For more information www.linear.com/LTC2381-16  
LTC2381-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
t
SCK High Time  
SCKH  
SCK Low Time  
4
ns  
SCKL  
SDI Setup Time From SCK ↑  
SDI Hold Time From SCK ↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK ↑  
SDO Data Remains Valid Delay from SCK ↑  
SDO Data Valid Delay from BUSY ↓  
Bus Enable Time After RDL ↓  
Bus Relinquish Time After RDL ↑  
SCK Setup Time from RDL/SDI ↓  
SCK Hold Time from RDL/SDI ↓  
(Note 11)  
(Note 11)  
4
ns  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Note 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
C = 20pF (Note 11)  
L
9.5  
ns  
C = 20pF (Note 10)  
L
1
ns  
HSDO  
C = 20pF (Note 10)  
L
5
ns  
DSDOBUSYL  
EN  
(Note 11)  
(Note 11)  
(Note 10)  
(Note 10)  
16  
13  
ns  
ns  
DIS  
1
ns  
SSCKRDL  
HSCKRDL  
16  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Bipolar zero-scale error is the offset voltage measured from  
–0.5LSB when the output code flickers between 0000 0000 0000 0000  
and 1111 1111 1111 1111. Full-scale bipolar error is the worst-case of  
–FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dB are referred to a full-scale 2.5V input with  
a 2.5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REF  
or OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above REFor OV without  
latch-up.  
Note 9: f  
= 250kHz, I varies proportionately with sample rate.  
DD  
SMPL REF  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 2.5V, f = 250kHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 12: t  
100MHz for rising capture.  
of 10ns maximum allows a shift clock frequency up to  
SCK  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
t
t
50%  
50%  
DELAY  
DELAY  
238216 F01  
0.8*OV  
0.2*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
DD  
Figure 1. Voltage Levels for Timing Specifications  
238116fa  
5
For more information www.linear.com/LTC2381-16  
LTC2381-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fSMPL = 250ksps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
2.0  
1.5  
1.0  
1600000  
1400000  
1200000  
1000000  
1.0  
0.5  
0.0  
0.5  
0.0  
800000  
600000  
400000  
200000  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–32768  
–16384  
0
16384  
32768  
–32768  
–16384  
0
16384  
32768  
–2  
–1  
0
1
2
OUTPUT CODE  
OUTPUT CODE  
CODE  
238116 G01  
238116 G02  
238116 G03  
32k Point FFT fS = 250ksps,  
fIN = 20kHz  
THD, Harmonics  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
0
–20  
93  
92.5  
92  
–90  
–95  
SNR = 91.8dB  
THD = –106dB  
SINAD = 91.6dB  
SFDR = 107dB  
–40  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–60  
SNR  
3RD  
2ND  
THD  
–80  
91.5  
91  
–100  
–120  
–140  
–160  
–180  
SINAD  
90.5  
90  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
0
25  
50  
FREQUENCY (kHz)  
75  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
238116 G05  
238116 G06  
238116 G04  
SNR, SINAD vs Input level,  
fIN = 20kHz  
SNR, SINAD vs Temperature  
THD, Harmonics vs Temperature  
93.0  
92.5  
92.0  
91.5  
91.0  
93.00  
92.50  
92.00  
91.50  
91.00  
–100  
–105  
–110  
–115  
–120  
SNR  
SINAD  
SNR  
THD  
2ND  
SINAD  
3RD  
–55 –35 –15  
5
25 45 65 85 105 125  
–40  
–30  
–20  
–10  
0
–55 –35 –15  
5
25 45 65 85 105 125  
INPUT LEVEL (dB)  
TEMPERATURE (ºC)  
TEMPERATURE (°C)  
238116 G07  
238116 G08  
238116fa  
6
For more information www.linear.com/LTC2381-16  
LTC2381-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fSMPL = 250ksps, unless otherwise noted.  
INL/DNL vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
1
0.5  
0
0
–0.5  
–1  
0
–0.25  
–0.5  
–0.75  
–1  
–FS  
MAX INL  
MAX DNL  
MIN DNL  
MIN INL  
+FS  
–0.5  
–1  
–1.5  
–2  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238116 G10  
238116 G11  
238116 G12  
Supply Current vs Temperature  
Shutdown Current vs Temperature  
Supply Current vs Sampling Rate  
1.5  
1
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
I
+ I  
+ I  
VDD OVDD REF  
I
VDD  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
I
REF  
I
OVDD  
0
0
50  
100  
150  
200  
250  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
SAMPLING RATE (kHz)  
TEMPERATURE (°C)  
238116 G13  
238116 G14  
238116 G15  
238116fa  
7
For more information www.linear.com/LTC2381-16  
LTC2381-16  
PIN FUNCTIONS  
CHAIN (Pin 1): Chain Mode Selector Pin. When low, the  
LTC2381-16 operates in Normal Mode and the RDL/SDI  
input pin functions to enable or disable SDO. When high,  
the LTC2381-16 operates in Chain Mode and the RDL/  
SDI pin functions as SDI, the daisy chain serial data input.  
RDL/SDI (Pin 12): When CHAIN is low, the part is in Nor-  
mal Mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input.  
V
(Pin 2): 2.5V Digital Power Supply. The range of  
SCK(Pin13):SerialDataClockInput.WhenSDOisenabled,  
theconversionresultordaisychaindatafromanotherADC  
is shifted out on the rising edges of this clock MSB first.  
DD  
V
DD  
is 2.375V to 2.625V. Bypass V to GND with a 10µF  
DD  
ceramic capacitor.  
GND (Pins 3, 6, 10 and 16): Ground.  
SDO(Pin14):SerialDataOutput. Theconversionresultor  
daisy chain data is output on this pin on each rising edge  
of SCK MSB first. The output data is in 2’s complement  
format.  
+
IN , IN (Pins 4, 5): Positive and Negative Differential  
Analog Inputs.  
REF (Pins 7, 8): Reference Input. The range of REF is 2.4V  
to 2.6V. This pin is referred to the GND pin and should be  
decoupledcloselytothepinwitha 4Fceramiccapacitor  
(X5R, 0805 size).  
OV (Pin 15): I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). Bypass OV to GND with a 0.1µF capacitor.  
DD  
CNV (Pin 9): Convert Input. A rising edge on this input  
initiates a new conversion. When the conversion is done,  
the part powers down as long as CNV is held high. When  
CNV is returned low, the part powers up in preparation  
for the next conversion.  
GND (Exposed Pad Pin 17 – DFN Package Only): Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
BUSY (Pin 11): BUSY indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished.  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 2.5V  
LTC2381-16  
+
CHAIN  
SDO  
RDL/SDI  
SCK  
+
IN  
SPI  
PORT  
16-BIT SAMPLING ADC  
IN  
CNV  
CONTROL LOGIC  
BUSY  
GND  
238116 BD01  
238116fa  
8
For more information www.linear.com/LTC2381-16  
LTC2381-16  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
POWER-UP  
POWER-DOWN  
CONVERT  
BUSY  
HOLD  
ACQUIRE  
SCK  
SDO  
D15 D14 D13 D2 D1 D0  
238116 TD01  
APPLICATIONS INFORMATION  
OVERVIEW  
CONVERTER OPERATION  
TheLTC2381-16isalownoise,lowpower,highspeed16-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2381-16 supports a  
large 2.5V fully differential input range, making it ideal  
for high performance applications which require a wide  
dynamicrange.TheLTC2381-16achieves 2LSBINLmax,  
no missing codes at 16-bits and 92dB SNR.  
A rising edge on the CNV pin initiates a conversion. During  
the conversion phase, the 16-bit CDAC is sequenced  
through a successive approximation algorithm, effec-  
tively comparing the sampled input with binary-weighted  
fractions of the reference voltage (e.g. V /2, V /4 …  
REF  
REF  
V
REF  
/65536) using the differential comparator. At the end  
ofconversion,theCDACoutputapproximatesthesampled  
analog input. The ADC control logic then prepares the 16-  
bit digital output code for serial transfer.  
Fast 250ksps throughput with no cycle latency makes the  
LTC2381-16 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2381-16  
dissipates only 3.25mW at 250ksps, while an auto  
power-down feature is provided to further reduce power  
dissipation during inactive periods.  
TRANSFER FUNCTION  
The LTC2381-16 digitizes the full-scale voltage of 2 × REF  
16  
into 2 levels, resulting in an LSB size of 76µV with  
REF=2.5V.TheidealtransferfunctionisshowninFigure2.  
The output data is in 2’s complement format.  
The LTC2381-16 features a proprietary sampling archi-  
tecture that enables the ADC to begin acquiring the next  
sample during the current conversion. The resulting  
extended acquisition time of 3.25µs allows the use of  
extremely low power ADC drivers.  
ANALOG INPUT  
The analog inputs of the LTC2381-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
238116fa  
9
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
shown in Figure 3. The diodes at the input provide ESD  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
protection. In the acquisition phase, each input sees ap-  
proximately 45pF (C ) from the sampling CDAC in series  
IN  
For best performance, a buffer amplifier should be used  
to drive the analog inputs of the LTC2381-16. The ampli-  
fier provides low output impedance which produces fast  
settling of the analog signal during the acquisition phase.  
It also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
with 40Ω (R ) from the on-resistance of the sampling  
ON  
switch. Any unwanted signal that is common to both in-  
puts will be reduced by the common mode rejection of the  
ADC. The inputs draw a current spike while charging the  
C capacitors during acquisition. When the LTC2381-16  
IN  
is not acquiring the input, the analog inputs draw only a  
small leakage current.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
Another filter network consisting of LPF2 and the 100Ω  
series input resistors should be used between the buffer  
and ADC inputs to both minimize the noise contribution  
of the buffer and to help minimize disturbances reflected  
into the buffer from sampling transients. Long RC time  
constants at the analog inputs will slow down the settling  
of the analog inputs. Therefore, LPF2 requires a wider  
bandwidth than LPF1. A buffer amplifier with a low noise  
density must be selected to minimize degradation of the  
SNR. With the 482kHz lowpass filter shown in Figure 4,  
the LT6350 provides the full data sheet performance of  
the LTC2381-16.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
INPUT VOLTAGE (V)  
238116 F02  
Figure 2. LTC2381-16 Transfer Function  
REF  
C
IN  
R
R
ON  
+
IN  
IN  
BIAS  
VOLTAGE  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
REF  
C
IN  
ON  
238116 F03  
Figure 3. The Equivalent Circuit for the  
Differential Analog Input of the LTC2381-16  
LPF2  
50Ω  
SINGLE-ENDED-  
INPUT SIGNAL  
100Ω  
LPF1  
+
IN  
IN  
INPUT DRIVE CIRCUITS  
500Ω  
3300pF  
LTC2381-16  
LT6350  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2381-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
6600pF  
50Ω  
100Ω  
BW = 482kHz  
238116 F04  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
BW = 48kHz  
Figure 4. Input Signal Chain  
238116fa  
10  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
Single-Ended-to-Differential Conversion  
The LT6350 can also be used to buffer and convert large,  
true bipolar signals which swing below ground to the  
2.5V differential input range of the LTC2381-16. Figure  
7 shows the LT6350 being used to convert a 10V true  
bipolar signal for use by the LTC2381-16. The input im-  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2381-16. The LT6350 ADC  
driverisrecommendedforperformingsingle-ended-to-dif-  
ferential conversions. The LT6350 is flexible and may be  
configured to convert single-ended signals of various  
amplitudes to the 2.5V differential input range of the  
LTC2381-16. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2381-16 up to 125°C.  
pedance is again set by resistor R . Table 2 shows the  
IN  
resulting SNR and THD for several values of R . Figure  
IN  
LT6350  
OUT1  
OUT2  
0V to  
2.5V  
4
5
R
R
INT  
8
1
+
INT  
0V to 2.5V  
Figure 5 shows the LT6350 being used to convert a 0V  
to 2.5V single-ended input signal. In this case, the first  
amplifier is configured as a unity gain buffer and the sin-  
gle-ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5a,  
the LT6350 drives the LTC2381-16 to full data sheet per-  
formance without degrading the SNR or THD .  
+
2.5V to  
0V  
2
+
V
= V /2  
REF  
CM  
238116 F05  
Figure 5. LT6350 Converting a 0V-2.5V Single-Ended Signal  
to a 2.5V Differential Input Signal  
The LT6350 can also be used to buffer and convert  
single-ended signals larger than the input range of the  
LTC2381-16 in order to maximize the signal swing that  
can be digitized. Figure 6 shows the LT6350 converting a  
0V-5V single-ended input signal to the 2.5V differential  
input range of the LTC2381-16. In this case, the first am-  
plifierintheLT6350isconfiguredasaninvertingamplifier  
stage, which acts to attenuate the input signal down to the  
0V-2.5V input range of the LTC2381-16. In the inverting  
amplifier configuration, the single-ended input signal  
source no longer directly drives a high impedance input  
of the first amplifier. The input impedance is instead set  
0
SNR = 91.8dB  
–20  
–40  
THD = –106dB  
SINAD = 91.6dB  
SFDR = 107dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
by resistor R . R must be chosen carefully based on  
IN IN  
238116 F05a  
the source impedance of the signal source. Higher values  
Figure 5a. 32k Point FFT Plot for Circuit Shown in Figure 5  
of R tend to degrade both the noise and distortion of  
IN  
the LT6350 and LTC2381-16 as a system. R1, R2 and R3  
must be selected in relation to R to achieve the desired  
IN  
attenuation and to maintain a balanced input impedance  
in the first amplifier. Table 1 shows the resulting SNR  
and THD for several values of R , R1, R2 and R3 in this  
IN  
configuration. Figure 6a shows the resulting FFT when  
using the LT6350 as shown in Figure 6.  
238116fa  
11  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
V
V
CM  
REF  
R2 = 1.24k  
200pF  
R2 = 1k  
150pF  
LT6350  
LT6350  
OUT1  
OUT2  
2.5V to  
0V  
4
5
OUT1  
OUT2  
2.5V to  
0V  
4
5
R
INT  
R
V
8
+
INT  
R
R
INT  
8
+
INT  
10µF  
R4 = 1.1k  
R3 = 10k  
10µF  
R4 = 680Ω  
R3 = 2k  
+
+
0V to  
2.5V  
0V to  
2.5V  
1
2
1
2
R
= 2k  
R1 = 1k  
R = 10k  
IN  
IN  
R1 = 1.24k  
+
+
V
= V /2  
REF  
= V /2  
REF  
CM  
CM  
75pF  
0V to 5V  
10V  
238116 F06  
220pF  
238116 F07  
Figure 6. LT6350 Converting a 0V-5V Single-Ended Signal  
to a 2.5V Differential Input Signal  
Figure 7. LT6350 Converting a 10V Single-Ended Signal to  
a 2.5V Differential Input Signal  
0
0
SNR = 91.7dB  
SNR = 91.8dB  
–20  
–40  
THD = –100dB  
SINAD = 91.2dB  
SFDR = 103.5dB  
–20  
–40  
THD = –95.5dB  
SINAD = 91.4dB  
SFDR = 96.9dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
238116 F06a  
238116 F07a  
Figure 6a. 32k Point FFT Plot for Circuit Shown in Figure 6  
Figure 7a. 32k Point FFT Plot for Circuit Shown in Figure 7  
7a shows the resulting FFT when using the LT6350 as  
shown in Figure 7.  
10k  
50k  
5k  
5k  
10k  
50k  
3.3k  
16k  
91  
91  
–100  
–97  
25k  
25k  
Table 1. SNR, THD vs RIN for 0-5V Single-Ended Input Signal  
Table 2. SNR, THD vs RIN for 10V Single-Ended Input Signal  
R
R1  
(Ω)  
R2  
(Ω)  
R3  
(Ω)  
R4  
(Ω)  
SNR  
(dB)  
THD  
(dB)  
IN  
R
IN  
R1  
(Ω)  
R2  
(Ω)  
R3  
(Ω)  
R4  
(Ω)  
SNR  
(dB)  
THD  
(dB)  
(Ω)  
(Ω)  
2k  
1k  
1k  
2k  
680  
92  
–100  
is critical to achieving the full data sheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications. Withitssmallsize, lowpowerandhigh  
accuracy, the LTC6652-2.5 is particularly well suited for  
use with the LTC2381-16. The LTC6652-2.5 offers 0.05%  
(max)initialaccuracyand5ppm/°C(max)temperatureco-  
efficient for high precision applications. The LTC6652-2.5  
10k  
50k  
1.24k  
6.19k  
12.4k  
1.24k  
6.19k  
12.4k  
10k  
50k  
1.1k  
5.49k  
11k  
92  
91  
91  
–96  
–96  
–97  
100k  
100k  
ADC REFERENCE  
TheLTC2381-16requiresanexternalreferencetodefineits  
input range. A low noise, low temperature drift reference  
is fully specified over the H-grade temperature range and  
238116fa  
12  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
complements the extended temperature operation of the  
LTC2381-16 up to 125°C. We recommend bypassing the  
LTC6652-2.5 with a 47µF ceramic capacitor (X5R, 0805  
size) close to the REF pin. All performance curves shown  
in this data sheet were obtained using the LTC6652-2.5.  
V
OUT_S  
OUT_F  
LTC6655-2.5  
V
1Ω  
47µF  
REF  
The REF pin of the LTC2381-16 draws charge (Q  
)
CONV  
LTC2381-16  
from the 47µF bypass capacitor during each conversion  
cycle. The reference replenishes this charge with a DC  
238116 F09  
current, I  
= Q  
/t . The DC current draw of the  
REF  
CONV CYC  
Figure 9. LTC6655-2.5 Driving REF of LTC2381-16  
REF pin, I , depends on the sampling rate and output  
REF  
code. If the LTC2381-16 is used to continuously sample  
a signal at a constant rate, the LTC6652-2.5 will keep the  
deviation of the reference voltage over the entire code  
span to less than 0.5LSBs.  
0
SNR = 91.8dB  
–20  
–40  
THD = –106dB  
SINAD = 91.6dB  
SFDR = 107dB  
–60  
When idling, the REF pin on the LTC2381-16 draws only a  
smallleakagecurrent(<1µA).Inapplicationswhereaburst  
of samples is taken after idling for long periods as shown  
–80  
–100  
–120  
–140  
–160  
–180  
in Figure 8, I quickly goes from approximately 0µA to  
REF  
a maximum of 285µA at 250ksps. This step in DC current  
draw triggers a transient response in the reference that  
must be considered since any deviation in the reference  
output voltage will affect the accuracy of the output code.  
In applications where the transient response of the refer-  
ence is important, the fast settling LTC6655-2.5 reference  
is recommended. Inserting a 1Ω resistor between the  
47µF bypass capacitor and reference output as shown in  
Figure 9 helps to improve the transient settling time and  
minimize the reference voltage deviation.  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
238116 F10  
Figure 10. 32k Point FFT of the LTC2381-16  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2381-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
DYNAMIC PERFORMANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
238116 F08  
Figure 8. CNV Waveform Showing Burst Sampling  
238116fa  
13  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure10showsthattheLTC2381-16achieves  
a typical SINAD of 92dB at a 250kHz sampling rate with  
a 20kHz input.  
supply voltage drops below 1V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 20µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
Signal-to-Noise Ratio (SNR)  
TIMING AND CONTROL  
CNV Timing  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 10 shows  
that the LTC2381-16 achieves a typical SNR of 92dB at a  
250kHz sampling rate with a 20kHz input.  
The LTC2381-16 conversion is controlled by CNV. A rising  
edge on CNV will start a conversion. Once a conversion  
has been initiated, it cannot be restarted until the conver-  
sion is complete. For optimum performance, CNV should  
be driven by a clean low jitter signal. Converter status is  
indicated by the BUSY output which remains high while  
the conversion is in progress. To ensure that no errors  
occur in the digitized results, any additional transitions  
on CNV should occur within 40ns from the start of the  
conversion or after the conversion has been completed.  
Total Harmonic Distortion (THD)  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency (f  
SM-  
/2). THD is expressed as:  
PL  
2
V22 + V32 + V42 ++ VN  
1.4  
1.2  
1
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
0.8  
0.6  
0.4  
0.2  
0
quencyandV2throughV aretheamplitudesofthesecond  
N
through Nth harmonics.  
POWER CONSIDERATIONS  
TheLTC2381-16providestwopowersupplypins:the2.5V  
0
50  
100  
150  
200  
250  
power supply (V ), and the digital input/output interface  
DD  
SAMPLING RATE (kHz)  
power supply (OV ). The flexible OV supply allows the  
DD  
DD  
238116 F11  
LTC2381-16tocommunicatewithanydigitallogicoperating  
Figure 11. Power Supply Current of the LTC2381-16  
Versus Sampling Rate  
between 1.8V and 5V, including 2.5V and 3.3V systems.  
Power Supply Sequencing  
ACQUISITION  
The LTC2381-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2381-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2381-16 at initial power-up or whenever the power  
AproprietarysamplingarchitectureallowstheLTC2381-16  
to begin acquiring the input signal for the next conversion  
750nsafterthestartofthecurrentconversion.Thisextends  
238116fa  
14  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
theacquisitiontimeto3.25µs,easingsettlingrequirements  
and allowing the use of extremely low power ADC drivers.  
(Refer to the Timing Diagram.)  
initiation of the next conversion. The auto power-down  
feature will reduce the power dissipation of the LTC2381-  
16 as the sampling frequency is reduced. Since the time  
required to power up the part does not change at lower  
sample rates, the LTC2381-16 can remain powered-down  
Internal Conversion Clock  
for a larger fraction of the conversion cycle (t ), there-  
CYC  
The LTC2381-16 has an internal clock that is trimmed to  
achieve a maximum conversion time of 2.5µs.  
by reducing the average power dissipation which scales  
linearly with sampling rate as shown in Figure 11.  
Auto Power-Down  
The LTC2381-16 automatically powers down after a con-  
version has been completed as long as CNV remains high.  
During power-down, the data from the last conversion  
can be clocked out. To minimize power dissipation during  
power-down, disable SDO and turn off SCK. To power up  
DIGITAL INTERFACE  
The LTC2381-16 has a serial digital interface. The flexible  
OV supplyallowstheLTC2381-16tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
the part, bring CNV low at least 200ns (t  
) before the  
CONVL  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
15MHz, a 250ksps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D15 remains valid till the first rising edge of SCK.  
The serial interface on the LTC2381-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2381-16. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy-chained.  
238116fa  
15  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
Normal Mode, Single Device  
Figure 12 shows a single LTC2381-16 operated in Normal  
Mode with CHAIN and RDL/SDI tied to ground. With RDL/  
SDI grounded, SDO is enabled and the MSB(D15) of the  
new conversion data is available at the falling edge of  
BUSY.ThisisthesimplestwaytooperatetheLTC2381-16.  
When CHAIN = 0, the LTC2381-16 operates in Normal  
mode. In Normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
high-impedance. If RDL/SDI is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2381-16  
SCK  
RDL/SDI  
SDO  
DATA IN  
CLK  
238116 F10  
CONVERT  
POWER-DOWN  
POWER-UP  
CONVERT  
ACQUIRE  
CHAIN = 0  
ACQUIRE  
t
CYC  
t
CNVH  
t
CNV  
CNVL  
t
t
ACQ  
HOLD  
t
= t  
– t  
ACQ CYC HOLD  
BUSY  
SCK  
t
CONV  
t
SCK  
t
BUSYLH  
t
SCKH  
1
2
3
14  
15  
16  
t
SCKL  
t
HSDO  
t
DSDOBUSYL  
t
DSDO  
SDO  
D15  
D14  
D13  
D1  
D0  
238116 F10a  
(RDL/SDI = 0)  
Figure 12. Using a Single LTC2381-16 in Normal Mode  
238116fa  
16  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
Normal Mode, Multiple Devices  
timeinordertoavoidbusconflicts. AsshowninFigure13,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSB of the selected  
device is output onto SDO. To ensure the MSB is properly  
output and captured, SCK must be held low at least 1ns  
before and 16ns after bringing RDL/SDI low.  
Figure 13 shows multiple LTC2381-16 devices operating  
in Normal Mode(CHAIN = 0) sharing CNV, SCK and SDO.  
By sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDI input of each ADC must  
be used to allow only one LTC2381-16 to drive SDO at a  
RDL2  
RDL1  
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2381-16  
B
LTC2381-16  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
238116 F11  
CONVERT  
POWER-DOWN  
CONVERT  
POWER-UP  
ACQUIRE  
CHAIN = 0  
CNV  
ACQUIRE  
t
CNVL  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
RDL/SDI  
A
RDL/SDI  
B
t
SCK  
t
t
SCKH  
HSCKRDL  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
t
t
SCKL  
SSCKRDL  
HSDO  
t
DIS  
t
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
A
D0  
A
D15  
D14  
D13  
D1  
B
D0  
B
A
A
A
B
B
B
238116 F11a  
Figure 13. Normal Mode with Multiple Devices Sharing CNV, SCK and SDO  
238116fa  
17  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
APPLICATIONS INFORMATION  
When CHAIN = OV , the LTC2381-16 operates in Chain  
This is useful for applications where hardware constraints  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 14 shows an example with  
two daisy chained devices. The MSB of converter A will  
appear at SDO of converter B after 16 SCK cycles. The  
MSB of converter A is clocked in at the SDI/RDL pin of  
converter B on the rising edge of the first SCK.  
DD  
Mode. In Chain Mode, SDO is always enabled and RDL/  
SDI serves as the serial data input pin (SDI) where daisy  
chain data output from another ADC can be input.  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2381-16  
LTC2381-16  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
238116 F12  
CONVERT  
POWER-DOWN  
POWER-UP  
CONVERT  
ACQUIRE  
ACQUIRE  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
t
SCKCH  
t
SCKH  
SCK  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
t
SSDISCK  
SCKL  
t
HSDO  
t
HSDISCK  
t
DSDO  
SDO = RDL/SDI  
A
B
D15  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D15  
D14  
D13  
D1  
D15  
D14  
D1  
A
D0  
A
B
B
B
B
B
A
A
SDO  
B
238116 F14  
Figure 14. Chain Mode Timing Diagram  
238116fa  
18  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2381-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible. In  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended Layout  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1571A, the  
evaluation kit for the LTC2381-16.  
Partial Top Silkscreen  
238116 F13  
238116fa  
19  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
BOARD LAYOUT  
Partial Layer 1 Component Side  
238116 BL01  
Partial Layer 2 Ground Plane  
238116 BL02  
238116fa  
20  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
BOARD LAYOUT  
Partial Layer 3 PWR Plane  
238116 BL03  
Partial Layer 4 Bottom Layer  
238116 BL04  
238116fa  
21  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
BOARD LAYOUT  
Partial Schematic of Demoboard  
R E F 1  
8
R E F  
1
G N D  
7
1 5  
D D  
G N D 1 6  
O V  
G N D  
1 0  
D D  
V
2
G N D  
6
3
3
2
1
3
2
1
238116fa  
22  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2381-16#packaging for the most recent package drawings.  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
0.70 0.05  
3.30 0.05  
ꢀ.70 0.05  
3.60 0.05  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
TYP  
3.30 0.ꢀ0  
3.00 0.ꢀ0  
(2 SIDES)  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
0.35 × 45°  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
238116fa  
23  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2381-16#packaging for the most recent package drawings.  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
238116fa  
24  
For more information www.linear.com/LTC2381-16  
LTC2381-16  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
07/16 Updated graphs G01, G02 and G03  
6
238116fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2381-16  
TYPICAL APPLICATION  
ADC Driver: Single-Ended Input to Differential Output with Filter  
0
–20  
SNR = 91.8dB  
THD = –106dB  
SINAD = 91.6dB  
SFDR = 107dB  
LPF2  
50Ω  
SINGLE-ENDED  
INPUT SIGNAL  
–40  
LT6350  
LPF1  
500Ω  
100Ω  
100Ω  
+
4
5
IN  
–60  
R
R
INT  
3300pF  
8
1
+
INT  
LTC2381-16  
–80  
6600pF  
IN  
–100  
–120  
–140  
–160  
–180  
50Ω  
BW = 482kHz  
+
238116 TA03  
2
BW = 48kHz  
+
V
= V /2  
REF  
CM  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
238116 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2383-16/LTC2382-16 16-Bit, 1Msps/500ksps Serial ADC  
2.5V Supply, Differential Input, 92dB SNR, 2.5V Input Range,16-Pin MSOP  
and 4mmx3mm16-Pin DFN Packages,Pin Compatible with the LTC2382-16  
LTC2393-16  
LTC2392-16  
LTC2391-16  
16-Bit, 1Msps Parallel/Serial ADC  
16-Bit, 500ksps Parallel/Serial ADC  
16-Bit, 250ksps Parallel/Serial ADC  
5V Supply, Differential Input, 94dB SNR, 4.096V Input Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2392-16, LTC2391-16  
5V Supply, Differential Input, 94dB SNR, 4.096V Input Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2391-16  
5V Supply, Differential Input, 94dB SNR, 4.096V Input Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2392-16  
LTC1864/LTC1864L  
LTC1865/LTC1865L  
LTC2302/LTC2306  
16-Bit, 250ksps/150ksps 1-Channel µPower, ADC 5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
16-Bit, 250ksps 2-Channel µPower ADC  
5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
5V Supply, 14mW at 500ksps, 10-Pin DFN Package  
12-Bit, 500ksps, 1-/2-Channel, Low Noise, ADC  
LTC2355-14/LTC2356-14 14-Bit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/Bipolar, 18mW, MSOP-10 Package  
DACs  
LTC2641  
16-Bit Single Serial V  
DACs  
DACs  
1LSB INL, 1LSB DNL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
LTC2630  
12-/10-/8-Bit Single V  
OUT  
REFERENCES  
LTC6652  
Precision Low Drift Low Noise Buffered Reference 2.5V, 5ppm/°C Max Tempco, 2.1ppm Peak-to-Peak Noise, MSOP-8  
Package  
LTC6655  
AMPLIFIERS  
LT6350  
Precision Low Drift Low Noise Buffered Reference 2.5V, 5ppm/°C Max Tempco, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
Low Noise Single-Ended-To-Differential ADC Driver Rai-to-Rail Input and Outputs, 240ns 0.01% Settling Time, DFN-8 or  
MSOP-8 Packages  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with Unity  
Gain/AV = 5/AV = 10  
Low Noise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dB at 1MHz,  
TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail Input/Output  
Noise Low Power Amplifiers  
1.9nV√Hz, 3mA Maximum, 100MHz Gain Bandwidth  
LTC1992  
Low Power, Fully Differential Input/Output  
Amplifier/Driver Family  
1mA Supply Current  
238116fa  
LT 0716 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2381-16  
LINEAR TECHNOLOGY CORPORATION 2010  

相关型号:

Linear

LTC2381CMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381HMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381IDE-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2381IMS-16PBF

16-Bit, 250ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2382-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2382CDE-16#PBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CDE-16#TRPBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: DFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CDE-16PBF

16-Bit, 500ksps, Low Power SAR ADC with Serial Interface
Linear

LTC2382CMS-16#PBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CMS-16#TRPBF

LTC2382-16 - 16-Bit, 500ksps, Low Power SAR ADC with Serial Interface; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2382CMS-16PBF

16-Bit, 500ksps, Low Power SAR ADC with Serial Interface
Linear