LTC2392CUK-16#PBF [Linear]

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C;
LTC2392CUK-16#PBF
型号: LTC2392CUK-16#PBF
厂家: Linear    Linear
描述:

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C

转换器
文件: 总26页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2392-16  
16-Bit, 500ksps SAR ADC  
with 94dB SNR  
Features  
Description  
The LTC®2392-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2392-16 supports a large  
±±.ꢀ96V fully differential input range, making it ideal for  
high performance applications which require maximum  
dynamic range. The LTC2392-16 achieves ±2LSB INL  
max, no missing codes at 16-bits and 9±dB SNR (typ).  
n
500ksps Throughput Rate  
n
±±LSB INL (Max)  
n
Guaranteed 16-Bit No Missing Codes  
n
94dB SNR (Typ) at f = ±0kHz  
IN  
n
n
n
n
n
n
n
n
n
n
Guaranteed Operation to 125°C  
Single 5V Supply  
1.8V to 5V I/O Voltages  
11ꢀmW Power Dissipation  
The LTC2392-16 includes a precision internal reference  
with a guaranteed ꢀ.5% initial accuracy and a ±2ꢀppm/°C  
(max) temperature coefficient. Fast 5ꢀꢀksps throughput  
with no cycle latency in both parallel and serial interface  
modes makes the LTC2392-16 ideally suited for a wide  
variety of high speed applications. An internal oscillator  
sets the conversion time, easing external timing con-  
siderations. The LTC2392-16 dissipates only 11ꢀmW at  
5ꢀꢀksps,whilebothnapandsleeppower-downmodesare  
provided to further reduce power during inactive periods.  
±±.ꢀ96V Differential Input Range  
Internal Reference (2ꢀppm/°C Max)  
No Pipeline Delay, No Cycle Latency  
Parallel and Serial Interface  
Internal Conversion Clock  
±8-Lead 7mm × 7mm LQFP and QFN Packages  
applications  
n
Medical Imaging  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
High Speed Data Acquisition  
n
Digital Signal Processing  
Industrial Process Control  
Instrumentation  
ATE  
n
n
n
typical application  
16k Point FFT fS = 500ksps,  
fIN = ±0kHz  
5V  
0.1µF  
5V  
0.1µF  
1.8V TO 5V  
4.7µF  
0
–20  
SNR = 94dB  
10µF  
10µF  
THD = –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
–40  
ANALOG INPUT  
0V TO 4.096V  
AVP  
DVP  
OVP  
PARALLEL  
OR  
SERIAL  
INTERFACE  
–60  
249Ω  
16 BIT  
+
IN  
–80  
–100  
–120  
–140  
–160  
LT6350  
2200pF  
249Ω  
LTC2392-16  
SER/PAR  
BYTESWAP  
OB/2C  
CS  
IN  
RD  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
BUSY  
VCM REFIN REFOUT CNVST PD RESET GND OGND  
10µF 1µF  
239216 TA01  
–180  
0
100  
150  
200  
250  
50  
SAMPLE CLOCK  
FREQUENCY (kHz)  
239216 G08  
239216fa  
1
LTC2392-16  
absolute maximum ratings (Notes 1, ±)  
Supply Voltage (V , V , V )..........................6.ꢀV  
Operating Temperature Range  
AVP DVP OVP  
Analog Input Voltage (Note 3)  
LTC2392C................................................ ꢀ°C to 7ꢀ°C  
LTC2392I .............................................–±ꢀ°C to 85°C  
LTC2392H.......................................... –±ꢀ°C to 125°C  
Storage Temperature Range .................. –65°C to 15ꢀ°C  
+
IN , IN , REFIN, CNVST... (GND – ꢀ.3V) to (V  
+ ꢀ.3V)  
+ ꢀ.3V)  
+ ꢀ.3V)  
AVP  
OVP  
OVP  
Digital Input Voltage........(GND – ꢀ.3V) to (V  
Digital Output Voltage.....(GND – ꢀ.3V) to (V  
Power Dissipation.............................................. 5ꢀꢀmW  
pin conFiguration  
TOP VIEW  
TOP VIEW  
GND 1  
AVP 2  
DVP 3  
36 VCM  
35 GND  
34 CNVST  
33 PD  
32 RESET  
31 CS  
GND  
AVP  
1
2
3
4
5
6
7
8
9
36 VCM  
35 GND  
34 CNVST  
33 PD  
32 RESET  
31 CS  
30 RD  
29 BUSY  
28 D15  
27 D14  
26 D13  
25 D12  
DVP  
SER/PAR 4  
GND 5  
OB/2C 6  
GND 7  
BYTESWAP 8  
D0 9  
SER/PAR  
GND  
OB/2C  
GND  
BYTESWAP  
D0  
49  
GND  
30 RD  
29 BUSY  
28 D15  
27 D14  
26 D13  
25 D12  
D1 10  
D2 11  
D3 12  
D1 10  
D2 11  
D3 12  
UK PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC QFN  
LX PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC LQFP  
T
= 125°C, θ = 29°C/W  
JA  
JMAX  
EXPOSED PAD (PIN ±9) IS GND, MUST BE SOLDERED TO PCB  
T
= 15ꢀ°C, θ = 55°C/W  
JA  
JMAX  
orDer inFormation  
LEAD FREE FINISH  
LTC2392CUK-16#PBF  
LTC2392IUK-16#PBF  
LEAD FREE FINISH  
LTC2392CLX-16#PBF  
LTC2392ILX-16#PBF  
LTC2392HLX-16#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
ꢀ°C to 7ꢀ°C  
LTC2392CUK-16#TRPBF LTC2392UK-16  
±8-Lead 7mm × 7mm Plastic QFN  
±8-Lead 7mm × 7mm Plastic QFN  
PACKAGE DESCRIPTION  
LTC2392IUK-16#TRPBF  
TRAY  
LTC2392UK-16  
PART MARKING*  
LTC2392LX-16  
LTC2392LX-16  
LTC2392LX-16  
–±ꢀ°C to 85°C  
TEMPERATURE RANGE  
ꢀ°C to 7ꢀ°C  
LTC2392CLX-16#PBF  
LTC2392ILX-16#PBF  
LTC2392HLX-16#PBF  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
–±ꢀ°C to 85°C  
–±ꢀ°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
239216fa  
2
LTC2392-16  
analog input The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = ±5°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–ꢀ.ꢀ5  
–ꢀ.ꢀ5  
TYP  
MAX  
AVP  
AVP  
UNITS  
+
+
l
l
l
l
l
V
V
V
V
Absolute Input Range (IN )  
(Note 5)  
V
V
IN  
IN  
IN  
+
Absolute Input Range (IN )  
(Note 5)  
+
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Analog Input Leakage Current  
Analog Input Capacitance  
V
= V – V  
–V  
V
REF  
V
IN  
IN  
IN  
IN  
REF  
V
/2 – ꢀ.ꢀ5  
REF  
V
/2  
REF  
V
/2 + ꢀ.ꢀ5  
±1  
V
CM  
REF  
I
IN  
µA  
C
Sample Mode  
Hold Mode  
±5  
5
pF  
pF  
IN  
CMRR  
Input Common Mode Rejection Ratio  
7ꢀ  
dB  
converter characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = ±5°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
Transition Noise  
16  
Bits  
ꢀ.3  
±1  
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero Error  
Bipolar Zero Error Drift  
Bipolar Full-Scale Error  
(Note 6)  
(Note 7)  
–2  
–1  
–7  
2
1
7
LSB  
DNL  
BZE  
LSB  
LSB  
1
ppm/°C  
l
FSE  
External Reference  
Internal Reference (Note 7)  
ꢀ.13  
ꢀ.1  
%
%
Bipolar Full-Scale Error Drift  
±1ꢀ  
ppm/°C  
Dynamic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = ±5°C. AIN = –1dBFS (Notes 4, 8)  
SYMBOL  
SINAD  
SNR  
PARAMETER  
CONDITIONS  
MIN  
91  
TYP  
93.5  
9±  
MAX  
UNITS  
dB  
l
l
l
Signal-to-(Noise + Distortion) Ratio  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
–3dB Input Bandwidth  
Aperture Delay  
f
f
f
f
= 2ꢀkHz  
IN  
IN  
IN  
IN  
= 2ꢀkHz  
92  
dB  
THD  
= 2ꢀkHz, First 5 Harmonics  
= 2ꢀkHz  
–1ꢀ3  
1ꢀ±  
5ꢀ  
–95  
dB  
SFDR  
dB  
MHz  
ns  
ꢀ.5  
7
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
6ꢀ  
ns  
239216fa  
3
LTC2392-16  
internal reFerence characteristics The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±.ꢀ96  
±1ꢀ  
2.6  
MAX  
±.116  
±2ꢀ  
UNITS  
V
V
REF  
V
REF  
V
REF  
Output Voltage  
Output Tempco  
Output Impedance  
I
I
= ꢀ  
±.ꢀ76  
OUT  
OUT  
l
= ꢀ (I-, H-Grades) (Note 11)  
ppm/°C  
kΩ  
–ꢀ.1mA ≤ I  
≤ ꢀ.1mA  
OUT  
External Reference Voltage  
REFIN Input Impedance  
2.5  
±.ꢀ96  
85  
AVP – ꢀ.5  
V
kΩ  
V
Line Regulation  
AVP = ±.75V to 5.25V  
= ꢀ  
ꢀ.3  
mV/V  
V
REF  
VCM Output Voltage  
I
2.ꢀ8  
OUT  
Digital inputs anD Digital outputs The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 • OVP  
IH  
IL  
ꢀ.5  
1ꢀ  
V
I
IN  
V
= ꢀV to OVP  
IN  
–1ꢀ  
OVP – ꢀ.2  
–1ꢀ  
µA  
pF  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –5ꢀꢀµA  
O
V
OH  
OL  
I = 5ꢀꢀµA  
O
ꢀ.2  
1ꢀ  
V
I
I
I
V
V
V
= ꢀV to OVP  
= ꢀV  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
–1ꢀ  
1ꢀ  
SOURCE  
SINK  
= OVP  
power requirements The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. (Note 4)  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
±.75  
1.71  
TYP  
MAX  
5.25  
5.25  
UNITS  
l
V
V
, V  
5
V
V
AVP DVP  
OVP  
l
l
I
DD  
Supply Current  
Power Down Mode  
5ꢀꢀksps Sample Rate with Nap Mode  
Conversion Done and All Digital Inputs Tied to OVP  
22  
35  
27  
25ꢀ  
mA  
µA  
P
D
Power Dissipation  
Power Down Mode  
5ꢀꢀksps Sample Rate with Nap Mode  
Conversion Done and All Digital Inputs Tied to OVP  
11ꢀ  
175  
135  
125ꢀ  
mW  
µW  
239216fa  
4
LTC2392-16  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5ꢀꢀ  
UNITS  
ksps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Sampling Frequency  
Conversion Time  
SMPL  
13ꢀꢀ  
685  
CONV  
Acquisition Time  
ns  
ACQ  
±
CNVST Low Time  
2ꢀ  
ns  
CNVST High Time  
25ꢀ  
ns  
5
C = 15pF  
L
15  
ns  
CNVSTto BUSY Delay  
RESET Pulse Width  
SCLK Period  
6
5
12.5  
±
ns  
7
(Note 9)  
ns  
8
SCLK High Time  
ns  
9
SCLK Low Time  
±
ns  
1ꢀ  
t , t  
SCLK Rise and Fall Times  
SDIN Setup Time  
(Note 1ꢀ)  
1
µs  
r
f
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
2
1
2
ns  
11  
12  
13  
1±  
15  
16  
17  
18  
SDIN Hold Time  
ns  
C = 15pF  
L
8
8
ns  
SDOUT Delay After SCLK↑  
SDOUT Delay After CS↓  
CSto SCLK Setup Time  
Data Valid to BUSY↓  
Data Access Time after RDor BYTESWAP↑  
Bus Relinquish Time  
ns  
2ꢀ  
1
ns  
ns  
1ꢀ  
ns  
1ꢀ  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Bipolar zero error is the offset voltage measured from –ꢀ.5LSB  
when the output code flickers between ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 1111  
1111 1111 1111. Bipolar full-scale error is the worst-case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Note ±: All voltage values are with respect to ground.  
Note 8: All specifications in dB are referred to a full-scale ±±.ꢀ96V input  
with a ±.ꢀ96V reference voltage.  
Note 3: When these pin voltages are taken below ground or above  
AVP, DVP or OVP, they will be clamped by internal diodes. This product  
can handle input currents up to 1ꢀꢀmA below ground or above AVP, DVP  
or OVP without latchup.  
Note 9: t of 8ns maximum allows a shift clock frequency up to  
13  
2 • (t + t  
) for falling edge capture with 5ꢀ% duty cycle and up to  
SETUP  
13  
8ꢀMHz for rising capture. t  
is the set-up time of the receiving logic.  
SETUP  
Note 4: AVP = DVP = OVP = 5V, f  
= 5ꢀꢀksps, external reference equal  
SMPL  
to ±.ꢀ96V unless otherwise noted.  
Note 10: Guaranteed by design.  
Note 5: Recommended operating conditions.  
Note 11: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
4V  
t
WIDTH  
0.5V  
50%  
50%  
t
t
DELAY  
DELAY  
239216 F01  
4V  
4V  
0.5V  
0.5V  
Figure 1. Voltage Levels for Timing Specifications  
239216fa  
5
LTC2392-16  
typical perFormance characteristics TA = ±5°C, fSMPL = 500ksps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
(External Reference)  
2000000  
1800000  
1600000  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
1.5  
1.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
32764 32766 32768 32770 32772  
0
16384  
32768  
49152  
65536  
32768  
0
16384  
49152  
65536  
CODE  
OUTPUT CODE  
OUTPUT CODE  
239216 G03  
239216 G02  
239216 G01  
DC Histogram  
(Internal Reference)  
Internal Reference Output  
vs Temperature  
Offset Error vs Temperature  
2000000  
1800000  
1600000  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
4.0945  
4.0940  
4.0935  
4.0930  
4.0925  
1.0  
0.8  
TC = 4ppm/°C  
0.6  
0.4  
0.2  
0
32764 32766 32768 32770 32772  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
CODE  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
239216 G04  
239216 G06  
239216 G05  
16k Point FFT fS = 500ksps,  
fIN = ±0kHz  
16k Point FFT fS = 500ksps,  
fIN = 100kHz  
Full-Scale Error vs Temperature  
10  
8
0
–20  
0
–20  
SNR = 94dB  
SNR = 94dB  
THD = –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
THD = –97.3dB  
SINAD = 92.3dB  
SFDR = 101.7dB  
6
–40  
–40  
4
–60  
–60  
2
–80  
–80  
0
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–2  
–4  
–6  
–8  
–10  
–180  
–180  
–55 –35 –15  
5
25 45 65 85 105 125  
0
100  
150  
200  
250  
50  
0
100  
150  
200  
250  
50  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
239216 G07  
239216 G08  
239216 G09  
239216fa  
6
LTC2392-16  
typical perFormance characteristics TA = ±5°C, fSMPL = 500ksps, unless otherwise noted.  
THD, Harmonics  
vs Input Frequency  
SNR, SINAD at fIN = ±0kHz  
vs Temperature  
SNR, SINAD vs Input Frequency  
96  
94  
92  
90  
88  
86  
84  
82  
80  
–70  
–75  
96  
95  
94  
93  
92  
SNR  
–80  
SINAD  
–85  
SNR  
–90  
–95  
SINAD  
THD  
3RD  
–100  
–105  
–110  
–115  
–120  
2ND  
100 125  
0
25  
50  
75  
150  
175  
200  
85  
105 125  
100 125  
–55 –35 –15  
5
45  
0
25 50 75  
150 175 200  
25  
65  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
239216 G11  
239216 G12  
239216 G10  
THD, Harmonics at fIN = ±0kHz  
vs Temperature  
Supply Current vs Sampling  
Frequency  
SNR, SINAD vs Input Level  
95.0  
94.5  
94.0  
93.5  
93.0  
30  
–95  
–100  
–105  
–110  
–115  
–120  
SNR  
25  
20  
SINAD  
THD  
2ND  
3RD  
15  
10  
5
0
–55 –35 –15  
5
25 45 65 85 105 125  
–20  
–10  
–40  
0
–30  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kHz)  
INPUT LEVEL (dB)  
239216 G15  
239216 G13  
239216 G14  
Power-Down Current  
vs Temperature  
Supply Current vs Temperature  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AVP  
DVP  
DVP  
OVP  
AVP  
OVP  
0
–35  
–15  
5
25 45  
65 85 105  
125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
239216 G17  
239216 G16  
239216fa  
7
LTC2392-16  
pin Functions  
GND (Pins 1, 5, 7, ±0, 35, 41, 44, 48, Exposed Pad Pin  
49): Ground. All GND pins must be connected to a solid  
ground plane. Exposed pad must be soldered directly to  
the ground plane.  
D6 (Pin 15): Data Bit 6. When SER/PAR = ꢀ this pin is  
Bit 6 of the parallel port data output bus.  
D7 (Pin 16): Data Bit 7. When SER/PAR = ꢀ this pin is  
Bit 7 of the parallel port data output bus.  
AVP (Pins ±, 40, 45, 46, 47): 5V Analog Power Supply.  
The range of AVP is ±.75V to 5.25V. Bypass AVP to GND  
with a good quality ꢀ.1µF and a 1ꢀµF ceramic capacitor  
in parallel.  
OGND (Pin 17): Digital Ground for the Input/Output  
Interface.  
OVP (Pin 18): Digital Power Supply for the Input/Output  
Interface. The range for OVP is 1.8V to 5V. Bypass OVP  
to OGND with a good quality ±.7µF ceramic capacitor  
close to the pin.  
DVP (Pins 3, 19): 5V Digital Power Supply. The range of  
DVP is ±.75V to 5.25V. Bypass DVP to GND with a good  
quality ꢀ.1µF and a 1ꢀµF ceramic capacitor in parallel.  
D8 (Pin ±1): Data Bit 8. When SER/PAR = ꢀ this pin is  
Bit 8 of the parallel port data output bus.  
SER/PAR (Pin 4): Serial/Parallel Selection Input. This pin  
controls the digital interface. A logic high on this pin se-  
lects the serial interface and a logic low selects the parallel  
interface. In the serial mode the non-active digital outputs  
are high impedance.  
D9/SDIN(Pin±±):DataBit9/SerialDataInput. WhenSER/  
PAR = ꢀ this pin is Bit 9 of the parallel port data output bus.  
When SER/PAR = 1, (serial mode) this is the serial data  
input. SDIN can be used as a data input to daisy chain two  
or more conversion results into a single SDOUT line. The  
digital data level on SDIN is output on SDOUT with a delay  
of 16 SCLK periods after the start of the read sequence.  
OB/2C (Pin 6): Offset Binary/Two’s Complement Input.  
When OB/2C is high, the digital output is offset binary.  
When low, the MSB is inverted resulting in two’s comple-  
ment output.  
D10/SDOUT(Pin±3):DataBit1ꢀ/SerialDataOutput.When  
SER/PAR = ꢀ this pin is Bit 1ꢀ of the parallel port data  
output bus. When SER/PAR = 1, (serial mode) this is the  
serial data output. The conversion result can be clocked  
out serially on this pin synchronized to SCLK. The data  
is clocked out MSB first on the rising edge of SCLK and  
is valid on the falling edge of SCLK. The data format is  
determined by the logic level of OB/2C.  
BYTESWAP (Pin 8): BYTESWAP Input. With BYTESWAP  
low, data will be output with Pin 28 (D15) being the MSB  
and Pin 9 (Dꢀ) being the LSB. With BYTESWAP high, the  
upper eight bits and the lower eight bits will be switched.  
The MSB is output on Pin 16 and Bit 8 is output on Pin 9.  
Bit 7 is output on Pin 28 and the LSB is output on Pin 21.  
D0 (Pin 9): Data Bit ꢀ. When SER/PAR = ꢀ this pin is Bit ꢀ  
of the parallel port data output bus.  
D11/SCLK (Pin ±4): Data Bit 11/Serial Clock Input. When  
SER/PAR = ꢀ this pin is Bit 11 of the parallel port data  
output bus. When SER/PAR = 1, (serial mode) this is the  
serial clock input.  
D1 (Pin 10): Data Bit 1. When SER/PAR = ꢀ this pin is  
Bit 1 of the parallel port data output bus.  
D± (Pin 11): Data Bit 2. When SER/PAR = ꢀ this pin is  
Bit 2 of the parallel port data output bus.  
D1± (Pin ±5): Data Bit 12. When SER/PAR = ꢀ this pin is  
Bit 12 of the parallel port data output bus.  
D3 (Pin 1±): Data Bit 3. When SER/PAR = ꢀ this pin is  
Bit 3 of the parallel port data output bus.  
D13 (Pin ±6): Data Bit 13. When SER/PAR = ꢀ this pin is  
Bit 13 of the parallel port data output bus.  
D4 (Pin 13): Data Bit ±. When SER/PAR = ꢀ this pin is  
Bit ± of the parallel port data output bus.  
D14 (Pin ±7): Data Bit 1±. When SER/PAR = ꢀ this pin is  
Bit 1± of the parallel port data output bus.  
D5 (Pin 14): Data Bit 5. When SER/PAR = ꢀ this pin is  
Bit 5 of the parallel port data output bus.  
239216fa  
8
LTC2392-16  
pin Functions  
D15 (Pin ±8): Data Bit 15. When SER/PAR = ꢀ this pin is  
Bit 15 of the parallel port data output bus. The data format  
is determined by the logic level of OB/2C.  
VCM (Pin 36): Common Mode Analog Output. Typically  
the output voltage is 2.ꢀ±8V. Bypass to GND with a 1ꢀµF  
capacitor.  
BUSY (Pin ±9): Busy Output. A low-to-high transition oc-  
curs when a conversion is started. It stays high until the  
conversion is complete. The falling edge of BUSY can be  
used as the data-ready clock signal.  
REFOUT (Pin 37): Internal Reference Output. Nominal  
output voltage is ±.ꢀ96V. Connect this pin to REFIN if  
using the internal reference. If an external reference is  
used connect REFOUT to ground.  
RD (Pin 30): Read Data Input. When CS and RD are both  
REFIN (Pin 38): Reference Input. An external reference  
can be applied to REFIN if a more accurate reference is  
required. If an external reference is used tie REFOUT to  
ground.  
low, the parallel and serial output bus is enabled.  
CS (Pin 31): Chip Select. When CS and RD are both low,  
the parallel and serial output bus is enabled. CS is also  
used to gate the external shift clock.  
REFSENSE (Pin 39): Reference Input Sense. Leave  
REFSENSE open when using the internal reference. If  
an external reference is used connect REFSENSE to the  
ground pin of the external reference.  
RESET (Pin 3±): Reset Input. When high the LTC2392-16  
is reset, and if this occurs during a conversion, the con-  
version is halted and the data bus is put into Hi-Z mode.  
+
+
IN , IN (Pin 4±, Pin 43): Differential Analog Inputs.  
PD (Pin 33): Power-Down Input. When high, the  
LTC2392-16ispowereddownandsubsequentconversion  
requests are ignored. Before entering power shutdown,  
the digital output data should be read.  
IN – (IN ) can range up to ±V  
.
REF  
CNVST (Pin 34): Conversion Start Input. A falling edge  
on CNVST puts the internal sample-and-hold into the hold  
modeandstartsaconversion.CNVSTisindependentofCS.  
239216fa  
9
LTC2392-16  
Functional block Diagram  
AVP DVP OVP  
LTC2392-16  
16-BIT OR  
TWO BYTE  
SDIN  
SDOUT  
SCLK  
+
IN  
PARALLEL/  
SERIAL  
INTERFACE  
16-BIT SAMPLING ADC  
16-BIT  
IN  
CS  
1x BUFFER  
RD  
REFIN  
SER/PAR  
BYTESWAP  
OB/2C  
REFOUT  
VCM  
4.096V  
BUSY  
CONTROL LOGIC  
CNVST PD  
REFERENCE  
REFSENSE  
RESET  
GND OGND  
239216BD  
239216fa  
10  
LTC2392-16  
timing Diagrams  
Conversion Timing Using the Parallel Interface  
CS, RD = 0  
CNVST  
ACQUIRE  
BUSY  
CONVERT  
D[15:0]  
PREVIOUS CONVERSION  
CURRENT CONVERSION  
239216 TD01  
Conversion Timing Using the Serial Interface  
CS, RD = 0  
CNVST  
ACQUIRE  
BUSY  
CONVERT  
SCLK  
D14 D12 D10 D8 D6 D4 D2 D0  
D15 D13 D11 D9 D7 D5 D3 D1  
SDOUT  
239216 TD02  
239216fa  
11  
LTC2392-16  
applications inFormation  
OVERVIEW  
011...111  
011...110  
BIPOLAR  
ZERO  
The LTC2392-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2392-16 supports a  
large ±±.ꢀ96V fully differential input range, making it ideal  
for high performance applications which require a wide  
dynamic range. The LTC2392-16 achieves ±2LSB INL  
max, no missing codes at 16 bits and 9±dB SNR (typ).  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
The LTC2392-16 includes a precision internal reference  
with a guaranteed ꢀ.5% initial accuracy and a ±2ꢀppm/°C  
(max) temperature coefficient. Fast 5ꢀꢀksps throughput  
with no cycle latency in both parallel and serial interface  
modes makes the LTC2392-16 ideally suited for a wide  
varietyofhighspeedapplications.Aninternaloscillatorsets  
theconversiontime,easingexternaltimingconsiderations.  
TheLTC2392-16dissipatesonly11ꢀmWat5ꢀꢀksps,while  
both nap and sleep power-down modes are provided to  
further reduce power during inactive periods.  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
INPUT VOLTAGE (V)  
239216 F02  
Figure ±. LTC±39±-16 Two’s Complement Transfer Function  
ANALOG INPUT  
The analog inputs of the LTC2392-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
showninFigure3.ThediodesattheinputprovideESDpro-  
tection. The analog inputs should not exceed the supply or  
gobelowground.Intheacquisitionphase,eachinputsees  
approximately±ꢀpF(C )fromthesamplingCDACinseries  
with 5ꢀΩ (R ) from the on-resistance of the sampling  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw only one small current spike  
CONVERTER OPERATION  
The LTC2392-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
IN  
+
IN  
converter (CDAC) is connected to the IN and IN pins  
to sample the differential analog input voltage. A falling  
edge on the CNVST pin initiates a conversion. During the  
conversion phase, the 16-bit CDAC is sequenced through  
asuccessiveapproximationalgorithm,effectivelycompar-  
ing the sampled input with binary-weighted fractions of  
while charging the C capacitors during acquisition.  
During conversion, the analog inputs draw only a small  
IN  
leakage current.  
thereferencevoltage(e.g., V /2, V /±…V /65536)  
REF  
REF  
REF  
usingthedifferentialcomparator.Attheendofconversion,  
the CDAC output approximates the sampled analog input.  
The ADC control logic then prepares the 16-bit digital  
output code for parallel or serial transfer.  
AVP  
C
IN  
IN  
R
R
IN  
IN  
+
IN  
IN  
BIAS  
AVP  
VOLTAGE  
TRANSFER FUNCTION  
C
239216 F03  
The LTC2392-16 digitizes the full-scale voltage of 2 • V  
REF  
REF  
16  
into2 levels,resultinginanLSBsizeof125µVwhenV  
=±.ꢀ96V.Theidealtransferfunctionfortwo’scomplement  
is shown in Figure 2. The OB/2C pin selects either offset  
binary or two’s complement format.  
Figure 3. The Equivalent Circuit for the  
Differential Analog Input of the LTC±39±-16  
239216fa  
12  
LTC2392-16  
applications inFormation  
INPUT DRIVE CIRCUITS  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
Alowimpedancesourcecandirectlydrivethehighimped-  
ance inputs of the LTC2392-16 without gain error. A high  
impedance source should be buffered to minimize settling  
time during acquisition and to optimize the distortion  
performance of the ADC.  
Single-to-Differential Conversion  
For single-ended input signals, a single-ended-to-differ-  
ential conversion circuit must be used to produce a differ-  
ential signal at the ADC inputs. The LT®635ꢀ ADC driver is  
recommendedforperformingasingle-ended-to-differential  
conversion, as shown in Figure ±a. Its low noise and good  
DC linearity allows the LTC2392-16 to meet full data sheet  
specifications. An alternative solution using two op amps  
is shown in Figure ±b. Using two LT18ꢀ6 op amps, the  
circuit achieves 9±dB signal-to-noise ratio (SNR). For a  
2ꢀkHz input signal, the input of the LTC2392-16 has been  
bandwidth limited to about 25kHz.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2392-16. The amplifier  
provides low output impedance to allow for fast settling  
of the analog signal during the acquisition phase. It also  
provides isolation between the signal source and the ADC  
inputswhichdrawasmallcurrentspikeduringacquisition.  
Input Filtering  
The noise and distortion of the buffer amplifier and other  
circuitry must be considered since they add to the ADC  
noiseanddistortion.Noisyinputcircuitryshouldbefiltered  
prior to the analog inputs to minimize noise. A simple  
1-pole RC filter is sufficient for many applications.  
ADC REFERENCE  
A low noise, low temperature drift reference is critical to  
achieving the full data sheet performance of the ADC. The  
LTC2392-16 provides an excellent internal reference with  
a ±2ꢀppm/°C (max) temperature coefficient. For better  
accuracy, an external reference can be used.  
Large filter RC time constants slow down the settling at  
the analog inputs. It is important that the overall RC time  
constants be short enough to allow the analog inputs to  
completely settle to 16-bit resolution within the acquisi-  
The high speed, low noise internal reference buffer is used  
for both internal and external reference applications. It  
cannot be bypassed.  
tion time (t ).  
ACQ  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RC filter since these components can add distortion. NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
ANALOG  
INPUT  
+
0V TO 4.096V  
LT1806  
249Ω  
+
IN  
301Ω  
0.013µF  
249Ω  
LTC2392-16  
+
IN  
301Ω  
249Ω  
IN  
ANALOG INPUT  
0V TO 4.096V  
2200pF  
LT6350  
LTC2392-16  
239216 F04b  
249Ω  
+
IN  
LT1806  
239216 F04a  
COMMON  
MODE  
VOLTAGE  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
Figure 4a. Recommended Single-Ended-to-Differential  
Conversion Circuit Using the LT6350 ADC Driver  
Figure 4b. Alternative Single-Ended-to-Differential  
Conversion Circuit Using Two LT1806 Op Amps  
239216fa  
13  
LTC2392-16  
applications inFormation  
Internal Reference  
DYNAMIC PERFORMANCE  
To use the internal reference, simply tie the REFOUT and  
REFIN pins together. This connects the ±.ꢀ96V output of  
the internal reference to the input of the internal reference  
buffer. The output impedance of the internal reference  
is approximately 2.6kΩ and the input impedance of the  
internalreferencebufferisabout85kΩ.Itisrecommended  
that this node be bypassed to ground with a 1µF or larger  
capacitortofiltertheoutputnoiseoftheinternalreference.  
The REFSENSE pin should be left floating when using the  
internal reference.  
Fast fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2392-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 5 shows that the LTC2392-16 achieves  
a typical SINAD of 93.5dB at a 5ꢀꢀkHz sampling rate with  
a 2ꢀkHz input.  
External Reference  
An external reference can be used with the LTC2392-16  
when even higher performance is required. The  
LT179ꢀ-±.ꢀ96 offers ꢀ.ꢀ5% (max) initial accuracy and  
1ꢀppm/°C (max) temperature coefficient. When using an  
external reference, connect the reference output to the  
REFIN pin and connect the REFOUT pin to ground. The  
REFSENSE pin should be connected to the ground of the  
external reference.  
0
–20  
SNR = 94dB  
THD = –103dB  
SINAD = 93.5dB  
SFDR = 104dB  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
150  
200  
250  
50  
FREQUENCY (kHz)  
239216 G08  
Figure 5. 16k Point FFT of the LTC±39±-16, fS = 500ksps, fIN = ±0kHz  
239216fa  
14  
LTC2392-16  
applications inFormation  
Signal-to-Noise Ratio (SNR)  
Power Supply Sequencing  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 5 shows  
that the LTC2392-16 achieves a typical SNR of 9±dB at a  
5ꢀꢀkHz sampling rate with a 2ꢀkHz input.  
The LTC2392-16 does not have any specific power supply  
sequencingrequirements.Careshouldbetakentoobserve  
the maximum voltage relationships described in the Ab-  
solute Maximum Ratings section. The LTC2392-16 has a  
power-on-reset (POR) circuit. With the POR, the result of  
the first conversion is valid after power has been applied  
to the ADC. The LTC2392-16 will reset itself if the power  
supply voltage drops below 2.5V. Once the supply voltage  
is brought back to its nominal value, the POR will reinitial-  
ize the ADC and it will be ready to start a new conversion.  
Total Harmonic Distortion (THD)  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
Nap Mode  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
The LTC2392-16 can be put into the nap mode after a  
conversion has been completed to reduce the power  
consumption between conversions. In this mode some  
of the circuitry on the device is turned off. Nap mode is  
enabledbykeepingCNVSTlowbetweenconversions.When  
the next conversion is requested, bring CNVST high and  
hold for at least 25ꢀns, then start the next conversion by  
bringing CNVST low. See Figure 6.  
2
2
2
2
V2 + V3 + V4 ...VN  
THD= 20log  
V1  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
N
through Nth harmonics.  
Power Shutdown Mode  
POWER CONSIDERATIONS  
When PD is tied high, the LTC2392-16 enters power  
shutdown and subsequent requests for conversion are  
ignored. Before entering power shutdown, the digital  
output data needs to be read. However, if a request for  
power shutdown (PD = high) occurs during a conversion,  
the conversion will finish and then the device will power  
The LTC2392-16 provides three sets of power supply  
pins: the analog 5V power supply (AVP), the digital 5V  
power supply (DVP) and the digital input/output interface  
power supply (OVP). The flexible OVP supply allows the  
LTC2392-16tocommunicatewithanydigitallogicoperat-  
ingbetween1.8Vand5V,including2.5Vand3.3Vsystems.  
t
5
CNVST  
BUSY  
NAP  
t
t
ACQ  
CONV  
NAP MODE  
239216 F06  
Figure 6. Nap Mode Timing for the LTC±39±-16  
239216fa  
15  
LTC2392-16  
applications inFormation  
down. The data from that conversion can be read after PD  
= low is applied. In this mode power consumption drops  
to a typical value of 175µW from 11ꢀmW. This mode can  
be used if the LTC2392-16 is inactive for a long period of  
timeandtheuserwantstominimizethepowerdissipation.  
TIMING AND CONTROL  
The LTC2392-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. CS and RD  
control the digital interface on the LTC2392-16. When  
either CS or RD is high, the digital outputs are high  
impedance.  
Recovery from Power Shutdown Mode  
Once the PD pin is returned to a low level, ending the  
power shutdown request, the internal circuitry will begin  
to power up. If the internal reference is used, the 2.6kΩ  
output impedance with the 1µF bypass capacitor on the  
REFIN/REFOUT pins will be the main time constant for  
the power-on recovery time. If an external reference is  
used, typically allow 5ms for recovery before initiating a  
new conversion.  
CNVST Timing  
The LTC2392-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. Once a  
conversion has been initiated, it cannot be restarted until  
the conversion is complete. For optimum performance  
CNVSTshouldbeacleanlowjittersignal. Converterstatus  
is indicated by the BUSY output which remains high while  
the conversion is in progress. To ensure no errors occur  
in the digitized results return the rising edge either within  
±ꢀns from the start of the conversion or wait until after  
the conversion has been completed. The CNVST timing  
needed to take advantage of the reduced power mode of  
operation is described in the Nap Mode section.  
Power Dissipation vs Sampling Frequency  
The power dissipation of the LTC2392-16 will decrease  
as the sampling frequency is reduced when nap mode is  
activated. See Figure 7. In nap mode, a portion of the cir-  
cuitry on the LTC2392-16 is turned off after a conversion  
has been completed. Increasing the time allowed between  
conversions lowers the average power.  
Internal Conversion Clock  
The LTC2392-16 has an internal clock that is trimmed  
to achieve a maximum conversion time of 13ꢀꢀns. No  
external adjustments are required and with a maximum  
acquisition time of 685ns, a throughput performance of  
5ꢀꢀksps is guaranteed.  
30  
25  
20  
DIGITAL INTERFACE  
15  
10  
The LTC2392-16 allows both parallel and serial digital  
interfaces.TheflexibleOVPsupplyallowstheLTC2392-16  
to communicate with any digital logic operating between  
1.8V and 5V, including 2.5V and 3.3V systems.  
5
0
0.1  
1
10  
100  
1000  
SAMPLING FREQUENCY (kHz)  
239216 G15  
Figure 7. Power Dissipation of the LTC±39±-16  
Decreases with Decreasing Sampling Frequency  
239216fa  
16  
LTC2392-16  
applications inFormation  
Parallel Modes  
If CS and RD are used to gate the serial output data, the  
full conversion result should be read before CS and RD  
are returned to a high level.  
The parallel output data interface is active when the  
SER/PAR pinistiedlowandwhenbothCSandRDarelow.  
The output data can be read as a 16-bit word as shown  
in Figures 8, 9 and 1ꢀ or it can be read as two 8-bit bytes  
by using the BYTESWAP pin. As shown in Figure 11, with  
the BYTESWAP pin low, the first eight MSBs are output  
on the D15 to D8 pins and the eight LSBs are output on  
the D7 to DO pins. When BYTESWAP is taken high, the  
eight LSBs now are output on the D15 to D8 pins and the  
eight MSBs are output on the D7 to Dꢀ pins.  
The SDIN input pin is used to daisychain multiple con-  
verters. This is useful for applications where hardware  
constraints may limit the number of lines needed to  
interface to a large number of converters. For example,  
if two devices are cascaded, the MSB of the first device  
will appear at the output after 17 SCLK cycles. The first  
MSB is clocked in on the falling edge of the first SCLK.  
See Figure 12.  
Serial Modes  
Data Format  
The serial output data interface is active when the  
SER/PAR pin is tied high and when both CS and RD are  
low. The serial output data will be clocked out on the  
SDOUT pin when an external clock is applied to the SCLK  
pin. Clocking out the data after the conversion will yield  
the best performance. With a shift clock frequency of at  
least25MHz, a5ꢀꢀkspsthroughputisachieved. Theserial  
output data changes state on the rising edge of SCLK and  
can be captured on the falling edge of SCLK. D15 remains  
valid till the first rising edge of shift clock after the first  
falling edge of shift clock. The non-active digital outputs  
are high impedance when operating in the serial mode.  
When OB/2C is high, the digital output is offset binary.  
When low, the MSB is inverted resulting in two’s comple-  
ment output. This pin is active in both the parallel and  
serial modes of operation.  
Reset  
When the RESET pin is high, the LTC2392-16 is reset, and  
ifthisoccursduringaconversion, theconversionishalted  
and the data bus is put into Hi-Z mode. In reset, requests  
fornewconversionsareignored.OnceRESETreturnslow,  
the LTC2392-16 is ready to start a new conversion after  
the acquisition time plus 1µs has been met. See Figure 13.  
CS = RD = 0  
t
4
CNVST  
BUSY  
t
CONV  
t
t
16  
6
PREVIOUS CONVERSION  
NEW  
DATA BUS D[15:0]  
239216 F08  
Figure 8. Read the Parallel Data Continuously.  
The Data Bus is Always Driven and Can’t Be Shared  
239216fa  
17  
LTC2392-16  
applications inFormation  
CS  
RD  
BUSY  
Hi-Z  
Hi-Z  
CURRENT  
CONVERSION  
DATA BUS D[15:0]  
239216 F09  
t
t
18  
17  
Figure 9. Read the Parallel Data After the Conversion  
CS = 0  
t
4
CNVST, RD  
BUSY  
t
CONV  
t
6
Hi-Z  
Hi-Z  
PREVIOUS  
CONVERSION  
DATA BUS D[15:0]  
239216 F09  
t
17  
t
18  
Figure 10. Read the Parallel Data During the Conversion  
8-BIT INTERFACE  
CS, RD  
BYTESWAP  
D[15:8]  
Hi-Z  
Hi-Z  
HIGH BYTE  
LOW BYTE  
239216 F11  
t
17  
t
17  
t
18  
Figure 11. 8-Bit Parallel Interface Using the BYTESWAP Pin  
239216fa  
18  
LTC2392-16  
applications inFormation  
SCLK STARTS LOW  
RD = 0  
t
15  
CS  
BUSY  
t
8
t
10  
t
9
SCLK  
1
2
3
4
15  
16  
17  
18  
t
13  
Hi-Z  
SDOUT  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
1
2
2
2
2
2
1
t
t
12  
14  
t
11  
SDIN  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
1
1
1
1
1
RD = 0  
SCLK STARTS HIGH  
CS  
BUSY  
t
8
t
10  
t
9
SCLK  
1
2
3
4
15  
16  
17  
18  
t
13  
Hi-Z  
SDOUT  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
1
2
2
2
2
2
1
t
t
12  
14  
t
11  
SDIN  
(ADC 2)  
D15  
D14  
D13  
D1  
D0  
1
1
1
1
1
CNVST IN  
CS IN  
RD IN  
SCLK IN  
LTC2392-16  
LTC2392-16  
CNVST  
CNVST  
CS  
CS  
RD  
SCLK  
SDIN SDOUT  
RD  
SCLK  
SDIN SDOUT  
DATA OUT  
239216 F12  
ADC 1  
ADC 2  
Figure 1±. Serial Interface with External Clock. Read After  
the Conversion. Daisy Chain Multiple Converters  
239216fa  
19  
LTC2392-16  
applications inFormation  
t
7
RESET  
t
+ 1µs  
ACQ  
CVNST  
Hi-Z  
DATA BUS D[15:0]  
239216 F13  
Figure 13. RESET Pin Timing  
239216fa  
20  
LTC2392-16  
applications inFormation  
BOARD LAYOUT  
Recommended Layout  
To obtain the best performance from the LTC2392-16, a  
printed circuit board (PCB) is recommended. Layout for  
the printed circuit board should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC15ꢀꢀA, the  
evaluation kit for the LTC2392-16.  
Partial Schematic of Demo board  
C36  
1µF  
CNVST  
34  
39  
38  
37  
CNVST  
REFSENSE  
REFIN  
REFOUT  
R2  
249Ω  
1%  
29  
28  
27  
26  
25  
24  
23  
22  
21  
16  
15  
14  
13  
12  
11  
10  
9
BUSY  
D15  
D14  
D13  
D12  
BUSY  
D15  
43  
D14  
+
IN  
D13  
D12  
C54  
OPT  
D11/SCLK  
D11/SCLK  
D10/SDOUT  
D9/SDIN  
D8  
D10/SDOUT  
D9/SDIN  
D8  
C2  
D7  
D7  
LTC2392-16  
2200pF  
1206 NPO  
D6  
D6  
D5  
D5  
D4  
D4  
R3  
249Ω  
1%  
D3  
D3  
D2  
D1  
D2  
D1  
44  
IN  
D0  
D0  
8
C55  
OPT  
BYTESWAP  
GND  
7
VCM OB/2C GND SER/PAR RESET PD CS RD  
36  
6
5
4
32 33  
31 30  
C53  
10µF  
C31  
0.1µF  
C30  
10µF  
C29  
0.1µF  
C28  
10µF  
R24  
1.0Ω  
3.3V  
5V  
C40  
4.7µF  
47  
46 45 40  
2
19  
3
18  
AVP/AVL AVP AVP AVP AVP  
DVP DVP/DVL OVP  
LTC2392-16  
GND GND GND GND GND GND OGND  
48 44 41 35 20 17  
239216 TA01  
1
239216fa  
21  
LTC2392-16  
applications inFormation  
Partial Top Silkscreen  
Partial Layer 1 Component Side  
Partial Layer ± Ground Plane  
239216fa  
22  
LTC2392-16  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UK Package  
48-Lead Plastic QFN (7mm × 7mm)  
(Reference LTC DWG # ꢀ5-ꢀ8-17ꢀ± Rev C)  
0.70 0.05  
5.ꢀ5 0.05  
5.50 REF  
6.ꢀ0 0.05 7.50 0.05  
(4 SIDES)  
5.ꢀ5 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
7.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
47 48  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ  
CHAMFER  
C = 0.35  
5.ꢀ5 0.ꢀ0  
5.50 REF  
(4-SIDES)  
5.ꢀ5 0.ꢀ0  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
239216fa  
23  
LTC2392-16  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
LX Package  
48-Lead Plastic LQFP (7mm × 7mm)  
(Reference LTC DWG # ꢀ5-ꢀ8-176ꢀ Rev Ø)  
7.15 – 7.25  
5.50 REF  
9.00 BSC  
7.00 BSC  
48  
48  
SEE NOTE: 4  
1
2
1
2
0.50 BSC  
9.00 BSC  
7.00 BSC  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
A
A
PACKAGE OUTLINE  
C0.30 – 0.50  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
1.60  
11° – 13°  
1.35 – 1.45 MAX  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
0.05 – 0.15  
LX48 LQFP 0907 REVØ  
0.45 – 0.75  
SECTION A – A  
NOTE:  
1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE  
2. DIMENSIONS ARE IN MILLIMETERS  
4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
5. DRAWING IS NOT TO SCALE  
3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
239216fa  
24  
LTC2392-16  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
ꢀ7/12 Increased T  
to 15ꢀ°C on LQFP package.  
2
17  
JMAX  
Added condition for reading conversion result under Serial Modes.  
Added “plus 1µs” to acquisition time in Reset section and Figure 13.  
Updated data bit numbering on Figure 12.  
17, 2ꢀ  
19  
239216fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2392-16  
typical application  
ADC Driver: Single-Ended Input to Differential Output  
5V  
249Ω  
0.1µF  
V
IN  
+
5V  
+
+
0V to 4V –  
IN1  
+
SHDN  
V
OUT2  
A
IN  
2200pF  
LTC2392-16  
+
+
LT6350  
A
IN  
+
V
OUT1  
249Ω  
IN2  
IN1  
239216 TA03  
0.1µF  
–5V  
0.1µF  
499Ω  
2V  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1±11  
1±-Bit 2.5Msps Parallel ADC  
5V Supply, 1-Channel, 8ꢀdB SNR, ±1.8V, ±1.27V, ±ꢀ.9V, ±ꢀ.6±V  
Input Ranges, SSOP-36 Package  
LTC16ꢀ9  
16-Bit 2ꢀꢀksps Serial ADC  
5V Supply, 1-Channel, 87dB SNR, Resistor-Selectable Inputs:  
±1ꢀV, ±5V, ±3.3V, ꢀV to ±V, ꢀV to 5V, ꢀV to 1ꢀV  
LTC186±  
LTC186±L  
LTC1865  
LTC1865L  
LTC1867  
16-Bit 25ꢀksps Serial ADC  
16-Bit 15ꢀksps Serial ADC  
16-Bit 25ꢀksps Serial ADC  
16-Bit 15ꢀksps Serial ADC  
5V Supply, 1-Channel, ±.3mW, MSOP-8 Package  
3V Supply, 1-Channel, 1.3mW, MSOP-8 Package  
5V Supply, 2-Channel, ±.3mW, MSOP-8 Package  
3V Supply, 2-Channel, 1.3mW, MSOP-8 Package  
16-Bit, 2ꢀꢀksps 8-Channel ADC  
5V Supply, 6.5mW, SSOP-16 Package, Pin Compatible with  
LTC1863, LTC1867L  
LTC2355-1±/LTC2356-1±  
LTC2391-16  
1±-Bit, 3.5Msps Serial ADCs  
3.3V Supply, 1-Channel, 18mW, MSOP-1ꢀ Package  
16-Bit, 25ꢀksps Parallel/Serial ADC  
16-Bit, 1Msps Parallel/Serial ADC  
5V Supply, Differential Input, 9±dB SNR, ±±.ꢀ96V Input Range,  
Pin Compatible with the LTC2393-16, LTC2392-16  
LTC2393-16  
5V Supply, Differential Input, 9±dB SNR, ±±.ꢀ96V Input Range,  
Pin Compatible with the LTC2392-16, LTC2391-16  
DACs  
LTC26±1  
LTC263ꢀ  
References  
LT1236  
16-Bit Single Serial V  
DACs  
DACs  
±1LSB INL, ±1LSB DNL, MSOP-8 Package, ꢀV to 5V Output  
SC7ꢀ 6-Pin Package, Internal Reference, ±1LSB INL (12 Bits)  
OUT  
12-/1ꢀ-/8-Bit Single V  
OUT  
Precision Reference in SO-8 Package  
ꢀ.25ppm Noise, Low Drift Precision Reference  
5V, 1ꢀV; ꢀ.ꢀ5% Initial Accuracy (Max); 5ppm Tempco (Max)  
ꢀ.ꢀ25% Initial Accuracy (Max), 2ppm Tempco (Max),  
LTC6655  
P-P  
ꢀ.25ppm Noise (ꢀ.1Hz to 1ꢀHz) in MSOP-8 Package  
P-P  
Amplifiers  
LT1±69  
125µV (Max) Input Offset Voltage, Low Distortion: –96.5dB at  
Dual 9ꢀMHz, 22V/µs Dual Op Amps in ±mm × ±mm  
DFN-12 Package  
1ꢀꢀkHz, 1ꢀV , Settling Time: 9ꢀꢀns  
P-P  
LT18ꢀ6/LT18ꢀ7  
325MHz, Single/Dual Precision Op Amps in TSOT23-6,  
MSOP-8 Packages  
Rail-to-Rail Input and Output, Low Distortion, –8ꢀdBc at 5MHz,  
Low Voltage Noise: 3.5nV/√Hz  
LTC62ꢀꢀ/LTC62ꢀꢀ-5/  
LTC62ꢀꢀ-1ꢀ  
165MHz/8ꢀꢀMHz/1.6GHz Op Amps with  
Unity Gain/AV = 5/AV = 1ꢀ  
Low Noise Voltage: ꢀ.95nV/√Hz (1ꢀꢀkHz), Low Distortion:  
–8ꢀdB at 1MHz, TSOT23-6 Package  
LT635ꢀ  
Low Noise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail Input and Outputs, 2±ꢀns ꢀ.ꢀ1% Settling Time  
239216fa  
LT 0712 REV A • PRINTED IN USA  
LinearTechnology Corporation  
163ꢀ McCarthy Blvd., Milpitas, CA 95ꢀ35-7±17  
26  
LINEAR TECHNOLOGY CORPORATION 2010  
(±ꢀ8) ±32-19ꢀꢀ FAX: (±ꢀ8) ±3±-ꢀ5ꢀ7 www.linear.com  

相关型号:

LTC2392CUK-16#TRPBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2392CUK-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392CUK-16TRPBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392HLX-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392HLX-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: LQFP; Pins: 48; Temperature Range: -40°C to 125°C
Linear

LTC2392HLX-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392ILX-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392ILX-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C
Linear

LTC2392ILX-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392IUK-16

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear

LTC2392IUK-16#PBF

LTC2392-16 - 16-Bit, 500ksps SAR ADC with 94dB SNR; Package: QFN; Pins: 48; Temperature Range: -40°C to 85°C
Linear

LTC2392IUK-16PBF

16-Bit, 500ksps SAR ADC with 94dB SNR
Linear