LTC2393IUK-16#TRPBF [Linear]

LTC2393-16 - 16-Bit, 1Msps SAR ADC With 94dB SNR; Package: QFN; Pins: 48; Temperature Range: -40°C to 85°C;
LTC2393IUK-16#TRPBF
型号: LTC2393IUK-16#TRPBF
厂家: Linear    Linear
描述:

LTC2393-16 - 16-Bit, 1Msps SAR ADC With 94dB SNR; Package: QFN; Pins: 48; Temperature Range: -40°C to 85°C

转换器
文件: 总24页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2393-16  
16-Bit, 1Msps SAR ADC  
With 94dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2393-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2393-16 supports a large  
±±.ꢀ96V fully differential input range, maꢁing it ideal for  
high performance applications which require maximum  
dynamic range. The LTC2393-16 achieves ±2LSꢂ ꢃIL  
max, no missing codes at 16-bits and 9±.2dꢂ SIR (typ).  
n
1Msps Throughput Rate  
n
±±2LS ꢀI2 ꢁMaꢂx  
n
Guaranteed 16-Sit Io Missing Codes  
n
94.±dS LIR ꢁTypx at f = ±0kHz  
ꢀI  
n
Guaranteed Operation to 125/C  
n
Single 5V Supply  
n
1.8V to 5V ꢃꢄO Voltages  
n
1±ꢀmW Power Dissipation  
The LTC2393-16 includes a precision internal reference  
with a guaranteed ꢀ.5% initial accuracy and a ±2ꢀppmꢄ/C  
(max)temperaturecoefficient.Fast1Mspsthroughputwith  
nocyclelatencyinbothparallelandserialinterfacemodes  
maꢁes the LTC2393-16 ideally suited for a wide variety  
of high speed applications. An internal oscillator sets the  
conversion time, easing external timing considerations.  
The LTC2393-16 dissipates only 1±ꢀmW at 1Msps, while  
both nap and sleep power-down modes are provided to  
further reduce power during inactive periods.  
n
±±.ꢀ96V Differential ꢃnput Range  
n
ꢃnternal Reference (2ꢀppmꢄ/C Max)  
n
Io Pipeline Delay, Io Cycle Latency  
n
Parallel and Serial ꢃnterface  
ꢃnternal Conversion Clocꢁ  
n
n
±8-Lead 7mm × 7mm LQFP and QFI Pacꢁages  
APPLICATIONS  
n
Medical ꢃmaging  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarꢁs of Linear  
Technology Corporation. All other trademarꢁs are the property of their respective owners.  
n
High Speed Data Acquisition  
n
Digital Signal Processing  
ꢃndustrial Process Control  
ꢃnstrumentation  
ATE  
n
n
n
TYPICAL APPLICATION  
16k Point FFT fL = 1Msps,  
5V  
5V  
ꢀ.1μF  
1.8V TO 5V  
±.7μF  
fꢀI = ±0kHz  
1ꢀμF  
ꢀ.1μF  
1ꢀμF  
–2ꢀ  
SIR = 9±.2dꢂ  
THD –1ꢀ5dꢂ  
SꢃIAD = 93.9dꢂ  
SFDR = 1ꢀ8dꢂ  
AIALOG ꢃIPUT  
ꢀV TO ±.ꢀ96V  
AVP  
DVP  
OVP  
PARALLEL  
OR  
SERꢃAL  
ꢃITERFACE  
–±ꢀ  
2±9Ω  
16 ꢂꢃT  
+
ꢃI  
–6ꢀ  
–8ꢀ  
LT635ꢀ  
22ꢀꢀpF  
2±9Ω  
LTC2393-16  
SERꢄPAR  
ꢂYTESWAP  
Oꢂꢄ2C  
CS  
–1ꢀꢀ  
–12ꢀ  
–1±ꢀ  
–16ꢀ  
ꢃI  
RD  
SꢃIGLE-EIDED-  
TO-DꢃFFEREITꢃAL  
DRꢃVER  
ꢂUSY  
VCM REFꢃI REFOUT CNVST PD RESET GID OGID  
1ꢀμF 1μF  
239316 TAꢀ1  
SAMPLE CLOCK  
–18ꢀ  
±ꢀꢀ  
5ꢀꢀ  
1ꢀꢀ  
2ꢀꢀ  
3ꢀꢀ  
FREQUEICY (ꢁHz)  
239316 Gꢀ8  
239316fa  
1
LTC2393-16  
ABSOLUTE MAXIMUM RATINGS ꢁIotes 1, ±x  
Supply Voltage (V , V , V )..........................6.ꢀV  
Operating Temperature Range  
AVP DVP OVP  
Analog ꢃnput Voltage (Iote 3)  
LTC2393C ................................................ ꢀ/C to 7ꢀ/C  
LTC2393ꢃ.............................................. –±ꢀ/C to 85/C  
LTC2393H .......................................... –±ꢀ/C to 125/C  
Storage Temperature Range................... –65/C to 15ꢀ/C  
+
ꢃI , ꢃI , REFꢃI, CNVST .. (GID – ꢀ.3V) to (V  
+ ꢀ.3V)  
+ ꢀ.3V)  
+ ꢀ.3V)  
AVP  
OVP  
OVP  
Digital ꢃnput Voltage........(GID – ꢀ.3V) to (V  
Digital Output Voltage .....(GID – ꢀ.3V) to (V  
Power Dissipation...............................................5ꢀꢀmW  
PIN CONFIGURATION  
TOP VꢃEW  
TOP VꢃEW  
GID 1  
AVP 2  
DVP 3  
36 VCM  
35 GID  
CNVST  
33 PD  
32 RESET  
31 CS  
GID  
AVP  
1
2
3
±
5
6
7
8
9
36 VCM  
35 GID  
CNVST  
33 PD  
32 RESET  
31 CS  
3ꢀ RD  
29 ꢂUSY  
28 D15  
27 D1±  
26 D13  
25 D12  
DVP  
SERꢄPAR ±  
GID 5  
Oꢂꢄ2C 6  
GID 7  
ꢂYTESWAP 8  
Dꢀ 9  
SERꢄPAR  
GID  
Oꢂꢄ2C  
GID  
ꢂYTESWAP  
Dꢀ  
±9  
GID  
3ꢀ RD  
29 ꢂUSY  
28 D15  
27 D1±  
26 D13  
25 D12  
D1 1ꢀ  
D2 11  
D3 12  
D1 1ꢀ  
D2 11  
D3 12  
UK PACKAGE  
±8-LEAD (7mm s 7mm) PLASTꢃC QFI  
LX PACKAGE  
T
= 125/C, θ = 29/CꢄW  
JA  
±8-LEAD (7mm s 7mm) PLASTꢃC LQFP  
JMAX  
EXPOSED PAD (PꢃI ±9) ꢃS GID, MUST ꢂE SOLDERED TO PCꢂ  
T
= 15ꢀ/C, θ = 55/CꢄW  
JA  
JMAX  
ORDER INFORMATION  
2EAD FREE FꢀIꢀLH  
LTC2393CUK-16#PꢂF  
LTC2393ꢃUK-16#PꢂF  
2EAD FREE FꢀIꢀLH  
LTC2393CLX-16#PꢂF  
LTC2393ꢃLX-16#PꢂF  
LTC2393HLX-16#PꢂF  
TAPE AID REE2  
PART MARKꢀIG*  
PACKAGE DELCRꢀPTꢀOI  
TEMPERATURE RAIGE  
ꢀ/C to 7ꢀ/C  
LTC2393CUK-16#TRPꢂF LTC2393UK-16  
±8-Lead 7mm × 7mm Plastic QFI  
±8-Lead 7mm × 7mm Plastic QFI  
PACKAGE DELCRꢀPTꢀOI  
LTC2393ꢃUK-16#TRPꢂF  
TRAY  
LTC2393UK-16  
PART MARKꢀIG*  
LTC2393LX-16  
LTC2393LX-16  
LTC2393LX-16  
–±ꢀ/C to 85/C  
TEMPERATURE RAIGE  
ꢀ/C to 7ꢀ/C  
LTC2393CLX-16#PꢂF  
LTC2393ꢃLX-16#PꢂF  
LTC2393HLX-16#PꢂF  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
±8-Lead 7mm × 7mm Plastic LQFP  
–±ꢀ/C to 85/C  
–±ꢀ/C to 125/C  
Consult LTC Marꢁeting for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marꢁeting for information on non-standard lead based finish parts.  
For more information on lead free part marꢁing, go to: http:ꢄꢄwww.linear.comꢄleadfreeꢄ  
For more information on tape and reel specifications, go to: http:ꢄꢄwww.linear.comꢄtapeandreelꢄ  
239316fa  
2
LTC2393-16  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = ±5°C. ꢁIote 4x  
LYMSO2  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
–ꢀ.ꢀ5  
–ꢀ.ꢀ5  
TYP  
MAX  
AVP  
AVP  
UIꢀTL  
+
+
l
l
l
l
l
V
V
V
V
Absolute ꢃnput Range (ꢃI )  
(Iote 5)  
V
V
ꢃI  
ꢃI  
ꢃI  
+
Absolute ꢃnput Range (ꢃI )  
(Iote 5)  
+
– V  
ꢃnput Differential Voltage Range  
Common Mode ꢃnput Range  
Analog ꢃnput Leaꢁage Current  
Analog ꢃnput Capacitance  
V
ꢃI  
= V – V  
–V  
V
REF  
V
ꢃI  
ꢃI  
ꢃI  
REF  
V
ꢄ2 – ꢀ.ꢀ5  
REF  
V
ꢄ2  
REF  
V
ꢄ2 + ꢀ.ꢀ5  
±1  
V
CM  
REF  
μA  
ꢃI  
C
Sample Mode  
Hold Mode  
±5  
5
pF  
pF  
ꢃI  
CMRR  
ꢃnput Common Mode Rejection Ratio  
7ꢀ  
dꢂ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LYMSO2  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
16  
TYP  
MAX  
UIꢀTL  
ꢂits  
l
l
Resolution  
Io Missing Codes  
Transition Ioise  
16  
ꢂits  
ꢀ.3  
±1  
LSꢂ  
RMS  
l
l
l
ꢃIL  
ꢃntegral Linearity Error  
Differential Linearity Error  
ꢂipolar Zero Error  
ꢂipolar Zero Error Drift  
ꢂipolar Full-Scale Error  
(Iote 6)  
(Iote 7)  
–2  
–1  
–7  
2
1
7
LSꢂ  
DIL  
ꢂZE  
LSꢂ  
LSꢂ  
1
ppmꢄ/C  
l
FSE  
External Reference  
ꢃnternal Reference (Iote 7)  
ꢀ.1  
ꢀ.1  
%
%
ꢂipolar Full-Scale Error Drift  
±1ꢀ  
ppmꢄ/C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = ±5°C. AꢀI = –1dSFL ꢁIotes 4, 8x  
LYMSO2  
SꢃIAD  
SIR  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
92  
TYP  
93.9  
9±.2  
MAX  
UIꢀTL  
dꢂ  
l
l
l
Signal-to-(Ioise + Distortion) Ratio  
Signal-to-Ioise Ratio  
f
ꢃI  
f
ꢃI  
= 2ꢀꢁHz  
= 2ꢀꢁHz  
92.5  
dꢂ  
THD  
Total Harmonic Distortion  
f
ꢃI  
f
ꢃI  
= 2ꢀꢁHz, First 5 Harmonics (C- and ꢃ-Grades)  
= 2ꢀꢁHz, First 5 Harmonics (H-Grade)  
–1ꢀ5  
–1ꢀ5  
–1ꢀꢀ  
–98  
dꢂ  
dꢂ  
SFDR  
Spurious-Free Dynamic Range  
–3dꢂ ꢃnput ꢂandwidth  
Aperture Delay  
f
ꢃI  
= 2ꢀꢁHz  
1ꢀ8  
5ꢀ  
ꢀ.5  
7
dꢂ  
MHz  
ns  
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
6ꢀ  
ns  
239316fa  
3
LTC2393-16  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
TYP  
±.ꢀ96  
±1ꢀ  
2.6  
MAX  
±.116  
±2ꢀ  
UIꢀTL  
V
V
REF  
V
REF  
V
REF  
Output Voltage  
Output Tempco  
Output ꢃmpedance  
= ꢀ  
±.ꢀ76  
OUT  
OUT  
l
= ꢀ (ꢃ- and H-Grades) (Iote 11)  
ppmꢄ/C  
ꢁΩ  
–ꢀ.1mA ≤ ꢃ  
≤ ꢀ.1mA  
OUT  
External Reference Voltage  
REFꢃI ꢃnput ꢃmpedance  
2.5  
±.ꢀ96  
85  
AVP – ꢀ.5  
V
ꢁΩ  
V
Line Regulation  
AVP = ±.75V to 5.25V  
= ꢀ  
ꢀ.3  
mVꢄV  
V
REF  
VCM Output Voltage  
2.ꢀ8  
OUT  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LYMSO2  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
TYP  
MAX  
UIꢀTL  
V
l
l
l
V
ꢃH  
V
ꢃL  
High Level ꢃnput Voltage  
Low Level ꢃnput Voltage  
Digital ꢃnput Current  
ꢀ.8 • OVP  
ꢀ.5  
1ꢀ  
V
V
= ꢀV to OVP  
ꢃI  
–1ꢀ  
OVP – ꢀ.2  
–1ꢀ  
μA  
pF  
ꢃI  
C
V
V
Digital ꢃnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leaꢁage Current  
Output Source Current  
Output Sinꢁ Current  
5
ꢃI  
l
l
l
ꢃ = –5ꢀꢀμA  
O
V
OH  
OL  
ꢃ = 5ꢀꢀμA  
O
ꢀ.2  
1ꢀ  
V
V
OUT  
V
OUT  
V
OUT  
= ꢀV to OVP  
= ꢀV  
μA  
mA  
mA  
OZ  
–1ꢀ  
1ꢀ  
SOURCE  
SꢃIK  
= OVP  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LYMSO2  
PARAMETER  
Supply Voltage  
Supply Voltage  
COIDꢀTꢀOIL  
MꢀI  
±.75  
1.71  
TYP  
MAX  
5.25  
5.25  
UIꢀTL  
l
V
V
, V  
5
V
V
AVP DVP  
OVP  
l
l
DD  
Supply Current  
Power Down Mode  
1Msps Sample Rate with Iap Mode  
Conversion Done and All Digital ꢃnputs Tied to OVP  
28  
35  
35  
25ꢀ  
mA  
μA  
P
Power Dissipation  
Power Down Mode  
1Msps Sample Rate with Iap Mode  
Conversion Done and All Digital ꢃnputs Tied to OVP  
1±ꢀ  
175  
175  
125ꢀ  
mW  
μW  
D
239316fa  
4
LTC2393-16  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = ±5°C. ꢁIote 4x  
LYMSO2  
PARAMETER  
COIDꢀTꢀOIL  
MꢀI  
TYP  
MAX  
1
UIꢀTL  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Sampling Frequency  
Conversion Time  
SMPL  
6ꢀꢀ  
385  
COIV  
Acquisition Time  
ns  
ACQ  
±
CNVST Low Time  
2ꢀ  
ns  
CNVST High Time  
25ꢀ  
ns  
5
CNVSTto ꢂUSY Delay  
RESET Pulse Width  
SCLK Period  
C = 15pF  
L
15  
1
ns  
6
5
12.5  
±
ns  
7
(Iote 9)  
ns  
8
SCLK High Time  
ns  
9
SCLK Low Time  
±
ns  
1ꢀ  
t , t  
SCLK Rise and Fall Times  
SDꢃI Setup Time  
(Iote 1ꢀ)  
μs  
r
f
l
l
l
l
l
l
l
l
t
11  
t
12  
t
13  
t
1±  
t
15  
t
16  
t
17  
t
18  
2
1
2
ns  
SDꢃI Hold Time  
ns  
SDOUT Delay After SCLK↑  
SDOUT Delay After CS↓  
CSto SCLK Setup Time  
Data Valid to ꢂUSY↓  
Data Access Time after RDor ꢂYTESWAP↑  
ꢂus Relinquish Time  
C = 15pF  
L
8
8
ns  
ns  
2ꢀ  
1
ns  
ns  
1ꢀ  
ns  
1ꢀ  
ns  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iote 7: ꢂipolar zero error is the offset voltage measured from –ꢀ.5LSꢂ  
when the output code flicꢁers between ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 1111  
1111 1111 1111. ꢂipolar full-scale error is the worst-case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Iote ±: All voltage values are with respect to ground.  
Iote 8: All specifications in dꢂ are referred to a full-scale ±±.ꢀ96V input  
with a ±.ꢀ96V reference voltage.  
Iote 3: When these pin voltages are taꢁen below ground or above  
AVP, DVP or OVP, they will be clamped by internal diodes. This product can  
handle input currents up to 1ꢀꢀmA below ground or above AVP, DVP or  
OVP without latchup.  
Iote 9: t of 8ns maximum allows a shift clocꢁ frequency up to  
13  
2 • (t + t  
) for falling edge capture with 5ꢀ% duty cycle and up to  
SETUP  
13  
8ꢀMHz for rising capture. t  
is the set-up time of the receiving logic.  
SETUP  
Iote 4: AVP = DVP = OVP = 5V, f  
= 1MHz, external reference equal to  
SMPL  
±.ꢀ96V unless otherwise noted.  
Iote 10: Guaranteed by design.  
Iote 5: Recommended operating conditions.  
Iote 11: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Iote 6: ꢃntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
±V  
t
WꢃDTH  
ꢀ.5V  
5ꢀ%  
5ꢀ%  
t
t
DELAY  
DELAY  
239316Fꢀ1  
±V  
±V  
ꢀ.5V  
ꢀ.5V  
Figure 1. Voltage 2evels for Timing Lpecifications  
239316fa  
5
LTC2393-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ±5°C, fLMP2 = 1Msps, unless otherwise noted.  
ꢀntegral Ionlinearity  
vs Output Code  
Differential Ionlinearity  
vs Output Code  
DC Histogram  
ꢁEꢂternal Referencex  
1.5  
1.ꢀ  
2ꢀꢀꢀꢀꢀꢀ  
18ꢀꢀꢀꢀꢀ  
16ꢀꢀꢀꢀꢀ  
1±ꢀꢀꢀꢀꢀ  
12ꢀꢀꢀꢀꢀ  
1ꢀꢀꢀꢀꢀꢀ  
8ꢀꢀꢀꢀꢀ  
6ꢀꢀꢀꢀꢀ  
±ꢀꢀꢀꢀꢀ  
2ꢀꢀꢀꢀꢀ  
2.ꢀ  
1.5  
1.ꢀ  
ꢀ.5  
ꢀ.5  
–ꢀ.5  
–1.ꢀ  
–1.5  
–2.ꢀ  
–ꢀ.5  
–1.ꢀ  
–1.5  
3276±  
32766 32768 3277ꢀ 32772  
CODE  
1638±  
32768  
±9152  
65536  
32768  
1638±  
±9152  
65536  
OUTPUT CODE  
OUTPUT CODE  
239316 Gꢀ2  
239316 Gꢀ3  
239316 Gꢀ1  
DC Histogram  
ꢁꢀnternal Referencex  
ꢀnternal Reference Output  
vs Temperature  
Offset Error vs Temperature  
2ꢀꢀꢀꢀꢀꢀ  
18ꢀꢀꢀꢀꢀ  
16ꢀꢀꢀꢀꢀ  
1±ꢀꢀꢀꢀꢀ  
12ꢀꢀꢀꢀꢀ  
1ꢀꢀꢀꢀꢀꢀ  
8ꢀꢀꢀꢀꢀ  
6ꢀꢀꢀꢀꢀ  
±ꢀꢀꢀꢀꢀ  
2ꢀꢀꢀꢀꢀ  
±.ꢀ975  
±.ꢀ97ꢀ  
±.ꢀ965  
±.ꢀ96ꢀ  
±.ꢀ955  
±.ꢀ95ꢀ  
±.ꢀ9±5  
±.ꢀ9±ꢀ  
±.ꢀ935  
±.ꢀ93ꢀ  
±.ꢀ925  
1.ꢀ  
ꢀ.8  
TC = ±ppmꢄ/C  
ꢀ.6  
ꢀ.±  
ꢀ.2  
3276± 32766 32768 3277ꢀ 32772  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
TEMPERATURE (/C)  
CODE  
TEMPERATURE (/C)  
239316 Gꢀ±  
239316 Gꢀ6  
239316 Gꢀ5  
16k Point FFT fL = 1Msps,  
fꢀI = ±0kHz  
16k Point FFT fL = 1Msps,  
fꢀI = 100kHz  
Full-Lcale Error vs Temperature  
1ꢀ  
8
–2ꢀ  
–2ꢀ  
SIR = 9±.2dꢂ  
SIR = 9±.2dꢂ  
THD –1ꢀꢀ.6dꢂ  
SꢃIAD = 93.3dꢂ  
SFDR = 1ꢀ5.2dꢂ  
THD –1ꢀ5dꢂ  
SꢃIAD = 93.9dꢂ  
SFDR = 1ꢀ8dꢂ  
6
–±ꢀ  
–±ꢀ  
±
–6ꢀ  
–6ꢀ  
2
–8ꢀ  
–8ꢀ  
–1ꢀꢀ  
–12ꢀ  
–1±ꢀ  
–16ꢀ  
–18ꢀ  
–1ꢀꢀ  
–12ꢀ  
–1±ꢀ  
–16ꢀ  
–2  
–±  
–6  
–8  
–1ꢀ  
–18ꢀ  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
±ꢀꢀ  
5ꢀꢀ  
±ꢀꢀ  
5ꢀꢀ  
1ꢀꢀ  
2ꢀꢀ  
3ꢀꢀ  
1ꢀꢀ  
2ꢀꢀ  
3ꢀꢀ  
TEMPERATURE (/C)  
FREQUEICY (ꢁHz)  
FREQUEICY (ꢁHz)  
239316 Gꢀ7  
239316 Gꢀ9  
239316 Gꢀ8  
239316fa  
6
LTC2393-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ±5°C, fLMP2 = 1Msps, unless otherwise noted.  
THD, Harmonics  
LIR, LꢀIAD at fꢀI = ±0kHz  
vs Temperature  
LIR, LꢀIAD vs ꢀnput Frequency  
vs ꢀnput Frequency  
–7ꢀ  
–75  
96  
9±  
92  
9ꢀ  
88  
86  
8±  
82  
8ꢀ  
95.ꢀ  
9±.5  
9±.ꢀ  
93.5  
93.ꢀ  
SIR  
–8ꢀ  
SꢃIAD  
SIR  
–85  
–9ꢀ  
SꢃIAD  
–95  
THD  
3RD  
2ID  
–1ꢀꢀ  
–1ꢀ5  
–11ꢀ  
–115  
–12ꢀ  
1ꢀꢀ 125  
1ꢀꢀ 125  
25 5ꢀ 75  
15ꢀ 175 2ꢀꢀ  
25 5ꢀ 75  
15ꢀ 175 2ꢀꢀ  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
FREQUEICY (ꢁHz)  
FREQUEICY (ꢁHz)  
TEMPERATURE (/C)  
239316 G11  
239316 G1ꢀ  
239316 G12  
THD, Harmonics at fꢀI = ±0kHz  
vs Temperature  
Lupply Current vs Lampling  
Frequency  
LIR, LꢀIAD vs ꢀnput 2evel  
3ꢀ  
95.ꢀ  
9±.5  
9±.ꢀ  
93.5  
93.ꢀ  
–9ꢀ  
–95  
SIR  
25  
2ꢀ  
SꢃIAD  
–1ꢀꢀ  
THD  
3RD  
–1ꢀ5  
–11ꢀ  
15  
1ꢀ  
2ID  
–115  
–12ꢀ  
5
ꢀ.1  
1
1ꢀ  
1ꢀꢀ  
1ꢀꢀꢀ  
–2ꢀ  
–1ꢀ  
–±ꢀ  
–3ꢀ  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
SAMPLꢃIG FREQUEICY (ꢁHz)  
TEMPERATURE (/C)  
ꢃIPUT LEVEL (dꢂ)  
239316 G15  
239316 G1±  
239316 G13  
Power-Down Current  
vs Temperature  
Lupply Current vs Temperature  
3ꢀ  
25  
9ꢀ  
8ꢀ  
7ꢀ  
6ꢀ  
5ꢀ  
±ꢀ  
3ꢀ  
2ꢀ  
1ꢀ  
AVP  
2ꢀ  
15  
1ꢀ  
DVP  
DVP  
OVP  
5
AVP  
OVP  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
–55 –35 –15  
5
25 ±5 65 85 1ꢀ5 125  
TEMPERATURE (/C)  
TEMPERATURE (/C)  
239316 G16  
239316 G17  
239316fa  
7
LTC2393-16  
PIN FUNCTIONS  
GID ꢁPins 1, 5, 7, ±0, 35, 41, 44, 48, Eꢂposed Pad  
Pin 49 ꢁQFI Onlyxx: Ground. All GID pins must be con-  
nected to a solid ground plane. Exposed pad must be  
soldered directly to the ground plane.  
D7 ꢁPin 16x: Data ꢂit 7. When SERꢄPAR = ꢀ this pin is  
ꢂit 7 of the parallel port data output bus.  
OGID ꢁPin 17x: Digital Ground for the ꢃnputꢄOutput  
ꢃnterface.  
AVP ꢁPins ±, 40, 45, 46, 47x: 5V Analog Power Supply.  
The range of AVP is ±.75V to 5.25V. ypass AVP to GID  
with a good quality ꢀ.1μF and a 1ꢀμF ceramic capacitor  
in parallel.  
OVP ꢁPin 18x: Digital Power Supply for the ꢃnputꢄOutput  
ꢃnterface. The range for OVP is 1.8V to 5V. ypass OVP  
to OGID with a good quality ±.7μF ceramic capacitor  
close to the pin.  
DVP ꢁPins 3, 19x: 5V Digital Power Supply. The range of  
DVP is ±.75V to 5.25V. ypass DVP to GID with a good  
quality ꢀ.1μF and a 1ꢀμF ceramic capacitor in parallel.  
D8 ꢁPin ±1x: Data ꢂit 8. When SERꢄPAR = ꢀ this pin is  
ꢂit 8 of the parallel port data output bus.  
D9/LDꢀIPin±±x:Datait9ꢄSerialDatanput. WhenSERꢄ  
PAR = ꢀ this pin is ꢂit 9 of the parallel port data output bus.  
When SERꢄPAR = 1, (serial mode) this is the serial data  
input. SDꢃI can be used as a data input to daisy chain two  
or more conversion results into a single SDOUT line. The  
digital data level on SDꢃI is output on SDOUT with a delay  
of 16 SCLK periods after the start of the read sequence.  
LER/PAR ꢁPin 4x: SerialꢄParallel Selection ꢃnput. This pin  
controls the digital interface. A logic high on this pin se-  
lects the serial interface and a logic low selects the parallel  
interface. ꢃn the serial mode the non-active digital outputs  
are high impedance.  
OS/2C ꢁPin 6x: Offset ꢂinaryꢄTwo’s Complement ꢃnput.  
When Oꢂꢄ2C is high, the digital output is offset binary.  
When low, the MSꢂ is inverted resulting in two’s comple-  
ment output.  
D10/LDOUTPin±3x:Datait1ꢀꢄSerialDataOutput.When  
SERꢄPAR = ꢀ this pin is ꢂit 1ꢀ of the parallel port data  
output bus. When SERꢄPAR = 1, (serial mode) this is the  
serial data output. The conversion result can be clocꢁed  
out serially on this pin synchronized to SCLK. The data  
is clocꢁed out MSꢂ first on the rising edge of SCLK and  
is valid on the falling edge of SCLK. The data format is  
determined by the logic level of Oꢂꢄ2C.  
SYTELWAP ꢁPin 8x: ꢂYTESWAP ꢃnput. With ꢂYTESWAP  
low, data will be output with Pin 28 (D15) being the MSꢂ  
and Pin 9 (Dꢀ) being the LSꢂ. With ꢂYTESWAP high, the  
upper eight bits and the lower eight bits will be switched.  
The MSꢂ is output on Pin 16 and ꢂit 8 is output on Pin 9.  
ꢂit 7 is output on Pin 28 and the LSꢂ is output on Pin 21.  
D11/LC2K ꢁPin ±4x: Data ꢂit 11ꢄSerial Clocꢁ ꢃnput. When  
SERꢄPAR = ꢀ this pin is ꢂit 11 of the parallel port data  
output bus. When SERꢄPAR = 1, (serial mode) this is the  
serial clocꢁ input.  
D0 ꢁPin 9x: Data ꢂit ꢀ. When SERꢄPAR = ꢀ this pin is ꢂit ꢀ  
of the parallel port data output bus.  
D1 ꢁPin 10x: Data ꢂit 1. When SERꢄPAR = ꢀ this pin is  
ꢂit 1 of the parallel port data output bus.  
D1± ꢁPin ±5x: Data ꢂit 12. When SERꢄPAR = ꢀ this pin is  
ꢂit 12 of the parallel port data output bus.  
D± ꢁPin 11x: Data ꢂit 2. When SERꢄPAR = ꢀ this pin is  
ꢂit 2 of the parallel port data output bus.  
D13 ꢁPin ±6x: Data ꢂit 13. When SERꢄPAR = ꢀ this pin is  
ꢂit 13 of the parallel port data output bus.  
D3 ꢁPin 1±x: Data ꢂit 3. When SERꢄPAR = ꢀ this pin is  
ꢂit 3 of the parallel port data output bus.  
D14 ꢁPin ±7x: Data ꢂit 1±. When SERꢄPAR = ꢀ this pin is  
ꢂit 1± of the parallel port data output bus.  
D4 ꢁPin 13x: Data ꢂit ±. When SERꢄPAR = ꢀ this pin is  
ꢂit ± of the parallel port data output bus.  
D15 ꢁPin ±8x: Data ꢂit 15. When SERꢄPAR = ꢀ this pin is  
ꢂit 15 of the parallel port data output bus. The data format  
is determined by the logic level of Oꢂꢄ2C.  
D5 ꢁPin 14x: Data ꢂit 5. When SERꢄPAR = ꢀ this pin is  
ꢂit 5 of the parallel port data output bus.  
D6 ꢁPin 15x: Data ꢂit 6. When SERꢄPAR = ꢀ this pin is  
ꢂit 6 of the parallel port data output bus.  
239316fa  
8
LTC2393-16  
PIN FUNCTIONS  
SULY ꢁPin ±9x: ꢂusy Output. A low-to-high transition oc-  
curs when a conversion is started. ꢃt stays high until the  
conversion is complete. The falling edge of ꢂUSY can be  
used as the data-ready clocꢁ signal.  
VCM ꢁPin 36x: Common Mode Analog Output. Typically  
the output voltage is 2.ꢀ±8V. ypass to GID with a 1ꢀμF  
capacitor.  
REFOUT ꢁPin 37x: ꢃnternal Reference Output. Iominal  
output voltage is ±.ꢀ96V. Connect this pin to REFꢃI if us-  
ing the internal reference. ꢃf an external reference is used  
connect REFOUT to ground.  
RD ꢁPin 30x: Read Data ꢃnput. When CS and RD are both  
low, the parallel and serial output bus is enabled.  
CS ꢁPin 31x: Chip Select. When CS and RD are both low,  
the parallel and serial output bus is enabled. CS is also  
used to gate the external shift clocꢁ.  
REFꢀI ꢁPin 38x: Reference ꢃnput. An external reference  
can be applied to REFꢃI if a more accurate reference is  
required. ꢃf an external reference is used tie REFOUT to  
ground.  
RELET ꢁPin 3±x: Reset ꢃnput. When high the LTC2393-16  
is reset, and if this occurs during a conversion, the con-  
version is halted and the data bus is put into Hi-Z mode.  
REFLEILE ꢁPin 39x: Reference ꢃnput Sense. Leave  
REFSEISE open when using the internal reference. ꢃf  
an external reference is used connect REFSEISE to the  
ground pin of the external reference.  
PD ꢁPin 33x: Power-Down ꢃnput. When high, the  
LTC2393-16ispowereddownandsubsequentconversion  
requests are ignored. ꢂefore entering power shutdown,  
the digital output data should be read.  
+
+
ꢀI , ꢀI ꢁPin 4±, Pin 43x: Differential Analog ꢃnputs.  
ꢃI – (ꢃI ) can range up to ±V  
.
REF  
CNVST ꢁPin 34x: Conversion Start ꢃnput. A falling edge  
on CNVST puts the internal sample-and-hold into the hold  
modeandstartsaconversion.CNVSTisindependentofCS.  
239316fa  
9
LTC2393-16  
FUNCTIONAL BLOCK DIAGRAM  
AVP DVP OVP  
LTC2393-16  
16-ꢂꢃT OR  
TWO ꢂYTE  
SDꢃI  
SDOUT  
SCLK  
+
ꢃI  
PARALLELꢄ  
SERꢃAL  
ꢃITERFACE  
16-ꢂꢃT SAMPLꢃIG ADC  
16-ꢂꢃT  
ꢃI  
CS  
1x ꢂUFFER  
RD  
REFꢃI  
SERꢄPAR  
ꢂYTESWAP  
Oꢂꢄ2C  
REFOUT  
VCM  
±.ꢀ96V  
ꢂUSY  
COITROL LOGꢃC  
CNVST PD  
REFEREICE  
REFSEISE  
RESET  
GID OGID  
239316ꢂD  
TIMING DIAGRAMS  
Conversion Timing Using the Parallel ꢀnterface  
CS, RD = ꢀ  
CNVST  
ACQUꢃRE  
ꢂUSY  
COIVERT  
D[15:ꢀ]  
PREVꢃOUS COIVERSꢃOI  
CURREIT COIVERSꢃOI  
239315 TDꢀ1  
Conversion Timing Using the Lerial ꢀnterface  
CS, RD = ꢀ  
CNVST  
ACQUꢃRE  
ꢂUSY  
COIVERT  
SCLK  
D1± D12 D1ꢀ D8 D6 D± D2 Dꢀ  
D15 D13 D11 D9 D7 D5 D3 D1  
SDOUT  
239315 TDꢀ2  
239316fa  
10  
LTC2393-16  
APPLICATIONS INFORMATION  
OVERVꢀEW  
ꢀ11...111  
ꢀ11...11ꢀ  
ꢂꢃPOLAR  
ZERO  
The LTC2393-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC. Operating  
from a single 5V supply, the LTC2393-16 supports a large  
±±.ꢀ96V fully differential input range, maꢁing it ideal  
for high performance applications which require a wide  
dynamic range. The LTC2393-16 achieves ±2LSꢂ ꢃIL  
max, no missing codes at 16 bits and 9±.2dꢂ SIR (typ).  
ꢀꢀꢀ...ꢀꢀ1  
ꢀꢀꢀ...ꢀꢀꢀ  
111...111  
111...11ꢀ  
1ꢀꢀ...ꢀꢀ1  
1ꢀꢀ...ꢀꢀꢀ  
FSR = +FS – –FS  
1LSꢂ = FSRꢄ65536  
The LTC2393-16 includes a precision internal reference  
with a guaranteed ꢀ.5% initial accuracy and a ±2ꢀppmꢄ/C  
(max)temperaturecoefficient.Fast1Mspsthroughputwith  
no cycle latency in both parallel and serial interface modes  
maꢁes the LTC2393-16 ideally suited for a wide variety  
of high speed applications. An internal oscillator sets the  
conversion time, easing external timing considerations.  
The LTC2393-16 dissipates only 1±ꢀmW at 1Msps, while  
both nap and sleep power-down modes are provided to  
further reduce power during inactive periods.  
–1 ꢀV  
LSꢂ  
ꢃIPUT VOLTAGE (V)  
1
LSꢂ  
–FSRꢄ2  
FSRꢄ2 – 1LSꢂ  
239316 Fꢀ2  
Figure ±. 2TC±393-16 Twos Complement Transfer Function  
AIA2OG ꢀIPUT  
The analog inputs of the LTC2393-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
Theanaloginputscanbemodeledbytheequivalentcircuit  
showninFigure3.ThediodesattheinputprovideESDpro-  
tection. The analog inputs should not exceed the supply or  
gobelowground.ntheacquisitionphase,eachinputsees  
approximately±ꢀpF(C )fromthesamplingCDACinseries  
with 5ꢀΩ (R ) from the on-resistance of the sampling  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw only one small current spiꢁe  
COIVERTER OPERATꢀOI  
The LTC2393-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor DꢄA  
ꢃI  
+
ꢃI  
converter (CDAC) is connected to the ꢃI and ꢃI pins  
to sample the differential analog input voltage. A falling  
edge on the CNVST pin initiates a conversion. During the  
conversion phase, the 16-bit CDAC is sequenced through  
asuccessiveapproximationalgorithm,effectivelycompar-  
ing the sampled input with binary-weighted fractions of  
while charging the C capacitors during acquisition.  
During conversion, the analog inputs draw only a small  
ꢃI  
leaꢁage current.  
thereferencevoltage(e.g., V ꢄ2, V ±…V 65536)  
REF  
REF  
REF  
usingthedifferentialcomparator.Attheendofconversion,  
the CDAC output approximates the sampled analog input.  
The ADC control logic then prepares the 16-bit digital  
output code for parallel or serial transfer.  
AVP  
C
ꢃI  
R
ꢃI  
R
ꢃI  
+
ꢃI  
ꢂꢃAS  
AVP  
VOLTAGE  
C
TRAILFER FUICTꢀOI  
ꢃI  
239316 Fꢀ3  
ꢃI  
The LTC2393-16 digitizes the full-scale voltage of 2 • V  
REF  
REF  
16  
into2 levels,resultinginanLSsizeof125μVwhenV  
=±.ꢀ96V. Theidealtransferfunctionfortwo’scomplement  
is shown in Figure 2. The Oꢂꢄ2C pin selects either offset  
binary or two’s complement format.  
Figure 3. The Equivalent Circuit for the  
Differential Analog ꢀnput of the 2TC±393-16  
239316fa  
11  
LTC2393-16  
APPLICATIONS INFORMATION  
ꢀIPUT DRꢀVE CꢀRCUꢀTL  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
Alowimpedancesourcecandirectlydrivethehighimped-  
ance inputs of the LTC2393-16 without gain error. A high  
impedance source should be buffered to minimize settling  
time during acquisition and to optimize the distortion  
performance of the ADC.  
Lingle-to-Differential Conversion  
For single-ended input signals, a single-ended-to-differ-  
ential conversion circuit must be used to produce a dif-  
ferentialsignalattheADCinputs.TheLT635ADCdriveris  
recommendedforperformingasingle-ended-to-differential  
conversion, as shown in Figure ±a. ꢃts low noise and good  
DC linearity allows the LTC2393-16 to meet full data sheet  
specifications. An alternative solution using two op amps  
is shown in Figure ±b. Using two LT18ꢀ6 op amps, the  
circuit achieves 9±.1dꢂ signal-to-noise ratio (SIR). For a  
2ꢀꢁHz input signal, the input of the LTC2393-16 has been  
bandwidth limited to about 25ꢁHz.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2393-16. The amplifier  
provides low output impedance to allow for fast settling  
of the analog signal during the acquisition phase. ꢃt also  
provides isolation between the signal source and the ADC  
inputswhichdrawasmallcurrentspiꢁeduringacquisition.  
ꢀnput Filtering  
The noise and distortion of the buffer amplifier and other  
circuitry must be considered since they add to the ADC  
noiseanddistortion.Ioisyinputcircuitryshouldbefiltered  
prior to the analog inputs to minimize noise. A simple  
1-pole RC filter is sufficient for many applications.  
ADC REFEREICE  
A low noise, low temperature drift reference is critical to  
achieving the full data sheet performance of the ADC. The  
LTC2393-16 provides an excellent internal reference with  
a ±2ꢀppmꢄ/C (max) temperature coefficient. For better  
accuracy, an external reference can be used.  
Large filter RC time constants slow down the settling at  
the analog inputs. ꢃt is important that the overall RC time  
constants be short enough to allow the analog inputs to  
completely settle to 16-bit resolution within the acquisi-  
The high speed, low noise internal reference buffer is used  
for both internal and external reference applications. ꢃt  
cannot be bypassed.  
tion time (t ).  
ACQ  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RC filter since these components can add distortion. IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
AIALOG  
ꢃIPUT  
+
ꢀV TO ±.ꢀ96V  
LT18ꢀ6  
2±9Ω  
+
ꢃI  
3ꢀ1Ω  
ꢀ.ꢀ13μF  
2±9Ω  
LTC2393-16  
+
ꢃI  
3ꢀ1Ω  
2±9Ω  
ꢃI  
AIALOG ꢃIPUT  
ꢀV TO ±.ꢀ96V  
22ꢀꢀpF  
LT635ꢀ  
LTC2393-16  
239316 Fꢀ±b  
2±9Ω  
+
ꢃI  
LT18ꢀ6  
239316 Fꢀ±a  
COMMOI  
MODE  
VOLTAGE  
SꢃIGLE-EIDED-  
TO-DꢃFFEREITꢃAL  
DRꢃVER  
Figure 4a. Recommended Lingle-Ended-to-Differential  
Conversion Circuit Using the 2T6350 ADC Driver  
Figure 4b. Alternative Lingle-Ended-to-Differential Conversion  
Circuit Using Two 2T1806 Op Amps  
239316fa  
12  
LTC2393-16  
APPLICATIONS INFORMATION  
ꢀnternal Reference  
DYIAMꢀC PERFORMAICE  
To use the internal reference, simply tie the REFOUT and  
REFꢃI pins together. This connects the ±.ꢀ96V output of  
the internal reference to the input of the internal reference  
buffer. The output impedance of the internal reference is  
approximately 2.6ꢁΩ and the input impedance of the in-  
ternal reference buffer is about 85ꢁΩ. ꢃt is recommended  
that this node be bypassed to ground with a 1μF or larger  
capacitortofiltertheoutputnoiseoftheinternalreference.  
The REFSEISE pin should be left floating when using the  
internal reference.  
Fast fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢂy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2393-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
Lignal-to-Ioise and Distortion Ratio ꢁLꢀIADx  
The signal-to-noise and distortion ratio (SꢃIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the AꢄD output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 5 shows that the LTC2393-16 achieves  
a typical SꢃIAD of 93.9dꢂ at a 1MHz sampling rate with  
a 2ꢀꢁHz input.  
Eꢂternal Reference  
An external reference can be used with the LTC2393-16  
when even higher performance is required. The  
LT179ꢀ-±.ꢀ96 offers ꢀ.ꢀ5% (max) initial accuracy and  
1ꢀppmꢄ/C (max) temperature coefficient. When using an  
external reference, connect the reference output to the  
REFꢃI pin and connect the REFOUT pin to ground. The  
REFSEISE pin should be connected to the ground of the  
external reference.  
–2ꢀ  
SIR = 9±.2dꢂ  
THD –1ꢀ5dꢂ  
SꢃIAD = 93.9dꢂ  
SFDR = 1ꢀ8dꢂ  
–±ꢀ  
–6ꢀ  
–8ꢀ  
–1ꢀꢀ  
–12ꢀ  
–1±ꢀ  
–16ꢀ  
–18ꢀ  
±ꢀꢀ  
5ꢀꢀ  
1ꢀꢀ  
2ꢀꢀ  
3ꢀꢀ  
FREQUEICY (ꢁHz)  
239316 Gꢀ8  
Figure 5. 16k Point FFT of the 2TC±393-16, fL = 1Msps, fꢀI = ±0kHz  
239316fa  
13  
LTC2393-16  
APPLICATIONS INFORMATION  
Lignal-to-Ioise Ratio ꢁLIRx  
Power Lupply Lequencing  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 5 shows  
that the LTC2393-16 achieves a typical SIR of 9±.2dꢂ at  
a 1MHz sampling rate with a 2ꢀꢁHz input.  
The LTC2393-16 does not have any specific power supply  
sequencingrequirements.Careshouldbetaꢁentoobserve  
the maximum voltage relationships described in the Ab-  
solute Maximum Ratings section. The LTC2393-16 has a  
power-on-reset (POR) circuit. With the POR, the result of  
the first conversion is valid after power has been applied  
to the ADC. The LTC2393-16 will reset itself if the power  
supply voltage drops below 2.5V. Once the supply voltage  
is brought bacꢁ to its nominal value, the POR will reinitial-  
ize the ADC and it will be ready to start a new conversion.  
Total Harmonic Distortion ꢁTHDx  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
Iap Mode  
between DC and half the sampling frequency (f  
THD is expressed as:  
ꢄ2).  
SMPL  
The LTC2393-16 can be put into the nap mode after a  
conversion has been completed to reduce the power  
consumption between conversions. ꢃn this mode some  
of the circuitry on the device is turned off. Iap mode is  
enabledbyeepingCNVSTlowbetweenconversions.When  
the next conversion is requested, bring CNVST high and  
hold for at least 25ꢀns, then start the next conversion by  
bringing CNVST low. See Figure 6.  
V22 + V32 + V±2...VI2  
THD = 2ꢀ log  
V1  
where V is the RMS amplitude of the fundamental fre-  
1
quencyandV throughV aretheamplitudesofthesecond  
2
I
through Ith harmonics.  
Power Lhutdown Mode  
POWER COILꢀDERATꢀOIL  
When PD is tied high, the LTC2393-16 enters power shut-  
downandsubsequentrequestsforconversionareignored.  
ꢂefore entering power shutdown, the digital output data  
needstoberead.However,ifarequestforpowershutdown  
(PD = high) occurs during a conversion, the conversion  
The LTC2393-16 provides three sets of power supply  
pins: the analog 5V power supply (AVP), the digital 5V  
power supply (DVP) and the digital inputꢄoutput interface  
power supply (OVP). The flexible OVP supply allows the  
LTC2393-16tocommunicatewithanydigitallogicoperating  
between 1.8V and 5V, including 2.5V and 3.3V systems.  
t
5
CNVST  
ꢂUSY  
IAP  
t
t
ACQ  
COIV  
IAP MODE  
239316 Fꢀ6  
Figure 6. Iap Mode Timing for the 2TC±393-16  
239316fa  
14  
LTC2393-16  
APPLICATIONS INFORMATION  
will finish and then the device will power down. The data  
from that conversion can be read after PD = low is applied.  
ꢃn this mode power consumption drops to a typical value  
of 175μW from 1±ꢀmW. This mode can be used if the  
LTC2393-16 is inactive for a long period of time and the  
user wants to minimize the power dissipation.  
TꢀMꢀIG AID COITRO2  
The LTC2393-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. CS and RD  
control the digital interface on the LTC2393-16. When  
either CS or RD is high, the digital outputs are high  
impedance.  
Recovery from Power Lhutdown Mode  
CNVST Timing  
Once the PD pin is returned to a low level, ending the  
power shutdown request, the internal circuitry will begin  
to power up. ꢃf the internal reference is used, the 2.6ꢁΩ  
output impedance with the 1μF bypass capacitor on the  
REFꢃIꢄREFOUT pins will be the main time constant for  
the power-on recovery time. ꢃf an external reference is  
used, typically allow 5ms for recovery before initiating a  
new conversion.  
The LTC2393-16 conversion is controlled by CNVST. A  
falling edge on CNVST will start a conversion. Once a  
conversion has been initiated, it cannot be restarted until  
the conversion is complete. For optimum performance  
CNVSTshouldbeacleanlowjittersignal. Converterstatus  
is indicated by the ꢂUSY output which remains high while  
the conversion is in progress. To ensure no errors occur  
in the digitized results return the rising edge either within  
±ꢀns from the start of the conversion or wait until after  
the conversion has been completed. The CNVST timing  
needed to taꢁe advantage of the reduced power mode of  
operation is described in the Iap Mode section.  
Power Dissipation vs Lampling Frequency  
The power dissipation of the LTC2393-16 will decrease  
as the sampling frequency is reduced when nap mode  
is activated. See Figure 7. ꢃn nap mode, a portion of the  
circuitryontheLTC2393-16isturnedoffafteraconversion  
has been completed. ꢃncreasing the time allowed between  
conversions lowers the average power.  
ꢀnternal Conversion Clock  
The LTC2393-16 has an internal clocꢁ that is trimmed  
to achieve a maximum conversion time of 6ꢀꢀns. Io  
external adjustments are required and with a maximum  
acquisition time of 385ns, a throughput performance of  
1Msps is guaranteed.  
3ꢀ  
25  
2ꢀ  
DꢀGꢀTA2 ꢀITERFACE  
The LTC2393-16 allows both parallel and serial digital  
interfaces. TheflexibleOVPsupplyallowstheLTC2393-16  
to communicate with any digital logic operating between  
1.8V and 5V, including 2.5V and 3.3V systems.  
15  
1ꢀ  
5
ꢀ.1  
1
1ꢀ  
1ꢀꢀ  
1ꢀꢀꢀ  
SAMPLꢃIG FREQUEICY (ꢁHz)  
239316 G15  
Figure 7. Power Dissipation of the 2TC±393-16  
Decreases with Decreasing Lampling Frequency  
239316fa  
15  
LTC2393-16  
APPLICATIONS INFORMATION  
Parallel Modes  
ꢃf CS and RD are used to gate the serial output data, the  
full conversion result should be read before CS and RD  
are returned to a high level.  
The parallel output data interface is active when the  
SERꢄPAR pin is tied low and when both CS and RD are low.  
The output data can be read as a 16-bit word as shown  
in Figures 8, 9 and 1ꢀ or it can be read as two 8-bit bytes  
by using the ꢂYTESWAP pin. As shown in Figure 11, with  
the ꢂYTESWAP pin low, the first eight MSꢂs are output on  
the D15 to D8 pins and the eight LSꢂs are output on the  
D7 to DO pins. When ꢂYTESWAP is taꢁen high, the eight  
LSꢂs now are output on the D15 to D8 pins and the eight  
MSꢂs are output on the D7 to Dꢀ pins.  
The SDꢃI input pin is used to daisy chain multiple con-  
verters. This is useful for applications where hardware  
constraints may limit the number of lines needed to  
interface to a large number of converters. For example,  
if two devices are cascaded, the MSꢂ of the first device  
will appear at the output after 17 SCLK cycles. The first  
MSꢂ is clocꢁed in on the falling edge of the first SCLK.  
See Figure 12.  
Lerial Modes  
Data Format  
The serial output data interface is active when the  
SERꢄPAR pinistiedhighandwhenbothCSandRDarelow.  
The serial output data will be clocꢁed out on the SDOUT  
pin when an external clocꢁ is applied to the SCLK pin.  
Clocꢁing out the data after the conversion will yield the  
best performance. With a shift clocꢁ frequency of at least  
±ꢀMHz, a 1Msps throughput is still achieved. The serial  
output data changes state on the rising edge of SCLK and  
can be captured on the falling edge of SCLK. D15 remains  
valid till the first rising edge of shift clocꢁ after the first  
falling edge of shift clocꢁ. The non-active digital outputs  
are high impedance when operating in the serial mode.  
When Oꢂꢄ2C is high, the digital output is offset binary.  
When low, the MSꢂ is inverted resulting in two’s comple-  
ment output. This pin is active in both the parallel and  
serial modes of operation.  
Reset  
When the RESET pin is high, the LTC2393-16 is reset, and  
ifthisoccursduringaconversion, theconversionishalted  
and the data bus is put into Hi-Z mode. ꢃn reset, requests  
for new conversions are ignored. Once RESET returns  
low, the LTC2393-16 is ready to start a new conversion  
after the acquisition time has been met. See Figure 13.  
CS = RD = ꢀ  
t
±
CNVST  
ꢂUSY  
t
COIV  
t
t
6
16  
PREVꢃOUS COIVERSꢃOI  
IEW  
DATA ꢂUS D[15:ꢀ]  
239316 Fꢀ8  
Figure 8. Read the Parallel Data Continuously.  
The Data Sus is Always Driven and Can’t Se Lhared  
239316fa  
16  
LTC2393-16  
APPLICATIONS INFORMATION  
CS  
RD  
ꢂUSY  
Hi-Z  
Hi-Z  
CURREIT  
COIVERSꢃOI  
DATA ꢂUS D[15:ꢀ]  
239316 Fꢀ9  
t
17  
t
18  
Figure 9. Read the Parallel Data After the Conversion  
CS = ꢀ  
t
±
CNVST, RD  
ꢂUSY  
t
COIV  
t
6
Hi-Z  
Hi-Z  
PREVꢃOUS  
COIVERSꢃOI  
DATA ꢂUS D[15:ꢀ]  
239316 Fꢀ9  
t
t
18  
17  
Figure 10. Read the Parallel Data During the Conversion  
8-ꢂꢃT ꢃITERFACE  
CS, RD  
ꢂYTESWAP  
D[15:8]  
Hi-Z  
Hi-Z  
HꢃGH ꢂYTE  
LOW ꢂYTE  
239316 F11  
t
t
17  
t
18  
17  
Figure 11. 8-Sit Parallel ꢀnterface Using the SYTELWAP Pin  
239316fa  
17  
LTC2393-16  
APPLICATIONS INFORMATION  
RD = ꢀ  
SCLK STARTS LOW  
t
15  
CS  
ꢂUSY  
t
8
t
1ꢀ  
t
9
SCLK  
1
2
3
±
15  
16  
17  
18  
t
13  
SDOUT  
(ADC 2)  
Hi-Z  
D15  
D1±  
2
D13  
2
D1  
2
Dꢀ  
2
D15  
1
D1±  
1
2
t
t
12  
1±  
t
11  
SDꢃI  
(ADC 2)  
D15  
1
D1±  
1
D13  
1
D1  
1
Dꢀ  
1
RD = ꢀ  
SCLK STARTS HꢃGH  
CS  
ꢂUSY  
t
8
t
1ꢀ  
t
9
SCLK  
1
2
3
±
15  
16  
17  
18  
t
13  
Hi-Z  
SDOUT  
(ADC 2)  
D15  
D1±  
2
D13  
2
D1  
2
Dꢀ  
2
D15  
1
D1±  
1
2
t
t
12  
1±  
t
11  
SDꢃI  
(ADC 2)  
D15  
1
D1±  
1
D13  
1
D1  
1
Dꢀ  
1
CNVST ꢃI  
CS ꢃI  
RD ꢃI  
SCLK ꢃI  
LTC2393-16  
LTC2393-16  
CNVST  
CNVST  
CS  
CS  
RD  
SCLK  
SDꢃI SDOUT  
RD  
SCLK  
SDꢃI SDOUT  
DATA OUT  
239316 F12  
ADC 1  
ADC 2  
Figure 1±. Lerial ꢀnterface with Eꢂternal Clock. Read After the Conversion. Daisy Chain Multiple Converters  
t
7
RESET  
t
ACQ  
CVNST  
Hi-Z  
DATA ꢂUS D[15:ꢀ]  
239316 F13  
Figure 13. RELET Pin Timing  
239316fa  
18  
LTC2393-16  
APPLICATIONS INFORMATION  
SOARD 2AYOUT  
Recommended 2ayout  
To obtain the best performance from the LTC2393-16, a  
printed circuit board (PCꢂ) is recommended. Layout for  
the printed circuit board should ensure the digital and  
analog signal lines are separated as much as possible.  
ꢃn particular, care should be taꢁen not to run any digital  
clocꢁs or signals alongside analog signals or underneath  
the ADC.  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢂypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC15ꢀꢀA, the  
evaluation ꢁit for the LTC2393-16  
Partial Lchematic of Demoboard  
C36  
1μF  
CNVST  
3±  
39  
REFSEISE  
38  
37  
CNVST  
REFꢃI  
REFOUT  
R2  
2±9Ω  
1%  
29  
28  
27  
26  
25  
2±  
23  
22  
21  
16  
15  
1±  
13  
12  
11  
1ꢀ  
9
ꢂUSY  
D15  
D1±  
D13  
D12  
ꢂUSY  
D15  
±3  
D1±  
+
ꢃI  
D13  
D12  
C5±  
OPT  
D11ꢄSCLK  
D11ꢄSCLK  
D1ꢀꢄSDOUT  
D9ꢄSDꢃI  
D8  
D1ꢀꢄSDOUT  
D9ꢄSDꢃI  
D8  
C2  
D7  
D7  
LTC2393-16  
22ꢀꢀpF  
12ꢀ6 IPO  
D6  
D6  
D5  
D5  
D±  
D±  
R3  
2±9Ω  
1%  
D3  
D3  
D2  
D1  
D2  
D1  
±±  
ꢃI  
Dꢀ  
Dꢀ  
8
C55  
OPT  
ꢂYTESWAP  
GID  
7
VCM Oꢂꢄ2C GID SERꢄPAR RESET PD CS RD  
36  
6
5
±
32 33  
31 3ꢀ  
C53  
1ꢀμF  
C31  
ꢀ.1μF  
C3ꢀ  
1ꢀμF  
C29  
ꢀ.1μF  
C28  
1ꢀμF  
R2±  
1.ꢀΩ  
3.3V  
5V  
C±ꢀ  
±.7μF  
±7  
±6 ±5 ±ꢀ  
2
19  
3
18  
AVPꢄAVL AVP AVP AVP AVP  
DVP DVPꢄDVL OVP  
LTC2393-16  
GID GID GID GID GID GID OGID  
±8 ±± ±1 35 2ꢀ 17  
239316 TAꢀ2  
1
239316fa  
19  
LTC2393-16  
APPLICATIONS INFORMATION  
Partial Top Lilkscreen  
Partial 2ayer 1 Component Lide  
Partial 2ayer ± Ground Plane  
239316fa  
20  
LTC2393-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UK Package  
48-Lead Plastic QFN (7mm w 7mm)  
(Reference LTC DWG # 05-08-ꢀ704 Rev C)  
0.70 0.05  
5.ꢀ5 0.05  
5.50 REF  
6.ꢀ0 0.05 7.50 0.05  
(4 SIDES)  
5.ꢀ5 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
7.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
47 48  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ  
CHAMFER  
C = 0.35  
5.ꢀ5 0.ꢀ0  
5.50 REF  
(4-SIDES)  
5.ꢀ5 0.ꢀ0  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
239316fa  
21  
LTC2393-16  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
2X Package  
48-2ead Plastic 2QFP ꢁ7mm × 7mmx  
(Reference LTC DWG # ꢀ5-ꢀ8-176ꢀ Rev Ø)  
7.15 – 7.25  
5.5ꢀ REF  
9.ꢀꢀ ꢂSC  
7.ꢀꢀ ꢂSC  
±8  
±8  
SEE IOTE: ±  
1
2
1
2
ꢀ.5ꢀ ꢂSC  
9.ꢀꢀ ꢂSC  
7.ꢀꢀ ꢂSC  
5.5ꢀ REF  
7.15 – 7.25  
ꢀ.2ꢀ – ꢀ.3ꢀ  
A
A
PACKAGE OUTLꢃIE  
Cꢀ.3ꢀ – ꢀ.5ꢀ  
1.3ꢀ MꢃI  
RECOMMEIDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE IOT SOLDERED  
1.6ꢀ  
11/ – 13/  
1.35 – 1.±5 MAX  
Rꢀ.ꢀ8 – ꢀ.2ꢀ  
GAUGE PLAIE  
ꢀ.25  
ꢀ/ – 7/  
11/ – 13/  
1.ꢀꢀ REF  
ꢀ.5ꢀ  
ꢂSC  
ꢀ.ꢀ9 – ꢀ.2ꢀ  
ꢀ.17 – ꢀ.27  
ꢀ.ꢀ5 – ꢀ.15  
LX±8 LQFP ꢀ9ꢀ7 REVØ  
ꢀ.±5 – ꢀ.75  
SECTꢃOI A – A  
IOTE:  
1. PACKAGE DꢃMEISꢃOIS COIFORM TO JEDEC #MS-ꢀ26 PACKAGE OUTLꢃIE  
2. DꢃMEISꢃOIS ARE ꢃI MꢃLLꢃMETERS  
±. PꢃI-1 ꢃIDEITꢃFꢃER ꢃS A MOLDED ꢃIDEITATꢃOI, ꢀ.5ꢀmm DꢃAMETER  
5. DRAWꢃIG ꢃS IOT TO SCALE  
3. DꢃMEISꢃOIS OF PACKAGE DO IOT ꢃICLUDE MOLD FLASH. MOLD FLASH  
SHALL IOT EXCEED ꢀ.25mm OI AIY SꢃDE, ꢃF PRESEIT  
239316fa  
22  
LTC2393-16  
REVISION HISTORY  
REV  
DATE  
DELCRꢀPTꢀOI  
PAGE IUMSER  
A
7ꢄ12  
ꢃncreased T  
to 15ꢀ/C on LQFP pacꢁage  
2
3
JMAX  
ꢃncreased SFDR specification under Dynamic Accuray to 1ꢀ8dꢂ  
Updated SIR, SꢃIAD vs ꢃnput Frequency graph  
7
Added condition for reading conversion result under Serial Modes  
Updated data bit numbering on Figure 12  
16  
18  
239316fa  
ꢃnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation maꢁes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2393-16  
TYPICAL APPLICATION  
ADC Driver: Lingle-Ended ꢀnput to Differential Output  
5V  
2±9Ω  
ꢀ.1μF  
V
ꢃI  
+
5V  
+
+
ꢃI1  
ꢀV to ±V –  
SHDN  
V
OUT2  
+
A
ꢃI  
22ꢀꢀpF  
LTC2393-16  
+
+
LT635ꢀ  
A
ꢃI  
+
V
OUT1  
2±9Ω  
ꢃI2  
ꢃI1  
239316 TAꢀ3  
ꢀ.1μF  
–5V  
ꢀ.1μF  
±99Ω  
2V  
RELATED PARTS  
PART IUMSER  
DELCRꢀPTꢀOI  
COMMEITL  
LTC1±11  
1±-ꢂit 2.5Msps Parallel ADC  
5V Supply, 1-Channel, 8ꢀdꢂ SIR, ±1.8V, ±1.27V, ±ꢀ.9V,  
±ꢀ.6±V ꢃnput Ranges, SSOP-36 Pacꢁage  
LTC16ꢀ9  
16-ꢂit 2ꢀꢀꢁsps Serial ADC  
5V Supply, 1-Channel, 87dꢂ SIR, Resistor-Selectable ꢃnputs:  
±1ꢀV, ±5V, ±3.3V, V to ±V, V to 5V, V to 1ꢀV  
LTC186±  
LTC186±L  
LTC1865  
LTC1865L  
LTC1867  
16-ꢂit 25ꢀꢁsps Serial ADC  
16-ꢂit 15ꢀꢁsps Serial ADC  
16-ꢂit 25ꢀꢁsps Serial ADC  
16-ꢂit 15ꢀꢁsps Serial ADC  
5V Supply, 1-Channel, ±.3mW, MSOP-8 Pacꢁage  
3V Supply, 1-Channel, 1.3mW, MSOP-8 Pacꢁage  
5V Supply, 2-Channel, ±.3mW, MSOP-8 Pacꢁage  
3V Supply, 2-Channel, 1.3mW, MSOP-8 Pacꢁage  
16-ꢂit, 2ꢀꢀꢁsps 8-Channel ADC  
5V Supply, 6.5mW, SSOP-16 Pacꢁage, Pin Compatible with  
LTC1863, LTC1867L  
LTC2355-1±ꢄLTC2356-1±  
LTC2392-16  
1±-ꢂit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, 18mW, MSOP-1ꢀ Pacꢁage  
16-ꢂit, 5ꢀꢀꢁsps ParallelꢄSerial ADC  
16-ꢂit, 25ꢀꢁsps ParallelꢄSerial ADC  
5V Supply, Differential ꢃnput, 9±dꢂ SIR, ±±.ꢀ96V ꢃnput Range,  
Pin Compatible with the LTC2393-16, LTC2391-16  
LTC2391-16  
5V Supply, Differential ꢃnput, 9±dꢂ SIR, ±±.ꢀ96V ꢃnput Range,  
Pin Compatible with the LTC2393-16, LTC2392-16  
DACs  
LTC26±1  
LTC263ꢀ  
References  
LT1236  
16-ꢂit Single Serial V  
DACs  
DACs  
±1LSꢂ ꢃIL, ±1LSꢂ DIL, MSOP-8 Pacꢁage, ꢀV to 5V Output  
SC7ꢀ 6-Pin Pacꢁage, ꢃnternal Reference, ±1LSꢂ ꢃIL (12 ꢂits)  
OUT  
12-ꢄ1ꢀ-ꢄ8-ꢂit Single V  
OUT  
Precision Reference in SO-8 Pacꢁage  
ꢀ.25ppm Ioise, Low Drift Precision Reference  
5V, 1ꢀV; ꢀ.ꢀ5% ꢃnitial Accuracy (Max); 5ppm Tempco (Max)  
2.ꢀ25% ꢃnitial Accuracy (Max), 2ppm Tempco (Max),  
LTC6655  
P-P  
ꢀ.25ppm Ioise (ꢀ.1Hz to 1ꢀHz) in MSOP-8 Pacꢁage  
P-P  
Amplifiers  
LT1±69  
Dual 9ꢀMHz, 22Vꢄμs Dual Op Amps in ±mm × ±mm  
DFI-12 Pacꢁage  
125μV (Max) ꢃnput Offset Voltage, Low Distortion: –96.5dꢂ at  
1ꢀꢀꢁHz, 1ꢀV , Settling Time: 9ꢀꢀns  
P-P  
LT18ꢀ6ꢄLT18ꢀ7  
325MHz, SingleꢄDual Precision Op Amp in TSOT23-6  
Pacꢁage  
Rail-to-Rail ꢃnput and Output, Low Distortion, –8ꢀdꢂc at 5MHz,  
Low Voltage Ioise: 3.5nVꢄ√Hz  
LTC62ꢀꢀꢄLTC62ꢀꢀ-5ꢄ  
LTC62ꢀꢀ-1ꢀ  
165MHzꢄ8ꢀꢀMHzꢄ1.6GHz Op Amp with  
Unity GainꢄAV = 5ꢄAV = 1ꢀ  
Low Ioise Voltage: ꢀ.95nVꢄ√Hz (1ꢀꢀꢁHz), Low Distortion:  
–8ꢀdꢂ at 1MHz, TSOT23-6 Pacꢁage  
LT635ꢀ  
Low Ioise Single-Ended-to-Differential ADC Driver  
Rail-to-Rail ꢃnput and Outputs, 2±ꢀns ꢀ.ꢀ1% Settling Time  
239316fa  
LT 0712 REV A • PRINTED IN USA  
LinearTechnology Corporation  
163ꢀ McCarthy ꢂlvd., Milpitas, CA 95ꢀ35-7±17  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(±ꢀ8) ±32-19ꢀꢀ FAX: (±ꢀ8) ±3±-ꢀ5ꢀ7 www.linear.com  

相关型号:

LTC2393IUK-16PBF

16-Bit, 1Msps SAR ADC With 94db SNR
Linear

LTC2393IUK-16TRPBF

16-Bit, 1Msps SAR ADC With 94dB SNR
Linear

LTC2393LX-16

16-Bit, 1Msps SAR ADC With 94dB SNR
Linear

LTC2393UK-16

16-Bit, 1Msps SAR ADC With 94dB SNR
Linear

LTC2400

24-Bit uPower No Latency ADC in SO-8
Linear

LTC2400C

24-Bit uPower No Latency ADC in SO-8
Linear

LTC2400CS8

24-Bit uPower No Latency ADC in SO-8
Linear

LTC2400CS8#PBF

LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2400CS8#TR

LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2400CS8#TRPBF

LTC2400 - 24-Bit µPower No Latency Delta-Sigma ADC in SO-8; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC2400I

24-Bit uPower No Latency ADC in SO-8
Linear

LTC2400IS8

24-Bit uPower No Latency ADC in SO-8
Linear