LTC2444IUHF#TR [Linear]

LTC2444 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C;
LTC2444IUHF#TR
型号: LTC2444IUHF#TR
厂家: Linear    Linear
描述:

LTC2444 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C

文件: 总28页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2444/LTC2445/  
LTC2448/LTC2449  
24-Bit High Speed  
8-/16-Channel ∆Σ ADCs with  
Selectable Speed/Resolution  
U
FEATURES  
DESCRIPTIO  
The LTC®2444/LTC2445/LTC2448/LTC2449 are 8-/16-  
channel (4-/8-differential) high speed 24-bit No Latency  
∆ΣTM ADCs. They use a proprietary delta-sigma architec-  
ture enabling variable speed/resolution. Through a simple  
4-wire serial interface, ten speed/resolution combinations  
6.9Hz/280nVRMS to 3.5kHz/25µVRMS (4kHz with external  
oscillator) can be selected with no latency between con-  
version results or shift in DC accuracy (offset, full-scale,  
linearity, drift). Additionally, a 2X speed mode can be  
selected enabling output rates up to 7kHz (8kHz if an  
external oscillator is used) with one cycle latency.  
Up to 8 Differential or 16 Single-Ended Input  
Channels  
Up to 8kHz Output Rate  
Up to 4kHz Multiplexing Rate  
Selectable Speed/Resolution  
2µVRMS Noise at 1.76kHz Output Rate  
200nVRMS Noise at 13.8Hz Output Rate with  
Simultaneous 50/60Hz Rejection  
Guaranteed Modulator Stability and Lock-Up  
Immunity for any Input and Reference Conditions  
0.0005% INL, No Missing Codes  
Autosleep Enables 20µA Operation at 6.9Hz  
<5µV Offset (4.5V < VCC < 5.5V, 40°C to 85°C)  
Any combination of single-ended or differential inputs can  
beselectedwithacommonmodeinputrangefromground  
to VCC, independent of VREF. While operating in the 1X  
speed mode the first conversion following a new speed,  
resolution, or channel selection is valid. Since there is no  
settling time between conversions, all 8 differential chan-  
nels can be scanned at a rate of 500Hz. At the conclusion  
of each conversion, the converter is internally reset elimi-  
nating any memory effects between successive conver-  
sions and assuring stability of the high order delta-sigma  
modulator.  
Differential Input and Differential Reference with  
GND to VCC Common Mode Range  
No Latency Mode, Each Conversion is Accurate Even  
After a New Channel is Selected  
Internal Oscillator—No External Components  
LTC2445/LTC2449 Include MUXOUT/ADCIN for  
External Buffering or Gain  
Tiny QFN 5mm xU7mm Package  
APPLICATIO S  
High Speed Multiplexing  
Weight Scales  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
No Latency ∆Σ is a trademark of Linear Technology Corporation.  
Auto Ranging 6-Digit DVMs  
Direct Temperature Measurement  
High Speed Data Acquisition  
U
TYPICAL APPLICATIO  
LTC2444/LTC2448  
Simple 24-Bit Variable Speed Data Acquisition System  
Speed vs RMS Noise  
4.5V TO 5.5V  
100  
10  
1
V
V
V
= 5V  
CC  
= 5V  
IN  
REF  
1µF  
+
= V = 0V  
IN  
+
REF  
V
2X SPEED MODE  
CC  
CH0  
CH1  
= EXTERNAL OSCILLATOR  
NO LATENCY MODE  
= INTERNAL OSCILLATOR  
F
O
(SIMULTANEOUS 50Hz/60Hz  
REJECTION AT 6.9Hz OUTPUT RATE)  
2.8µV AT 880Hz  
CH7  
CH8  
SDI  
SCK  
SDO  
CS  
16-CHANNEL  
MUX  
VARIABLE SPEED/  
RESOLUTION  
DIFFERENTIAL  
24-BIT ∆Σ ADC  
280nV AT 6.9Hz  
(50/60Hz REJECTION)  
+
4-WIRE  
SPI INTERFACE  
THERMOCOUPLE  
CH15  
COM  
0.1  
REF  
1
10  
100  
1000  
10000  
CONVERSION RATE (Hz)  
GND  
LTC2448  
2440 TA02  
2444 TA01  
sn2444589 2444589fs  
1
LTC2444/LTC2445/  
LTC2448/LTC2449  
W W U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Supply Voltage (VCC) to GND.......................0.3V to 6V  
Analog Input Pins Voltage  
to GND.................................... 0.3V to (VCC + 0.3V)  
Reference Input Pins Voltage  
Operating Temperature Range  
LTC2444C/LTC2445C/  
LTC2448C/LTC2449C .............................. 0°C to 70°C  
LTC2444I/LTC2445I/  
to GND.................................... 0.3V to (VCC + 0.3V)  
Digital Input Voltage to GND........ 0.3V to (VCC + 0.3V)  
Digital Output Voltage to GND ..... 0.3V to (VCC + 0.3V)  
LTC2448I/LTC2449I ........................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
LTC2445CUHF  
LTC2445IUHF  
LTC2444CUHF  
LTC2444IUHF  
GND  
BUSY  
EXT  
1
2
3
4
5
6
7
8
9
31 GND  
GND  
BUSY  
EXT  
1
2
3
4
5
6
7
8
9
31 GND  
30 REF  
30 REF  
+
+
REF  
29  
28  
REF  
29  
28  
GND  
GND  
GND  
COM  
NC  
V
CC  
GND  
GND  
GND  
COM  
NC  
V
CC  
27 MUXOUTN  
26 ADCINN  
25 ADCINP  
24 MUXOUTP  
23 NC  
27 NC  
26 NC  
25 NC  
24 NC  
23 NC  
CH0  
CH0  
QFN PART MARKING*  
2444  
QFN PART MARKING*  
2445  
CH1 10  
NC 11  
NC 12  
22 CH7  
CH1 10  
NC 11  
NC 12  
22 CH7  
21 CH6  
21 CH6  
20  
NC  
20  
NC  
13 14 15 16 17 18 19  
UHF PACKAGE  
13 14 15 16 17 18 19  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 34°C/W  
TJMAX = 125°C, θJA = 34°C/W  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
38 37 36 35 34 33 32  
38 37 36 35 34 33 32  
LTC2448CUHF  
LTC2448IUHF  
GND  
BUSY  
EXT  
1
2
3
4
5
6
7
8
9
31 GND  
LTC2449CUHF  
LTC2449IUHF  
GND  
BUSY  
EXT  
1
2
3
4
5
6
7
8
9
31 GND  
30 REF  
30 REF  
+
+
REF  
29  
28  
REF  
29  
28  
GND  
GND  
GND  
COM  
CH0  
V
CC  
GND  
GND  
GND  
COM  
CH0  
V
CC  
27 NC  
26 NC  
25 NC  
24 NC  
27 MUXOUTN  
26 ADCINN  
25 ADCINP  
24 MUXOUTP  
23 CH15  
CH1  
23 CH15  
22 CH14  
21 CH13  
CH1  
CH2 10  
CH3 11  
CH4 12  
QFN PART MARKING*  
2448  
CH2 10  
CH3 11  
CH4 12  
22 CH14  
QFN PART MARKING*  
2449  
21 CH13  
20  
CH12  
20  
CH12  
13 14 15 16 17 18 19  
UHF PACKAGE  
13 14 15 16 17 18 19  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
38-LEAD (5mm × 7mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 34°C/W  
TJMAX = 125°C, θJA = 34°C/W  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
sn2444589 2444589fs  
2
LTC2444/LTC2445/  
LTC2448/LTC2449  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution (No Missing Codes)  
Integral Nonlinearity  
0.1V V V , –0.5 • V V 0.5 • V , (Note 5)  
24  
Bits  
REF  
CC  
REF  
IN  
REF  
+
V
= 5V, REF = 5V, REF = GND, V  
= 2.5V, (Note 6)  
5
3
15  
5
ppm of V  
ppm of V  
CC  
INCM  
REF  
REF  
+
REF = 2.5V, REF = GND, V  
= 1.25V, (Note 6)  
INCM  
+
Offset Error  
2.5V REF V , REF = GND,  
2.5  
µV  
CC  
+
GND IN = IN V (Note 12)  
CC  
+
Offset Error Drift  
2.5V REF V , REF = GND,  
20  
nV/°C  
CC  
+
GND IN = IN V  
CC  
+
+
Positive Full-Scale Error  
Positive Full-Scale Error Drift  
Negative Full-Scale Error  
Negative Full-Scale Error Drift  
Total Unadjusted Error  
REF = 5V, REF = GND, IN = 3.75V, IN = 1.25V  
10  
10  
50  
50  
ppm of V  
ppm of V  
REF  
REF  
+
+
REF = 2.5V, REF = GND, IN = 1.875V, IN = 0.625V  
+
2.5V REF V , REF = GND,  
IN = 0.75REF , IN = 0.25 • REF  
0.2  
ppm of V /°C  
REF  
CC  
+
+
+
+
+
REF = 5V, REF = GND, IN = 1.25V, IN = 3.75V  
10  
10  
50  
50  
ppm of V  
ppm of V  
REF  
REF  
+
+
REF = 2.5V, REF = GND, IN = 0.625V, IN = 1.875V  
+
2.5V REF V , REF = GND,  
IN = 0.25 • REF , IN = 0.75 • REF  
0.2  
ppm of V /°C  
REF  
CC  
+
+
+
+
5V V 5.5V, REF = 2.5V, REF = GND, V  
= 1.25V  
15  
15  
15  
ppm of V  
ppm of V  
ppm of V  
CC  
INCM  
REF  
REF  
REF  
+
5V V 5.5V, REF = 5V, REF = GND, V  
= 2.5V  
CC  
INCM  
+
REF = 2.5V, REF = GND, V  
= 1.25V, (Note 6)  
INCM  
+
Input Common Mode Rejection DC 2.5V REF V , REF = GND,  
120  
dB  
CC  
+
GND IN = IN V  
CC  
U
U
U
U
A ALOG I PUT A D REFERE CE The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
IN  
Absolute/Common Mode IN Voltage  
GND – 0.3V  
GND – 0.3V  
V
V
+ 0.3V  
V
V
V
CC  
CC  
IN  
Absolute/Common Mode IN Voltage  
+ 0.3V  
/2  
V
Input Differential Voltage Range  
–V /2  
REF  
V
IN  
REF  
+
(IN – IN )  
+
+
REF  
REF  
Absolute/Common Mode REF Voltage  
0.1  
GND  
0.1  
V
V
V
V
CC  
Absolute/Common Mode REF Voltage  
V
– 0.1V  
CC  
V
Reference Differential Voltage Range  
V
CC  
REF  
+
(REF – REF )  
+
C
C
C
C
IN Sampling Capacitance  
2
2
2
2
1
pF  
pF  
pF  
pF  
nA  
S(IN+)  
IN Sampling Capacitance  
S(IN–)  
+
REF Sampling Capacitance  
S(REF+)  
REF Sampling Capacitance  
S(REF–)  
+
I
Leakage Current, Inputs and Reference  
CS = V , IN = GND, IN = GND,  
–15  
15  
DC_LEAK(IN+, IN–,  
CC  
+
REF = 5V, REF = GND  
REF+, REF–)  
I
Average Input/Reference Current  
During Sampling  
Varies, See Applications Section  
nA  
SAMPLE(IN+, IN–,  
REF+, REF–)  
t
MUX Break-Before-Make  
MUX Off Isolation  
50  
ns  
OPEN  
QIRR  
V
= 2V DC to 1.8MHz  
120  
dB  
IN  
P-P  
sn2444589 2444589fs  
3
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The denotes specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
4.5V V 5.5V  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
High Level Input Voltage  
2.5  
V
IH  
IL  
IH  
IL  
CC  
CS, F  
O
Low Level Input Voltage  
CS, F  
4.5V V 5.5V  
0.8  
V
V
CC  
O
High Level Input Voltage  
SCK  
4.5V V 5.5V (Note 8)  
2.5  
CC  
Low Level Input Voltage  
SCK  
4.5V V 5.5V (Note 8)  
0.8  
10  
10  
V
CC  
I
I
Digital Input Current  
0V V V  
CC  
–10  
–10  
µA  
µA  
pF  
pF  
V
IN  
IN  
CS, F , EXT, SOI  
O
Digital Input Current  
SCK  
0V V V (Note 8)  
IN  
IN  
CC  
C
C
V
V
V
V
Digital Input Capacitance  
10  
10  
IN  
CS, F  
O
Digital Input Capacitance  
SCK  
(Note 8)  
IN  
High Level Output Voltage  
SDO, BUSY  
I = –800µA  
O
V
V
– 0.5V  
– 0.5V  
OH  
OL  
OH  
OL  
CC  
CC  
Low Level Output Voltage  
SDO, BUSY  
I = 1.6mA  
O
0.4V  
V
High Level Output Voltage  
SCK  
I = –800µA (Note 9)  
O
V
Low Level Output Voltage  
SCK  
I = 1.6mA (Note 9)  
O
0.4V  
10  
V
I
Hi-Z Output Leakage  
SDO  
–10  
µA  
OZ  
W U  
POWER REQUIRE E TS  
The denotes specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
4.5  
5.5  
V
CC  
I
CC  
Conversion Mode  
Sleep Mode  
CS = 0V (Note 7)  
8
8
11  
30  
mA  
µA  
CS = V (Note 7)  
CC  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.1  
25  
TYP  
MAX  
20  
UNITS  
MHz  
ns  
f
t
t
t
External Oscillator Frequency Range  
External Oscillator High Period  
External Oscillator Low Period  
Conversion Time  
EOSC  
HEO  
10000  
10000  
25  
ns  
LEO  
OSR = 256 (SDI = 0)  
OSR = 32768 (SDI = 1)  
0.99  
126  
1.13  
145  
1.33  
170  
ms  
ms  
CONV  
40 • OSR +170  
External Oscillator (Notes 10, 13)  
ms  
f
(kHz)  
EOSC  
0.9  
/10  
f
Internal SCK Frequency  
Internal Oscillator (Note 9)  
External Oscillator (Notes 9, 10)  
0.8  
1
MHz  
Hz  
ISCK  
f
EOSC  
sn2444589 2444589fs  
4
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
TYP  
MAX  
55  
UNITS  
%
D
ISCK  
Internal SCK Duty Cycle  
External SCK Frequency Range  
External SCK Low Period  
External SCK High Period  
Internal SCK 32-Bit Data Output Time  
45  
f
t
t
t
(Note 8)  
20  
MHz  
ns  
ESCK  
(Note 8)  
25  
25  
LESCK  
(Note 8)  
ns  
HESCK  
DOUT_ISCK  
Internal Oscillator (Notes 9, 11)  
External Oscillator (Notes 9, 10)  
41.6  
35.3  
30.9  
µs  
s
320/f  
EOSC  
t
t
t
t
t
t
t
t
t
t
t
External SCK 32-Bit Data Output Time  
CS to SDO Low Z  
(Note 8)  
32/f  
s
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DOUT_ESCK  
ESCK  
(Note 12)  
(Note 12)  
(Note 9)  
0
0
25  
25  
1
CS to SDO High Z  
CS to SCK ↓  
2
5
3
CS to SCK ↑  
(Notes 8, 12)  
25  
4
SCK to SDO Valid  
25  
50  
KQMAX  
SDO Hold After SCK ↓  
SCK Set-Up Before CS ↓  
SCK Hold After CS ↓  
SDI Setup Before SCK ↑  
SDI Hold After SCK ↑  
(Note 5)  
15  
50  
KQMIN  
5
6
7
8
(Note 5)  
(Note 5)  
10  
10  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 7: The converter uses the internal oscillator.  
of the device may be impaired.  
Note 8: The converter is in external SCK mode of operation such that the  
Note 2: All voltage values are with respect to GND.  
SCK pin is used as a digital input. The frequency of the clock signal driving  
SCK during the data output is f  
and is expressed in Hz.  
ESCK  
Note 3: V = 4.5V to 5.5V unless otherwise specified.  
CC  
+
+
V
V
= REF – REF , V  
= (REF + REF )/2;  
Note 9: The converter is in internal SCK mode of operation such that the  
REF  
IN  
REFCM  
+
+
= IN – IN , V  
= (IN + IN )/2.  
SCK pin is used as a digital output. In this mode of operation, the SCK pin  
INCM  
has a total equivalent load capacitance of C  
= 20pF.  
LOAD  
Note 4: F pin tied to GND or to external conversion clock source with  
O
f
= 10MHz unless otherwise specified.  
Note 10: The external oscillator is connected to the F pin. The external  
O
EOSC  
oscillator frequency, f  
, is expressed in Hz.  
EOSC  
Note 5: Guaranteed by design, not subject to test.  
Note 11: The converter uses the internal oscillator. F = 0V.  
O
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 12: Guaranteed by design and test correlation.  
Note 13: There is an internal reset that adds an additional 1µs (typ) to the  
conversion time.  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4, 5, 6, 31, 32, 33): Ground. Multiple  
ground pins internally connected for optimum ground  
current flow and VCC decoupling. Connect each one of  
these pins to a common ground plane through a low  
impedance connection. All 7 pins must be connected to  
ground for proper operation.  
EXT (Pin 3): Internal/External SCK Selection Pin. This pin  
is used to select internal or external SCK for outputting/  
inputting data. If EXT is tied low, the device is in the  
external SCK mode and data is shifted out of the device  
under the control of a user applied serial clock. If EXT is  
tied high, the internal serial clock mode is selected. The  
device generates its own SCK signal and outputs this on  
the SCK pin. A framing signal BUSY (Pin 2) goes low  
indicating data is being output.  
COM (Pin 7): The common negative input (IN) for all  
single ended multiplexer configurations. The voltage on  
CH0-CH15 and COM pins can have any value between  
sn2444589 2444589fs  
BUSY (Pin 2): Conversion in Progress Indicator. This pin  
is HIGH while the conversion is in progress and goes LOW  
indicating the conversion is complete and data is ready. It  
remains LOW during the sleep and data output states. At  
the conclusion of the data output state, it goes HIGH  
indicating a new conversion has begun.  
5
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
U
U
PI FU CTIO S  
GND – 0.3V to VCC + 0.3V. Within these limits, the two  
selected inputs (IN+ and IN) provide a bipolar input range  
(VIN =IN+IN)from0.5VREF to0.5VREF. Outsidethis  
input range, the converter produces unique over-range  
and under-range output codes.  
defaultmodeofoperationisCH0-CH1,OSRof256,and1X  
mode. The serial data input contains an enable bit which  
determines if a new channel/speed is selected. If this bit is  
low the following conversion remains at the same speed  
andselectedchannel. Theserialdatainputisappliedtothe  
device under control of the serial clock (SCK) during the  
data output cycle. The first conversion following a new  
channel/speed is valid.  
CH0 to CH15 (Pins 8-23): LTC2448/LTC2449 Analog  
Inputs. May be programmed for single-ended or differen-  
tial mode.  
FO (Pin 35): Frequency Control Pin. Digital input that  
controls the internal conversion clock. When FO is con-  
nected to VCC or GND, the converter uses its internal  
oscillator running at 9MHz. The conversion rate is deter-  
mined by the selected OSR such that tCONV (ms) = 40 •  
OSR + 170/fOSC (kHz). The first digital filter null is located  
at8/tCONV,7kHzatOSR=256and55Hz(Simultaneous50/  
60Hz) at OSR = 32768. This pin may be driven with a  
maximum external clock of 10.24MHz resulting in a maxi-  
mum 8kHz output rate (OSR = 64, 2X Mode).  
CH0toCH7(Pins9,10,13,14,17,18,21,22):LTC2444/  
LTC2445 Analog Inputs. May be programmed for single-  
ended or differential mode.  
NC (Pins 8, 11, 12, 15, 16, 19, 20, 23): LTC2444/  
LTC2445 No Connect/Channel Isolation Shield. May be  
left floating or tied to any voltage 0 to VCC in order to  
provide isolation for pairs of differential input channels.  
NC (Pins 24, 25, 26, 27): LTC2444/LTC2448 No Connect.  
These pins can either be tied to ground or left floating.  
CS (Pin 36): Active Low Chip Select. A LOW on this pin  
enables the SDO ditital output and wakes up the ADC.  
Following each conversion the ADC automatically enters  
thesleepmodeandremainsinthislowpowerstateaslong  
asCSisHIGH. ALOW-to-HIGHtransitiononCSduringthe  
Data Output aborts the data transfer and starts a new  
conversion.  
MUXOUTP (Pin 24): LTC2445/LTC2449 Positive Multi-  
plexerOutput. Usedtodrivetheinputtoanexternalbuffer/  
amplifier.  
ADCINP (Pin 25): LTC2445/LTC2449 Positive ADC Input.  
Tie to output of buffer/amplifier driven by MUXOUTP.  
ADCINN(Pin26):LTC2445/LTC2449NegativeADCInput.  
Tie to output of buffer/amplifier driven by MUXOUTN.  
SDO (Pin 37): Three-State Digital Output. During the data  
output period, this pin is used as serial data output. When  
the chip select CS is HIGH (CS = VCC) the SDO pin is in a  
high impedance state. During the conversion and sleep  
periods, this pin is used as the conversion status output.  
The conversion status can be observed by pulling CS  
LOW. This signal is HIGH while the conversion is in  
progress and goes LOW once the conversion is complete.  
MUXOUTN (Pin 27): LTC2445/LTC2449 Negative Multi-  
plexerOutput. Usedtodrivetheinputtoanexternalbuffer/  
amplifier.  
VCC (Pin28):PositiveSupplyVoltage. BypasstoGNDwith  
a 10µF tantalum capacitor in parallel with a 0.1µF ceramic  
capacitor as close to the part as possible.  
REF+ (Pin 29), REF(Pin 30): Differential Reference  
Input. The voltage on these pins can have any value  
between GND and VCC as long as the reference positive  
input, REF+, is maintained more positive than the negative  
reference input, REF+, by at least 0.1V.  
SCK (Pin 38): Bidirectional Digital Clock Pin. In internal  
serialclockoperationmode,SCKisusedasadigitaloutput  
fortheinternalserialinterfaceclockduringthedataoutput  
period. In the external serial clock operation mode, SCK is  
used as the digital input for the external serial interface  
clock during the data output period. The serial clock  
operation mode is determined by the logic level applied to  
the EXT pin.  
SDI (Pin 34): Serial Data Input. This pin is used to select  
the speed, 1X or 2X mode, resolution, and input channel,  
for the next conversion cycle. At initial power up, the  
sn2444589 2444589fs  
6
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
U
W
FU CTIO AL BLOCK DIAGRA  
INTERNAL  
OSCILLATOR  
V
CC  
GND  
F
AUTOCALIBRATION  
AND CONTROL  
O
(INT/EXT)  
+
REF  
REF  
CH0  
CH1  
+
+
IN  
IN  
DIFFERENTIAL  
3RD ORDER  
∆Σ MODULATOR  
SDI  
MUX  
SCK  
SDO  
CS  
SERIAL  
INTERFACE  
CH15  
COM  
DECIMATING FIR  
ADDRESS  
2444 F01  
Figure 1. Functional Block Diagram  
V
TEST CIRCUITS  
CC  
1.69k  
SDO  
SDO  
C
= 20pF  
1.69k  
C
LOAD  
= 20pF  
LOAD  
Hi-Z TO V  
Hi-Z TO V  
OL  
OL  
OH  
OH  
V
V
TO V  
V
TO V  
OH  
OL  
OL  
OH  
TO Hi-Z  
2440 TA04  
V
TO Hi-Z  
2440 TA03  
U
W U U  
APPLICATIO S I FOR ATIO  
CONVERTER OPERATION  
POWER UP  
IN =CH0, IN =CH1  
OSR=256,1X MODE  
+
Converter Operation Cycle  
CONVERT  
SLEEP  
The LTC2444/LTC2445/LTC2448/LTC2449 are multi-  
channel, high speed, delta-sigma analog-to-digital con-  
verterswithaneasytouse3-or4-wireserialinterface(see  
Figure 1). Their operation is made up of three states. The  
converter operating cycle begins with the conversion,  
followed by the low power sleep state and ends with the  
data output/input (see Figure 2). The 4-wire interface  
consists of serial data input (SDI), serial data output  
(SDO), serial clock (SCK) and chip select (CS). The inter-  
face, timing, operation cycle and data out format is com-  
patible with Linear’s entire family of Σconverters.  
CS = LOW  
AND  
SCK  
CHANNEL SELECT  
SPEED SELECT  
DATA OUTPUT  
2444 F02  
Figure 2. LTC2444/LTC2445/LTC2448/LTC2449  
State Transition Diagram  
sn2444589 2444589fs  
7
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Power-Up Sequence  
Initially, the LTC2444/LTC2445/LTC2448/LTC2449 per-  
form a conversion. Once the conversion is complete, the  
device enters the sleep state. While in this sleep state,  
power consumption is reduced below 10µA. The part  
remains in the sleep state as long as CS is HIGH. The  
conversion result is held indefinitely in a static shift  
register while the converter is in the sleep state.  
TheLTC2444/LTC2445/LTC2448/LTC2449automatically  
enter an internal reset state when the power supply  
voltage VCC drops below approximately 2.2V. This fea-  
ture guarantees the integrity of the conversion result and  
of the serial interface mode selection.  
When the VCC voltage rises above this critical threshold,  
the converter creates an internal power-on-reset (POR)  
signal with a duration of approximately 0.5ms. The POR  
signal clears all internal registers. The conversion imme-  
diately following a POR is performed on the input channel  
IN+ = CH0, IN= CH1 at an OSR = 256 in the 1X mode.  
FollowingthePORsignal,theLTC2444/LTC2445/LTC2448/  
LTC2449 start a normal conversion cycle and follow the  
succession of states described above. The first conver-  
sion result following POR is accurate within the specifica-  
tions of the device if the power supply voltage is restored  
within the operating range (4.5V to 5.5V) before the end of  
the POR time interval.  
Once CS is pulled LOW, the device begins outputting the  
conversion result. There is no latency in the conversion  
resultwhileoperatinginthe1xmode. Thedataoutputcor-  
responds to the conversion just performed. This result is  
shifted out on the serial data out pin (SDO) under the con-  
trol of the serial clock (SCK). Data is updated on the falling  
edge of SCK allowing the user to reliably latch data on the  
rising edge of SCK (see Figure 3). The data output state is  
concludedonce32bitsarereadoutoftheADCorwhenCS  
is brought HIGH. The device automatically initiates a new  
conversion and the cycle repeats.  
Through timing control of the CS, SCK and EXT pins, the  
LTC2444/LTC2445/LTC2448/LTC2449 offer several flex-  
ible modes of operation (internal or external SCK). These  
variousmodesdonotrequireprogrammingconfiguration  
registers; moreover, they do not disturb the cyclic opera-  
tion described above. These modes of operation are  
described in detail in the Serial Interface Timing Modes  
section.  
Reference Voltage Range  
These converters accept a truly differential external refer-  
ence voltage. The absolute/common mode voltage speci-  
ficationfortheREF+ andREFpinscoverstheentirerange  
from GND to VCC. For correct converter operation, the  
REF+ pin must always be more positive than the REFpin.  
The LTC2444/LTC2445/LTC2448/LTC2449 can accept a  
differential reference voltage from 0.1V to VCC. The con-  
verter output noise is determined by the thermal noise of  
the front-end circuits, and as such, its value in microvolts  
is nearly constant with reference voltage. A decrease in  
reference voltage will not significantly improve the  
converter’s effective resolution. On the other hand, a  
reduced reference voltage will improve the converter’s  
Ease of Use  
The LTC2444/LTC2445/LTC2448/LTC2449 data output  
has no latency, filter settling delay or redundant data  
associated with the conversion cycle while operating in  
the 1X mode. There is a one-to-one correspondence  
between the conversion and the output data. Therefore,  
multiplexing multiple analog voltages is easy. Speed/  
resolution adjustments may be made seamlessly be- overall INL performance.  
tween two conversions without settling errors.  
Input Voltage Range  
The LTC2444/LTC2445/LTC2448/LTC2449 perform off-  
The analog input is truly differential with an absolute/  
setandfull-scalecalibrationseveryconversioncycle. This  
calibration is transparent to the user and has no effect on  
the cyclic operation described above. The advantage of  
continuous calibration is extreme stability of offset and  
full-scale readings with respect to time, supply voltage  
change and temperature drift.  
common mode range for the CH0-CH15 and COM input  
pins extending from GND – 0.3V to VCC + 0.3V. Outside  
these limits, the ESD protection devices begin to turn on  
and the errors due to input leakage current increase  
rapidly. Within these limits, the LTC2444/LTC2445/  
sn2444589 2444589fs  
8
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
LTC2448/LTC2449 convert the bipolar differential input  
signal, VIN = IN+ – IN(where IN+ and INare the selected  
inputchannels),fromFS=–0.5VREF to+FS=0.5VREF  
where VREF = REF+ – REF. Outside this range, the con-  
verterindicatestheoverrangeortheunderrangecondition  
using distinct output codes.  
Bit 31 (first output bit) is the end of conversion (EOC)  
indicator. This bit is available at the SDO pin during the  
conversion and sleep states whenever the CS pin is LOW.  
This bit is HIGH during the conversion and goes LOW  
when the conversion is complete.  
Bit 30 (second output bit) is a dummy bit (DMY) and is  
always LOW.  
MUXOUT/ADCIN  
Bit 29 (third output bit) is the conversion result sign indi-  
cator (SIG). If VIN is >0, this bit is HIGH. If VIN is <0, this  
bit is LOW.  
There are two differences between the LTC2444/LTC2448  
and the LTC2445/LTC2449. The first is the RMS noise  
performance. For a given OSR, the LTC2445/LTC2449  
noise level is approximately 2 times lower (0.5 effective  
bits)than that of the LTC2444/LTC2448.  
Bit 28 (fourth output bit) is the most significant bit (MSB)  
of the result. This bit in conjunction with Bit 29 also  
provides the underrange or overrange indication. If both  
Bit 29 and Bit 28 are HIGH, the differential input voltage is  
above +FS. If both Bit 29 and Bit 28 are LOW, the  
differential input voltage is below –FS.  
The second difference is the LTC2445/LTC2449 includes  
MUXOUT/ADCINpins.Thesepinsenableanexternalbuffer  
or gain block to be inserted between the output of the  
multiplexer and the input to the ADC. Since the buffer is  
driven by the output of the multiplexer, only one circuit is  
required for all 16 input channels. Additionally, the trans-  
parentcalibrationfeatureoftheLTC244Xfamilyautomati-  
cally removes the offset errors of the external buffer.  
The function of these bits is summarized in Table 1.  
Table 1. LTC2444/LTC2445/LTC2448/LTC2449 Status Bits  
Bit 31 Bit 30 Bit 29 Bit 28  
Input Range  
EOC  
DMY  
SIG MSB  
In order to achieve optimum performance, the MUXOUT  
and ADCIN pins should not be shorted together. In appli-  
cationswheretheMUXOUTandADCINneedtobeshorted  
together, the LTC2444/LTC2448 should be used because  
the MUXOUT and ADCIN are internally connected for  
optimum performance.  
V
0.5 • V  
0
0
0
0
0
1
1
0
0
1
0
1
0
IN  
REF  
0V V < 0.5 • V  
0
IN  
REF  
–0.5 • V V < 0V  
0
REF  
IN  
V
< 0.5 • V  
0
IN  
REF  
Bits 28-5 are the 24-bit conversion result MSB first.  
Bit 5 is the least significant bit (LSB).  
Output Data Format  
Bits 4-0 are sub LSBs below the 24-bit level. Bits 4-0 may  
be included in averaging or discarded without loss of  
resolution.  
The LTC2444/LTC2445/LTC2448/LTC2449 serial output  
datastreamis32bitslong. Thefirst3bitsrepresentstatus  
information indicating the sign and conversion state. The  
next 24 bits are the conversion result, MSB first. The  
remaining 5 bits are sub LSBs beyond the 24-bit level that  
may be included in averaging or discarded without loss of  
resolution. In the case of ultrahigh resolution modes,  
more than 24 effective bits of performance are possible  
(see Table 5). Under these conditions, sub LSBs are  
included in the conversion result and represent useful  
information beyond the 24-bit level. The third and fourth  
bit together are also used to indicate an underrange  
condition(thedifferentialinputvoltageisbelowFS)oran  
overrangecondition(thedifferentialinputvoltageisabove  
+FS).  
DataisshiftedoutoftheSDOpinundercontroloftheserial  
clock (SCK), see Figure 3. Whenever CS is HIGH, SDO  
remains high impedance and SCK is ignored.  
In order to shift the conversion result out of the device, CS  
mustfirstbedrivenLOW. EOCisseenattheSDOpinofthe  
deviceonceCSispulledLOW.EOCchangesrealtimefrom  
HIGH to LOW at the completion of a conversion. This  
signal may be used as an interrupt for an external  
microcontroller. Bit 31 (EOC) can be captured on the first  
risingedgeofSCK. Bit30isshiftedoutofthedeviceonthe  
sn2444589 2444589fs  
9
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
32  
SCK  
SDI  
1
0
EN  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19  
EOC “0” SIG MSB  
SGL  
ODD  
A2  
A1  
A0  
OSR3 OSR2 OSR1 OSR0 TWOX  
BIT 0  
Hi-Z  
Hi-Z  
SDO  
LSB  
BUSY  
2444 F04  
Figure 3. SDI Speed/Resolution, Channel Selection, and Data Output Timing  
SERIAL INTERFACE PINS  
first falling edge of SCK. The final data bit (Bit 0) is shifted  
out on the falling edge of the 31st SCK and may be latched  
on the rising edge of the 32nd SCK pulse. On the falling  
edgeofthe32ndSCKpulse,SDOgoesHIGHindicatingthe  
initiation of a new conversion cycle. This bit serves as EOC  
(Bit 31) for the next conversion cycle. Table 2 summarizes  
the output data format.  
AslongasthevoltageontheIN+ andINpinsismaintained  
within the 0.3V to (VCC + 0.3V) absolute maximum  
operating range, a conversion result is generated for any  
differential input voltage VIN from –FS = –0.5 • VREF to  
+FS=0.5VREF.Fordifferentialinputvoltagesgreaterthan  
+FS, the conversion result is clamped to the value corre-  
sponding to the +FS + 1LSB. For differential input voltages  
below –FS, the conversion result is clamped to the value  
corresponding to –FS – 1LSB.  
The LTC2444/LTC2445/LTC2448/LTC2449 transmit the  
conversion results and receive the start of conversion  
command through a synchronous 3- or 4-wire interface.  
Duringtheconversionandsleepstates, thisinterfacecan  
be used to assess the converter status and during the  
data output state it is used to read the conversion result  
and program the speed, resolution and input channel.  
Serial Clock Input/Output (SCK)  
The serial clock signal present on SCK (Pin 38) is used to  
synchronizethedatatransfer.Eachbitofdataisshiftedout  
the SDO pin on the falling edge of the serial clock.  
In the Internal SCK mode of operation, the SCK pin is an  
outputandtheLTC2444/LTC2445/LTC2448/LTC2449cre-  
ate their own serial clock. In the External SCK mode of  
operation, the SCK pin is used as input. The internal or  
Table 2. LTC2444/LTC2445/LTC2448/LTC2449 Output Data Format  
Differential Input Voltage  
Bit 31  
EOC  
Bit 30  
DMY  
Bit 29  
SIG  
Bit 28  
MSB  
Bit 27  
Bit 26  
Bit 25  
Bit 0  
V
IN  
*
V * 0.5 • V **  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
IN  
REF  
0.5 • V ** – 1LSB  
REF  
0.25 • V **  
REF  
0.25 • V ** – 1LSB  
REF  
0
–1LSB  
0.25 • V **  
REF  
0.25 • V ** – 1LSB  
REF  
0.5 • V **  
REF  
V * < –0.5 • V **  
0
1
1
IN  
REF  
+
+
*The differential input voltage V = IN – IN . **The differential reference voltage V = REF – REF .  
IN  
REF  
sn2444589 2444589fs  
10  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
APPLICATIO S I FOR ATIO  
U
external SCK mode is selected by tying EXT (Pin 3) LOW  
for external SCK and HIGH for internal SCK.  
nominally 880Hz), and 1X speedup mode (no Latency).  
Once this first conversion is complete, the device enters  
the sleep state and is ready to output the conversion result  
and receive the serial data input stream programming the  
speed/resolution and input channel for the next conver-  
sion. At the conclusion of each conversion cycle, the  
device enters this state.  
Serial Data Output (SDO)  
The serial data output pin, SDO (Pin 37), provides the  
result of the last conversion as a serial bit stream (MSB  
first) during the data output state. In addition, the SDO pin  
is used as an end of conversion indicator during the  
conversion and sleep states.  
In order to change the speed/resolution or input channel,  
the first 3 bits shifted into the device are 101. This is  
compatible with the programming sequence of the  
LTC2414/LTC2418. If the sequence is set to 000 or 100,  
the following input data is ignored (don’t care) and the  
previously selected speed/resolution and channel remain  
valid for the next conversion. Combinations other than  
101, 100, and 000 of the 3 control bits should be avoided.  
When CS (Pin 36) is HIGH, the SDO driver is switched to  
a high impedance state. This allows sharing the serial  
interface with other devices. If CS is LOW during the  
convert or sleep state, SDO will output EOC. If CS is LOW  
duringtheconversionphase, theEOCbitappearsHIGHon  
the SDO pin. Once the conversion is complete, EOC goes  
LOW. The device remains in the sleep state until the first  
rising edge of SCK occurs while CS = LOW.  
If the first 3 bits shifted into the device are 101, then the  
following 5 bits select the input channel for the following  
conversion (see Tables 3 and 4). The next 5 bits select the  
speed/resolution and mode 1X (no Latency) 2X (double  
output rate with one conversion latency), see Table 5. If  
these 5 bits are set to all 0’s, the previous speed remains  
selected for the next conversion. This is useful in applica-  
tions requiring a fixed output rate/resolution but need to  
changetheinputchannel.Inthiscase,thetimingandinput  
sequence is compatible with the LTC2414/LTC2418.  
Chip Select Input (CS)  
The active LOW chip select, CS (Pin 36), is used to test the  
conversionstatusandtoenablethedataoutputtransferas  
described in the previous sections.  
In addition, the CS signal can be used to trigger a new  
conversion cycle before the entire serial data transfer has  
been completed. The LTC2444/LTC2445/LTC2448/  
LTC2449willabortanyserialdatatransferinprogressand  
start a new conversion cycle anytime a LOW-to-HIGH  
transition is detected at the CS pin after the converter has  
entered the data output state.  
When an update operation is initiated (the first 3 bits are  
101) the first 5 bits are the channel address. The first  
bit, SGL, determines if the input selection is differential  
(SGL = 0) or single-ended (SGL = 1). For SGL = 0, two  
adjacent channels can be selected to form a differential  
input. For SGL = 1, one of 8 channels (LTC2444/LTC2445)  
or one of 16 channels (LTC2448/LTC2449) is selected as  
the positive input. The negative input is COM for all single  
ended operations. The remaining 4 bits (ODD, A2, A1, A0)  
determine which channel is selected. The LTC2448/  
LTC2449 use all 4 bits to select one of 16 different input  
channels (see table 3) while in the case of the LTC2444/  
LTC2445, A2 is always 0, and the remaining 3 bits select  
one of 8 different input channels (see Table 4).  
Serial Data Input (SDI)  
The serial data input (SDI, Pin 34) is used to select the  
speed/resolution and input channel of the LTC2444/  
LTC2445/LTC2448/LTC2449. SDI is programmed by a  
serial input data stream under the control of SCK during  
the data output cycle, see Figure 3.  
Initially, after powering up, the device performs a conver-  
sion with IN+ = CH0, IN= CH1, OSR = 256 (output rate  
sn2444589 2444589fs  
11  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 3. Channel Selection for the LTC2448/LTC2449  
MUX ADDRESS  
CHANNEL SELECTION  
ODD/  
SGL SIGN  
A2 A1 A0  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 COM  
+
+
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IN  
IN  
+
+
IN  
IN  
+
+
IN  
IN  
+
+
IN  
IN  
+
+
IN  
IN  
+
IN  
IN  
IN  
IN  
+
IN  
IN  
IN  
IN  
+
IN  
IN  
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
+
IN  
+
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
+
IN  
+
IN  
+
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
*Default at power up  
sn2444589 2444589fs  
12  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 4. Channel Selection for the LTC2444/LTC2445 (Bit A2 Should Always Be 0)  
MUX ADDRESS  
CHANNEL SELECTION  
ODD/  
SGL  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SIGN A2 A1 A0  
0
1
2
3
4
5
6
IN  
IN  
IN  
7
IN  
IN  
COM  
+
+
+
*
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IN  
IN  
+
+
IN  
IN  
+
+
IN  
IN  
+
+
+
IN  
IN  
IN  
+
IN  
IN  
IN  
+
IN  
IN  
IN  
IN  
IN  
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
+
IN  
IN  
*Default at power up  
sn2444589 2444589fs  
13  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 5. LTC2444/LTC2445/LTC2448/LTC2449 Speed/Resolution Selection  
CONVERSION RATE  
OSR3 OSR2 OSR1 OSR0 TWOX INTERNAL EXTERNAL NOISE  
RMS  
RMS  
NOISE  
ENOB  
ENOB  
OSR  
LATENCY  
9MHz  
Clock  
10.24MHz LTC2444/ LTC2445/ LTC2444/ LTC2445/  
Clock  
LTC2448 LTC2449 LTC2448 LTC2449  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
Keep Previous Speed/Resolution  
3.52kHz  
1.76kHz  
880Hz  
440Hz  
220Hz  
110Hz  
55Hz  
4kHz  
2kHz  
1kHz  
500Hz  
250Hz  
125Hz  
62.5Hz  
31.25Hz  
23µV  
4.4µV  
2.8µV  
2µV  
1.4µV  
1.1µV  
720nV  
530nV  
23µV  
3.5µV  
2µV  
1.4µV  
1µV  
750nV  
510nV  
375nV  
250nV  
200nV  
17  
17  
64  
128  
256  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
20.1  
20.8  
21.3  
21.8  
22.1  
22.7  
23.2  
23.8  
24.1  
20.1  
21.3  
21.8  
22.4  
22.9  
23.4  
24  
512  
1024  
2048  
4096  
8192  
16384  
32768  
27.5Hz  
13.75Hz 15.625Hz 350nV  
6.875Hz 7.8125Hz 280nV  
24.4  
24.6  
Keep Previous Speed/Resolution  
7.04kHz  
3.52kHz  
1.76kHz  
880Hz  
440Hz  
220Hz  
110Hz  
55Hz  
8kHz  
4kHz  
2kHz  
23µV  
4.4µV  
2.8µV  
2µV  
1.4µV  
1.1µV  
720nV  
530nV  
350nV  
23µV  
3.5µV  
2µV  
1.4µV  
1µV  
750nV  
510nV  
375nV  
250nV  
200nV  
17  
17  
64  
128  
256  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
1 cycle  
20.1  
20.8  
21.3  
21.8  
22.1  
22.7  
23.2  
23.8  
24.1  
20.1  
21.3  
21.8  
22.4  
22.9  
23.4  
24  
1kHz  
512  
500Hz  
250Hz  
125Hz  
62.5Hz  
31.25Hz  
1024  
2048  
4096  
8192  
16384  
32768  
27.5Hz  
24.4  
24.6  
13.75Hz 15.625Hz 280nV  
sn2444589 2444589fs  
14  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
APPLICATIO S I FOR ATIO  
U
Speed Multiplier Mode  
the end of the conversion cycle (just prior to the data  
output cycle) for auto calibration. The time required to  
read the conversion enables more settling time for the  
external buffer/amplifier. The offset/offset drift of the  
external amplifier is automatically removed by the  
converter’s auto calibration sequence for both the 1X and  
2X speed modes.  
In addition to selecting the speed/resolution, a speed  
multiplier mode is used to double the output rate while  
maintainingtheselectedresolution.Thelastbitofthe5-bit  
speed/resolution control word (TWOX, see Table 5) deter-  
mines if the output rate is 1X (no speed increase) or 2X  
(double the selected speed).  
While operating in the 1X mode, if a new input channel is  
selected the multiplexer is switched on the falling edge of  
the 14th SCK (once the complete data input word is  
programmed). The remaining data output sequence time  
can be used to allow the external buffer/amplifier to settle.  
While operating in the 1X mode, the device combines two  
internal conversions for each conversion result in order to  
remove the ADC offset. Every conversion cycle, the offset  
and offset drift are transparently calibrated greatly simpli-  
fying the user interface. The resulting conversion result  
has no latency. The first conversion following a newly  
selected speed/resolution and input channel is valid. This  
is identical to the operation of the LTC2440, LTC2414 and  
LTC2418.  
BUSY  
The BUSY output (Pin 2) is used to monitor the state of  
conversion, data output and sleep cycle. While the part is  
converting, the BUSY pin is HIGH. Once the conversion is  
complete, BUSY goes LOW indicating the conversion is  
complete and data out is ready. The part now enters the  
LOW power sleep state. BUSY remains LOW while data is  
shifted out of the device and SDI is shifted into the device.  
It goes HIGH at the conclusion of the data input/output  
cycle indicating a new conversion has begun. This rising  
edge may be used to flag the completion of the data read  
cycle.  
While operating in the 2X mode, the device performs a  
running average of the last two conversion results. This  
automatically removes the offset and drift of the device  
while increasing the output rate by 2X. The resolution  
(noise) remains the same. If a new channel is selected, the  
conversion result is valid for all conversions after the first  
conversion (one cycle latency). If a new speed/resolution  
is selected, the first conversion result is valid but the  
resolution (noise) is a function of the running average. All  
subsequent conversion results are valid. If the mode is  
changedfromeither1Xto2Xor2Xto1Xwithoutchanging  
the resolution or channel, the first conversion result is  
valid.  
SERIAL INTERFACE TIMING MODES  
The LTC2444/LTC2445/LTC2448/LTC2449’s 3- or 4-wire  
interface is SPI and MICROWIRE compatible. This inter-  
face offers several flexible modes of operation. These in-  
clude internal/external serial clock, 3- or 4-wire I/O, single  
cycle conversion and autostart. The following sections  
describe each of these serial interface timing modes in  
detail. Inallthesecases, theconvertercanusetheinternal  
oscillator (FO = LOW) or an external oscillator connected  
to the FO pin. Refer to Table 6 for a summary.  
If an external buffer/amplifier circuit is used for the  
LTC2445/LTC2449, the 2X mode can be used to increase  
the settling time of the amplifier between readings. While  
operating in the 2X mode, the multiplexer output (input to  
theexternalbuffer/amplifier)isswitchedattheendofeach  
conversioncycle.Priortoconcludingthedataout/incycle,  
the analog multiplexer output is switched. This occurs at  
Table 6. LTC2444/LTC2445/LTC2448/LTC2449 Interface Timing Modes  
Conversion  
Cycle  
Control  
Data  
Output  
Control  
Connection  
and  
Waveforms  
SCK  
Configuration  
Source  
External  
External  
Internal  
Internal  
External SCK, Single Cycle Conversion  
External SCK, 2-Wire I/O  
CS and SCK  
SCK  
CS and SCK  
SCK  
Figures 4, 5  
Figure 6  
Internal SCK, Single Cycle Conversion  
Internal SCK, 2-Wire I/O, Continuous Conversion  
CS ↓  
CS ↓  
Figures 7, 8  
Continuous  
Internal  
Figure 9  
sn2444589 2444589fs  
15  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
U
APPLICATIO S I FOR ATIO  
External Serial Clock, Single Cycle Operation  
(SPI/MICROWIRE Compatible)  
This timing mode uses an external serial clock to shift out  
the conversion result and a CS signal to monitor and  
control the state of the conversion cycle, see Figure 4.  
When the device is in the sleep state (EOC = 0), its  
conversion result is held in an internal static shift regis-  
ter. The device remains in the sleep state until the first  
rising edge of SCK is seen. Data isshifted out the SDO pin  
oneachfallingedgeofSCK.Thisenablesexternalcircuitry  
to latch the output on the rising edge of SCK. EOC can be  
latched on the first rising edge of SCK and the last bit of  
the conversion result can be latched on the 32nd rising  
edge of SCK. On the 32nd falling edge of SCK, the device  
begins a new conversion. SDO goes HIGH (EOC = 1) and  
BUSY goes HIGH indicating a conversion is in progress.  
The serial clock mode is selected by the EXT pin. To select  
the external serial clock mode, EXT must be tied low.  
The serial data output pin (SDO) is Hi-Z as long as CS is  
HIGH. At any time during the conversion cycle, CS may be  
pulled LOW in order to monitor the state of the converter.  
While CS is pulled LOW, EOC is output to the SDO pin.  
EOC = 1 (BUSY = 1) while a conversion is in progress and  
EOC = 0 (BUSY = 0) if the device is in the sleep state.  
IndependentofCS,thedeviceautomaticallyentersthelow  
power sleep state once the conversion is complete.  
At the conclusion of the data cycle, CS may remain LOW  
and EOC monitored as an end-of-conversion interrupt.  
Alternatively, CS may be driven HIGH setting SDO to Hi-Z  
and BUSY monitored for the completion of a conversion.  
2.7V TO 5.5V  
1µF  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
F
O
CC  
LTC2448  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
CH8  
SDO  
CS  
36  
ANALOG  
INPUTS  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
CS  
TEST EOC  
TEST EOC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
32  
SCK  
(EXTERNAL)  
SDI  
1
0
EN  
SGL  
ODD  
A2  
A1  
A0  
OSR3 OSR2 OSR1 OSR0 TWOX  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19  
EOC “0” SIG MSB  
BIT 0  
LSB  
Hi-Z  
Hi-Z  
SDO  
BUSY  
CONVERSION  
SLEEP  
DATA OUTPUT  
CONVERSION  
2444 F05  
Figure 4. External Serial Clock, Single Cycle Operation  
sn2444589 2444589fs  
16  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
As described above, CS may be pulled LOW at any time in  
order to monitor the conversion status on the SDO pin.  
sequence is aborted prior to the 13th rising edge of SCK,  
the new input data is ignored, and the previously selected  
speed/resolution and channel are used for the next con-  
version cycle. This is useful for systems not requiring all  
32 bits of output data, aborting an invalid conversion  
cycle or synchronizing the start of a conversion. If a new  
channelisbeingprogrammed,therisingedgeofCSmust  
come after the 14th falling edge of SCK in order to store  
the data input sequence.  
Typically, CS remains LOW during the data output state.  
However, the data output state may be aborted by pulling  
CS HIGH anytime between the fifth falling edge and the  
32nd falling edge of SCK, see Figure 5. On the rising edge  
of CS, the device aborts the data output state and imme-  
diately initiates a new conversion. Thirteen serial input  
data bits are required in order to properly program the  
speed/resolution and input channel. If the data output  
2.7V TO 5.5V  
1µF  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
CC  
F
O
LTC2448  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
CH8  
SDO  
CS  
36  
ANALOG  
INPUTS  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
CS  
TEST EOC  
1
5
1
2
3
4
5
6
SCK  
(EXTERNAL)  
SDI  
DON'T CARE  
DON'T CARE  
DON'T CARE  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25  
EOC “0” SIG MSB  
Hi-Z  
Hi-Z  
SDO  
BUSY  
SLEEP  
DATA OUTPUT  
DATA OUTPUT  
CONVERSION  
CONVERSION  
CONVERSION  
SLEEP  
2444 F06  
Figure 5. External Serial Clock, Reduced Output Data Length  
sn2444589 2444589fs  
17  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
External Serial Clock, 2-Wire I/O  
indicating the conversion result is ready. EOC = 1  
(BUSY = 1) while the conversion is in progress and  
EOC = 0 (BUSY = 0) once the conversion enters the low  
power sleep state. On the falling edge of EOC/BUSY, the  
conversion result is loaded into an internal static shift  
register. The device remains in the sleep state until the  
first rising edge of SCK. Data is shifted out the SDO pin  
on each falling edge of SCK enabling external circuitry to  
latch data on the rising edge of SCK. EOC can be latched  
on the first rising edge of SCK. On the 32nd falling edge  
of SCK, SDO and BUSY go HIGH (EOC = 1) indicating a  
new conversion has begun.  
This timing mode utilizes a 2-wire serial I/O interface. The  
conversion result is shifted out of the device by an exter-  
nally generated serial clock (SCK) signal, see Figure 6. CS  
may be permanently tied to ground, simplifying the user  
interface or isolation barrier. The external serial clock  
mode is selected by tying EXT LOW.  
Since CS is tied LOW, the end-of-conversion (EOC) can be  
continuously monitored at the SDO pin during the convert  
and sleep states. Conversely, BUSY (Pin 2) may be used  
tomonitorthestatusoftheconversioncycle.EOCorBUSY  
may be used as an interrupt to an external controller  
2.7V TO 5.5V  
1µF  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
F
O
CC  
LTC2448  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
CH8  
SDO  
CS  
36  
ANALOG  
INPUTS  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
32  
SCK  
(EXTERNAL)  
DON'T CARE  
1
0
EN  
SGL  
ODD  
A2  
A1  
A0  
OSR3 OSR2 OSR1 OSR0 TWOX  
DON'T CARE  
BIT 0  
SDI  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19  
EOC “0” SIG MSB  
LSB  
SDO  
BUSY  
CONVERSION  
2444 F07  
DATA OUTPUT  
CONVERSION  
SLEEP  
Figure 6. External Serial Clock, CS = 0 Operation (2-Wire)  
sn2444589 2444589fs  
18  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
APPLICATIO S I FOR ATIO  
U
Internal Serial Clock, Single Cycle Operation  
sionandgoesLOWattheconclusion.ItremainsLOWuntil  
the result is read from the device.  
This timing mode uses an internal serial clock to shift out  
the conversion result and a CS signal to monitor and  
control the state of the conversion cycle, see Figure 7.  
WhentestingEOC,iftheconversioniscomplete(EOC=0),  
thedevicewillexitthesleepstateandenterthedataoutput  
state if CS remains LOW. In order to prevent the device  
from exiting the low power sleep state, CS must be pulled  
HIGH before the first rising edge of SCK. In the internal  
SCK timing mode, SCK goes HIGH and the device begins  
outputting data at time tEOCtest after the falling edge of CS  
(if EOC = 0) or tEOCtest after EOC goes LOW (if CS is LOW  
during the falling edge of EOC). The value of tEOCtest is  
500ns. If CS is pulled HIGH before time tEOCtest, the device  
remains in the sleep state. The conversion result is held in  
the internal static shift register.  
In order to select the internal serial clock timing mode, the  
EXT pin must be tied HIGH.  
The serial data output pin (SDO) is Hi-Z as long as CS is  
HIGH. At any time during the conversion cycle, CS may be  
pulled LOW in order to monitor the state of the converter.  
Once CS is pulled LOW, SCK goes LOW and EOC is output  
to the SDO pin. EOC = 1 while a conversion is in progress  
and EOC = 0 if the device is in the sleep state. Alternatively,  
BUSY (Pin 2) may be used to monitor the status of the  
conversion in progress. BUSY is HIGH during the conver-  
2.7V TO 5.5V  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
CC  
F
O
LTC2448  
1µF  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
SDO  
CS  
36  
ANALOG  
INPUTS  
CH8  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
<t  
EOC(TEST)  
CS  
SCK  
SDI  
TEST EOC  
TEST EOC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
32  
1
0
EN  
SGL  
ODD  
A2  
A1  
A0  
OSR3 OSR2 OSR1 OSR0 TWOX  
DON'T CARE  
DON'T CARE  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19  
EOC “0” SIG MSB  
BIT 0  
LSB  
Hi-Z  
Hi-Z  
SDO  
BUSY  
SLEEP  
DATA OUTPUT  
CONVERSION  
CONVERSION  
2444 F08  
Figure 7. Internal Serial Clock, Single Cycle Operation  
sn2444589 2444589fs  
19  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
If CS remains LOW longer than tEOCtest, the first rising  
edge of SCK will occur and the conversion result is serially  
shiftedoutoftheSDOpin. Thedataoutputcyclebeginson  
this first rising edge of SCK and concludes after the 32nd  
rising edge. Data is shifted out the SDO pin on each falling  
edgeofSCK.Theinternallygeneratedserialclockisoutput  
to the SCK pin. This signal may be used to shift the  
conversion result into external circuitry. EOC can be  
latchedonthefirstrisingedgeofSCKandthelastbitofthe  
conversionresultonthe32ndrisingedgeofSCK. Afterthe  
32nd rising edge, SDO goes HIGH (EOC = 1), SCK stays  
HIGH and a new conversion starts.  
of SCK, see Figure 8. On the rising edge of CS, the device  
aborts the data output state and immediately initiates a  
new conversion. This is useful for systems not requiring  
all 32 bits of output data, aborting an invalid conversion  
cycle, or synchronizing the start of a conversion. Thirteen  
serial input data bits are required in order to properly  
program the speed/resolution and input channel. If the  
data output sequence is aborted prior to the 13th rising  
edge of SCK, the new input data is ignored, and the  
previouslyselectedspeed/resolutionandchannelareused  
for the next conversion cycle. If a new channel is being  
programmed, the rising edge of CS must come after the  
14th falling edge of SCK in order to store the data input  
sequence.  
Typically, CS remains LOW during the data output state.  
However, the data output state may be aborted by pulling  
CS HIGH anytime between the first and 32nd rising edge  
2.7V TO 5.5V  
1µF  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
F
O
CC  
LTC2448  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
CH8  
SDO  
CS  
36  
ANALOG  
INPUTS  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
<t  
1
<t  
EOC(TEST)  
EOC(TEST)  
CS  
TEST EOC  
5
1
2
3
4
5
6
SCK  
SDI  
DON'T CARE  
DON'T CARE  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25  
EOC “0” SIG MSB  
DON'T CARE  
Hi-Z  
Hi-Z  
SDO  
BUSY  
SLEEP  
DATA OUTPUT  
DATA OUTPUT  
CONVERSION  
CONVERSION  
CONVERSION  
SLEEP  
2444 F09  
Figure 8. Internal Serial Clock, Reduced Data Output Length  
sn2444589 2444589fs  
20  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Internal Serial Clock, 2-Wire I/O,  
Continuous Conversion  
device has entered the low power sleep state. The part  
remains in the sleep state a minimum amount of time  
(500ns) then immediately begins outputting data. The  
dataoutputcyclebeginsonthefirstrisingedgeofSCKand  
endsafterthe32ndrisingedge.DataisshiftedouttheSDO  
pin on each falling edge of SCK. The internally generated  
serial clock is output to the SCK pin. This signal may be  
used to shift the conversion result into external circuitry.  
EOC can be latched on the first rising edge of SCK and the  
last bit of the conversion result can be latched on the 32nd  
rising edge of SCK. After the 32nd rising edge, SDO goes  
HIGH(EOC=1)indicatinganewconversionisinprogress.  
SCK remains HIGH during the conversion.  
This timing mode uses a 2-wire, all output (SCK and SDO)  
interface. The conversion result is shifted out of the device  
by an internally generated serial clock (SCK) signal, see  
Figure 9. CS may be permanently tied to ground, simplify-  
ing the user interface or isolation barrier. The internal  
serial clock mode is selected by tying EXT HIGH.  
During the conversion, the SCK and the serial data output  
pin (SDO) are HIGH (EOC = 1) and BUSY = 1. Once the  
conversion is complete, SCK, BUSY and SDO go LOW  
(EOC = 0) indicating the conversion has finished and the  
2.7V TO 5.5V  
1µF  
= EXTERNAL OSCILLATOR  
= INTERNAL OSCILLATOR  
28  
35  
V
CC  
F
O
LTC2448  
29  
30  
8
34  
38  
+
REFERENCE  
VOLTAGE  
REF  
REF  
SDI  
SCK  
0.1V TO V  
CC  
4-WIRE  
SPI INTERFACE  
CH0  
15  
16  
23  
7
37  
CH7  
SDO  
CS  
36  
ANALOG  
INPUTS  
CH8  
2
CH15  
BUSY  
GND  
1,4,5,6,31,32,33  
COM  
CS  
1
1
2
0
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
32  
SCK  
DON'T CARE  
EN  
SGL  
ODD  
A2  
A1  
A0  
OSR3 OSR2 OSR1 OSR0 TWOX  
DON'T CARE  
BIT 0  
SDI  
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24 BIT 23 BIT 22 BIT 21 BIT 20 BIT 19  
EOC  
“0”  
SIG  
MSB  
LSB  
SDO  
BUSY  
DATA OUTPUT  
CONVERSION  
2444 F10  
CONVERSION  
SLEEP  
Figure 9. Internal Serial Clock, Continuous Operation  
sn2444589 2444589fs  
21  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 7. OSR vs Notch Frequency (fN) (with Internal Oscillator  
Running at 9MHz)  
Normal Mode Rejection and Antialiasing  
One of the advantages delta-sigma ADCs offer over con-  
ventional ADCs is on-chip digital filtering. Combined with  
a large oversampling ratio, the LTC2444/LTC2445/  
LTC2448/LTC2449 significantly simplify antialiasing filter  
requirements.  
OSR  
NOTCH (f )  
N
64  
28.16kHz  
14.08kHz  
7.04kHz  
3.52kHz  
1.76kHz  
880Hz  
128  
256  
512  
TheLTC2444/LTC2445/LTC2448/LTC2449’sspeed/reso-  
lution is determined by the over sample ratio (OSR) of the  
on-chip digital filter. The OSR ranges from 64 for 3.5kHz  
output rate to 32,768 for 6.9Hz (in No Latency mode)  
output rate. The value of OSR and the sample rate fS  
determine the filter characteristics of the device. The first  
NULL of the digital filter is at fN and multiples of fN where  
fN = fS/OSR, see Figure 10 and Table 7. The rejection at the  
frequency fN ±14% is better than 80dB, see Figure 11.  
1024  
2048  
4096  
440Hz  
8192  
16384  
220Hz  
110Hz  
32768*  
55Hz  
*Simultaneous 50/60Hz rejection  
–80  
–90  
0
4
SINC ENVELOPE  
–20  
–40  
–100  
–110  
–120  
–130  
–140  
–60  
–80  
–100  
–120  
–140  
57 59  
47 49 51 53 55  
61 63  
60  
120  
240  
0
180  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
2440 F12  
2440 F11  
Figure 10. LTC2444/LTC2445/LTC2448/LTC2449  
Normal Mode Rejection (Internal Oscillator)  
Figure 11. LTC2444/LTC2445/LTC2448/LTC2449  
Normal Mode Rejection (Internal Oscillator)  
sn2444589 2444589fs  
22  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
APPLICATIO S I FOR ATIO  
U
If FO is grounded, fS is set by the on-chip oscillator at  
1.8MHz ±5%(oversupplyandtemperaturevariations). At  
an OSR of 32,768, the first NULL is at fN = 55Hz and the no  
latency output rate is fN/8 = 6.9Hz. At the maximum OSR,  
thenoiseperformanceofthedeviceis280nVRMS(LTC2444/  
LTC2448)and200nVRMS (LTC2445/LTC2449)withbetter  
than80dBrejectionof50Hz±2%and60Hz±2%.Sincethe  
OSR is large (32,768) the wide band rejection is extremely  
large and the antialiasing requirements are simple. The  
first multiple of fS occurs at 55Hz • 32,768 = 1.8MHz, see  
Figure 12.  
clock applied to FO. Combining a large OSR with a reduced  
sample rate leads to notch frequencies fN near DC while  
maintaining simple antialiasing requirements. A 100kHz  
clock applied to FO results in a NULL at 0.6Hz plus all  
harmonics up to 20kHz, see Figure 13. This is useful in  
applications requiring digitalization of the DC component  
of a noisy input signal and eliminates the need of placing  
a 0.6Hz filter in front of the ADC.  
An external oscillator operating from 100kHz to 20MHz  
can be implemented using the LTC1799 (resistor set  
SOT-23 oscillator), see Figure 16. By floating pin 4 (DIV)  
of the LTC1799, the output oscillator frequency is:  
The first NULL becomes fN = 7.04kHz with an OSR of 256  
(an output rate of 880Hz) and FO grounded. While the  
NULL has shifted, the sample rate remains constant. As a  
result of constant modulator sampling rate, the linearity,  
offset and full-scale performance remains unchanged as  
does the first multiple of fS.  
10k  
fOSC = 10MHz •  
10RSET  
The normal mode rejection characteristic shown in  
Figure 13isachievedbyapplyingtheoutputoftheLTC1799  
(withRSET =100k)totheFO pinontheLTC2444/LTC2445/  
LTC2448/LTC2449 with SDI tied HIGH (OSR = 32768).  
The sample rate fS and NULL fN, may also be adjusted by  
driving the FO pin with an external oscillator. The sample  
rate is fS = fEOSC/5, where fEOSC is the frequency of the  
0
–20  
–40  
0
–20  
–40  
–60  
–60  
1.8MHz  
–80  
–80  
–100  
–100  
–120  
–140  
REJECTION > 120dB  
–120  
–140  
1000000  
2000000  
0
2
4
6
10  
0
8
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
1440 F13  
2440 F14  
Figure 12. LTC2444/LTC2445/LTC2448/LTC2449  
Normal Mode Rejection (Internal Oscillator)  
Figure 13. LTC2444/LTC2445/LTC2448/LTC2449 Normal  
Mode Rejection (External Oscillator at 90kHz)  
sn2444589 2444589fs  
23  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
Reduced Power Operation  
Average Input Current  
The LTC2444/LTC2448 switch the input and reference to  
a 2pF capacitor at a frequency of 1.8MHz. A simplified  
equivalent circuit is shown in Figure 15. The sample  
capacitor for the LTC2445/LTC2449 is 4pF, and its aver-  
age input current is externally buffered from the input  
source.  
In addition to adjusting the speed/resolution of the  
LTC2444/LTC2445/LTC2448/LTC2449, the speed/reso-  
lution/power dissipation may also be adjusted using the  
automatic sleep mode. During the conversion cycle, the  
LTC2444/LTC2445/LTC2448/LTC2449 draw 8mA supply  
current independent of the programmed speed. Once the  
conversion cycle is completed, the device automatically  
enters a low power sleep state drawing 8µA. The device  
remains in this state as long as CS is HIGH and data is not  
shifted out. By adjusting the duration of the sleep state  
(hold CS HIGH longer) and the duration of the conversion  
cycle (programming OSR) the DC power dissipation can  
be reduced, see Figure 14.  
The average input and reference currents can be ex-  
pressed in terms of the equivalent input resistance of the  
sample capacitor, where: Req = 1/(fSW • Ceq)  
When using the internal oscillator, fSW is 1.8MHz and the  
equivalent resistance is approximately 110k.  
V
CC  
I
+
+
REF  
R
(TYP)  
SW  
SW  
I
I
LEAK  
500  
V
REF  
LEAK  
V
CC  
I +  
IN  
R
(TYP)  
500Ω  
I
I
LEAK  
C
EQ  
5pF  
V +  
IN  
(TYP)  
LEAK  
MUX  
(C = 2pF  
EQ  
SAMPLE CAP  
+ PARASITICS)  
V
CC  
I
IN  
R
SW  
(TYP)  
I
LEAK  
500Ω  
V
IN  
I
LEAK  
MUX  
V
CC  
I
REF  
R
SW  
(TYP)  
I
I
LEAK  
500Ω  
2440 F16  
V
REF  
LEAK  
SWITCHING FREQUENCY  
f
f
= 1.8MHz INTERNAL OSCILLATOR  
EOSC  
SW  
SW  
= f  
/5 EXTERNAL OSCILLATOR  
Figure 15. LTC2444/LTC2448 Input Structure  
CONVERTER  
STATE  
SLEEP  
CONVERT  
SLEEP  
CONVERT  
SLEEP  
DATA  
OUT  
DATA  
OUT  
CS  
SUPPLY  
CURRENT  
8µA  
8mA  
8µA  
8mA  
8µA  
2440 F15  
Figure 14. Reduced Power Timing Mode  
sn2444589 2444589fs  
24  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
W U U  
APPLICATIO S I FOR ATIO  
First Notch Frequency  
Input Bandwidth and Frequency Rejection  
This is the first notch in the SINC4 portion of the digital  
filter and depends on the fo clock frequency and the  
oversample ratio. Rejection at this frequency and its  
multiples (up to the modulator sample rate of 1.8MHz)  
exceeds 120dB. This is 8 times the maximum conversion  
rate.  
The combined effect of the internal SINC4 digital filter and  
the digital and analog autocalibration circuits determines  
the LTC2444/LTC2445/LTC2448/LTC2449 input band-  
width and rejection characteristics. The digital filter’s  
response can be adjusted by setting the oversample ratio  
(OSR) through the SPI interface or by supplying an exter-  
nal conversion clock to the fo pin.  
Effective Noise Bandwidth  
Table 8 lists the properties of the LTC2444/LTC2445/  
LTC2448/LTC2449 with various combinations of  
oversample ratio and clock frequency. Understanding  
these properties is the key to fine tuning the characteris-  
tics of the LTC2444/LTC2445/LTC2448/LTC2449 to the  
application.  
TheLTC2444/LTC2445/LTC2448/LTC2449hasextremely  
good input noise rejection from the first notch frequency  
all the way out to the modulator sample rate (typically  
1.8MHz). Effective noise bandwidth is a measure of how  
the ADC will reject wideband input noise up to the modu-  
lator sample rate. The example on the following page  
shows how the noise rejection of the LTC2444/LTC2445/  
LTC2448/LTC2449 reduces the effective noise of an am-  
plifier driving its input.  
Maximum Conversion Rate  
The maximum conversion rate is the fastest possible rate  
at which conversions can be performed.  
Table 8  
Over-  
*RMS  
*RMS  
Noise  
ENOB  
(V = 5V)  
Maximum  
First Notch  
Frequency  
Effective  
–3dB  
sample Noise  
Conversion Rate  
Noise BW  
point (Hz)  
REF  
Ratio LTC2444/ LTC2445/ LTC2444/ LTC2445/  
(OSR) LTC2448 LTC2449 LTC2449 LTC2449 9MHz clock  
Internal  
External  
Internal External  
Internal  
External  
Internal  
External  
f
9MHz clock  
28125  
14062.5  
7031.3  
3515.6  
1757.8  
878.9  
f
9MHz clock  
3148  
1574  
787  
f
9MHz clock  
1696  
848 f /10600  
o
f
o
o
o
o
64  
23µV  
4.5µV  
2.8µV  
2µV  
23µV  
3.5µV  
2µV  
17  
17  
3515.6  
1757.8  
878.9  
439.5  
219.7  
109.9  
54.9  
f /2560  
f /320  
f /5710  
f /5310  
o
o
o
o
128  
20.1  
20.8  
21.3  
21.8  
22.1  
22.7  
23.2  
23.8  
24.1  
20  
f /5120  
o
f /640  
f /2860  
o
o
256  
21.3  
21.8  
22.4  
22.9  
23.4  
24  
f /10240  
o
f /1280  
f /1140  
o
424  
f /21200  
o
o
512  
1.4µV  
1µV  
f /20480  
o
f /2560  
394  
f /2280  
o
212  
f /42500  
o
o
1024  
2048  
4096  
8192  
1.4µV  
1.1µV  
720nV  
530nV  
f /40960  
o
f /5120  
197  
f /4570  
o
106  
f /84900  
o
o
750nV  
510nV  
375nV  
250nV  
200nV  
f /81920  
o
f /1020  
98.4  
f /9140  
o
53  
f /170000  
o
o
f /163840  
o
439.5  
f /2050  
o
49.2  
f /18300  
o
26.5  
13.2  
6.6  
f /340000  
o
27.5  
f /327680  
o
219.7  
f /4100  
o
24.6  
f /36600  
o
f /679000  
o
16384 350nV  
32768 280nV  
24.4  
24.6  
13.7  
f /655360  
o
109.9  
f /8190  
o
12.4  
f /73100  
o
f /1358000  
o
6.9  
f /1310720  
o
54.9  
f /16380  
o
6.2  
f /146300  
o
3.3  
f /2717000  
o
*ADC noise increases by approximately 2 when OSR is decreased by a factor of 2 for OSR 32768 to OSR 256. The ADC noise at OSR 128 and OSR 64 include effects from internal modulator quantization  
noise.  
sn2444589 2444589fs  
25  
LTC2444/LTC2445/  
LTC2448/LTC2449  
W U U  
U
APPLICATIO S I FOR ATIO  
Example:  
Automatic Offset Calibration of External  
Buffers/Amplifiers  
If an amplifier (e.g. LT1219) driving the input of an  
LTC2444/LTC2445/LTC2448/LTC2449 has wideband  
noise of 33nV/Hz, band-limited to 1.8MHz, the total  
noise entering the ADC input is:  
The LTC2445/LTC2449 enable an external amplifier to be  
inserted between the multiplexer output and the ADC  
input. This enables one external buffer/amplifier circuit to  
be shared between all 17 analog inputs (16 single-ended  
or8differential). TheLTC2445/LTC2449performaninter-  
nal offset calibration every conversion cycle in order to  
remove the offset and drift of the ADC. This calibration is  
performed through a combination of front end switching  
and digital processing. Since the external amplifier is  
placedbetweenthemultiplexerandtheADC,itisinsidethe  
correctionloop. Thisresultsinautomaticoffsetcorrection  
and offset drift removal of the external amplifier.  
33nV/Hz • 1.8MHz = 44.3µV.  
When the ADC digitizes the input, its digital filter filters out  
the wideband noise from the input signal. The noise  
reduction depends on the oversample ratio which defines  
the effective bandwidth of the digital filter.  
At an oversample of 256, the noise bandwidth of the ADC  
is 787Hz which reduces the total amplifier noise to:  
33nV/Hz • 787Hz = 0.93µV.  
The total noise is the RMS sum of this noise with the 2µV  
noise of the ADC at OSR=256.  
The LT1368 is an excellent amplifier for this function. It  
has rail-to-rail inputs and outputs, and it operates on a  
single 5V supply. Its open-loop gain is 1M and its input  
bias current is 10nA. It also requires at least a 0.1µF load  
capacitor for compensation. It is this feature that sets it  
apart from other amplifiers—the load capacitor attenu-  
atessamplingglitchesfromtheLTC2445/LTC2449ADCIN  
terminals, allowing it to achieve full performance of the  
ADC with high impedance at the multiplexer inputs.  
(0.93µV)2 + (2uV)2 = 2.2µV.  
Increasing the oversample ratio to 32768 reduces the  
noise bandwidth of the ADC to 6.2Hz which reduces the  
total amplifier noise to:  
33nV/Hz • 6.2Hz = 82nV.  
ThetotalnoiseistheRMSsumofthisnoisewiththe200nV  
noise of the ADC at OSR = 32768.  
Another benefit of the LT1368 is that it can be powered  
fromsuppliesequaltoorgreaterthan thatoftheADC.This  
can allow the inputs to span the entire absolute maximum  
of GND – 0.3V to VCC + 0.3V. Using a positive supply of  
7.5V to 10V and a negative supply of –2.5 to –5V gives the  
amplifier plenty of headroom over the LTC2445/LTC2449  
input range.  
(82nV)2 + (200nV)2 = 216nV.  
In this way, the digital filter with its variable oversampling  
ratio can greatly reduce the effects of external noise  
sources.  
4.5V TO 5.5V  
1µF  
28  
2
V
BUSY  
CC  
LTC2448  
REF  
LTC1799  
OUT  
R
SET  
29  
30  
8
35  
38  
37  
36  
+
+
REFERENCE  
VOLTAGE  
F
O
V
0.1µF  
REF  
SCK  
SDO  
CS  
0.1V TO V  
CC  
3-WIRE  
ANALOG INPUT  
CH0  
GND  
SET  
SPI INTERFACE  
–0.5V  
TO  
REF  
REF  
9
CH1  
0.5V  
1,4,5,6,31,32,33  
3
EXT  
GND  
DIV  
NC  
24448 F17  
Figure 16. Simple External Clock Source  
sn2444589 2444589fs  
26  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
PACKAGE DESCRIPTIO  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701)  
0.70 ± 0.05  
5.50 ± 0.05  
(2 SIDES)  
4.10 ± 0.05  
(2 SIDES)  
3.20 ± 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
5.20 ± 0.05 (2 SIDES)  
6.10 ± 0.05 (2 SIDES)  
7.50 ± 0.05 (2 SIDES)  
RECOMMENDED SOLDER PAD LAYOUT  
3.15 ± 0.10  
0.435 0.18  
(2 SIDES)  
0.75 ± 0.05  
5.00 ± 0.10  
(2 SIDES)  
37 38  
0.18  
0.00 – 0.05  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
1
2
0.23  
5.15 ± 0.10  
(2 SIDES)  
7.00 ± 0.10  
(2 SIDES)  
0.40 ± 0.10  
0.200 REF 0.25 ± 0.05  
R = 0.115  
TYP  
(UH) QFN 0303  
0.50 BSC  
0.200 REF  
0.75 ± 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
sn2444589 2444589fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will notinfringe onexisting patent rights.  
27  
LTC2444/LTC2445/  
LTC2448/LTC2449  
U
TYPICAL APPLICATIO  
External Buffers Provide High Impedance Inputs  
and Amplifier Offsets are Cancelled  
SDI  
SCK  
SDO  
CS  
LTC2449  
CH0-CH15/  
COM  
HIGH  
17  
SPEED  
MUX  
∆Σ ADC  
2
3
1
1/2 LT1368  
0.22µF  
+
(EXTERNAL AMPLIFIERS)  
5V  
6
8
7
1/2 LT1368  
5
0.22µF  
+
4
2444589 TA05  
0V  
RELATED PARTS  
PART NUMBER  
LT1025  
DESCRIPTION  
COMMENTS  
Micropower Thermocouple Cold Junction Compensator  
80µA Supply Current, 0.5°C Initial Accuracy  
LTC1043  
Dual Precision Instrumentation Switched Capacitor  
Building Block  
Precise Charge, Balanced Switching, Low Power  
LTC1050  
Precision Chopper Stabilized Op Amp  
Precision Bandgap Reference, 5V  
No External Components 5µV Offset, 1.6µV Noise  
P-P  
LT1236A-5  
LT1461  
0.05% Max, 5ppm/°C Drift  
Micropower Series Reference, 2.5V  
Ultraprecise 16-Bit SoftSpanTM DAC  
0.04% Max, 3ppm/°C Max Drift  
Six Programmable Output Ranges  
±1LSB DNL, 600µA, Internal Reference, SO-8  
Single Resistor Frequency Set  
LTC1592  
LTC1655  
16-Bit Rail-to-Rail Micropower DAC  
LTC1799  
Resistor Set SOT-23 Oscillator  
LTC2053  
Rail-to-Rail Instrumentation Amplifier  
2-Channel, Differential Input, 24-Bit, No Latency ∆Σ ADC  
1-Channel, Differential Input, 24-Bit, No Latency ∆Σ ADC  
10µV Offset with 50nV/°C Drift, 2.5µV Noise 0.01Hz to 10Hz  
P-P  
LTC2412  
0.16ppm Noise, 2ppm INL, 200µA  
LTC2415  
0.23ppm Noise, 2ppm INL, 2X Speed Up  
LTC2414/LTC2418  
LTC2430/LTC2431  
LTC2436-1  
LTC2440  
4-/8-Channel, Differential Input, 24-Bit, No Latency ∆Σ ADC 0.2ppm Noise, 2ppm INL, 200µA  
1-Channel, Differential Input, 20-Bit, No Latency ∆Σ ADC  
2-Channel, Differential Input, 16-Bit, No Latency ∆Σ ADC  
0.56ppm Noise, 3ppm INL, 200µA  
800nV Noise, 0.12LBS INL, 0.006LBS Offset, 200µA  
RMS  
1-Channel, Differential Input, High Speed/Low Noise,  
24-Bit, No Latency ∆Σ ADC  
2µV  
Noise at 880Hz, 200nV  
Noise at 6.9Hz,  
RMS  
RMS  
0.0005% INL, Up to 3.5kHz Output Rate  
SoftSpan is a trademark of Linear Technology Corporation.  
sn2444589 2444589fs  
LT/TP 0304 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC2444IUHF#TRPBF

LTC2444 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2444_15

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2445C

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2445CUHF

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2445CUHF#TR

LTC2445 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2445CUHF#TRPBF

LTC2445 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2445I

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2445IUHF

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2445IUHF#TR

LTC2445 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2445IUHF#TRPBF

LTC2445 - 24-Bit High Speed 8-/16-Channel Delta Sigma ADCs with Selectable Speed/Resolution; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2445_15

24-Bit High Speed 8-/16-Channel ADCs with Selectable Speed/Resolution
Linear

LTC2446

24-Bit High Speed 8-Channel ΔΣ ADCs with Selectable Multiple Reference Inputs
Linear