LTC2481HDD#TRPBF [Linear]

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C;
LTC2481HDD#TRPBF
型号: LTC2481HDD#TRPBF
厂家: Linear    Linear
描述:

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C

文件: 总40页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2481  
16-Bit ∆Σ ADC with Easy Drive  
Input Current Cancellation and I2C Interface  
U
FEATURES  
DESCRIPTIO  
TheLTC®2481combinesa16-bitplussignNoLatency∆ΣTM  
analog-to-digitalconverterwithpatentedEasyDriveTM tech-  
nology and I2C digital interface. The patented sampling  
scheme eliminates dynamic input current errors and the  
shortcomings of on-chip buffering through automatic  
cancellation of differential input current. This allows large  
externalsourceimpedancesandinputsignals,withrail-to-  
rail input range to be directly digitized while maintaining  
exceptional DC accuracy.  
Easy Drive Technology Enables Rail-to-Rail Inputs  
with Zero Differential Input Current  
Directly Digitizes High Impedance Sensors with  
Full Accuracy  
Programmable Gain from 1 to 256  
Integrated Temperature Sensor  
GND to VCC Input/Reference Common Mode Range  
2-Wire I2C Interface  
Programmable 50Hz, 60Hz or Simultaneous  
50Hz/60Hz Rejection Mode  
The LTC2481 includes on-chip programmable gain, a  
temperaturesensorandanoscillator.TheLTC2481canbe  
configured through an I2C interface to provide a program-  
mable gain from 1 to 256 in 8 steps, to digitize an external  
signal or internal temperature sensor, reject line frequen-  
cies (50Hz, 60Hz or simultaneous 50Hz/60Hz) as well as  
a 2x speed-up mode.  
2ppm (0.25LSB) INL, No Missing Codes  
1ppm Offset and 15ppm Full-Scale Error  
Selectable 2x Speed Mode  
No Latency: Digital Filter Settles in a Single Cycle  
Single Supply 2.7V to 5.5V Operation  
Internal Oscillator  
Six Addresses Available and One Global Address for  
Synchronization  
Available in a Tiny (3mm × 3mm) 10-Lead  
DFN Package  
The LTC2481 allows a wide common mode input range  
(0V to VCC) independent of the reference voltage. The  
reference can be as low as 100mV or can be tied directly  
to VCC. The LTC2481 includes an on-chip trimmed oscil-  
lator eliminating the need for external crystals or oscilla-  
tors. Absolute accuracy and low drift are automatically  
maintained through continuous, transparent, offset and  
full-scale calibration.  
U
APPLICATIO S  
Direct Sensor Digitizer  
Weight Scales  
Direct Temperature Measurement  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
No Latency ∆Σ and Easy Drive are trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Patent Pending.  
Strain Gauge Transducers  
Instrumentation  
Industrial Process Control  
DVMs and Meters  
U
+
TYPICAL APPLICATIO  
+FS Error vs R  
at IN and IN  
SOURCE  
80  
V
CC  
V
V
V
V
= 5V  
CC  
= 5V  
REF  
60  
40  
20  
+
= 3.75V  
= 1.25V  
IN  
1µF  
IN  
F
= GND  
O
T
A
= 25°C  
SCL  
SDA  
+
10k  
10k  
2-WIRE  
I C INTERFACE  
I
= 0  
REF  
LTC2481  
GND  
V
C
IN  
= 1µF  
DIFF  
CC  
+
2
V
0
IN  
–20  
1µF  
SENSE  
CA0/F  
0
6 ADDRESSES  
–40  
–60  
–80  
V
IN  
CA1  
2481 TA01  
REF  
1
10  
100  
10k  
100k  
1k  
()  
2481 TA04  
R
SOURCE  
2481f  
1
LTC2481  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (VCC) to GND...................... 0.3V to 6V  
Analog Input Voltage to GND ....... 0.3V to (VCC + 0.3V)  
Reference Input Voltage to GND .. 0.3V to (VCC + 0.3V)  
Digital Input Voltage to GND........ 0.3V to (VCC + 0.3V)  
Digital Output Voltage to GND ..... 0.3V to (VCC + 0.3V)  
Operating Temperature Range  
+
REF  
10 CA0/F  
0
1
2
3
4
5
V
9
8
7
6
CA1  
GND  
SDA  
SCL  
CC  
11  
REF  
IN  
+
IN  
LTC2481C................................................... 0°C to 70°C  
LTC2481I ................................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 125°C  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/ W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
DD PART MARKING*  
LBPV  
ORDER PART NUMBER  
LTC2481CDD  
LTC2481IDD  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
U W  
ELECTRICAL CHARACTERISTICS ( OR AL SPEED)  
The  
denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution (No Missing Codes)  
Integral Nonlinearity  
0.1 V V , –FS V +FS (Note 5)  
16  
Bits  
REF  
CC  
IN  
5V V 5.5V, V  
= 5V, V  
= 2.5V (Note 6)  
2
1
10  
ppm of V  
ppm of V  
CC  
REF  
IN(CM)  
REF  
REF  
µV  
2.7V V 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
CC  
REF  
IN(CM)  
+
Offset Error  
2.5V V V , GND IN = IN V (Note 13)  
0.5  
10  
2.5  
REF  
CC  
CC  
CC  
+
Offset Error Drift  
2.5V V V , GND IN = IN V  
nV/°C  
ppm of V  
REF  
REF  
CC  
+
Positive Full-Scale Error  
Positive Full-Scale Error Drift  
2.5V V V , IN = 0.75V , IN = 0.25V  
25  
25  
REF  
CC  
REF  
REF  
+
2.5V V V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of  
REF  
CC  
REF  
REF  
V
/°C  
REF  
+
Negative Full-Scale Error  
2.5V V V , IN = 0.75V , IN = 0.25V  
ppm of V  
REF  
REF  
CC  
REF  
REF  
+
Negative Full-Scale Error Drift  
2.5V V V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of  
REF  
CC  
REF  
REF  
V
/°C  
REF  
Total Unadjusted Error  
5V V 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
= 2.5V (Note 6)  
15  
15  
15  
ppm of V  
ppm of V  
ppm of V  
CC  
REF  
REF  
IN(CM)  
REF  
REF  
REF  
5V V 5.5V, V  
= 5V, V  
CC  
IN(CM)  
2.7V V 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
CC  
REF  
IN(CM)  
+
Output Noise  
5V V 5.5V, V = 5V, GND IN = IN V (Note 12)  
0.6  
420  
1.4  
µV  
RMS  
CC  
REF  
CC  
Internal PTAT Signal  
T = 27°C  
A
mV  
Internal PTAT Temperature Coefficient  
Programmable Gain  
mV/°C  
See Table 2a  
1
256  
2481f  
2
LTC2481  
ELECTRICAL CHARACTERISTICS (2x SPEED)  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Notes 3, 4)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution (No Missing Codes)  
Integral Nonlinearity  
0.1 V V , –FS V +FS (Note 5)  
16  
Bits  
REF  
CC  
IN  
5V V 5.5V, V  
= 5V, V  
= 2.5V (Note 6)  
2
1
10  
2
ppm of V  
REF  
CC  
REF  
IN(CM)  
2.7V V 5.5V, V = 2.5V, V  
= 1.25V (Note 6)  
CC  
REF  
IN(CM)  
+
Offset Error  
2.5V V V , GND IN = IN V (Note 13)  
0.5  
mV  
REF  
CC  
CC  
CC  
+
Offset Error Drift  
2.5V V V , GND IN = IN V  
100  
nV/°C  
ppm of V  
REF  
REF  
CC  
+
Positive Full-Scale Error  
Positive Full-Scale Error Drift  
2.5V V V , IN = 0.75V , IN = 0.25V  
25  
25  
REF  
CC  
REF  
REF  
+
2.5V V V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of  
REF  
CC  
REF  
REF  
V
/°C  
REF  
+
Negative Full-Scale Error  
2.5V V V , IN = 0.75V , IN = 0.25V  
ppm of V  
REF  
REF  
CC  
REF  
REF  
+
Negative Full-Scale Error Drift  
2.5V V V , IN = 0.75V , IN = 0.25V  
0.1  
ppm of  
REF  
CC  
REF  
REF  
V
/°C  
REF  
+
Output Noise  
5V V 5.5V, V = 5V, GND IN = IN V  
0.84  
µV  
RMS  
CC  
REF  
CC  
Programmable Gain  
See Table 2b  
1
128  
U
CO VERTER CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Notes 3, 4)  
A
PARAMETER  
CONDITIONS  
2.5V V V , GND IN = IN V (Note 5)  
MIN  
140  
140  
TYP  
MAX  
UNITS  
dB  
+
Input Common Mode Rejection DC  
REF  
CC  
CC  
+
Input Common Mode Rejection  
50Hz ±2%  
2.5V V V , GND IN = IN V (Note 5)  
dB  
REF  
CC  
CC  
+
Input Common Mode Rejection  
60Hz ±2%  
2.5V V V , GND IN = IN V (Note 5)  
140  
110  
110  
87  
dB  
dB  
dB  
dB  
dB  
REF  
CC  
CC  
+
Input Normal Mode Rejection  
50Hz ±2%  
2.5V V V , GND IN = IN V (Notes 5, 7)  
120  
120  
REF  
CC  
CC  
+
Input Normal Mode Rejection  
60Hz ±2%  
2.5V V V , GND IN = IN V (Notes 5, 8)  
REF CC CC  
+
Input Normal Mode Rejection  
50Hz/60Hz ±2%  
2.5V V V , GND IN = IN V (Notes 5, 9)  
REF CC CC  
+
Reference Common Mode  
Rejection DC  
2.5V V V , GND IN = IN V (Note 5)  
120  
140  
REF  
CC  
CC  
+
Power Supply Rejection DC  
V
V
V
= 2.5V, IN = IN = GND  
120  
120  
120  
dB  
dB  
dB  
REF  
REF  
REF  
+
Power Supply Rejection, 50Hz ±2%  
Power Supply Rejection, 60Hz ±2%  
= 2.5V, IN = IN = GND (Notes 7, 9)  
+
= 2.5V, IN = IN = GND (Notes 8, 9)  
U
U
U
U
A ALOG I PUT A D REFERE CE The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Note 3)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
IN  
Absolute/Common Mode IN Voltage  
GND – 0.3V  
GND – 0.3V  
V
V
+ 0.3V  
V
V
V
CC  
CC  
IN  
Absolute/Common Mode IN Voltage  
+ 0.3V  
+
FS  
Full Scale of the Differential Input (IN – IN )  
Least Significant Bit of the Output Code  
0.5V /GAIN  
REF  
16  
LSB  
FS/2  
+
V
V
Input Differential Voltage Range (IN – IN )  
–FS  
0.1  
+FS  
V
IN  
+
Reference Voltage Range (REF – REF )  
V
V
REF  
CC  
2481f  
3
LTC2481  
U
U
U
U
A ALOG I PUT A D REFERE CE The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Note 3)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
11  
11  
11  
1
MAX  
UNITS  
pF  
+
+
C (IN )  
IN Sampling Capacitance  
S
C (IN )  
IN Sampling Capacitance  
pF  
S
C (V  
)
V
Sampling Capacitance  
pF  
S
REF  
DC_LEAK  
DC_LEAK  
REF  
+
+
+
I
I
I
(IN )  
IN DC Leakage Current  
Sleep Mode, IN = GND  
–10  
–10  
10  
10  
nA  
(IN )  
IN DC Leakage Current  
Sleep Mode, IN = GND  
1
nA  
+
(V  
)
REF , REF DC Leakage Current  
Sleep Mode, V  
= V  
CC  
–100  
1
100  
nA  
DC_LEAK REF  
REF  
U
U
2
I C DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at T = 25°C. (Note 3)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.7V  
TYP  
MAX  
UNITS  
V
V
V
V
High Level Input Voltage  
V
V
IH  
CC  
Low Level Input Voltage  
0.3V  
CC  
IL  
Low Level Input Voltage for Address Pin  
High Level Input Voltage for Address Pins  
0.05V  
V
IL(CA1)  
CC  
0.95V  
V
IH(CA0/F0,CA1)  
CC  
R
INH  
R
INL  
R
INF  
Resistance from CA0/F , CA1 to V to Set  
Chip Address Bit to 1  
10  
10  
kΩ  
0
CC  
Resistance from CA1 to GND to Set  
Chip Address Bit to 0  
kΩ  
Resistance from CA0/F , CA1 to V or  
GND to Set Chip Address Bit to Float  
2
MΩ  
0
CC  
I
Digital Input Current  
–10  
10  
µA  
V
I
V
V
Hysteresis of Schmitt Trigger Inputs  
Low Level Output Voltage SDA  
(Note 5)  
I = 3mA  
0.05V  
HYS  
OL  
CC  
0.4  
250  
50  
1
V
t
t
I
Output Fall Time from V  
to V  
Bus Load C 10pF to 400pF (Note 14)  
20+0.1C  
10  
ns  
ns  
µA  
pF  
pF  
pF  
OF  
IHMIN  
ILMAX  
B
B
Input Spike Suppression  
Input Leakage  
SP  
IN  
0.1V V V  
CC  
CC  
IN  
C
C
C
Capacitance for Each I/O Pin  
I
Capacitance Load for Each Bus Line  
External Capacitive Load on Chip  
400  
10  
B
CAX  
Address Pins (CA0/F ,CA1) for Valid Float  
0
V
V
High Level CA0/F External Oscillator  
2.7V V < 5.5V  
V – 0.5V  
CC  
V
V
IH(EXT,OSC)  
IL(EXT,OSC)  
0
CC  
Low Level CA0/F External Oscillator  
2.7V V < 5.5V  
0.5  
0
CC  
W U  
POWER REQUIRE E TS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 3)  
A
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
2.7  
5.5  
V
I
Conversion Mode (Note 11)  
Sleep Mode (Note 11)  
160  
1
250  
2
µA  
µA  
CC  
2481f  
4
LTC2481  
W U  
TI I G CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 3)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
4000  
100  
UNITS  
kHz  
µs  
f
t
t
t
External Oscillator Frequency Range  
External Oscillator High Period  
External Oscillator Low Period  
Conversion Time for 1x Speed Mode  
EOSC  
HEO  
0.125  
0.125  
100  
µs  
LEO  
50Hz Mode  
60Hz Mode  
Simultaneous 50Hz/60Hz Mode  
External Oscillator (Note 10)  
157.2  
131.0  
144.1  
160.3  
133.6  
146.9  
163.5  
136.3  
149.9  
ms  
ms  
ms  
ms  
CONV_1  
41036/f  
EOSC  
t
Conversion Time for 2x Speed Mode  
50Hz Mode  
60Hz Mode  
Simultaneous 50Hz/60Hz Mode  
External Oscillator (Note 10)  
78.7  
65.6  
72.2  
80.3  
66.9  
73.6  
81.9  
68.2  
75.1  
ms  
ms  
ms  
ms  
CONV_2  
20556/f  
EOSC  
W U  
2
I C TI I G CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Notes 3, 15)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) START Condition  
LOW Period of the SCL Clock Pin  
HIGH Period of the SCL Clock Pin  
Set-Up Time for a Repeated START Condition  
Data Hold Time  
0.6  
HD(SDA)  
LOW  
1.3  
µs  
0.6  
µs  
HIGH  
0.6  
µs  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0
0.9  
µs  
Data Set-Up Time  
100  
20+0.1C  
20+0.1C  
0.6  
ns  
Rise Time for Both SDA and SCL Signals  
Fall Time for Both SDA and SCL Signals  
Set-Up Time for STOP Condition  
(Note 14)  
(Note 14)  
300  
300  
ns  
B
B
ns  
f
µs  
SU(STO)  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 8: 60Hz mode (internal oscillator) or f  
oscillator).  
= 307.2kHz ±2% (external  
EOSC  
Note 2: All voltage values are with respect to GND.  
Note 9: Simultaneous 50Hz/60Hz mode (internal oscillator) or f  
=
EOSC  
280kHz ±2% (external oscillator).  
Note 10: The external oscillator is connected to the CA0/F pin. The  
Note 3: V = 2.7V to 5.5V unless otherwise specified.  
CC  
+
+
0
V
V
= REF – REF , V  
= (REF + REF )/2, FS = 0.5V /GAIN;  
= (IN + IN )/2.  
REF  
REFCM  
REF  
+
+
external oscillator frequency, f  
, is expressed in kHz.  
EOSC  
= IN – IN , V  
IN  
INCM  
Note 11: The converter uses the internal oscillator.  
Note 12: The output noise includes the contribution of the internal  
Note 4: Use internal conversion clock or external conversion clock source  
with f = 307.2kHz unless otherwise specified.  
EOSC  
calibration operations.  
Note 5: Guaranteed by design, not subject to test.  
Note 13: Guaranteed by design and test correlation.  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 14: C = capacitance of one bus line in pF.  
B
Note 15: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
Note 7: 50Hz mode (internal oscillator) or f  
oscillator).  
= 256kHz ±2% (external  
EOSC  
2481f  
5
LTC2481  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Integral Nonlinearity  
Integral Nonlinearity  
Integral Nonlinearity  
CC  
(V = 5V, V  
= 5V)  
(V = 5V, V  
= 2.5V)  
(V = 2.7V, V = 2.5V)  
REF  
CC  
REF  
CC  
REF  
3
2
3
2
3
2
V
V
V
= 5V  
V
V
V
= 2.7V  
= 2.5V  
IN(CM)  
V
V
V
= 5V  
= 5V  
IN(CM)  
CC  
CC  
REF  
CC  
REF  
= 2.5V  
REF  
= 1.25V  
= 1.25V  
= 2.5V  
IN(CM)  
1
0
1
0
1
0
–45°C  
85°C  
25°C  
–45°C, 25°C, 90°C  
–45°C, 25°C, 90°C  
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
–1.25 –0.75  
0.25  
0.25  
0.75  
1.25  
–1.25 –0.75  
0.25  
0.25  
0.75  
1.25  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G03  
2481 G02  
2481 G01  
Total Unadjusted Error  
(V = 2.7V, V = 2.5V)  
Total Unadjusted Error  
Total Unadjusted Error  
(V = 5V, V  
= 2.5V)  
(V = 5V, V  
= 5V)  
CC  
REF  
CC  
REF  
CC  
REF  
12  
8
12  
8
12  
8
V
V
V
= 5V  
V
V
V
= 5V  
V
V
V
= 2.7V  
CC  
CC  
CC  
= 5V  
= 2.5V  
= 2.5V  
REF  
REF  
85°C  
REF  
= 2.5V  
= 1.25V  
= 1.25V  
IN(CM)  
IN(CM)  
IN(CM)  
85°C  
85°C  
25°C  
25°C  
25°C  
4
0
4
0
4
0
–45°C  
–45°C  
–45°C  
–4  
–8  
–4  
–8  
–4  
–8  
–12  
–12  
–12  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
–1.25 –0.75  
0.25  
0.25  
0.75  
1.25  
–1.25 –0.75  
0.25  
0.25  
0.75  
1.25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G04  
2481 G05  
2481 G06  
Noise Histogram (6.8sps)  
Noise Histogram (7.5sps)  
Long-Term ADC Readings  
14  
12  
5
4
14  
12  
V
= 5V, V  
= 5V, V = 0V, V  
= 2.5V  
IN(CM)  
10,000 CONSECUTIVE  
READINGS  
CC  
REF  
IN  
10,000 CONSECUTIVE  
READINGS  
GAIN = 256, T = 25°C, RMS NOISE = 0.60µV  
A
RMS = 0.59µV  
AVERAGE = –0.19µV  
RMS = 0.60µV  
AVERAGE = –0.69µV  
V
V
V
= 2.7V  
= 2.5V  
V
V
V
= 5V  
= 5V  
CC  
REF  
IN  
CC  
REF  
IN  
3
= 0V  
10  
8
= 0V  
2
10  
8
GAIN = 256  
= 25°C  
GAIN = 256  
= 25°C  
1
T
A
T
A
0
6
6
–1  
–2  
–3  
–4  
–5  
4
4
2
2
0
0
–1.8 –1.2 –0.6  
0
1.8  
–3 –2.4  
0.6 1.2  
0
10  
30  
40  
50  
60  
20  
–1.8 –1.2 –0.6  
0
1.8  
–3 –2.4  
0.6 1.2  
TIME (HOURS)  
OUTPUT READING (µV)  
OUTPUT READING (µV)  
2481 G08  
2481 G09  
2481 G07  
2481f  
6
LTC2481  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RMS Noise  
vs Input Differential Voltage  
RMS Noise vs V  
RMS Noise vs Temperature (T )  
A
IN(CM)  
1.0  
0.9  
0.8  
0.7  
1.0  
0.9  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
V
V
V
V
= 5V  
= 5V  
V
V
V
T
= 5V  
= 5V  
IN(CM)  
= 25°C  
V
V
V
V
= 5V  
= 5V  
CC  
REF  
IN  
CC  
REF  
CC  
REF  
IN  
= 0V  
= 2.5V  
= 0V  
= GND  
= GND  
IN(CM)  
A
IN(CM)  
GAIN = 256  
GAIN = 256  
0.8  
0.7  
T
A
= 25°C  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
3
5
6
–1  
0
1
2
4
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
–45  
0
30 45 60 75 90  
–30 –15  
15  
INPUT DIFFERENTIAL VOLTAGE (V)  
V
(V)  
TEMPERATURE (°C)  
IN(CM)  
2481 G11  
2481 G10  
2481 G12  
RMS Noise vs V  
RMS Noise vs V  
Offset Error vs V  
IN(CM)  
CC  
REF  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
1.0  
0.9  
V
V
V
T
= 5V  
= 5V  
IN  
= 25°C  
V
V
V
= 2.5V  
V
V
V
= 5V  
= 0V  
CC  
REF  
REF  
CC  
IN  
= 0V  
IN  
IN(CM)  
= 0V  
= GND  
= GND  
IN(CM)  
GAIN = 256  
= 25°C  
GAIN = 256  
A
T
T
A
= 25°C  
A
0.8  
0.7  
–0.1  
–0.2  
–0.3  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
3
5
6
–1  
0
1
2
4
4.3  
(V)  
5.1 5.5  
2.7 3.1 3.5 3.9  
V
4.7  
0
1
2
3
(V)  
4
5
V
(V)  
V
IN(CM)  
REF  
CC  
2481 G15  
2481 G13  
2481 G14  
Offset Error vs Temperature  
Offset Error vs V  
Offset Error vs V  
REF  
CC  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.3  
0.2  
+
V
V
V
V
= 5V  
= 5V  
REF = 2.5V  
V
= 5V  
CC  
REF  
IN  
CC  
REF = GND  
REF = GND  
= 0V  
V
V
T
= 0V  
V
V
T
= 0V  
IN  
IN(CM)  
= 25°C  
IN  
IN(CM)  
= 25°C  
= GND  
= GND  
= GND  
IN(CM)  
A
A
0.1  
0.1  
0
0
–0.1  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.2  
–0.3  
4.3  
(V)  
5.1  
5.5  
2.7 3.1  
3.5 3.9  
4.7  
–45 –30 –15  
0
15 30 45 60 75 90  
0
1
2
3
4
5
TEMPERATURE (°C)  
V
CC  
V
REF  
(V)  
2481 G17  
2481 G16  
2481 G18  
2481f  
7
LTC2481  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Temperature Sensor  
vs Temperature  
Temperature Sensor Error  
vs Temperature  
On-Chip Oscillator Frequency  
vs Temperature  
0.40  
0.35  
0.30  
0.25  
0.20  
5
4
310  
308  
306  
304  
302  
300  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 1.4V  
= 1.4V  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
V
V
V
V
= 4.1V  
REF  
CC  
= 2.5V  
= 0V  
IN  
IN(CM)  
= GND  
–60  
–30  
0
30  
60  
90  
120  
–60  
–30  
0
30  
60  
90  
120  
–45 –30 –15  
0
15 30 45 60 75 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2481 G19  
2481 G20  
2481 G21  
On-Chip Oscillator Frequency  
vs V  
PSRR vs Frequency at V  
PSRR vs Frequency at V  
CC  
CC  
CC  
310  
308  
306  
304  
0
–20  
0
V
V
= 4.1V DC ±1.4V  
REF  
IN = GND  
V
V
V
= 2.5V  
V
V
= 4.1V DC  
= 2.5V  
CC  
REF  
IN  
CC  
REF  
= 2.5V  
= 0V  
–20  
+
+
= GND  
IN = GND  
IN(CM)  
IN = GND  
IN = GND  
–40  
–40  
T = 25°C  
T
A
= 25°C  
A
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
302  
300  
–140  
2.5  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
1
1k  
10k 100k 1M  
CC  
0
60  
140  
200 220  
3.0  
10  
100  
20 40  
80 100 120  
160 180  
V
FREQUENCY AT V (Hz)  
CC  
FREQUENCY AT V (Hz)  
CC  
2481 G22  
2481 G23  
2481 G24  
Sleep Mode Current  
vs Temperature  
Conversion Current  
vs Temperature  
PSRR vs Frequency at V  
CC  
0
–20  
–40  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
180  
V
V
= 4.1V DC ±0.7V  
REF  
IN = GND  
CC  
= 2.5V  
+
IN = GND  
T
= 25°C  
V
= 5V  
A
CC  
160  
V
CC  
= 5V  
–60  
–80  
V
= 2.7V  
CC  
140  
120  
100  
–100  
–120  
–140  
V
CC  
= 2.7V  
30650  
30700  
30800  
30600  
30750  
–45 –30 –15  
0
15 30 45 60 75 90  
60  
–45 –30 –15  
0
15 30 45  
75 90  
FREQUENCY AT V (Hz)  
CC  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2481 G25  
2481 G26  
2481 G27  
2481f  
8
LTC2481  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Conversion Current  
vs Output Data Rate  
Integral Nonlinearity (2x Speed  
Mode; V = 5V, V = 5V)  
Integral Nonlinearity (2x Speed  
Mode; V = 5V, V  
= 2.5V)  
CC  
REF  
CC  
REF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
3
2
3
2
V
= V  
CC  
V
V
V
= 5V  
V
V
V
= 5V  
REF  
CC  
CC  
+
IN = GND  
= 5V  
= 2.5V  
REF  
REF  
IN = GND  
= 2.5V  
= 1.25V  
IN(CM)  
IN(CM)  
CA0/F = EXT OSC  
0
T
A
= 25°C  
V
= 5V  
CC  
1
0
1
0
90°C  
25°C, 90°C  
V
CC  
= 3V  
–45°C, 25°C  
–1  
–2  
–3  
–1  
–2  
–3  
–45°C  
–2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT DATA RATE (READINGS/SEC)  
2481 G28  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
2481 G29  
2481 G30  
Noise Histogram  
(2x Speed Mode)  
RMS Noise vs V  
REF  
(2x Speed Mode)  
Integral Nonlinearity (2x Speed  
Mode; V = 2.7V, V  
= 2.5V)  
CC  
REF  
3
1.0  
0.8  
0.6  
0.4  
0.2  
0
16  
RMS = 0.86µV  
V
V
V
= 2.7V  
10,000 CONSECUTIVE  
READINGS  
CC  
AVERAGE = 0.184mV  
= 2.5V  
REF  
IN(CM)  
14  
12  
10  
8
2
= 1.25V  
V
V
V
= 5V  
CC  
REF  
IN  
= 5V  
= 0V  
1
0
GAIN = 256  
= 25°C  
90°C  
T
A
6
–45°C, 25°C  
–1  
–2  
–3  
4
V
V
V
= 5V  
= 0V  
IN(CM)  
= 25°C  
CC  
IN  
2
= GND  
T
A
0
–1.25 –0.75  
–0.25  
0.25  
0.75  
1.25  
1
3
0
2
4
5
181.4  
183.8  
188.6  
179  
186.2  
INPUT VOLTAGE (V)  
V
(V)  
OUTPUT READING (µV)  
REF  
2481 G31  
2481 G33  
2481 G32  
Offset Error vs V  
Offset Error vs Temperature  
(2x Speed Mode)  
IN(CM)  
(2x Speed Mode)  
200  
198  
196  
194  
192  
190  
188  
186  
184  
182  
180  
240  
230  
220  
210  
200  
190  
180  
170  
160  
V
V
V
T
= 5V  
= 5V  
IN  
= 25°C  
V
V
V
V
= 5V  
= 5V  
CC  
REF  
CC  
REF  
IN  
= 0V  
= 0V  
= GND  
A
IN(CM)  
–1  
1
2
3
4
5
6
–45 –30 –15  
0
15 30 45 60 75 90  
0
V
(V)  
TEMPERATURE (°C)  
IN(CM)  
2481 G34  
2481 G35  
2481f  
9
LTC2481  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Offset Error vs V  
Offset Error vs V  
REF  
(2x Speed Mode)  
PSRR vs Frequency at V  
(2x Speed Mode)  
CC  
CC  
(2x Speed Mode)  
250  
200  
150  
100  
50  
0
–20  
240  
230  
220  
210  
V
V
V
= 2.5V  
V
V
V
= 5V  
= 0V  
IN(CM)  
= 25°C  
A
V
= 4.1V DC  
CC  
REF  
= 0V  
CC  
IN  
+
REF = 2.5V  
IN  
IN(CM)  
= 25°C  
= GND  
= GND  
REF = GND  
+
T
T
IN = GND  
A
–40  
IN = GND  
T
= 25°C  
A
–60  
200  
190  
–80  
–100  
–120  
–140  
180  
170  
160  
0
2.7  
3
3.5  
4
4.5  
5
5.5  
0
1
2
4
5
1
10  
100  
1k  
10k 100k 1M  
3
V
CC  
(V)  
V
(V)  
FREQUENCY AT V (Hz)  
CC  
REF  
2481 G36  
2481 G37  
2481 G38  
PSRR vs Frequency at V  
(2x Speed Mode)  
PSRR vs Frequency at V  
(2x Speed Mode)  
CC  
CC  
0
0
V
= 4.1V DC ±0.7V  
CC  
+
REF = 2.5V  
–20  
–40  
–20  
REF = GND  
IN = GND  
+
–40 IN = GND  
T = 25°C  
A
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
80  
100 120 140 160 180 200 220  
0
60  
20 40  
30650  
30700  
30800  
30600  
30750  
FREQUENCY AT V (Hz)  
CC  
FREQUENCY AT V (Hz)  
CC  
2481 G39  
2481 G40  
U
U
U
PI FU CTIO S  
REF+ (Pin 1), REF(Pin 3): Differential Reference Input.  
ThevoltageonthesepinscanhaveanyvaluebetweenGND  
and VCC as long as the reference positive input, REF+, is  
more positive than the reference negative input, REF, by  
at least 0.1V.  
GND – 0.3V and VCC + 0.3V. Within these limits the  
converter bipolar input range (VIN = IN+ – IN) extends  
from –0.5 • VREF /GAIN to 0.5 • VREF/GAIN. Outside this  
input range the converter produces unique overrange  
and underrange output codes.  
VCC (Pin 2): Positive Supply Voltage. Bypass to GND  
(Pin 8) with a 1µF tantalum capacitor in parallel with 0.1µF  
ceramic capacitor as close to the part as possible.  
IN+ (Pin 4), IN(Pin 5): Differential Analog Input. The  
voltage on these pins can have any value between  
SCL (Pin 6): Serial Clock Pin of the I2C Interface. The  
LTC2481 can only act as a slave and the SCL pin only  
accepts external serial clock. Data is shifted into the SDA  
pin on the rising edges of the SCL clock and output  
through the SDA pin on the falling edges of the SCL clock.  
2481f  
10  
LTC2481  
U
U
U
PI FU CTIO S  
SDA (Pin 7): Bidirectional Serial Data Line of the I2C  
Interface. In the transmitter mode (Read), the conversion  
result is output through the SDA pin, while in the receiver  
mode (Write), the device configuration bits are input  
through the SDA pin. At data input mode, the pin is high  
impedance; while at data output mode, it is an open-drain  
N-channeldriverandthereforeanexternalpull-upresistor  
or current source to VCC is needed.  
CA1 (Pin 9): Chip Address Control Pin. The CA1 pin is  
configured as a three state (LOW, HIGH, or Floating)  
address control bit for the device I2C address.  
CA0/F0 (Pin 10): Chip Address Control Pin/External Clock  
Input Pin. When no transition is detected on the CA0/F0  
pin, it is a two state (HIGH or Floating) address control bit  
for the device I2C address. When the pin is driven by an  
external clock signal with a frequency fEOSC of at least  
10kHz, the converter uses this signal as its system clock  
andthefundamentaldigitalfilterrejectionnullislocatedat  
a frequency fEOSC/5120 and sets the Chip Address CA0  
internally to a HIGH.  
GND (Pin 8): Ground. Connect this pin to a ground plane  
through a low impedance connection.  
U
U
W
FU CTIO AL BLOCK DIAGRA  
2
+
REF  
V
CC  
1
+
IN  
SCL  
SDA  
CA1  
+
4
REF  
6
7
+
IN  
IN  
IN  
2
I C  
5
3RD ORDER  
ΣADC  
SERIAL  
INTERFACE  
MUX  
9
CA0/F  
0
(1-256)  
GAIN  
10  
REF  
TEMP  
SENSOR  
AUTOCALIBRATION  
AND CONTROL  
INTERNAL  
OSCILLATOR  
REF  
GND  
3
8
2481 FD  
2481f  
11  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
CONVERTER OPERATION  
The device will not acknowledge an external request  
duringtheconversionstate. Afteraconversionisfinished,  
thedeviceisreadytoacceptaread/writerequest. Oncethe  
LTC2481 is addressed for a read operation, the device  
begins outputting the conversion result under control of  
the serial clock (SCL). There is no latency in the conver-  
sion result. The data output is 24 bits long and contains  
a16-bit plus sign conversion result plus a readback of the  
configuration bits corresponds to the conversion just  
performed. This result is shifted out on the SDA pin under  
the control of the SCL. Data is updated on the falling edges  
of SCL allowing the user to reliably latch data on the rising  
edge of SCL. In write operation, the device accepts one  
configuration byte and the data is shifted in on the rising  
edges of the SCL. A new conversion is initiated by a STOP  
condition following a valid write operation or at the con-  
clusion of a data read operation (read out all 24 bits).  
Converter Operation Cycle  
The LTC2481 is a low power, ∆Σ analog-to-digital con-  
verter with an I2C interface. After power on reset, its  
operation is made up of three states. The converter  
operating cycle begins with the conversion, followed by  
the low power sleep state and ends with the data output/  
input (see Figure 1).  
POWER ON RESET  
DEFAULT CONFIGURATION:  
EXTERNAL INPUT GAIN = 1  
50/60Hz REJECTION  
1X SPEED, AUTOCAL  
CONVERSION  
SLEEP  
I2C INTERFACE  
The LTC2481 communicates through an I2C interface.  
The I2C interface is a 2-wire open-drain interface sup-  
porting multiple devices and masters on a single bus. The  
connected devices can only pull the bus wires LOW and  
can never drive the bus HIGH. The bus wires are exter-  
nally connected to a positive supply voltage via a current-  
source or pull-up resistor. When the bus is free, both  
lines are HIGH. Data on the I2C-bus can be transferred at  
rates of up to 100kbit/s in the Standard-mode and up to  
400kbit/s in the Fast-mode.  
Each device on the I2C bus is recognized by a unique  
address stored in that device and can operate as either a  
transmitter or receiver, depending on the function of the  
device. In addition to transmitters and receivers, devices  
can also be considered as masters or slaves when per-  
forming data transfers. A master is the device which  
initiates a data transfer on the bus and generates the clock  
signalstopermitthattransfer. Atthesametimeanydevice  
addressed is considered a slave.  
NO  
ACKNOWLEDGE  
YES  
DATA OUTPUT/INPUT  
STOP  
NO  
OR READ  
24-BITS  
YES  
2481 F01  
Figure 1. LTC2481 State Transition Diagram  
Initially, the LTC2481 performs a conversion. Once the  
conversion is complete, the device enters the sleep state.  
While in this sleep state, power consumption is reduced  
by two orders of magnitude. The part remains in the sleep  
state as long as it is not addressed for a read/write  
operation. The conversion result is held indefinitely in a  
staticshiftregisterwhiletheconverterisinthesleepstate.  
2481f  
12  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
The LTC2481 can only be addressed as a slave. Once  
addressed, itcanreceiveconfigurationbitsortransmitthe  
last conversion result. Therefore the serial clock line SCL  
is an input only and the data line SDA is bidirectional. The  
device supports the Standard-mode and the Fast-mode  
for data transfer speeds up to 400kbit/s. Figure 2 shows  
the definition of timing for Fast/Standard-mode devices  
on the I2C-bus.  
leaves SDA HIGH to indicate a Not Acknowledge (NAK)  
condition. ChangeofdatastatecanonlyhappenwhileSCL  
is LOW.  
Accessing the Special Features of the LTC2481  
The LTC2481 combines a high resolution, low noise ∆Σ  
analog-to-digitalconverterwithanon-chipselectabletem-  
peraturesensor,programmablegain,programmabledigital  
filter and output rate control. These special features are  
selectedthroughasingle8-bitserialinputwordduringthe  
data input/output cycle (see Figure 3).  
The START and STOP Conditions  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
HIGH to LOW while SCL is HIGH. The bus is considered to  
be busy after the START condition. When the data transfer  
is finished, a STOP condition is generated by transitioning  
SDA from LOW to HIGH while SCL is HIGH. The bus is free  
again a certain time after the STOP condition. START and  
STOP conditions are always generated by the master.  
The LTC2481 powers up in a default mode commonly  
used for most measurements. The device will remain in  
this mode until a valid write cycle is performed. In this  
default mode, the measured input is external, the GAIN is  
1, the digital filter simultaneously rejects 50Hz and 60Hz  
line frequency noise, and the speed mode is 1x (offset  
automatically, continuously calibrated).  
The I2C serial interface grants access to any or all special  
functions contained within the LTC2481. In order to  
change the mode of operation, a valid write address  
followed by 8 bits of data are shifted into the device (see  
Table 1). The first 3 bits (GS2, GS1, GS0) control the  
GAIN of the converter from 1 to 256. The 4th bit is  
reserved and should be low. The 5th bit (IM) is used to  
select the internal temperature sensor as the conversion  
input, while the 6th and 7th bits (FA, FB) combine to  
determine the line frequency rejection mode. The 8th bit  
(SPD) is used to double the output rate by disabling the  
offset auto calibration.  
When the bus is in use, it stays busy if a repeated START  
(Sr) is generated instead of a STOP condition. The  
repeated START (Sr) conditions are functionally identical  
to the START (S).  
Data Transferring  
After the START condition, the I2C bus is busy and data  
transfer is set between a master and a slave. Data is  
transferred over I2C in groups of nine bits (one byte)  
followed by an acknowledge bit, therefore each group  
takes nine SCL cycles. The transmitter releases the SDA  
line during the acknowledge clock pulse and the receiver  
issues an Acknowledge (ACK) by pulling SDA LOW or  
SDA  
tSU;DAT  
tf  
tLOW  
tr  
tr  
tHD;STA  
tSP  
tr  
tBUF  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
S
Sr  
P
S
2481 F02  
2
Figure 2. Definition of Timing for F/S-Mode Devices on the I C-Bus  
2481f  
13  
LTC2481  
APPLICATIO S I FOR ATIO  
W U U  
U
1
2
7
8
9
1
2
3
4
5
6
7
8
9
SCL  
SDA  
7-BIT ADDRESS  
GS2 GS1 GS0  
IM  
FA  
FB  
SPD  
W
ACK BY  
LTC2481  
ACK BY  
LTC2481  
START BY  
MASTER  
SLEEP  
DATA INPUT  
2481 F03  
Figure 3. Timing Diagram for Writing to the LTC2481  
Table 1. Selecting Special Modes  
Rejection  
Mode  
Gain  
GS2 GS1 GS0 IM FA FB SPD Comments  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
External Input, Gain = 1, Autocalibration  
External Input, Gain = 4, Autocalibration  
External Input, Gain = 8, Autocalibration  
External Input, Gain = 16, Autocalibration  
External Input, Gain = 32, Autocalibration  
External Input, Gain = 64, Autocalibration  
External Input, Gain = 128, Autocalibration  
External Input, Gain = 256, Autocalibration  
External Input, Gain = 1, 2x Speed  
Any  
Rejection  
Mode  
External Input, Gain = 2, 2x Speed  
External Input, Gain = 4, 2x Speed  
External Input, Gain = 8, 2x Speed  
External Input, Gain = 16, 2x Speed  
External Input, Gain = 32, 2x Speed  
External Input, Gain = 64, 2x Speed  
External Input, Gain = 128, 2x Speed  
External Input, Simultaneous 50Hz/60Hz Rejection  
External Input, 50Hz Rejection  
External Input, 60Hz Rejection  
Reserved, Do Not Use  
Temperature Input, 50Hz/60Hz Rejection, Gain = 1, Autocalibration  
Temperature Input, 50Hz Rejection, Gain = 1, Autocalibration  
Temperature Input, 60Hz Rejection, Gain = 1, Autocalibration  
Reserved, Do Not Use  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Any  
Speed  
Any Gain  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2481 TBL1  
2481f  
14  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 2a. The LTC2481 Performance vs GAIN in Normal Speed Mode (V = 5V, V  
= 5V)  
REF  
CC  
GAIN  
1
±2.5  
38.1  
65536  
5
4
±0.625  
9.54  
65536  
5
8
±0.312  
4.77  
65536  
5
16  
±0.156  
2.38  
65536  
5
32  
±78m  
1.19  
65536  
5
64  
128  
±19.5m  
0.298  
32768  
5
256  
UNIT  
Input Span  
LSB  
±39m  
0.596  
65536  
5
±9.76m  
0.149  
16384  
8
V
µV  
Noise Free Resolution*  
Gain Error  
Offset Error  
Counts  
ppm of FS  
µV  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
Table 2b. The LTC2481 Performance vs GAIN in 2x Speed Mode (V = 5V, V  
= 5V)  
CC  
REF  
16  
GAIN  
1
±2.5  
38.1  
65536  
5
2
4
±0.625  
9.54  
65536  
5
8
±0.312  
4.77  
65536  
5
32  
±78m  
1.19  
65536  
5
64  
±39m  
0.596  
45875  
5
128  
±19.5m  
0.298  
22937  
5
UNIT  
V
Input Span  
LSB  
±1.25  
19.1  
65536  
5
±0.156  
2.38  
65536  
5
µV  
Noise Free Resolution*  
Gain Error  
Offset Error  
Counts  
ppm of FS  
µV  
200  
200  
200  
200  
200  
200  
200  
200  
*The resolution in counts is calculated as the FS divided by LSB or the RMS noise value, whichever is larger.  
Rejection Mode (FA, FB)  
GAIN (GS2, GS1, GS0)  
The LTC2481 includes a high accuracy on-chip oscillator  
with no required external components. Coupled with a 4th  
order digital lowpass filter, the LTC2481 rejects line fre-  
quency noise. In the default mode, the LTC2481 simulta-  
neously rejects 50Hz and 60Hz by at least 87dB. The  
LTC2481 can also be configured to selectively reject 50Hz  
or 60Hz to better than 110dB.  
The input referred gain of the LTC2481 is adjustable from  
1 to 256. With a gain of 1, the differential input range is  
±VREF/2 and the common mode input range is rail-to-rail.  
As the GAIN is increased, the differential input range is  
reduced to ±VREF/2 • GAIN but the common mode input  
range remains rail-to-rail. As the differential gain is in-  
creased, low level voltages are digitized with greater  
resolution. At a gain of 256, the LTC2481 digitizes an input  
signal range of ±9.76mV with over 16,000 counts.  
Speed Mode (SPD)  
The LTC2481 continuously performs offset calibrations.  
Every conversion cycle, two conversions are automati-  
cally performed (default) and the results combined. This  
result is free from offset and drift. In applications where  
the offset is not critical, the autocalibration feature can be  
disabled with the benefit of twice the output rate.  
Temperature Sensor (IM)  
TheLTC2481includesanon-chiptemperaturesensor.The  
temperaturesensorisselectedbysettingIM=1intheserial  
input data stream. Conversions are performed directly on  
the temperature sensor by the converter. While operating  
in this mode, the device behaves as a temperature to bits  
converter. The digital reading is proportional to the abso-  
lute temperature of the device. This feature allows the  
convertertolinearizetemperaturesensorsorcontinuously  
removetemperatureeffectsfromexternalsensors.Several  
applications leveraging this feature are presented in more  
detail in the applications section. While operating in this  
mode, the gain is set to 1 and the speed is set to normal in-  
dependent of the control bits (GS2, GS1, GS0 and SPD).  
Linearity, full-scale accuracy and full-scale drift are iden-  
tical for both 2x and 1x speed modes. In both the 1x and  
2x speed there is no latency. This enables input steps or  
multiplexerchannelchangestosettleinasingleconversion  
cycle easing system overhead and increasing the effective  
conversion rate.  
2481f  
15  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 3. LTC2481 Status Bits  
LTC2481 Data Format  
BIT 23  
SIG  
BIT 22  
MSB  
After a START condition, the master sends a 7-bit address  
followed by a R/W bit. The bit R/W is 1 for a Read request  
and 0 for a Write request. If the 7-bit address agrees with  
an LTC2481’s address, that device is selected. When the  
device is in the conversion state, it does not accept the  
request and issues a Not-Acknowledge (NAK) by leaving  
SDA HIGH. If the conversion is complete, it issues an  
acknowledge (ACK) by pulling SDA LOW.  
INPUT RANGE  
V
0.5 • V  
1
1
0
0
1
0
1
0
IN  
REF  
0V V < 0.5 • V  
IN  
REF  
–0.5 • V  
V < 0V  
IN  
REF  
V
< 0.5 • V  
REF  
IN  
(MSB) of the result. The first two bits (SIG and MSB) can  
be used to indicate over range conditions. If both bits are  
HIGH, the differential input voltage is above +FS and the  
following 16 bits are set to LOW to indicate an overrange  
condition. If both bits are LOW, the input voltage is below  
–FS and the following 16 bits are set to HIGH to indicate an  
underrange condition. The function of these two bits is  
summarized in Table 3. The next 16 bits contain the  
conversion results in binary two’s complement format.  
The remaining six bits are a readback of the configuration  
register.  
As long as the voltage on the IN+ and INpins is main-  
tainedwithinthe0.3Vto(VCC+0.3V)absolutemaximum  
operating range, a conversion result is generated for any  
differential input voltage VIN from –FS = –0.5 • VREF/GAIN  
to +FS = 0.5 • VREF/GAIN. For differential input voltages  
greater than +FS, the conversion result is clamped to the  
value corresponding to the +FS + 1LSB. For differential  
inputvoltagesbelowFS,theconversionresultisclamped  
to the value corresponding to –FS – 1LSB.  
The LTC2481 has two registers. The output register  
contains the result of the last conversion and a user  
programmable configuration register that sets the con-  
verter operation mode.  
The output register contains the last conversion result.  
After each conversion is completed, the device automati-  
cally enters the sleep state where the supply current is  
reduced to 1µA. When the LTC2481 is addressed for a  
Read operation, it acknowledges (by pulling SDA LOW)  
andactsasatransmitter.Themasterandreceivercanread  
uptothreebytesfromtheLTC2481.AfteracompleteRead  
operation (3 bytes), the output register is emptied, a new  
conversion is initiated, and a following Read request in the  
same input/output phase will be NAKed. The LTC2481  
outputdatastreamis24bitslong, shiftedoutonthefalling  
edges of SCL. The first bit is the conversion result sign bit  
(SIG), see Tables 3 and 4. This bit is HIGH if VIN 0. It is  
LOW if VIN <0. The second bit is the most significant bit  
Table 4. LTC2481 Output Data Format  
DIFFERENTIAL INPUT VOLTAGE  
IN  
BIT 23  
SIG  
BIT 22  
MSB  
BIT 21  
BIT 20  
BIT 19  
BIT 6  
V
*
V * FS**  
1
1
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
IN  
FS** – 1LSB  
0.5 • FS**  
0.5 • FS** – 1LSB  
0
–1LSB  
0.5 • FS**  
0.5 • FS** – 1LSB  
FS**  
V * < –FS**  
IN  
0
+
*The differential input voltage V = IN – IN . **The full-scale voltage FS = 0.5 • V /GAIN.  
IN  
REF  
2481f  
16  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
1
… 7  
8
9
1
2 …  
9
1
2
3
4
5
6
7
8
9
7-BIT  
ADDRESS  
R
SGN MSB D15  
LSB PG2 PG1 PG0  
X
IM  
SPD  
ACK BY  
LTC2481  
ACK BY  
MASTER  
NAK BY  
MASTER  
START BY  
MASTER  
SLEEP  
DATA OUTPUT  
2481 F04  
Figure 4. Timing Diagram for Reading from the LTC2481  
Initiating a New Conversion  
OPERATION SEQUENCE  
When the LTC2481 finishes a conversion, it automatically The LTC2481 acts as a transmitter or receiver. The device  
enters the sleep state. Once in the sleep state, the device may be programmed to perform several functions. These  
is ready for Read/Write operations. After the device ac- include measuring an external differential input signal or  
knowledges a Read or Write request, the device exits the an integrated temperature sensor, setting a program-  
sleepstateandentersthedatainput/outputstate. Thedata mable gain (from 1 to 256), selecting line frequency  
input/output state concludes and the LTC2481 starts a rejection (50Hz, 60Hz, or simultaneous 50Hz and 60Hz),  
new conversion once a STOP condition is issued by the and a 2x speed up mode.  
master or all 24-bits of data are read out of the device.  
Continuous Read  
Duringthedatareadcycle,astopcommandmaybeissued  
In applications where the configuration does not need to  
change for each conversion cycle, the conversion result  
can be continuously read. The configuration remains  
unchanged from the last value written into the device. If  
the device has not been written to since power up, the  
configuration is set to the default value (Input External,  
GAIN=1,simultaneous50Hz/60Hzrejection,and1xspeed  
mode). The operation sequence is shown in Figure 6.  
When the conversion is finished, the device may be  
addressed for a read operation. At the end of a read  
operation, a new conversion begins. At the conclusion  
of the conversion cycle, the next result may be read  
using the method described above. If the conversion  
cycle is not concluded and a valid address selects the  
device, the LTC2481 generates a NAK signal indicating  
the conversion cycle is in progress.  
by the master controller in order to start a new conversion  
and abort the data transfer. This stop command must be  
issued during the 9th clock cycle of a byte read when the  
bus is free (the ACK/NAK cycle).  
LTC2481 Address  
The LTC2481 has two address pins, enabling one in 6  
possible addresses, as shown in Table 5.  
Table 5. LTC2481 Address Assignment  
CA1  
CA0/F *  
Address  
0
LOW  
HIGH  
001 01 00  
001 01 01  
001 01 11  
010 01 00  
010 01 10  
010 01 11  
LOW  
Floating  
HIGH  
Floating  
Floating  
HIGH  
HIGH  
Floating  
HIGH  
Floating  
* CA0/F is treated as HIGH when driven by a valid external clock.  
0
In addition to the configurable addresses listed in Table 5,  
the LTC2481 also contains a global address (1110111)  
which may be used for synchronizing multiple LTC2481s.  
2481f  
17  
LTC2481  
APPLICATIO S I FOR ATIO  
W U U  
U
S
R/W  
ACK  
DATA  
Sr  
DATA TRANSFERRING  
P
7-BIT ADDRESS  
CONVERSION  
SLEEP  
DATA INPUT/OUTPUT  
Figure 5. The LTC2481 Conversion Sequence  
CONVERSION  
2481 F05  
S
7-BIT ADDRESS  
R
ACK  
READ  
P
S
7-BIT ADDRESS  
R
ACK  
READ  
P
CONVERSION  
CONVERSION  
SLEEP  
DATA OUTPUT  
SLEEP  
DATA OUTPUT  
CONVERSION  
2481 F06  
Figure 6. Consecutive Reading at the Same Configuration  
S
7-BIT ADDRESS  
W
ACK  
WRITE  
Sr  
7-BIT ADDRESS  
ADDRESS  
R
ACK  
READ  
P
CONVERSION  
SLEEP  
DATA INPUT  
DATA OUTPUT  
CONVERSION  
2481 F08  
Figure 7. Write, Read, Start Conversion  
Continuous Read/Write  
Synchronizing Multiple LTC2481s with the Global  
Address Call  
Once the conversion cycle is concluded, the LTC2481 can  
be written to then read from, using the repeated Start (Sr)  
command.  
In applications where several LTC2481s are used on the  
same I2C bus, all LTC2481s can be synchronized with the  
global address call. To achieve this, first all the LTC2481s  
must have completed the conversion cycle. The master  
issues a Start, followed by the LTC2481 global address  
1110111andaWriterequest.AllLTC2481swillbeselected  
and acknowledge the request. The master then sends the  
write byte (Optional) and ends the Write operation with a  
STOP. This will update the configuration registers (if a  
write byte was sent) and initiate a new conversion simul-  
taneously on all the LTC2481s, as shown in Figure 9. In  
order to synchronize the start of conversion without  
affecting the configuration registers, the Write operation  
canbeabortedwithaSTOP.Thisinitiatesanewconversion  
on all the LTC2481s without changing the configuration  
registers.  
Figure 7 shows a cycle which begins with a data Write, a  
repeated start, followed by a read, and concluded with a  
stop command. The following conversion begins after all  
24-bits are read out of the device or after the STOP  
command and uses the newly programmed configura-  
tion data.  
Discarding a Conversion Result and Initiating a New  
Conversion with Optional Configuration Updating  
At the conclusion of a conversion cycle, a Write cycle can  
be initiated. Once the Write cycle is acknowledged, a stop  
(P) command initiates a new conversion. If a new  
configuration is required, this data can be written into the  
device and a stop command initiates a new conversion,  
see Figure 8.  
2481f  
18  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
S
7-BIT ADDRESS  
W ACK  
WRITE (OPTIONAL)  
P
CONVERSION  
SLEEP  
DATA INPUT  
CONVERSION  
2481 F09  
Figure 8. Start a New Conversion without Reading Old Conversion Result  
SCL  
SDA  
LTC2481  
LTC2481  
LTC2481  
S
GLOBAL ADDRESS  
W ACK WRITE (OPTIONAL)  
P
ALL LTC2481s IN SLEEP  
CONVERSION OF ALL LTC2481s  
DATA INPUT  
2481 F10  
Figure 9. Synchronize the LTC2481s with the Global Address Call  
Easy Drive Input Current Cancellation  
lated to the accuracy of the converter system clock. The  
LTC2481incorporatesahighlyaccurateon-chiposcillator.  
Thiseliminatestheneedforexternalfrequencysettingcom-  
ponents such as crystals or oscillators.  
The LTC2481 combines a high precision delta-sigma ADC  
with an automatic differential input current cancellation  
front end. A proprietary front-end passive sampling  
network transparently removes the differential input cur-  
rent. This enables external RC networks and high imped-  
ance sensors to directly interface to the LTC2481 without  
external amplifiers. The remaining common mode input  
current is eliminated by either balancing the differential  
input impedances or setting the common mode input  
equal to the common mode reference (see Automatic  
Input Current Cancellation section). This unique architec-  
ture does not require on-chip buffers enabling input  
signals to swing all the way to ground and up to VCC.  
Furthermore, the cancellation does not interfere with the  
transparent offset and full-scale auto-calibration and the  
absolute accuracy (full scale + offset + linearity) is main-  
tained even with external RC networks.  
Frequency Rejection Selection (CA0/F0)  
TheLTC2481internaloscillatorprovidesbetterthan110dB  
normal mode rejection at the line frequency and all its  
harmonics (up to the 255th) for 50Hz ±2% or 60Hz ±2%,  
or better than 87dB normal mode rejection from 48Hz to  
62.4Hz. The rejection mode is selected by writing to the  
on-chip configuration register (the default mode at power  
up is simultaneous 50Hz/60Hz rejection).  
When a fundamental rejection frequency different from  
50Hz or 60Hz is required or when the converter must be  
synchronized with an outside source, the LTC2481 can  
operate with an external conversion clock. The converter  
automatically detects the presence of an external clock  
signal at the CA0/F0 pin and turns off the internal oscilla-  
tor. The chip address for CA0 is internally set HIGH. The  
frequency fEOSC of the external signal must be at least  
10kHz to be detected. The external clock signal duty cycle  
is not significant as long as the minimum and maximum  
specifications for the high and low periods tHEO and tLEO  
are observed.  
Conversion Clock  
A major advantage the delta-sigma converter offers over  
conventional type converters is an on-chip digital filter  
(commonlyimplementedasaSINCorCombfilter).Forhigh  
resolution,lowfrequencyapplications,thisfilteristypically  
designedtorejectlinefrequenciesof50Hzor60Hzplustheir  
harmonics. The filter rejection performance is directly re-  
2481f  
19  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
–80  
–85  
While operating with an external conversion clock of a  
frequency fEOSC, the LTC2481 provides better than 110dB  
normal mode rejection in a frequency range of fEOSC/5120  
±4% and its harmonics. The normal mode rejection as a  
function of the input frequency deviation from fEOSC/5120  
is shown in Figure 10.  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
Whenever an external clock is not present at the CA0/F0  
pin, the converter automatically activates its internal os-  
cillator and enters the Internal Conversion Clock mode.  
CA0/F0 may be tied HIGH or left floating in order to set the  
chip address. The LTC2481 operation will not be dis-  
turbed if the change of conversion clock source occurs  
during the sleep state or during the data output state while  
the converter uses an external serial clock. If the change  
occurs during the conversion state, the result of the  
conversion in progress may be outside specifications but  
the following conversions will not be affected.  
–12  
–8  
–4  
0
4
8
12  
DIFFERENTIAL INPUT SIGNAL FREQUENCY  
DEVIATION FROM NOTCH FREQUENCY f  
/5120(%)  
2481 F11  
EOSC  
Figure 10. LTC2481 Normal Mode Rejection When  
Using an External Oscillator  
above. The advantage of continuous calibration is extreme  
stability of offset and full-scale readings with respect to  
time, supply voltage change and temperature drift.  
Table 6 summarizes the duration of the conversion state of  
each state and the achievable output data rate as a function  
Power-Up Sequence  
of fEOSC  
.
The LTC2481 automatically enters an internal reset state  
when the power supply voltage VCC drops below approxi-  
mately2V. Thisfeatureguaranteestheintegrityoftheconver-  
sion result.  
Ease of Use  
The LTC2481 data output has no latency, filter settling  
delay or redundant data associated with the conversion  
cycle. There is a one-to-one correspondence between the  
conversion and the output data. Therefore, multiplexing  
multiple analog voltages is easy.  
When the VCC voltage rises above this critical threshold,  
the converter creates an internal power-on-reset (POR)  
signal with a duration of approximately 4ms. The POR  
signal clears all internal registers. Following the POR  
signal, the LTC2481 starts a normal conversion cycle and  
follows the succession of states described in Figure 1. The  
The LTC2481 performs offset and full-scale calibrations  
everyconversioncycle.Thiscalibrationistransparenttothe  
user and has no effect on the cyclic operation described  
Table 6. LTC2481 State Duration  
STATE  
OPERATING MODE  
DURATION  
CONVERSION  
Internal Oscillator  
60Hz Rejection  
133ms, Output Data Rate 7.5 Readings/s for 1x Speed Mode  
67ms, Output Data Rate 15 Readings/s for 2x Speed Mode  
50Hz Rejection  
160ms, Output Data Rate 6.2 Readings/s for 1x Speed Mode  
80ms, Output Data Rate 12.5 Readings/s for 2x Speed Mode  
50Hz/60Hz Rejection  
147ms, Output Data Rate 6.8 Readings/s for 1x Speed Mode  
73.6ms, Output Data Rate 13.6 Readings/s for 2x Speed Mode  
External Oscillator  
CA0/F = External Oscillator  
41036/f  
s, Output Data Rate f  
/41036 Readings/s for  
0
EOSC  
EOSC  
with Frequency f  
Hz  
1x Speed Mode  
20556/f s, Output Data Rate f  
EOSC  
(f  
/5120 Rejection)  
EOSC  
/20556 Readings/s for  
EOSC  
EOSC  
2x Speed Mode  
2481f  
20  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
first conversion result following POR is accurate within the  
specifications of the device if the power supply voltage is  
restored within the operating range (2.7V to 5.5V) before  
the end of the POR time interval.  
If the same VREF source is used during calibration and  
temperature measurement, the actual value of the VREF is  
not needed to measure the temperature as shown in the  
calculation below:  
On-Chip Temperature Sensor  
RSDA VREF  
TC =  
– 273  
The LTC2481 contains an on-chip PTAT (proportional to  
absolutetemperature)signalthatcanbeusedasatempera-  
turesensor.TheinternalPTAThasatypicalvalueof420mV  
at 27°C and is proportional to the absolute temperature  
value with a temperature coefficient of 420/(27 + 273) =  
1.40mV/°C (SLOPE), as shown in Figure 11. The internal  
PTAT signal is used in a single-ended mode referenced to  
device ground internally. The GAIN is automatically set to  
one (independent of the values of GS0, GS1, GS2) in order  
to preserve the PTAT property at the ADC output code and  
avoid an out of range error. The 1x speed mode with auto-  
matic offset calibration is automatically selected for the in-  
ternal PTAT signal measurement as well.  
SLOPE  
RSDA  
R0SDA  
=
• T0 + 273 – 273  
(
)
600  
V
= 5V  
CC  
IM = 1  
SLOPE = 1.40mV/°C  
500  
400  
300  
200  
–60  
–30  
0
30  
60  
90  
120  
When using the internal temperature sensor, if the output  
code is normalized to RSDA = VPTAT/VREF, the temperature  
is calculated using the following formula:  
TEMPERATURE (°C)  
2481 F12  
Figure 11. Internal PTAT Signal vs Temperature  
Reference Voltage Range  
RSDA VREF  
TK =  
and  
TC =  
in Kelvin  
The LTC2481 external reference voltage range is 0.1V to  
VCC. The converter output noise is determined by the  
thermal noise of the front-end circuits, and as such, its  
value in nanovolts is nearly constant with reference volt-  
age. Since the transition noise (600nV) is much less than  
the quantization noise (VREF/217), a decrease in the refer-  
ence voltage will increase the converter resolution. A  
reduced reference voltage will also improve the converter  
performance when operated with an external conversion  
clock (external FO signal) at substantially higher output  
data rates (see the Output Data Rate section). VREF must  
be 1.1V to use the internal temperature sensor.  
SLOPE  
RSDA VREF  
SLOPE  
– 273 in °C  
where SLOPE is nominally 1.4mV/°C.  
Since the PTAT signal can have an initial value variation  
which results in errors in SLOPE, to achieve absolute  
temperature measurements, a one-time calibration is  
needed to adjust the SLOPE value. The converter output of  
the PTAT signal, R0SDA, is measured at a known tempera-  
ture T0 (in °C) and the SLOPE is calculated as:  
The reference input is differential. The differential refer-  
ence input range (VREF = REF+ – REF) is 100mV to VCC  
and the common mode reference input range is 0V to VCC.  
R0SDA VREF  
SLOPE =  
T0 + 273  
This calibrated SLOPE can be used to calculate the  
temperature.  
2481f  
21  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
Driving the Input and Reference  
Input Voltage Range  
The input and reference pins of the LTC2481 converter are  
directly connected to a network of sampling capacitors.  
Depending upon the relation between the differential input  
voltageandthedifferentialreferencevoltage, thesecapaci-  
tors are switching between these four pins transferring  
smallamountsofchargeintheprocess.Asimplifiedequiva-  
lent circuit is shown in Figure 12.  
The analog input is truly differential with an absolute/  
common mode range for the IN+ and INinput pins  
extending from GND – 0.3V to VCC + 0.3V. Outside  
these limits, the ESD protection devices begin to turn on  
andtheerrorsduetoinputleakagecurrentincreaserapidly.  
Within these limits, the LTC2481 converts the bipolar  
differential input signal, VIN = IN+ – IN, from FS to +FS  
where FS = 0.5 • VREF/GAIN. Beyond this range, the  
converter indicates the overrange or the underrange con-  
dition using distinct output codes. Since the differential  
input current cancellation does not rely on an on-chip  
buffer, current cancellation as well as DC performance is  
maintained rail-to-rail.  
For a simple approximation, the source impedance RS  
driving an analog input pin (IN+, IN, REF+ or REF) can be  
considered to form, together with RSW and CEQ (see  
Figure 12), a first order passive network with a time con-  
stant τ = (RS + RSW) • CEQ. The converter is able to sample  
the input signal with better than 1ppm accuracy if the  
sampling period is at least 14 times greater than the input  
circuit time constant τ. The sampling process on the four  
input analog pins is quasi-independent so each time con-  
stant should be considered by itself and, under worst-case  
circumstances, the errors may add.  
I
nput signals applied to IN+ and INpins may extend by  
300mV below ground and above VCC. In order to limit any  
fault current, resistors of up to 5k may be added in series  
with the IN+ and INpins without affecting the perfor-  
manceofthedevices. Theeffectoftheseriesresistanceon  
the converter accuracy can be evaluated from the curves  
presented in the Input Current/Reference Current sec-  
tions. In addition, series resistors will introduce a tem-  
perature dependent offset error due to the input leakage  
current. A 1nA input leakage current will develop a 1ppm  
offset error on a 5k resistor if VREF = 5V. This error has a  
very strong temperature dependency.  
When using the internal oscillator, the LTC2481’s front-  
end switched-capacitor network is clocked at 123kHz  
corresponding to an 8.1µs sampling period. Thus, for  
settling errors of less than 1ppm, the driving source  
impedance should be chosen such that τ ≤ 8.1µs/14 =  
580ns. When an external oscillator of frequency fEOSC is  
used, the sampling period is 2.5/fEOSC and, for a settling  
error of less than 1ppm, τ ≤ 0.178/fEOSC  
.
V
CC  
+
I
REF  
R
(TYP)  
SW  
I
I
LEAK  
LEAK  
10k  
+
V
IN(CM) VREF(CM)  
V
I IN+  
= I IN–  
=
AVG  
REF  
(
)
(
)
AVG  
0.5REQ  
2
2
1.5VREF  
+
VREF(CM) – V  
V
(
IN(CM)  
)
1.5VREF V  
+ VREFCM  
0.5VREF • DT  
REQ  
V
IN  
V
INCM  
IN  
I REF+  
=
CC  
+
(
)
I
IN  
AVG  
0.5REQ  
VREF REQ  
0.5REQ  
VREF REQ  
R
(TYP)  
10k  
SW  
I
I
LEAK  
LEAK  
where:  
+
V
IN  
REF + REF–  
C
+
EQ  
VREFCM  
=
12pF  
REF+ REF–  
, VREF =  
2
(TYP)  
V
CC  
V
IN  
= IN+ IN−  
I
IN  
R
R
(TYP)  
+
SW  
I
IN + IN−  
LEAK  
LEAK  
V
INCM  
=
10k  
2
V
IN  
REQ = 2.71MINTERNAL OSCILLATOR 60Hz MODE  
REQ = 2.98MINTERNAL OSCILLATOR 50Hz AND 60Hz MODE  
I
V
CC  
I
REF  
REQ  
=
0.8331012 / fEOSC EXTERNAL OSCILLATOR  
(
)
(TYP)  
SW  
10k  
I
I
LEAK  
LEAK  
DT IS THE DENSITY OF A DIGITAL TRANSITION AT THE MODULATOR OUTPUT  
WHERE REF IS INTERNALLY TIED TO GND  
2480 F13  
V
REF  
SWITCHING FREQUENCY  
f
f
= 123kHz INTERNAL OSCILLATOR  
SW  
SW  
= 0.4 • f  
EXTERNAL OSCILLATOR  
EOSC  
Figure 12. LTC2481 Equivalent Analog Input Circuit  
2481f  
22  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
R
R
Automatic Differential Input Current Cancellation  
SOURCE  
+
IN  
In applications where the sensor output impedance is low  
(up to 10kwith no external bypass capacitor or up to  
500with0.001µFbypass), completesettlingoftheinput  
occurs. In this case, no errors are introduced and direct  
digitization of the sensor is possible.  
C
PAR  
20pF  
V
V
+ 0.5V  
C
C
INCM  
IN  
EXT  
LTC2481  
SOURCE  
IN  
2481 F14  
C
PAR  
– 0.5V  
INCM  
IN  
EXT  
20pF  
Formanyapplications,thesensoroutputimpedancecom-  
bined with external bypass capacitors produces RC time  
constants much greater than the 580ns required for 1ppm  
accuracy. For example, a 10kbridge driving a 0.1µF  
bypass capacitor has a time constant several orders of  
magnitude greater than the required maximum. Histori-  
cally, settling issues were solved using buffers. These  
buffers led to increased noise, reduced DC performance  
(Offset/Drift), limited input/output swing (cannot digitize  
signals near ground or VCC), added system cost and in-  
creasedpower. TheLTC2481usesaproprietaryswitching  
algorithm that forces the average differential input current  
to zero independent of external settling errors. This allows  
accurate direct digitization of high impedance sensors  
without the need of buffers (see Figures 13 to 15). Addi-  
tional errors resulting from mismatched leakage currents  
must also be taken into account.  
+
Figure 13. An RC Network at IN and IN  
80  
V
V
V
V
= 5V  
CC  
= 5V  
REF  
60  
40  
20  
+
= 3.75V  
= 1.25V  
IN  
IN  
T
= 25°C  
A
C
= 0pF  
EXT  
C
EXT  
= 100pF  
0
C
EXT  
= 1nF, 0.1µF, 1µF  
–20  
–40  
–60  
–80  
10  
100  
10k  
1
100k  
1k  
R
()  
SOURCE  
2481 F15  
+
Figure 14. +FS Error vs R  
at IN and IN  
SOURCE  
The switching algorithm forces the average input current  
on the positive input (IIN+) to be equal to the average input  
current on the negative input (IIN). Over the complete  
conversion cycle, the average differential input current  
(IIN+ – IIN) is zero. While the differential input current is  
zero, the common mode input current (IIN++ IIN)/2 is  
proportional to the difference between the common mode  
input voltage (VINCM) and the common mode reference  
voltage (VREFCM).  
80  
V
V
V
V
= 5V  
CC  
= 5V  
REF  
60  
40  
20  
+
= 1.25V  
= 3.75V  
IN  
IN  
T
= 25°C  
A
C
= 1nF, 0.1µF, 1µF  
EXT  
0
C
= 100pF  
EXT  
–20  
C
= 0pF  
EXT  
–40  
–60  
–80  
In applications where the input common mode voltage is  
equal to the reference common mode voltage, as in the  
case of a balance bridge type application, both the differ-  
ential and common mode input current are zero. The  
accuracy of the converter is unaffected by settling errors.  
Mismatches in source impedances between IN+ and IN–  
also do not affect the accuracy.  
10  
100  
10k  
1
100k  
1k  
R
()  
SOURCE  
2481 F16  
+
Figure 15. –FS Error vs R  
at IN and IN  
SOURCE  
the common mode input current is proportional to the  
difference between VINCM and VREFCM. For a reference  
common mode of 2.5V and an input common mode of  
1.5V, the common mode input current is approximately  
In applications where the input common mode voltage is  
constant but different from the reference common mode  
voltage, the differential input current remains zero while  
2481f  
23  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
0.74µA(insimultaneous50Hz/60Hzrejectionmode). This  
commonmodeinputcurrenthasnoeffectontheaccuracy  
if the external source impedances tied to IN+ and INare  
matched. Mismatches in these source impedances lead to  
a fixed offset error but do not affect the linearity or full-  
scale reading. A 1% mismatch in 1ksource resistances  
leads to a 15ppm shift (74µV) in offset voltage.  
will be insignificant (about 1% of their respective values  
over the entire temperature and voltage range). Even for  
the most stringent applications, a one-time calibration  
operation may be sufficient.  
In addition to the input sampling charge, the input ESD  
protection diodes have a temperature dependent leakage  
current. This current, nominally 1nA (±10nA max), results  
in a small offset shift. A 1k source resistance will create a  
1µV typical and 10µV maximum offset voltage.  
In applications where the common mode input voltage  
varies as a function of input signal level (single-ended  
input, RTDs, half bridges, current sensors, etc.), the  
common mode input current varies proportionally with  
input voltage. For the case of balanced input impedances,  
thecommonmodeinputcurrenteffectsarerejectedbythe  
large CMRR of the LTC2481 leading to little degradation in  
accuracy. Mismatches in source impedances lead to gain  
errorsproportionaltothedifferencebetweenthecommon  
mode input voltage and the common mode reference  
voltage. 1% mismatches in 1ksource resistances lead  
to worst-case gain errors on the order of 15ppm or 1LSB  
(for 1V differences in reference and input common mode  
voltage). Table 7 summarizes the effects of mismatched  
sourceimpedanceanddifferencesinreference/inputcom-  
mon mode voltages.  
Reference Current  
In a similar fashion, the LTC2481 samples the differential  
reference pins REF+ and REFtransferring small amount  
of charge to and from the external driving circuits thus  
producing a dynamic reference current. This current does  
not change the converter offset, but it may degrade the  
gainandINLperformance.Theeffectofthiscurrentcanbe  
analyzed in two distinct situations.  
For relatively small values of the external reference capaci-  
tors (CREF < 1nF), the voltage on the sampling capacitor  
settlesalmostcompletelyandrelativelylargevaluesforthe  
source impedance result in only small errors. Such values  
for CREF will deteriorate the converter offset and gain  
performancewithoutsignificantbenefitsofreferencefilter-  
ing and the user is advised to avoid them.  
Table 7. Suggested Input Configuration for LTC2481  
BALANCED INPUT  
RESISTANCES  
UNBALANCED INPUT  
RESISTANCES  
+
Constant  
IN(CM)  
C
> 1nF at Both  
C
> 1nF at Both IN  
Larger values of reference capacitors (CREF > 1nF) may be  
requiredasreferencefiltersincertainconfigurations. Such  
capacitors will average the reference sampling charge and  
the external source resistance will see a quasi constant  
reference differential impedance.  
EXT  
+
EXT  
V
– V  
IN and IN . Can Take  
and IN . Can Take Large  
REF(CM)  
Large Source Resistance Source Resistance.  
with Negligible Error  
Unbalanced Resistance  
Results in an Offset  
Which Can be Calibrated  
+
+
Varying  
IN(CM)  
C
> 1nF at Both IN  
Minimize IN and IN  
EXT  
V
– V  
and IN . Can Take Large Capacitors and Avoid  
In the following discussion, it is assumed the input and  
reference common mode are the same. Using internal  
oscillator for 60Hz mode, the typical differential reference  
resistance is 1Mwhich generates a full-scale (VREF/2)  
gain error of 0.51ppm for each ohm of source resistance  
driving the REF+ and REFpins. For 50Hz/60Hz mode, the  
relateddifferenceresistanceis1.1Mandtheresultingfull-  
scale error is 0.46ppm for each ohm of source resistance  
driving the REF+ and REFpins. For 50Hz mode, the related  
difference resistance is 1.2Mand the resulting full-scale  
error is 0.42ppm for each ohm of source resistance driving  
the REF+ and REFpins. When CA0/F0 is driven by an  
REF(CM)  
Source Resistance with  
Negligible Error  
Large Source Impedance  
(<5k Recommended)  
Themagnitudeofthedynamicinputcurrentdependsupon  
thesizeoftheverystableinternalsamplingcapacitorsand  
upon the accuracy of the converter sampling clock. The  
accuracy of the internal clock over the entire temperature  
andpowersupplyrangeistypicallybetterthan0.5%.Such  
a specification can also be easily achieved by an external  
clock. When relatively stable resistors (50ppm/°C) are  
used for the external source impedance seen by IN+ and  
IN, the expected drift of the dynamic current and offset  
2481f  
24  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
500  
400  
300  
200  
100  
0
V
V
V
V
= 5V  
CC  
external oscillator with a frequency fEOSC (external conver-  
sionclockoperation),thetypicaldifferentialreferenceresis-  
tance is 0.30 • 1012/fEOSC and each ohm of source  
resistance driving the REF+ or REFpins will result in 1.67  
10–6 fEOSCppmgainerror. Thetypical+FSandFSerrors  
for various combinations of source resistance seen by the  
REF+ or REFpins and external capacitance connected to  
that pin are shown in Figures 16-19.  
C
= 1µF, 10µF  
REF  
= 5V  
REF  
+
= 3.75V  
= 1.25V  
IN  
IN  
T
= 25°C  
A
C
REF  
= 0.1µF  
C
REF  
= 0.01µF  
In addition to this gain error, the converter INL perfor-  
mance is degraded by the reference source impedance.  
The INL is caused by the input dependent terms  
–VIN2/(VREF • REQ) – (0.5 • VREF • DT)/REQ in the reference  
pin current as expressed in Figure 12. When using internal  
oscillatorand60Hzmode, every100ofreferencesource  
resistance translates into about 0.67ppm additional INL  
90  
0
200  
400  
R
600  
()  
800  
1000  
SOURCE  
2481 F19  
+
Figure 18. +FS Error vs R  
at REF or REF (Large C  
)
REF  
SOURCE  
0
–100  
–200  
V
V
V
V
= 5V  
CC  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 5V  
REF  
+
= 3.75V  
= 1.25V  
IN  
IN  
T
= 25°C  
A
C
= 0.01µF  
REF  
C
= 0.01µF  
REF  
C
= 0.001µF  
REF  
C
C
= 1µF, 10µF  
REF  
= 100pF  
REF  
–300  
–400  
–500  
C
= 0pF  
REF  
C
= 0.1µF  
REF  
V
V
V
V
= 5V  
= 5V  
= 1.25V  
= 3.75V  
= 25°C  
CC  
REF  
+
IN  
IN  
T
A
–10  
0
10  
100  
1k  
10k  
100k  
0
200  
400  
R
600  
800  
1000  
R
()  
SOURCE  
()  
SOURCE  
2481 F17  
2481 F20  
+
+
Figure 19. –FS Error vs R  
at REF or REF (Large C  
)
REF  
Figure 16. +FS Error vs R  
at REF or REF (Small C  
)
REF  
SOURCE  
SOURCE  
10  
0
10  
V
V
V
A
C
= 5V  
CC  
8
6
= 5V  
REF  
IN(CM)  
= 25°C  
R = 1k  
= 2.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
C
REF  
C
= 0.01µF  
REF  
T
C
= 0.001µF  
= 10µF  
REF  
4
= 100pF  
REF  
REF  
C
= 0pF  
2
R = 500Ω  
R = 100Ω  
0
–2  
–4  
–6  
–8  
–10  
V
V
V
V
= 5V  
= 5V  
= 1.25V  
= 3.75V  
= 25°C  
CC  
REF  
+
IN  
IN  
T
A
0
10  
100  
1k  
10k  
100k  
0.5  
0.3  
0.1  
/V  
0.1  
(V)  
0.3  
0.5  
R
()  
V
SOURCE  
IN REF  
2481 F21  
2481 F18  
+
Figure 20. INL vs DIFFERENTIAL Input Voltage and  
Reference Source Resistance for C > 1µF  
Figure 17. –FS Error vs R  
at REF or REF (Small C  
)
REF  
SOURCE  
REF  
2481f  
25  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
50  
40  
error.Whenusinginternaloscillatorand50Hz/60Hzmode,  
every 100of reference source resistance translates into  
about 0.61ppm additional INL error. When using internal  
oscillatorand50Hzmode, every100ofreferencesource  
resistance translates into about 0.56ppm additional INL  
error. When CA0/F0 is driven by an external oscillator with  
a frequency fEOSC, every 100of source resistance driv-  
V
V
V
= V  
REF  
IN(CM)  
REF(CM)  
= 5V  
= V  
CC  
IN  
= 0V  
CA0/F = EXT CLOCK  
0
30  
20  
T
= 85°C  
A
10  
0
ing REF+ or REFtranslates into about 2.18 • 10–6  
fEOSCppm additional INL error. Figure 20 shows the typi-  
cal INL error due to the source resistance driving the REF+  
or REFpins when large CREF values are used. The user is  
advised to minimize the source impedance driving the  
REF+ and REFpins.  
T
= 25°C  
A
–10  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F22  
Figure 21. Offset Error vs Output Data Rate and Temperature  
In applications where the reference and input common  
mode voltages are different, extra errors are introduced.  
For every 1V of the reference and input common mode  
voltage difference (VREFCM – VINCM) and a 5V reference,  
each Ohm of reference source resistance introduces an  
extra (VREFCM – VINCM)/(VREF • REQ) full-scale gain error,  
which is 0.074ppm when using internal oscillator and  
60Hzmode.Whenusinginternaloscillatorand50Hz/60Hz  
mode, the extra full-scale gain error is 0.067ppm. When  
using internal oscillator and 50Hz mode, the extra gain  
error is 0.061ppm. If an external clock is used, the corre-  
sponding extra gain error is 0.24 • 10–6 • fEOSCppm.  
3500  
V
V
= V  
REF  
IN(CM)  
CC  
REF(CM)  
= 5V  
= V  
3000  
2500  
CA0/F = EXT CLOCK  
0
T
= 85°C  
A
2000  
1500  
1000  
500  
T
= 25°C  
A
0
10 20  
40  
50 60 70 80 90 100  
0
30  
OUTPUT DATA RATE (READINGS/SEC)  
The magnitude of the dynamic reference current depends  
upon the size of the very stable internal sampling capaci-  
tors and upon the accuracy of the converter sampling  
clock. The accuracy of the internal clock over the entire  
temperature and power supply range is typically better  
than0.5%.Suchaspecificationcanalsobeeasilyachieved  
by an external clock. When relatively stable resistors  
(50ppm/°C) are used for the external source impedance  
seen by VREF+ and VREF, the expected drift of the dynamic  
current gain error will be insignificant (about 1% of its  
valueovertheentiretemperatureandvoltagerange). Even  
for the most stringent applications a one-time calibration  
operation may be sufficient.  
2481 F23  
Figure 22. +FS Error vs Output Data Rate and Temperature  
0
–500  
–1000  
T
= 25°C  
A
–1500  
–2000  
–2500  
–3000  
T
= 85°C  
A
V
V
= V  
REF  
IN(CM)  
CC  
REF(CM)  
= 5V  
CA0/F = EXT CLOCK  
= V  
0
–3500  
40  
50 60 70 80 90 100  
OUTPUT DATA RATE (READINGS/SEC)  
0
30  
10 20  
Inadditiontothereferencesamplingcharge,thereferencepins  
ESD protection diodes have a temperature dependent leakage  
current. This leakage current, nominally 1nA (±100nA max),  
results in a small gain error. A 100source resistance will  
create a 0.05µV typical and 5µV maximum full-scale error.  
2481 F24  
Figure 23. –FS Error vs Output Data Rate and Temperature  
2481f  
26  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
Output Data Rate  
Third,anincreaseinthefrequencyoftheexternaloscillator  
above 1MHz (a more than 3X increase in the output data  
rate) will start to decrease the effectiveness of the internal  
autocalibration circuits. This will result in a progressive  
degradation in the converter accuracy and linearity. Typi-  
cal measured performance curves for output data rates up  
to 100 readings per second are shown in Figures 21 to 28.  
In order to obtain the highest possible level of accuracy  
from this converter at output data rates above 20 readings  
per second, the user is advised to maximize the power  
supply voltage used and to limit the maximum ambient  
operating temperature. In certain circumstances, a reduc-  
tion of the differential reference voltage may be beneficial.  
When using its internal oscillator, the LTC2481 produces  
upto7.5samplespersecond(sps)withanotchfrequency  
of 60Hz, 6.25sps with a notch frequency of 50Hz and  
6.82sps with the 50Hz/60Hz rejection mode. The actual  
output data rate will depend upon the length of the sleep  
and data output phases which are controlled by the user  
and which can be made insignificantly short. When oper-  
ated with an external conversion clock (CA0/F0 connected  
toanexternaloscillator),theLTC2481outputdataratecan  
be increased as desired. The duration of the conversion  
phase is 41036/fEOSC. If fEOSC = 307.2kHz, the converter  
behaves as if the internal oscillator is used and the notch  
is set at 60Hz.  
Input Bandwidth  
An increase in fEOSC over the nominal 307.2kHz will  
translate into a proportional increase in the maximum  
output data rate. The increase in output rate is neverthe-  
less accompanied by three potential effects, which must  
be carefully considered.  
The combined effect of the internal SINC4 digital filter and  
of the analog and digital autocalibration circuits deter-  
mines the LTC2481 input bandwidth. When the internal  
oscillator is used with the notch set at 60Hz, the 3dB input  
bandwidth is 3.63Hz. When the internal oscillator is used  
with the notch set at 50Hz, the 3dB input bandwidth is  
3.02Hz. If an external conversion clock generator of fre-  
quency fEOSC is connected to the CA0/F0 pin, the 3dB input  
First, a change in fEOSC will result in a proportional change  
in the internal notch position and in a reduction of the  
converter differential mode rejection at the power line  
frequency. In many applications, the subsequent perfor-  
mancedegradationcanbesubstantiallyreducedbyrelying  
upon the LTC2481’s exceptional common mode rejection  
and by carefully eliminating common mode to differential  
mode conversion sources in the input circuit. The user  
should avoid single-ended input filters and should main-  
tain a very high degree of matching and symmetry in the  
circuits driving the IN+ and INpins.  
bandwidth is 11.8 • 10–6 • fEOSC  
.
Due to the complex filtering and calibration algorithms  
utilized, the converter input bandwidth is not modeled  
very accurately by a first order filter with the pole located  
atthe3dBfrequency. Whentheinternaloscillatorisused,  
the shape of the LTC2481 input bandwidth is shown in  
Figure 29. When an external oscillator of frequency fEOSC  
isused, theshapeoftheLTC2481inputbandwidthcanbe  
derived from Figure 29, 60Hz mode curve in which the  
horizontal axis is scaled by fEOSC/307200.  
Second, the increase in clock frequency will increase  
proportionally the amount of sampling charge transferred  
through the input and the reference pins. If large external  
input and/or reference capacitors (CIN, CREF) are used, the  
previous section provides formulae for evaluating the  
effect of the source resistance upon the converter perfor-  
mance for any value of fEOSC. If small external input and/or  
reference capacitors (CIN, CREF) are used, the effect of the  
external source resistance upon the LTC2481 typical per-  
formance can be inferred from Figures 14, 15, 16 and 17  
Theconversionnoise(600nVRMS typicalforVREF =5V)can  
be modeled by a white noise source connected to a noise  
free converter. The noise spectral density is 47nVHz for  
an infinite bandwidth source and 64nVHz for a single  
0.5MHz pole source. From these numbers, it is clear that  
particular attention must be given to the design of external  
amplification circuits. Such circuits face the simultaneous  
requirementsofverylowbandwidth(justafewHz)inorder  
to reduce the output referred noise and relatively high  
in which the horizontal axis is scaled by 307200/fEOSC  
.
2481f  
27  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
24  
22  
24  
V
= V  
= 5V  
REF  
T
= 25°C  
CC  
A
22  
20  
T
= 85°C  
V
V
= 5V, V  
= 2.5V  
REF  
A
CC  
20  
18  
16  
14  
12  
18  
16  
14  
12  
= V  
V
V
V
= V  
REF  
IN(CM)  
REF(CM)  
IN(CM)  
REF(CM)  
= 5V  
V
= 0V  
= V  
IN  
CC  
IN  
CA0/F = EXT CLOCK  
= 0V  
0
T
A
= 25°C  
CA0/F = EXT CLOCK  
0
RES = LOG 2 (V /NOISE  
)
RMS  
RES = LOG 2 (V /NOISE  
)
REF  
REF  
RMS  
10  
10  
0
30  
10 20  
40  
50 60 70 80 90 100  
40  
50 60 70 80 90 100  
0
30  
10 20  
OUTPUT DATA RATE (READINGS/SEC)  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F28  
2481 F25  
Figure 24. Resolution (Noise  
1LSB)  
Figure 27. Resolution (Noise  
1LSB)  
RMS  
RMS  
vs Output Data Rate and Temperature  
vs Output Data Rate and Reference Voltage  
22  
20  
18  
22  
20  
18  
V
= V  
= 5V  
REF  
T
= 25°C  
T
= 85°C  
CC  
A
A
16  
14  
12  
10  
16  
14  
12  
10  
V
= 5V, V  
= 2.5V  
REF  
CC  
V
V
= V  
IN(CM) REF(CM)  
= 0V  
IN  
V
V
= V  
REF  
IN(CM)  
= V  
REF(CM)  
= 5V  
CA0/F = EXT CLOCK  
0
CC  
T
= 25°C  
A
CA0/F = EXT CLOCK  
0
RES = LOG 2 (V /INL  
)
REF  
MAX  
RES = LOG 2 (V /INL  
)
REF  
MAX  
40  
50 60 70 80 90 100  
OUTPUT DATA RATE (READINGS/SEC)  
0
30  
10 20  
40  
50 60 70 80 90 100  
OUTPUT DATA RATE (READINGS/SEC)  
0
30  
10 20  
2481 F29  
2481 F26  
Figure 28. Resolution (INL  
1LSB)  
Figure 25. Resolution (INL  
1LSB)  
MAX  
MAX  
vs Output Data Rate and Reference Voltage  
vs Output Data Rate and Temperature  
20  
V
V
= V  
bandwidth (at least 500kHz) necessary to drive the input  
switched-capacitor network. A possible solution is a high  
gain, low bandwidth amplifier stage followed by a high  
bandwidth unity-gain buffer.  
IN(CM)  
IN  
REF(CM)  
= 0V  
CA0/F = EXT CLOCK  
= 25°C  
15  
10  
5
0
T
A
V
CC  
= V  
= 5V  
REF  
When external amplifiers are driving the LTC2481, the  
ADC input referred system noise calculation can be  
simplified by Figure 30. The noise of an amplifier driving  
the LTC2481 input pin can be modeled as a band limited  
white noise source. Its bandwidth can be approximated  
by the bandwidth of a single pole lowpass filter with a  
corner frequency fi. The amplifier noise spectral density  
is ni. From Figure 30, using fi as the x-axis selector, we  
can find on the y-axis the noise equivalent bandwidth  
0
–5  
V
= 5V, V  
= 2.5V  
REF  
CC  
–10  
40  
50 60 70 80 90 100  
0
30  
10 20  
OUTPUT DATA RATE (READINGS/SEC)  
2481 F27  
Figure 26. Offset Error vs Output  
Data Rate and Reference Voltage  
2481f  
28  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
0
–1  
–2  
–3  
–4  
–5  
–6  
freqi of the input driving amplifier. This bandwidth in-  
cludes the band limiting effects of the ADC internal  
calibration and filtering. The noise of the driving ampli-  
fier referred to the converter input and including all these  
effects can be calculated as N = ni freqi. The total  
system noise (referred to the LTC2481 input) can now be  
obtained by summing as square root of sum of squares  
the three ADC input referred noise sources: the LTC2481  
internal noise, the noise of the IN+ driving amplifier and  
the noise of the INdriving amplifier.  
50Hz AND  
60Hz MODE  
50Hz MODE  
60Hz MODE  
0
1
2
3
4
5
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
If the CA0/F0 pin is driven by an external oscillator of  
frequency fEOSC, Figure 30 can still be used for noise  
calculation if the x-axis is scaled by fEOSC/307200. For  
large values of the ratio fEOSC/307200, the Figure 30 plot  
accuracy begins to decrease, but at the same time the  
LTC2481noisefloorrisesandthenoisecontributionofthe  
driving amplifiers lose significance.  
2481 F30  
Figure 29. Input Signal Using the Internal Oscillator  
100  
60Hz MODE  
50Hz MODE  
10  
1
Normal Mode Rejection and Antialiasing  
One of the advantages delta-sigma ADCs offer over con-  
ventional ADCs is on-chip digital filtering. Combined with  
a large oversampling ratio, the LTC2481 significantly  
simplifies antialiasing filter requirements. Additionally,  
the input current cancellation feature of the LTC2481  
allowsexternallowpassfilteringwithoutdegradingtheDC  
performance of the device.  
0.1  
0.1  
1
10 100 1k  
10k 100k 1M  
INPUT NOISE SOURCE SINGLE POLE  
EQUIVALENT BANDWIDTH (Hz)  
2481 F31  
The SINC4 digital filter provides greater than 120dB nor-  
mal mode rejection at all frequencies except DC and  
integer multiples of the modulator sampling frequency  
(fS). The LTC2481’s autocalibration circuits further sim-  
plify the antialiasing requirements by additional normal  
modesignalfilteringbothintheanaloganddigitaldomain.  
Independent of the operating mode, fS = 256 • fN = 2048  
• fOUTMAX where fN is the notch frequency and fOUTMAX is  
the maximum output data rate. In the internal oscillator  
mode with a 50Hz notch setting, fS = 12800Hz, with  
50Hz/60Hz rejection, fS = 13960Hz and with a 60Hz notch  
setting fS = 15360Hz. In the external oscillator mode, fS =  
fEOSC/20. The performance of the normal mode rejection  
is shown in Figures 31 and 32.  
Figure 30. Input Refered Noise Equivalent Bandwidth  
of an Input Connected White Noise Source  
shown in Figure 33 (rejection near DC) and Figure 34  
(rejection at fS = 256fN) where fN represents the notch  
frequency. These curves have been derived for the exter-  
nal oscillator mode but they can be used in all operating  
modes by appropriately selecting the fN value.  
The user can expect to achieve this level of performance  
using the internal oscillator as it is demonstrated by  
Figures 35, 36 and 37. Typical measured values of the  
normal mode rejection of the LTC2481 operating with an  
internal oscillator and a 60Hz notch setting are shown in  
Figure 35 superimposed over the theoretical calculated  
curve. Similarly, the measured normal mode rejection of  
the LTC2481 for the 50Hz rejection mode and 50Hz/60Hz  
rejection mode are shown in Figures 36 and 37.  
In 1x speed mode, the regions of low rejection occurring  
at integer multiples of fS have a very narrow bandwidth.  
Magnified details of the normal mode rejection curves are  
2481f  
29  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
mon to have to measure microvolt level signals superim-  
posed on volt level perturbations and the LTC2481 is  
eminently suited for such tasks. When the perturbation is  
differential,thespecificationofinterestisthenormalmode  
rejection for large input signal levels. With a reference  
voltageVREF = 5V, theLTC2481hasafull-scaledifferential  
input range of 5V peak-to-peak. Figures 38 and 39 show  
measurement results for the LTC2481 normal mode rejec-  
tion ratio with a 7.5V peak-to-peak (150% of full scale)  
input signal superimposed over the more traditional nor-  
mal mode rejection ratio results obtained with a 5V peak-  
to-peak (full scale) input signal. In Figure 38, the LTC2481  
uses the internal oscillator with the notch set at 60Hz and  
in Figure 39 it uses the internal oscillator with the notch set  
at 50Hz. It is clear that the LTC2481 rejection performance  
As a result of these remarkable normal mode specifica-  
tions, minimal (if any) antialias filtering is required in front  
of the LTC2481. If passive RC components are placed in  
front of the LTC2481, the input dynamic current should be  
considered (see Input Current section). In this case, the  
differentialinputcurrentcancellationfeatureoftheLTC2481  
allows external RC networks without significant degrada-  
tion in DC performance.  
Traditional high order delta-sigma modulators, while pro-  
viding very good linearity and resolution, suffer from  
potential instabilities at large input signal levels. The pro-  
prietary architecture used for the LTC2481 third order  
modulatorresolvesthisproblemandguaranteesapredict-  
able stable behavior at input signal levels of up to 150% of  
full scale. In many industrial applications, it is not uncom-  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
f 2f 3f 4f 5f 6f 7f 8f 9f 10f  
S S S S S S S S S S  
0
f
2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f  
S S S S S S S S S S S S  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
2481 F33  
2481 F32  
Figure 31. Input Normal Mode Rejection,  
Internal Oscillator and 50Hz Notch Mode  
Figure 32. Input Normal Mode Rejection at DC  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
0
f
= f  
EOSC/5120  
N
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–120  
250f 252f 254f 256f 258f 260f 262f  
N
0
f
2f  
3f  
4f  
5f  
6f  
7f  
8f  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
INPUT SIGNAL FREQUENCY (Hz)  
INPUT SIGNAL FREQUENCY (Hz)  
2481 F35  
2481 F34  
Figure 33. Input Normal Mode Rejection at DC  
Figure 34. Input Normal Mode Rejection at f = 256f  
s N  
2481f  
30  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
0
0
–20  
–20  
5V  
V  
5V  
V  
–40  
–40  
60  
60  
–80  
–80  
–100  
–120  
–100  
–120  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240  
INPUT FREQUENCY (Hz)  
0
12.5 25 37.5 50 62.5 75 87.5 100 112.5 125 137.5 150 162.5 175 187.5 200  
INPUT FREQUENCY (Hz)  
2481 F36  
2481 F37  
Figure 35. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full Scale (60Hz Notch)  
Figure 36. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full Scale (50Hz Notch)  
0
0
V
V
V
T
= 5V  
= 5V  
CC  
V
V
= 5V  
= 7.5V  
IN(P-P)  
IN(P-P)  
REF  
–20  
–40  
–20  
–40  
= 2.5V  
INCM  
(150% OF FULL SCALE)  
= 25°C  
A
60  
60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
0
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
2481 F38  
2481 F39  
Figure 38. Measured Input Normal Mode Rejection vs  
Input Frequency with Input Perturbation of 150% Full  
Scale (60Hz Notch)  
Figure 37. Input Normal Mode Rejection vs Input Frequency  
with Input Perturbation of 100% Full Scale (50Hz/60Hz Mode)  
0
–20  
V
= 5V  
CC  
–40  
60  
–80  
–100  
–120  
0
12.5 25 37.5 50 62.5 75 87.5 100 112.5 125 137.5 150 162.5 175 187.5 200  
INPUT FREQUENCY (Hz)  
2481 F40  
Figure 39. Measured Input Normal Mode Rejection vs  
Input Frequency with Input Perturbation of 150% Full  
Scale (50Hz Notch)  
2481f  
31  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–60  
–80  
–100  
–100  
–120  
–120  
248 250 252 254 256 258 260 262 264  
INPUT SIGNAL FREQUENCY (f )  
0
f
2f  
3f  
4f 5f  
N
6f  
7f  
8f  
N
N
N
N
N
N
N
INPUT SIGNAL FREQUENCY (f )  
N
N
2481 F42  
2481 F41  
Figure 41. Input Normal Mode Rejection 2x Speed Mode  
Figure 40. Input Normal Mode Rejection 2x Speed Mode  
0
–70  
MEASURED DATA  
CALCULATED DATA  
V
V
V
V
= 5V  
CC  
= 5V  
REF  
–80  
–20  
–40  
= 2.5V  
INCM  
NO AVERAGE  
= 5V  
IN(P-P)  
–90  
T
= 25°C  
A
WITH  
RUNNING  
AVERAGE  
–100  
–110  
–120  
–130  
–140  
–60  
–80  
–100  
–120  
0
25 50 75 100 125 150 175 200 225  
INPUT FREQUENCY (Hz)  
56  
60  
62  
48 50  
52  
54  
58  
DIFFERENTIAL INPUT SIGNAL FREQUENCY (Hz)  
2481 F43  
2481 F44  
Figure 43. Input Normal Mode Rejection 2x Speed Mode  
Figure 42. Input Normal Mode Rejection vs Input  
Frequency, 2x Speed Mode and 50Hz/60Hz Mode  
5V  
C8  
1µF  
C7  
0.1µF  
ISOTHERMAL  
LT1236  
2
6
5
1.7k  
1
2
1.7k  
IN OUT  
TRIM  
GND  
4
R2  
2k  
+
6
7
9
10  
REF  
V
CC  
R7  
8k  
SCL  
SDA  
CA1  
4
5
+
+
IN  
G1  
NC1M4V0  
LTC2481  
R8  
1k  
CA0/F  
0
IN  
REF GND  
3
8
2481 F45  
TYPE K  
THERMOCOUPLE  
JACK  
(OMEGA MPJ-K-F)  
26.3C  
Figure 44. Calibration Setup  
2481f  
32  
LTC2481  
W U U  
APPLICATIO S I FOR ATIO  
U
is maintained with no compromises in this extreme situa-  
tion.Whenoperatingwithlargeinputsignallevels,theuser  
must observe that such signals do not violate the device  
absolute maximum ratings.  
Complete Thermocouple Measurement System with  
Cold Junction Compensation  
TheLTC2481isidealfordirectdigitizationofthermocouples  
andotherlowvoltageoutputsensors.Theinputhasatypical  
offset error of 500nV (2.5µV max) offset drift of 10nV/°C  
and a noise level of 600nVRMS. The input span may be  
optimized for various sensors by setting the gain of the  
PGA. Using an external 5V reference with a PGA gain of 64  
gives a ±78mV input range—perfect for thermocouples.  
Using the 2x speed mode of the LTC2481, the device  
bypasses the digital offset calibration operation to double  
the output data rate. The superior normal mode rejection  
ismaintainedasshowninFigures31and32. However, the  
magnified details near DC and fS = 256fN are different, see  
Figures 40 and 41. In 2x speed mode, the bandwidth is  
11.4Hz for the 50Hz rejection mode, 13.6Hz for the 60Hz  
rejection mode and 12.4Hz for the 50Hz/60Hz rejection  
mode. Typical measured values of the normal mode  
rejection of the LTC2481 operating with the internal oscil-  
lator and 2x speed mode is shown in Figure 42.  
Figure 45 (page 39 of this data sheet) is a complete type  
K thermocouple meter. The only signal conditioning is a  
simple surge protection network. In any thermocouple  
meter,thecoldjunctiontemperaturesensormustbeatthe  
same temperature as the junction between the thermo-  
couple materials and the copper printed circuit board  
traces. The tiny LTC2481 can be tucked neatly underneath  
an Omega MPJ-K-F thermocouple socket ensuring close  
thermal coupling.  
When the LTC2481 is configured in 2x speed mode, by  
performing a running average, a SINC1 notch is combined  
with the SINC4 digital filter, yielding the normal mode  
rejection identical as that for the 1x speed mode. The  
averaging operation still keeps the output rate with the  
following algorithm:  
The LTC2481’s 1.4mV/°C PTAT circuit measures the cold  
junction temperature. Once the thermocouple voltage and  
coldjunctiontemperatureareknown,therearemanyways  
of calculating the thermocouple temperature including a  
straight-lineapproximation, lookuptablesorapolynomial  
curve fit. Calibration is performed by applying an accurate  
500mV to the ADC input derived from an LT®1236 refer-  
ence and measuring the local temperature with an accu-  
rate thermometer as shown in Figure 44. In calibration  
mode,theupanddownbuttonsareusedtoadjustthelocal  
temperature reading until it matches an accurate ther-  
mometer. Both the voltage and temperature calibration  
are easily automated.  
Result 1 = average (sample 0, sample 1)  
Result 2 = average (sample 1, sample 2)  
……  
Result n = average (sample n – 1, sample n)  
The main advantage of the running average is that it  
achieves simultaneous 50Hz/60Hz rejection at twice the  
effective output rate, as shown in Figure 43. The raw  
output data provides a better than 70dB rejection over  
48Hz to 62.4Hz, which covers both 50Hz ±2% and 60Hz  
±2%. With running average on, the rejection is better than  
87dB for both 50Hz ±2% and 60Hz ±2%.  
The complete microcontroller code for this application is  
available on the LTC2481 product webpage at:  
http://www.linear.com  
It can be used as a template for may different instruments  
and it illustrates how to generate calibration coefficients  
for the onboard temperature sensor. Extensive comments  
detail the operation of the program. The read_LTC2481()  
function controls the operation of the LTC2481 and is  
listed below for reference.  
2481f  
33  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
/*  
LTC248X.h  
Processor setup and  
Lots of useful defines for configuring the LTC2481 and LTC2485.  
*/  
#include <16F73.h>  
// Device  
#use delay(clock=6000000)  
// 6MHz clock  
//#fuses NOWDT,HS, PUT, NOPROTECT, NOBROWNOUT  
// Configuration fuses  
#rom 0x2007={0x3F3A} // Equivalent and more reliable fuse config.  
#use I2C(master, sda=PIN_C5, scl=PIN_C3, SLOW)// Set up i2c port  
#include "PCM73A.h"  
#include "lcd.c"  
// Various defines  
// LCD driver functions  
// Useful defines for the LTC2481 and LTC2485 - OR them together to make the  
// 8 bit config word.  
#define READ  
#define WRITE  
0x01  
0x00  
// bitwise OR with address for read or write  
#define LTC248XADDR 0b01001000  
// The one and only LTC248X in this circuit,  
// with both address lines floating.  
// Select gain - 1 to 256 (also depends on speed setting)  
#define GAIN1 0b00000000  
#define GAIN2 0b00100000  
#define GAIN3 0b01000000  
#define GAIN4 0b01100000  
#define GAIN5 0b10000000  
#define GAIN6 0b10100000  
#define GAIN7 0b11000000  
#define GAIN8 0b11100000  
// G = 1  
// G = 4  
// G = 8  
(SPD = 0), G = 1  
(SPD = 0), G = 2  
(SPD = 0), G = 4  
(SPD = 1)  
(SPD = 1)  
(SPD = 1)  
(SPD = 1)  
// G = 16 (SPD = 0), G = 8  
// G = 32 (SPD = 0), G = 16 (SPD = 1)  
// G = 64 (SPD = 0), G = 32 (SPD = 1)  
// G = 128 (SPD = 0), G = 64 (SPD = 1)  
// G = 256 (SPD = 0), G = 128 (SPD = 1)  
// Select ADC source - differential input or PTAT circuit  
#define VIN  
#define PTAT  
0b00000000  
0b00001000  
// Select rejection frequency - 50, 55, or 60Hz  
#define R50  
#define R55  
#define R60  
0b00000010  
0b00000000  
0b00000100  
// Speed settings is bit 7 in the 2nd byte  
#define SLOW  
#define FAST  
0b00000000 // slow output rate with autozero  
0b00000001 // fast output rate with no autozero  
2481f  
34  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
/*  
LTC2481.c  
Basic voltmeter test program for LTC2481  
Reads LTC2481 input at gain = 1, 1X speed mode, converts to volts,  
and prints voltage to a 2 line by 16 character LCD display.  
Mark Thoren  
Linear Technonlgy Corporation  
June 23, 2005  
Written for CCS PCM compiler, Version 3.182  
*/  
#include "LTC248X.h"  
/*** read_LTC2481() ************************************************************  
This is the function that actually does all the work of talking to the LTC2481.  
Arguments: addr - device address  
config - configuration bits for next conversion  
Returns:  
zero if conversion is in progress,  
32 bit signed integer with lower 8 bits clear, 24 bit LTC2481  
output word in the upper 24 bits. Data is left-justified for  
compatibility with the 24 bit LTC2485.  
the i2c_xxxx() functions do the following:  
void i2c_start(void): generate an i2c start or repeat start condition  
void i2c_stop(void): generate an i2c stop condition  
char i2c_read(boolean): return 8 bit i2c data while generating an ack or nack  
boolean i2c_write(): send 8 bit i2c data and return ack or nack from slave device  
These functions are very compiler specific, and can use either a hardware i2c  
port or software emulation of an i2c port. This example uses software emulation.  
A good starting point when porting to other processors is to write your own  
i2c functions. Note that each processor has its own way of configuring  
the i2c port, and different compilers may or may not have built-in functions  
for the i2c port.  
When in doubt, you can always write a "bit bang" function for troubleshooting  
purposes.  
The "fourbytes" structure allows byte access to the 32 bit return value:  
struct fourbytes // Define structure of four consecutive bytes  
{
// To allow byte access to a 32 bit int or float.  
//  
// The make32() function in this compiler will  
// also work, but a union of 4 bytes and a 32 bit int  
// is probably more portable.  
int8 te0;  
int8 te1;  
int8 te2;  
int8 te3;  
};  
Also note that the lower 4 bits are the configuration word from the previous  
conversion.  
2481f  
35  
LTC2481  
APPLICATIO S I FOR ATIO  
W U U  
U
*******************************************************************************/  
signed int32 read_LTC2481(char addr, char config)  
{
struct fourbytes // Define structure of four consecutive bytes  
{
// To allow byte access to a 32 bit int or float.  
//  
// The make32() function in this compiler will  
// also work, but a union of 4 bytes and a 32 bit int  
// is probably more portable.  
int8 te0;  
int8 te1;  
int8 te2;  
int8 te3;  
};  
union  
// adc_code.bits32  
// adc_code.by.te0  
// adc_code.by.te1  
// adc_code.by.te2  
// adc_code.by.te3  
all 32 bits  
byte 0  
byte 1  
byte 2  
byte 3  
{
signed int32 bits32;  
struct fourbytes by;  
} adc_code;  
// Start communication with LTC2481:  
i2c_start();  
if(i2c_write(addr | WRITE))// If no acknowledge, return zero  
{
i2c_stop();  
return 0;  
}
i2c_write(config);  
i2c_start();  
i2c_write(addr | READ);  
adc_code.by.te3 = i2c_read();  
adc_code.by.te2 = i2c_read();  
adc_code.by.te1 = i2c_read();  
adc_code.by.te0 = 0;  
i2c_stop();  
return adc_code.bits32;  
} // End of read_LTC2481()  
/*** initialize() **************************************************************  
Basic hardware initialization of controller and LCD, send Hello message to LCD  
*******************************************************************************/  
void initialize(void)  
{
// General initialization stuff.  
setup_adc_ports(NO_ANALOGS);  
setup_adc(ADC_OFF);  
setup_counters(RTCC_INTERNAL,RTCC_DIV_1);  
setup_timer_1(T1_DISABLED);  
setup_timer_2(T2_DISABLED,0,1);  
// This is the important part - configuring the SPI port  
setup_spi(SPI_MASTER|SPI_L_TO_H|SPI_CLK_DIV_16|SPI_SS_DISABLED); // fast SPI clock  
CKP = 0; // Set up clock edges - clock idles low, data changes on  
CKE = 1; // falling edges, valid on rising edges.  
2481f  
36  
LTC2481  
W U U  
U
APPLICATIO S I FOR ATIO  
lcd_init();  
// Initialize LCD  
delay_ms(6);  
printf(lcd_putc, "Hello!");  
delay_ms(500);  
// Obligatory hello message  
// for half a second  
} // End of initialize()  
*** main() ********************************************************************  
Main program initializes microcontroller registers, then reads the LTC2481  
repeatedly  
*******************************************************************************/  
void main()  
{
signed int32 x;  
float voltage;  
int16 timeout;  
initialize();  
// Integer result from LTC2481  
// Variable for floating point math  
// Hardware initialization  
while(1)  
{
delay_ms(1);  
// Pace the main loop to something more than 1 ms  
// This is a basic error detection scheme. The LTC248X will never take more than  
// 163.5ms, 149.9ms, or 136.5ms to complete a conversion in the 50Hz, 55Hz, and 60Hz  
// rejection modes, respectively.  
// If read_LTC248X() does not return non-zero within this time period, something  
// is wrong, such as an incorrect i2c address or bus conflict.  
if((x = read_LTC2481(LTC248XADDR, GAIN1 | VIN | R55)) != 0)  
{
// No timeout, everything is okay  
timeout = 0;  
// reset timer  
x &= 0xFFFFFFC0;  
x ^= 0x80000000;  
voltage = (float) x;  
// clear config bits so they don't affect math  
// Invert MSB, result is 2's complement  
// convert to float  
voltage = voltage * 5.0 / 2147483648.0;// Multiply by Vref, divide by 2^31  
lcd_putc('\f');  
lcd_gotoxy(1,1);  
// Clear screen  
// Goto home position  
printf(lcd_putc, "V %01.4f", voltage); // Display voltage  
}
else  
{
++timeout;  
}
if(timeout > 200)  
{
timeout = 200;  
lcd_gotoxy(1,1);  
// Prevent rollover  
printf(lcd_putc, "ERROR - TIMEOUT");  
delay_ms(500);  
}
} // End of main loop  
} // End of main()  
2481f  
37  
LTC2481  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2481f  
38  
LTC2481  
U
TYPICAL APPLICATIO  
5V  
PIC16F73  
RC7  
C8  
C7  
0.1µF  
20  
18  
17  
16  
15  
14  
13  
12  
11  
28  
27  
26  
25  
24  
23  
22  
21  
7
5V  
C6  
V
1µF  
DD  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
0.1µF  
ISOTHERMAL  
1.7k  
1.7k  
Y1  
3
2
R2  
2k  
9
6MHz  
6
REF  
V
CC  
SCL  
SDA  
OSC1  
OSC2  
4
5
+
IN  
IN  
7
10  
LTC2481  
D1  
BAT54  
R1  
10k  
10  
TYPE K  
THERMOCOUPLE  
JACK  
CAO/F  
O
CA1 GND REF  
1
5V  
MCLR  
9
8
3
(OMEGA MPJ-K-F)  
5V  
D7  
V
CC  
D6  
D5  
D4  
EN  
RW  
RS  
2 × 16 CHARACTER  
LCD DISPLAY  
(OPTREX DMC162488  
OR SIMILAR)  
6
5
4
3
5V  
1
3
R6  
5k  
9
CONTRAST  
V
V
SS  
SS  
19  
GND D0 D1 D2 D3  
2
2
5V  
2481 F46  
R3  
R4  
R5  
CALIBRATE  
10k 10k 10k  
2
1
DOWN  
UP  
Figure 45. Complete Type K Thermocouple Meter  
2481f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
39  
LTC2481  
RELATED PARTS  
PART NUMBER  
LT1236A-5  
LT1460  
DESCRIPTION  
COMMENTS  
Precision Bandgap Reference, 5V  
Micropower Series Reference  
0.05% Max Initial Accuracy, 5ppm/°C Drift  
0.075% Max Initial Accuracy, 10ppm/°C Max Drift  
0.05% Max Initial Accuracy, 10ppm/°C Max Drift  
0.3ppm Noise, 4ppm INL, 10ppm Total Unadjusted Error, 200µA  
LT1790  
Micropower SOT-23 Low Dropout Reference Family  
24-Bit, No Latency ∆Σ ADC in SO-8  
24-Bit, No Latency ∆Σ ADC with Differential Inputs  
LTC2400  
LTC2410  
0.8µV  
Noise, 2ppm INL  
RMS  
LTC2411/LTC2411-1 24-Bit, No Latency ∆Σ ADCs with Differential Inputs in MSOP  
1.45µV  
Noise, 4ppm INL,  
RMS  
Simultaneous 50Hz/60Hz Rejection (LTC2411-1)  
LTC2413  
24-Bit, No Latency ∆Σ ADC with Differential Inputs  
24-Bit, No Latency ∆Σ ADCs with 15Hz Output Rate  
Simultaneous 50Hz/60Hz Rejection, 800nV  
Noise  
RMS  
LTC2415/  
LTC2415-1  
Pin Compatible with the LTC2410  
LTC2414/LTC2418  
LTC2440  
8-/16-Channel 24-Bit, No Latency ΣADCs  
High Speed, Low Noise 24-Bit ∆Σ ADC  
0.2ppm Noise, 2ppm INL, 3ppm Total Unadjusted Errors 200µA  
3.5kHz Output Rate, 200nV Noise, 24.6 ENOBs  
Pin Compatible with LTC2482/LTC2484  
LTC2480  
16-Bit ∆Σ ADC with Easy Drive Inputs, 600nV Noise,  
Programmable Gain, and Temperature Sensor  
LTC2482  
LTC2483  
LTC2484  
LTC2485  
16-Bit ∆Σ ADC with Easy Drive Inputs  
Pin Compatible with LTC2480/LTC2484  
Pin Compatible with LTC2481/LTC2483  
Pin Compatible with LTC2480/LTC2482  
Pin Compatible with LTC2481/LTC2483  
2
16-Bit ∆Σ ADC with Easy Drive Inputs, I C Interface  
24-Bit ∆Σ ADC with Easy Drive Inputs  
2
24-Bit ∆Σ ADC with Easy Drive Inputs, I C Interface and  
Temperature Sensor  
2481f  
LT/LWI/TP 0805 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC2481HDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481HDD-TRPBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481IDD

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481IDD#PBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2481IDD#TRPBF

LTC2481 - 16-Bit Delta Sigma ADC with Easy Drive Input Current Cancellation and I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2481IDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481IDD-TRPBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2481_1

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation and I2C Interface
Linear

LTC2482

Easy-to-Use, Ultra-Tiny 16-Bit ADC
Linear

LTC2482CDD

LTC2482 - 16-Bit &#916;&#931; ADC with Easy Drive Input Current Cancellation; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2482CDD#TR

LTC2482 - 16-Bit &#916;&#931; ADC with Easy Drive Input Current Cancellation; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2482CDD-PBF

16-Bit ΔΣ ADC with Easy Drive Input Current Cancellation
Linear