LTC2600IGN#TR [Linear]

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC2600IGN#TR
型号: LTC2600IGN#TR
厂家: Linear    Linear
描述:

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总20页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2600/LTC2610/LTC2620  
Octal 16-/14-/12-Bit  
Rail-to-Rail DACs in 16-Lead SSOP  
FEATURES  
DESCRIPTION  
The LTC®2600/LTC2610/LTC2620 are octal 16-, 14- and  
12-bit, 2.5V-to-5.5V rail-to-rail voltage-output DACs in  
16-lead narrow SSOP and 20-lead 4mm × 5mm QFN  
packages. They have built-in high performance output  
buffers and are guaranteed monotonic.  
n
Smallest Pin-Compatible Octal DACs:  
LTC2600: 16 Bits  
LTC2610: 14 Bits  
LTC2620: 12 Bits  
n
Guaranteed 16-Bit Monotonic Over Temperature  
n
Wide 2.5V to 5.5V Supply Range  
These parts establish new board-density benchmarks  
for 16- and 14-bit DACs and advance performance  
standards for output drive, crosstalk and load regulation  
in single-supply, voltage-output multiples.  
n
Low Power Operation: 250μA per DAC at 3V  
n
Individual Channel Power-Down to 1μA, Max  
n
Ultralow Crosstalk between DACs (<10μV)  
n
High Rail-to-Rail Output Drive ( 15mA, Min)  
n
ThepartsuseasimpleSPI/MICROWIREcompatible3-wire  
serial interface which can be operated at clock rates up  
to 50MHz. Daisy-chain capability and a hardware CLR  
function are included.  
Double-Buffered Digital Inputs  
Pin Compatible 10-/8-Bit Versions  
n
(LTC1660/LTC1665)  
Tiny 16-Lead Narrow SSOP  
and 20-Lead 4mm × 5mm QFN Packages  
n
The LTC2600/LTC2610/LTC2620 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than 10mV above zero scale; and after power-up, they stay  
at zero scale until a valid write and update take place.  
APPLICATIONS  
n
Mobile Communications  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Process Control and Industrial Automation  
n
Instrumentation  
Automatic Test Equipment  
n
BLOCK DIAGRAM  
(20)  
GND  
1
16  
15  
V
V
(17)  
(16)  
CC  
DAC A  
DAC H  
(1)  
V
2
OUTA  
OUTH  
Differential Nonlinearity (LTC2600)  
1.0  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
(2)  
3
4
14  
13  
(15)  
OUTB  
OUTC  
OUTG  
OUTF  
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
0.4  
V
(3)  
(4)  
(14)  
(13)  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DAC D  
DAC E  
V
V
5
12  
OUTD  
REF  
OUTE  
CLR  
SDO  
(5)  
(7)  
(8)  
6
7
8
11  
10  
9
(11)  
(10)  
(9)  
POWER-ON  
RESET  
0
16384  
32768  
CODE  
49152  
65535  
CONTROL  
LOGIC  
DECODE  
2600 G21  
CS/LD  
SCK  
32-BIT SHIFT REGISTER  
SDI  
2600 BD  
NOTE: NUMBERS IN PARENTHESIS REFER TO THE UFD PACKAGE  
2600fc  
1
LTC2600/LTC2610/LTC2620  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Any Pin to GND........................................... –0.3V to 6V  
Storage Temperature Range.................. –65°C to 150°C  
Maximum Junction Temperature........................... 125°C  
Lead Temperature (Soldering, 10 sec) ................. 300°C  
Any Pin to V ............................................ –6V to 0.3V  
CC  
Operating Temperature Range  
LTC2600C/LTC2610C/LTC2620C ............. 0°C to 70°C  
LTC2600I/LTC2610I/LTC2620I............. –40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
20 19 18 17  
1
2
3
4
5
6
7
8
V
V
V
V
V
16  
15  
14  
13  
12  
11  
10  
9
GND  
OUTA  
CC  
V
1
2
3
4
5
6
16  
15  
14  
13  
V
V
V
V
OUTA  
OUTB  
OUTC  
OUTH  
OUTG  
OUTF  
OUTE  
V
V
OUTH  
OUTG  
OUTF  
OUTE  
V
V
OUTB  
OUTC  
21  
V
V
V
OUTD  
REF  
OUTD  
REF  
12 NC  
CLR  
SDO  
SDI  
NC  
11 CLR  
CS/LD  
SCK  
7
8
9 10  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 125°C, θ = 150°C/W  
UFD PACKAGE  
20-LEAD (4mm s 5mm) PLASTIC QFN  
= 150°C, θ = 43°C/W  
T
JMAX  
JA  
T
JMAX  
JA  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2600CUFD#PBF  
LTC2600IUFD#PBF  
LTC2600CGN#PBF  
LTC2600IGN#PBF  
LTC2610CUFD#PBF  
LTC2610IUFD#PBF  
LTC2610CGN#PBF  
LTC2610IGN#PBF  
LTC2620CUFD#PBF  
LTC2620IUFD#PBF  
LTC2620CGN#PBF  
LTC2620IGN#PBF  
TAPE AND REEL  
PART MARKING*  
2600  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2600CUFD#TRPBF  
LTC2600IUFD#TRPBF  
LTC2600CGN#TRPBF  
LTC2600IGN#TRPBF  
LTC2610CUFD#TRPBF  
LTC2610IUFD#TRPBF  
LTC2610CGN#TRPBF  
LTC2610IGN#TRPBF  
LTC2620CUFD#TRPBF  
LTC2620IUFD#TRPBF  
LTC2620CGN#TRPBF  
LTC2620IGN#TRPBF  
0°C to 70°C  
20-Lead (4mm × 5mm) Plastic DFN  
20-Lead (4mm × 5mm) Plastic DFN  
16-Lead Plastic SSOP  
2600  
–40°C to 85°C  
0°C to 70°C  
2600  
2600  
16-Lead Plastic SSOP  
–40°C to 85°C  
0°C to 70°C  
2610  
20-Lead (4mm × 5mm) Plastic DFN  
20-Lead (4mm × 5mm) Plastic DFN  
16-Lead Plastic SSOP  
2610  
–40°C to 85°C  
0°C to 70°C  
2610  
2610  
16-Lead Plastic SSOP  
–40°C to 85°C  
0°C to 70°C  
2620  
20-Lead (4mm × 5mm) Plastic DFN  
20-Lead (4mm × 5mm) Plastic DFN  
16-Lead Plastic SSOP  
2620  
–40°C to 85°C  
0°C to 70°C  
2620  
2620  
16-Lead Plastic SSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2600fc  
2
LTC2600/LTC2610/LTC2620  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
LTC2620  
LTC2610  
LTC2600  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
V
V
V
V
= 5V, V = 4.096V (Note 2)  
CC  
CC  
CC  
REF  
REF  
DNL  
INL  
Differential Nonlinearity  
= 5V, V = 4.096V (Note 2)  
0.5  
4
1
1
REF  
Integral Nonlinearity  
Load Regulation  
= 5V, V = 4.096V (Note 2)  
0.75  
3
16  
12  
64  
REF  
= V = 5V, Midscale  
CC  
l
l
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.025 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.3  
2
2
LSB/mA  
LSB/mA  
OUT  
OUT  
V
= V = 2.5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
l
l
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.8  
0.8  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
V
V
= 5V, V = 4.096V Code = 0  
1
9
1
1
3
9
9
1
1
3
9
9
mV  
mV  
CC  
CC  
REF  
V
OS  
= 5V, V = 4.096V (Note 7)  
1
9
REF  
V
Temperature  
μV/°C  
3
OS  
Coefficient  
GE  
Gain Error  
V
= 5V, V = 4.096V  
%FSR  
0.2  
6.5  
0.7  
0.2  
6.5  
0.7  
0.2  
6.5  
0.7  
CC  
REF  
Gain Temperature  
Coefficient  
ppm/°C  
The l denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 2.5V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
LTC2600/LTC2610/LTC2620  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
–80  
dB  
V
=
10%  
= V = 5V, Midscale; –15mA ≤ I ≤ 15mA  
OUT  
CC  
l
l
R
DC Output Impedance  
V
REF  
V
REF  
0.025  
0.030  
0.15  
0.15  
Ω
Ω
OUT  
CC  
= V = 2.5V, Midscale; –7.5mA ≤ I  
≤ 7.5mA  
CC  
OUT  
DC Crosstalk (Note 4)  
Due to Full Scale Output Change (Note 5)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
μV  
μV/mA  
μV  
10  
3.5  
7.3  
I
SC  
Short-Circuit Output Current  
V
= 5.5V, V = 5.6V  
CC REF  
l
l
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
34  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
CC  
= 2.5V, V = 5.6V  
REF  
l
l
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
18  
24  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
l
l
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
11  
16  
90  
20  
Capacitance  
l
I
Reference Current, Power Down Mode All DACs Powered Down  
0.001  
1
μA  
REF  
2600fc  
3
LTC2600/LTC2610/LTC2620  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.5V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
LTC2600/LTC2610/LTC2620  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Positive Supply Voltage  
Supply Current  
2.5  
5.5  
V
CC  
l
l
l
l
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
2.6  
2.0  
0.35  
0.10  
4
3.2  
1
mA  
mA  
μA  
CC  
CC  
CC  
All DACs Powered Down (Note 3) V = 5V  
CC  
All DACs Powered Down (Note 3) V = 3V  
1
μA  
CC  
Digital I/O  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.5V to 5.5V  
= 2.5V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
l
l
V
V
CC  
V
CC  
= 4.5V to 5.5V  
= 2.5V to 5.5V  
0.8  
0.6  
V
V
IL  
l
l
l
l
V
V
I
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
Load Current = –100μA  
Load Current = +100μA  
V
CC  
– 0.4  
V
V
OH  
0.4  
1
OL  
V
= GND to V  
CC  
μA  
pF  
LK  
IN  
C
IN  
Digital Input Capacitance  
(Note 6)  
8
The l denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 2.5V to 5.5V, VREF ≤ VCC, VOUT unloaded, unless otherwise noted.  
LTC2620  
LTC2610  
LTC2600  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
t
Settling Time (Note 8)  
7
7
9
7
9
10  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
S
μs  
μs  
Settling Time for 1LSB Step  
(Note 9)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
μs  
μs  
μs  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/μs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
μV  
P-P  
2600fc  
4
LTC2600/LTC2610/LTC2620  
TIMING CHARACTERISTICS The l denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Note 6)  
LTC2600/LTC2610/LTC2620  
SYMBOL PARAMETER  
= 2.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDI Valid to SCK Hold  
2
3
4
5
6
7
8
SCK High Time  
9
SCK Low Time  
9
CS/LD Pulse Width  
10  
7
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SDO Propagation Delay from SCK Falling Edge  
7
C
= 10pF  
= 4.5V to 5.5V  
= 2.5V to 5.5V  
LOAD  
l
l
V
CC  
V
CC  
20  
45  
ns  
ns  
l
l
l
t
t
CLR Pulse Width  
20  
7
ns  
ns  
9
CS/LD High to SCK Positive Edge  
SCK Frequency  
10  
50% Duty Cycle  
50  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: R = 2kΩ to GND or V .  
L CC  
Note 6: Guaranteed by design and not production tested.  
Note 7: Inferred from measurement at code 256 (LTC2600),  
code 64 (LTC2610) or code 16 (LTC2620), and at fullscale.  
Note 2: Linearity and monotonicity are defined from code kL to code  
Note 8: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
CC  
REF  
N
2N – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
and 3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 9: V = 5V, V = 4.096V. DAC is stepped 1LSB between half  
CC  
REF  
256 and linearity is defined from code 256 to code 65,535.  
scale and half scale – 1. Load is 2k in parallel with 200pF to GND.  
Note 3: Digital inputs at 0V or V  
.
CC  
Note 4: DC crosstalk is measured with V = 5V and V = 4.096V,  
CC  
REF  
with the measured DAC at midscale, unless otherwise noted.  
2600fc  
5
LTC2600/LTC2610/LTC2620  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2600  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
V
V
= 5V  
REF  
= 4.096V  
= 4.096V  
CC  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2600 G21  
2600 G20  
2600 G22  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2600 G23  
2600 G24  
2600 G25  
Settling to 1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100μV/DIV  
100μV/DIV  
12.3μs  
9.7μs  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
2600 G27  
2600 G26  
5μs/DIV  
2μs/DIV  
SETTLING TO 1LSB  
V
= 5V, V  
= 4.096V  
REF  
CC  
V
= 5V, V  
= 4.096V  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
CC  
REF  
CODE 512 TO 65535 STEP  
= 2k, C = 200pF  
R
L
L
R
AVERAGE OF 2048 EVENTS  
L
L
AVERAGE OF 2048 EVENTS  
2600fc  
6
LTC2600/LTC2610/LTC2620  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2610  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100μV/DIV  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9μs  
2600 G30  
2μs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
L
L
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2600 G28  
2600 G29  
LTC2620  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
1.5  
0.6  
1.0  
6.8μs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
CS/LD  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2600 G33  
2μs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
CODE  
CODE  
2600 G31  
2600 G32  
LTC2600/LTC2610/LTC2620  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
0.08  
V
V
= V = 5V  
CC  
REF  
REF  
0.06  
0.04  
0.6  
= V = 3V  
CC  
0.4  
1
0.02  
0.2  
0
0
0
V
= V = 5V  
CC  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
REF CC  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2600 G01  
2600 G02  
2600 G03  
2600fc  
7
LTC2600/LTC2610/LTC2620  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2600/LTC2610/LTC2620  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2600 G04  
2600 G05  
2600 G06  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Response  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5μs/DIV  
2600 G09  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2600 G07  
2600 G08  
Headroom at Rails  
vs Output Current  
Midscale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
10mV/DIV  
3V SOURCING  
1V/DIV  
12nV-s TYP  
2.5μs/DIV  
4mV PEAK  
CS/LD  
5V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2600 G10  
2600 G11  
3V SINKING  
250μs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2600 G12  
2600fc  
8
LTC2600/LTC2610/LTC2620  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2600/LTC2610/LTC2620  
Supply Current vs Logic Voltage  
Exiting Power-Down to Midscale  
Hardware CLR  
2.4  
V
= 5V  
V
V
= 5V  
REF  
CC  
CC  
SWEEP SCK, SDI  
AND CS/LD  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
= 2V  
0V TO V  
CC  
V
OUT  
V
OUT  
0.5V/DIV  
1V/DIV  
DACs A TO G IN  
POWER-DOWN MODE  
CS/LD  
5V/DIV  
CLR  
5V/DIV  
2600 G15  
2.5μs/DIV  
2600 G14  
1μs/DIV  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
2600 G13  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10μV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
(AC) = 0.2V  
P-P  
0
1
2
3
4
5
6
7
8
9
10  
CODE = FULL SCALE  
SECONDS  
2600 G17  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2600 G16  
Short-Circuit Output Current  
vs VOUT (Sinking)  
Short-Circuit Output Current  
vs VOUT (Sourcing)  
0mA  
0mA  
V
V
= 5.5V  
REF  
CODE = 0  
1V/DIV  
2600 G18  
1V/DIV  
2600 G19  
CC  
V
V
= 5.5V  
REF  
CC  
= 5.6V  
= 5.6V  
CODE = FULL SCALE  
V
SWEPT 0V TO V  
OUT  
CC  
V
SWEPT V TO 0V  
OUT  
CC  
2600fc  
9
LTC2600/LTC2610/LTC2620  
(GN/UFD)  
PIN FUNCTIONS  
GND (Pin 1/Pin 20): Analog Ground.  
SDO(Pin10/Pin10):SerialInterfaceDataOutput.Thispin  
is used for daisy-chain operation. The serial output of the  
shift register appears at the SDO pin. The data transferred  
to the device via the SDI pin is delayed 32 SCK rising  
edges before being output at the next falling edge. SDO  
is an active output and does not go high impedance, even  
when CS/LD is taken to a logic high level.  
V
to V  
(Pins 2-5 and 12-15/Pins 1-48 and  
OUTA  
OUTH  
13-16): DAC Analog Voltage Outputs. The output range  
is 0 – V  
.
REF  
REF (Pin 6/Pin 5): Reference Voltage Input. 0V ≤ V  
REF  
≤ V .  
CC  
CS/LD (Pin 7/Pin 7): Serial Interface Chip Select/Load  
Input. When CS/LD is low, SCK is enabled for shifting  
data on SDI into the register. When CS/LD is taken high,  
SCK is disabled and the specified command (see Table 1)  
is executed.  
CLR (Pin 11/Pin 11): Asynchronous Clear Input. A logic  
low at this level-triggered input clears all registers and  
causes the DAC voltage outputs to drop to 0V. CMOS and  
TTL compatible.  
V
(Pin 16/Pin 17): Supply Voltage Input. 2.5V ≤ V  
CC  
CC  
≤ 5.5V.  
SCK (Pin 8/Pin 8): Serial Interface Clock Input. CMOS  
and TTL compatible.  
NC (Pin 6, Pin 12, Pin 18, Pin 19): No connection  
SDI (Pin 9/Pin 9): Serial Interface Data Input. Data is ap-  
plied to SDI for transfer to the device at the rising edge  
of SCK. The LTC2600, LTC2610 and LTC2620 accept input  
word lengths of either 24 or 32 bits.  
Exposed Pad (Pin 21): Ground. The exposed pad must  
be soldered to the PUB.  
2600fc  
10  
LTC2600/LTC2610/LTC2620  
BLOCK DIAGRAM  
(20)  
GND  
1
16  
15  
V
V
(17)  
(16)  
CC  
DAC A  
DAC H  
(1)  
V
2
OUTA  
OUTH  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
V
(2)  
3
4
14  
13  
(15)  
OUTB  
OUTC  
OUTG  
OUTF  
(3)  
(4)  
(14)  
(13)  
DAC D  
DAC E  
V
V
5
12  
OUTD  
REF  
OUTE  
CLR  
SDO  
SDI  
(5)  
(7)  
(8)  
6
7
8
11  
10  
9
(11)  
(10)  
(9)  
POWER-ON  
RESET  
CONTROL  
LOGIC  
DECODE  
CS/LD  
SCK  
32-BIT SHIFT REGISTER  
2600 BD02  
NOTE: NUMBERS IN PARENTHESIS REFER TO THE UFD PACKAGE  
2600fc  
11  
LTC2600/LTC2610/LTC2620  
TIMING DIAGRAM  
t
1
t
6
t
t
3
t
4
2
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
SDO  
t
8
2600 F01  
2600fc  
12  
LTC2600/LTC2610/LTC2620  
OPERATION  
Power-On Reset  
Serial Interface  
The LTC2600/LTC2610/LTC2620 clear the outputs to zero  
scalewhenpowerisrstapplied,makingsysteminitializa-  
tion consistent and repeatable.  
The CS/LD input is level triggered. When this input is taken  
low, it acts as a chip-select signal, powering-on the SDI and  
SCK buffers and enabling the input shift register. Data (SDI  
input) is transferred at the next 24 rising SCK edges. The  
4-bit command, C3-C0, is loaded first; then the 4-bit DAC  
address, A3-A0; and finally the 16-bit data word. The data  
word comprises the 16-, 14- or 12-bit input code, ordered  
MSB-to-LSB,followedby0,2or4don’t-carebits(LTC2600,  
LTC2610 and LTC2620 respectively). Data can only be  
transferred to the device when the CS/LD signal is low.The  
rising edge of CS/LD ends the data transfer and causes the  
device to carry out the action specified in the 24-bit input  
word. The complete sequence is shown in Figure 2a.  
Forsomeapplications,downstreamcircuitsareactivedur-  
ingDACpower-up,andmaybesensitivetononzerooutputs  
from the DAC during this time. The LTC2600/2610/2620  
contain circuitry to reduce the power-on glitch: the analog  
outputstypicallyriselessthan10mVabovezeroscaledur-  
ing power on if the power supply is ramped to 5V in 1ms  
or more. In general, the glitch amplitude decreases as the  
powersupplyramptimeisincreased.SeePower-OnReset  
Glitch in the Typical Performance Characteristics section.  
Power Supply Sequencing  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads a 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DAC if it had been in power-down mode. The data path  
and registers are shown in the block diagram.  
The voltage at REF (Pin 6) should be kept within the  
range –0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum  
REF  
CC  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at V (Pin 16) is in transition.  
CC  
Transfer Function  
The digital-to-analog transfer function is  
k
VOUT(IDEAL) ⎜  
=
V
N REF  
2
While the minimum input word is 24 bits, it may optionally  
be extended to 32 bits. To use the 32-bit word width, 8  
don’t-care bits are transferred to the device first, followed  
by the 24-bit word as just described. Figure 2b shows the  
where k is the decimal equivalent of the binary DAC  
input code, N is the resolution and V  
REF (Pin 6).  
is the voltage at  
REF  
Table 1.  
ADDRESS (n)*  
COMMAND*  
C3 C2 C1 C0  
A3 A2 A1 A0  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
*Command and address codes not shown are reserved and should not be used.  
2600fc  
13  
LTC2600/LTC2610/LTC2620  
OPERATION  
INPUT WORD (LTC2600)  
COMMAND  
ADDRESS  
DATA (16 BITS)  
D6  
D5 D4 D3 D2 D1  
A3 A2  
A0  
D12  
D0  
C3  
C1  
C2  
A1  
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C0  
LSB  
2600 TBL01  
INPUT WORD (LTC2610)  
COMMAND  
ADDRESS  
DATA (14 BITS + 2 DON’T-CARE BITS)  
A3 A2  
A0  
D12  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D7  
C2  
C0  
MSB  
LSB  
2600 TBL02  
INPUT WORD (LTC2620)  
COMMAND  
ADDRESS  
DATA (12 BITS + 4 DON’T-CARE BITS)  
A3 A2  
A0  
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
C3  
C1  
A1  
D11 D10 D9 D8  
MSB  
D7  
C2  
C0  
LSB  
2600 TBL03  
32-bit sequence. The 32-bit word is required for daisy-  
chain operation, and is also available to accommodate  
microprocessors which have a minimum word width of  
16 bits (2 bytes).  
are thus connected in series, effectively forming a single  
input shift register which extends through the entire  
chain. Because of this, the devices can be addressed and  
controlledindividuallybysimplyconcatenatingtheirinput  
words; the first instruction addresses the last device in  
the chain and so forth. The SCK and CS/LD signals are  
common to all devices in the series.  
Daisy-Chain Operation  
The serial output of the shift register appears at the SDO  
pin. Data transferred to the device from the SDI input is  
delayed 32 SCK rising edges before being output at the  
next SCK falling edge.  
In use, CS/LD is first taken low. Then the concatenated  
input data is transferred to the chain, using SDI of the  
first device as the data input. When the data transfer is  
complete, CS/LD is taken high, completing the instruction  
sequence for all devices simultaneously. A single device  
can be controlled by using the no-operation command  
(1111) for the other devices in the chain.  
TheSDOoutputcanbeusedtofacilitatecontrolofmultiple  
serial devices from a single 3-wire serial port (i.e., SCK,  
SDI and CS/LD). Such a “daisy chain” series is configured  
by connecting SDO of each upstream device to SDI of the  
next device in the chain. The shift registers of the devices  
2600fc  
14  
LTC2600/LTC2610/LTC2620  
OPERATION  
Power-Down Mode  
Voltage Outputs  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than eight outputs are needed. When in power-down, the  
buffer amplifiers and reference inputs are disabled, and  
drawessentiallyzerocurrent.TheDACoutputsareputinto  
a high-impedance state, and the output pins are passively  
pulledtogroundthroughindividual90kresistors.Whenall  
eight DACs are powered down, the master bias generation  
circuit is also disabled. Input- and DAC-register contents  
are not disturbed during power-down.  
Eachofthe8rail-to-railamplifierscontainedintheseparts  
has guaranteed load regulation when sourcing or sinking  
up to 15mA at 5V (7.5mA at 3V).  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
permilliampereofforcedloadcurrentchangeisexpressed  
in LSB/mA.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.025Ω when driving a load well away from  
the rails.  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in combi-  
nation with the appropriate DAC address, (n). The 16-bit  
data word is ignored. The supply and reference currents  
are reduced by approximately 1/8 for each DAC powered  
down; the effective resistance at REF (pin 6) rises accord-  
ingly, becoming a high-impedance input (typically > 1GΩ)  
when all eight DACs are powered down.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 25Ω typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
25Ω • 1mA = 25mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteristics  
section.  
Normal operation can be resumed by executing any  
command which includes a DAC update, as shown in  
Table 1. The selected DAC is powered up as its voltage  
output is updated.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
There is an initial delay as the DAC powers up before it  
begins its usual settling behavior. If less than eight DACs  
areinapowered-downstatepriortotheupdatecommand,  
the power-up delay is 5μs. If, on the other hand, all eight  
DACs are powered down, then the master bias genera-  
tion circuit is also disabled and must be restarted. In this  
Board Layout  
TheexcellentloadregulationandDCcrosstalkperformance  
of these devices is achieved in part by keeping “signal”  
andpowergroundsseparatedinternallyandbyreducing  
shared internal resistance to just 0.005Ω.  
case, the power-up delay is greater: 12μs for V = 5V,  
CC  
30μs for V = 3V.  
CC  
2600fc  
15  
LTC2600/LTC2610/LTC2620  
OPERATION  
The GND pin functions both as the node to which the refer-  
ence and output voltages are referred and as a return path  
for power currents in the device. Because of this, careful  
thought should be given to the grounding scheme and  
board layout in order to ensure rated performance.  
add directly to the effective DC output impedance of the  
device (typically 0.025Ω), and will degrade DC crosstalk.  
Note that the LTC2600/LTC2610/LTC2620 are no more  
susceptible to these effects than other parts of their type;  
on the contrary, they allow layout-based performance  
improvements to shine rather than limiting attainable  
performance with excessive internal resistance.  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown  
in Figure 3b. Similarly, limiting can occur near full scale  
when the REF pin is tied to V . If V = V and the DAC  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shielditfromnoise.Analoggroundshouldbeacontinuous  
and uninterrupted plane, except for necessary lead pads  
and vias, with signal traces on another layer.  
CC  
REF  
CC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at V as shown in Figure 3c. No full-scale  
CC  
limiting can occur if V is less than V – FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
The GND pin of the part should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here will  
2600fc  
16  
LTC2600/LTC2610/LTC2620  
OPERATION  
2600fc  
17  
LTC2600/LTC2610/LTC2620  
OPERATION  
POSITIVE  
FSE  
V
REF  
= V  
CC  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
2600 F03  
Figure 3. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect  
of Negative Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Codes Near Full Scale  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2600fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
18  
LTC2600/LTC2610/LTC2620  
PACKAGE DESCRIPTION  
UFD Package  
20-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev B)  
0.70 p 0.05  
2.65 p 0.05  
4.50 p 0.05  
3.10 p 0.05  
1.50 REF  
3.65 p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
2.50 REF  
4.10 p 0.05  
5.50 p 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR  
C = 0.35  
0.75 p 0.05  
1.50 REF  
19  
4.00 p 0.10  
R = 0.05 TYP  
(2 SIDES)  
20  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 p 0.10  
(2 SIDES)  
2.50 REF  
3.65 p 0.10  
2.65 p 0.10  
(UFD20) QFN 0506 REV  
B
0.25 p 0.05  
0.50 BSC  
0.200 REF  
R = 0.115  
TYP  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2600fc  
19  
LTC2600/LTC2610/LTC2620  
TYPICAL APPLICATION  
Schematic for LTC2600 Demonstration Circuit DC579. The Outputs Are Measured by an Onboard LTC2428  
V
V
V
CC  
CC  
REF  
1
1
TP1  
TP2  
C1  
R1, R3, R4  
0.1μF  
are 4.99k, 1%  
R1  
R3  
R4  
4
5
6
7
R2  
7.5k  
V
SDA  
SS  
C2  
0.1μF  
3
2
6
A2 SCL  
11  
16  
REF  
CLR  
V
A1 WP  
CC  
C3  
0.1μF  
1
8
1
1
1
1
1
1
1
1
1
1
2
TP3  
TP14  
GND  
A0  
V
CC  
V
V
V
OUTA  
OUTB  
OUTC  
OUTD  
DAC A  
3
U1  
24LC025  
4
TP4  
DAC B  
TP15  
GND  
SCK  
8
7
5
SCK  
V
CS  
12  
13  
14  
15  
TP5  
DAC C  
LS/LD  
V
OUTE  
14  
12  
10  
8
6
4
13  
11  
9
7
5
V
OUTF  
+
+
+
+
+
+
+
+
9
TP6  
DAC D  
SDI  
V
V
+
+
+
+
+
+
OUTG  
OUTH  
10  
SDO  
MOSI  
MISO  
TP7  
DAC E  
GND  
1
V
V
V
REF  
CC  
CC  
U2  
LTC2600CGN  
3
1
1
TP8  
DAC F  
TP16  
2
5V  
V
IN  
C4  
C5  
0.1μF  
J1  
HD2X7  
TP9  
DAC G  
0.1μF  
R5  
7.5k  
JP1  
TP10  
DAC H  
R8  
22Ω  
ON/OFF  
3
2
C10  
100pF  
DISABLE  
ADC  
7
4
3
2
8
V
IN  
1
U4  
V
V
MUXOUT ADCIN FS  
CC CC  
SET  
LT1236ACS8-5  
2
6
V
REF  
V
IN  
V
OUT  
9
CH0  
1
1
5V  
TP11  
REF  
23  
R6  
7.5k  
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
GND  
4
CSADC  
V
2
3
4.096V  
20  
25  
19  
21  
24  
CS  
C7  
4.7μF  
6.3V  
CSMUX  
SCK  
C6  
JP2  
V
0.1μF  
REF  
4-/8-CHANNEL  
MUX  
20-BIT  
ADC  
+
SCK  
CLK  
U5  
D
IN  
LT1461ACS8-4  
SD0  
2
3
6
V
LTC2424/LTC2428  
CC  
V
V
OUT  
IN  
1
26  
SHDN  
GND  
FO  
1
1
5V  
TP12  
CC  
REF  
5
ZS  
SET  
GND GND GND GND GND GND GND  
16 18 22 27 28  
R7  
7.5k  
V
2
3
C9  
0.1μF  
C8 REGULATOR  
4
1
6
U3  
LTC2428CG  
1μF  
16V  
JP3  
CC  
TP13  
GND  
V
5V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5μs/750μA, 8μs/450μA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DAC in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2μs for 10V Step  
2600fc  
LT 0309 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2600IGNPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGNTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IUFD#PBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2600IUFD#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2600IUFDPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IUFDTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600_1

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600_15

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2601

16-/14-/12-Bit Rail-to-Rail DACs in 10-Lead DFN
Linear

LTC2601CDD

16-/14-/12-Bit Rail-to-Rail DACs in 10-Lead DFN
Linear

LTC2601CDD#PBF

LTC2601 - 16-Bit Rail-to-Rail DACs in 10-Lead DFN; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2601CDD#TR

LTC2601 - 16-Bit Rail-to-Rail DACs in 10-Lead DFN; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear