LTC2626IDD#TRPBF [Linear]

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C;
LTC2626IDD#TRPBF
型号: LTC2626IDD#TRPBF
厂家: Linear    Linear
描述:

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C

光电二极管 转换器
文件: 总20页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2606/LTC2616/LTC2626  
16-/14-/12-Bit Rail-to-Rail DACs  
with I2C Interface  
FeaTures  
DescripTion  
The LT C®2606/LTC2616/LTC2626 are single 16-, 14-  
and 12-bit, 2.7V-to-5.5V rail-to-rail voltage output DACs  
in a 10-lead DFN package. They have built-in high per-  
formance output buffers and are guaranteed monotonic.  
n
Smallest Pin-Compatible Single DACs:  
LTC2606: 16 Bits  
LTC2616: 14 Bits  
LTC2626: 12 Bits  
n
Guaranteed 16-Bit Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply, volt-  
age-output DACs.  
n
27 Selectable Addresses  
2
n
400kHz I C Interface  
n
Wide 2.7V to 5.5V Supply Range  
n
Low Power Operation: 270µA at 3V  
2
n
The parts use a 2-wire, I C compatible serial interface. The  
Power Down to 1µA, Max  
n
LTC2606/LTC2616/LTC2626 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). An asynchronous DAC update pin (LDAC) is  
also included.  
High Rail-to-Rail Output Drive ( 15mA, Min)  
n
Double-Buffered Data Latches  
Asynchronous DAC Update Pin  
n
n
LTC2606/LTC2616/LTC2626: Power-On Reset to  
Zero Scale  
The LTC2606/LTC2616/LTC2626 incorporate a power-on  
reset circuit. During power-up, the voltage outputs rise  
less than 10mV above zero scale; and after power-up,  
they stay at zero scale until a valid write and update take  
place. The power-on reset circuit resets the LTC2606-1/  
LTC2616-1/LTC2626-1 to mid-scale. The voltage outputs  
stay at mid-scale until a valid write and update take place.  
n
LTC2606-1/LTC2616-1/LTC2626-1: Power-On Reset  
to Mid-Scale  
Tiny (3mm × 3mm) 10-Lead DFN Package  
n
applicaTions  
n
Mobile Communications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog  
Devices, Inc. All other trademarks are the property of their respective owners.  
n
Process Control and Industrial Automation  
n
Instrumentation  
Automatic Test Equipment  
n
Typical applicaTion  
Differential Nonlinearity  
9
6
(LTC2606)  
V
CC  
REF  
1.0  
V
V
= 5V  
REF  
CC  
SCL  
0.8  
0.6  
= 4.096V  
V
OUT  
3
2
INPUT  
REGISTER  
DAC  
REGISTER  
16-BIT DAC  
7
2
0.4  
I C  
INTERFACE  
0.2  
SDA  
0
CONTROL  
LOGIC  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
CA0  
CA1  
CA2  
4
5
1
2
I C  
0
16384  
32768  
CODE  
49152  
65535  
ADDRESS  
DECODE  
LDAC  
GND  
8
2606 G02  
10  
2606 BD  
26061626fc  
1
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Any Pin to GND............................................0.3V to 6V  
Any Pin to V ............................................ –6V to 0.3V  
CA2  
SDA  
SCL  
CA0  
CA1  
1
2
3
4
5
10 LDAC  
CC  
9
8
7
6
V
CC  
Maximum Junction Temperature...........................125°C  
Storage Temperature Range...................–65°C to 125°C  
Lead Temperature (Soldering, 10 sec) ..................300°C  
Operating Temperature Range:  
11  
GND  
V
OUT  
REF  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
LTC2606C/LTC2616C/LTC2626C  
LTC2606-1C/LTC2616-1C/LTC2626-1C ...... 0°C to 70°C  
LTC2606I/LTC2616I/LTC2626I  
T = 125°C, θ = 43°C/W  
JMAX JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
LTC2606-1I/LTC2616-1I/LTC2626-1I......40°C to 85°C  
orDer inForMaTion  
http://www.linear.com/product/LTC2606#orderinfo  
LEAD FREE FINISH  
LTC2606CDD#PBF  
LTC2606IDD#PBF  
LTC2606CDD-1#PBF  
LTC2606IDD-1#PBF  
LTC2616CDD#PBF  
LTC2616IDD#PBF  
LTC2616CDD-1#PBF  
LTC2616IDD-1#PBF  
LTC2626CDD#PBF  
LTC2626IDD#PBF  
LTC2626CDD-1#PBF  
LTC2626IDD-1#PBF  
LEAD FREE FINISH  
LTC2606CDD  
TAPE AND REEL  
PART MARKING*  
LAJX  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2606CDD#TRPBF  
LTC2606IDD#TRPBF  
LTC2606CDD-1#TRPBF  
LTC2606IDD-1#TRPBF  
LTC2616CDD#TRPBF  
LTC2616IDD#TRPBF  
LTC2616CDD-1#TRPBF  
LTC2616IDD-1#TRPBF  
LTC2626CDD#TRPBF  
LTC2626IDD#TRPBF  
LTC2626CDD-1#TRPBF  
LTC2626IDD-1#TRPBF  
TAPE AND REEL  
LAJX  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
PACKAGE DESCRIPTION  
–40°C to 85°C  
0°C to 70°C  
LAJW  
LAJW  
LBPQ  
–40°C to 85°C  
0°C to 70°C  
LBPQ  
–40°C to 85°C  
0°C to 70°C  
LBPR  
LBPR  
–40°C to 85°C  
0°C to 70°C  
LBPS  
LBPS  
–40°C to 85°C  
0°C to 70°C  
LBPT  
LBPT  
–40°C to 85°C  
TEMPERATURE RANGE  
0°C to 70°C  
PART MARKING*  
LAJX  
LTC2606CDD#TR  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LTC2606IDD  
LTC2606IDD#TR  
LAJX  
–40°C to 85°C  
0°C to 70°C  
LTC2606CDD-1  
LTC2606IDD-1  
LTC2606CDD-1#TR  
LTC2606IDD-1#TR  
LTC2616CDD#TR  
LAJW  
LAJW  
LBPQ  
–40°C to 85°C  
0°C to 70°C  
LTC2616CDD  
LTC2616IDD  
LTC2616IDD#TR  
LBPQ  
–40°C to 85°C  
0°C to 70°C  
LTC2616CDD-1  
LTC2616IDD-1  
LTC2616CDD-1#TR  
LTC2616IDD-1#TR  
LTC2626CDD#TR  
LBPR  
LBPR  
–40°C to 85°C  
0°C to 70°C  
LTC2626CDD  
LBPS  
LTC2626IDD  
LTC2626IDD#TR  
LBPS  
–40°C to 85°C  
0°C to 70°C  
LTC2626CDD-1  
LTC2626IDD-1  
LTC2626CDD-1#TR  
LTC2626IDD-1#TR  
LBPT  
LBPT  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
26061626fc  
2
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
elecTrical characTerisTics The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted.  
LTC2626/LTC2626-1 LTC2616/LTC2616-1 LTC2606/LTC2606-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP  
MAX MIN TYP  
MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
0.5  
1
1
Integral Nonlinearity  
Load Regulation  
1
4
4
16  
14  
64  
V
= V = 5V, Mid-Scale  
REF  
OUT  
OUT  
CC  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.05 0.125  
0.1  
0.2  
0.5  
0.5  
0.5  
0.7  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Mid-Scale  
REF  
OUT  
OUT  
CC  
I
I
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.2  
0.4  
1
1
0.9  
1.5  
4
4
LSB/mA  
LSB/mA  
0.1  
0.25  
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 5)  
1
9
1
1
5
9
9
1
1
5
9
9
mV  
mV  
V
1
9
OS  
V
Temperature  
5
µV/°C  
OS  
Coefficient  
GE  
Gain Error  
0.1  
8.5  
0.7  
0.1  
8.5  
0.7  
0.1  
8.5  
0.7  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
26061626fc  
3
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
The denotes specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted. (Note 11)  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
=
10%  
= V = 5V, Mid-Scale; –15mA ≤ I ≤ 15mA  
OUT  
–81  
dB  
CC  
R
DC Output Impedance  
V
V
0.05  
0.06  
0.15  
0.15  
Ω
Ω
OUT  
REF  
REF  
CC  
= V = 2.7V, Mid-Scale; –7.5mA ≤ I  
≤ 7.5mA  
CC  
OUT  
I
SC  
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
Code: Zero-Scale; Forcing Output to V  
15  
15  
34  
36  
60  
60  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
V
CC  
= 2.7V, V = 2.7V  
REF  
Code: Zero-Scale; Forcing Output to V  
7.5  
7.5  
22  
29  
50  
50  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
124  
15  
160  
Capacitance  
I
Reference Current, Power Down Mode  
DAC Powered Down  
For Specified Performance  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
2.7  
5.5  
V
CC  
I
CC  
V
V
= 5V (Note 3)  
= 3V (Note 3)  
0.340  
0.27  
0.35  
0.10  
0.5  
0.4  
1
mA  
mA  
µA  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
1
µA  
Digital I/O (Note 11)  
V
V
V
Low Level Input Voltage (SDA and SCL)  
High Level Input Voltage (SDA and SCL) (Note 8)  
–0.5  
0.3V  
V
V
IL  
CC  
0.7V  
IH  
CC  
Low Level Input Voltage (LDAC)  
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL(LDAC)  
CC  
CC  
V
V
V
High Level Input Voltage (LDAC)  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH(LDAC)  
IL(CAn)  
IH(CAn)  
CC  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
CC  
High Level Input Voltage on CAn  
(n = 0, 1, 2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1, 2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1, 2)  
2
0
to V or GND to Set CAn = Float  
CC  
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
B
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 9)  
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
IN  
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 4)  
10  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
CAX  
26061626fc  
4
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
elecTrical characTerisTics The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted.  
LTC2626/LTC2626-1 LTC2616/LTC2616-1 LTC2606/LTC2606-1  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN TYP  
MAX MIN TYP  
MAX MIN TYP  
MAX  
UNITS  
t
S
Settling Time (Note 6)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
Settling Time for 1LSB Step  
(Note 7)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.75  
1000  
12  
0.75  
1000  
12  
0.75  
1000  
12  
V/µs  
pF  
At Mid-Scale Transition  
nVs  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
TiMing characTerisTics The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 10, 11)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 2.7V to 5.5V  
CC  
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 9)  
(Note 9)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
f
B
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte to  
LDAC High or Low Transition  
400  
1
t
2
LDAC Low Pulse Width  
20  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
code 64 (LTC2616/LTC2616-1) or code 16 (LTC2626/LTC2626-1) and at  
full-scale.  
Note 6: V = 5V, V = 4.096V. DAC is stepped 1/4-scale to 3/4-scale and  
CC  
REF  
3/4-scale to 1/4-scale. Load is 2k in parallel with 200pF to GND.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 7: V = 5V, V = 4.096V. DAC is stepped 1LSB between half scale  
and half scale – 1. Load is 2k in parallel with 200pF to GND.  
CC  
REF  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 8: Maximum V = V + 0.5V  
IH  
CC(MAX)  
256 and linearity is defined from code 256 to code 65,535.  
Note 9: C = capacitance of one bus line in pF.  
B
Note 3: Digital inputs at 0V or V  
.
CC  
Note 10: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
Note 4: Guaranteed by design and not production tested.  
Note 5: Inferred from measurement at code 256 (LTC2606/LTC2606-1),  
Note 11: These specifications apply to LTC2606/LTC2606-1, LTC2616/  
LTC2616-1, LTC2626/LTC2626-1.  
26061626fc  
5
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
Typical perForMance characTerisTics  
LTC2606  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
32  
24  
32  
24  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
0
16384  
32768  
CODE  
49152  
65535  
TEMPERATURE (°C)  
2606 G01  
2606 G03  
2606 G02  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
= 5.5V  
CC  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2606 G04  
2606 G05  
2606 G06  
Settling to 1LSB  
Settling of Full-Scale Step  
V
V
OUT  
OUT  
100μV/DIV  
100μV/DIV  
SCR  
2V/DIV  
SCL  
2V/DIV  
2606 G08  
2606 G07  
5μs/DIV  
2μs/DIV  
SETTLING TO ±1LSB  
V
= 5V, V  
= 4.096V  
REF  
CC  
V
= 5V, V  
= 4.096V  
1/4-SCALE TO 3/4-SCALE STEP  
CC  
REF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
R
= 2k, C = 200pF  
L
L
AVERAGE OF 2048 EVENTS  
26061626fc  
6
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
Typical perForMance characTerisTics  
LTC2616  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
100μV/DIV  
0.2  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9μs  
2606 G11  
2μs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2606 G09  
2606 G10  
LTC2626  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8μs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2606 G14  
2μs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
L
L
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
AVERAGE OF 2048 EVENTS  
2606 G12  
2606 G13  
LTC2606/LTC2616/LTC2626  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
1.0  
0.8  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
0.08  
V
V
= V = 5V  
CC  
REF  
REF  
0.06  
0.04  
0.6  
= V = 3V  
CC  
0.4  
1
0.02  
0.2  
0
0
0
V
= V = 5V  
CC  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
REF  
CC  
–40 –30 –20 –10  
I
0
10 20 30 40  
–35 –25 –15 –5  
I
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
(mA)  
(mA)  
TEMPERATURE (°C)  
OUT  
OUT  
2606 G17  
2606 G18  
2606 G19  
26061626fc  
7
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
Typical perForMance characTerisTics  
LTC2606/LTC2616/LTC2626  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2606 G20  
2606 G21  
2606 G22  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Response  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5μs/DIV  
2606 G25  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2606 G24  
2606 G23  
Headroom at Rails  
vs Output Current  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
TRANSITION FROM  
MS-1 TO MS  
V
OUT  
V
CC  
10mV/DIV  
3V SOURCING  
1V/DIV  
TRANSITION FROM  
MS TO MS-1  
9TH CLOCK  
OF 3RD DATA  
BYTE  
4mV PEAK  
SCL  
2V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2606 G26  
2606 G27  
3V SINKING  
2.5μs/DIV  
250μs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2606 G28  
26061626fc  
8
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
Typical perForMance characTerisTics  
LTC2606/LTC2616/LTC2626  
Power-On Reset to Mid-Scale  
Supply Current vs Logic Voltage  
Supply Current vs Logic Voltage  
650  
600  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
V
= 5V  
V
= V  
V
= 5V  
CC  
CC  
REF  
CC  
SWEEP SCL AND  
SWEEP LDAC  
SDA 0V TO V  
AND V TO 0V  
0V TO V  
CC  
CC  
CC  
550  
HYSTERESIS  
370mV  
500  
450  
1V/DIV  
400  
350  
V
CC  
300  
V
OUT  
– 250  
2606 G29  
500μs/DIV  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
LOGIC VOLTAGE (V)  
2606 G30  
2606 G31  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10μV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
SECONDS  
CODE = FULL SCALE  
2606 G33  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2606 G32  
Short-Circuit Output Current vs  
OUT (Sinking)  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
V
0mA  
0mA  
V
V
= 5.5V  
REF  
CODE = 0  
V
V
= 5.5V  
REF  
CODE = FULL SCALE  
CC  
CC  
= 5.6V  
= 5.6V  
V
SWEPT 0V TO V  
V SWEPT V TO 0V  
OUT CC  
OUT  
CC  
1V/DIV  
2606 G18  
1V/DIV  
2606 G19  
26061626fc  
9
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
pin FuncTions  
CA2 (Pin 1): Chip Address Bit 2. Tie this pin to V , GND  
REF (Pin 6): Reference Voltage Input. 0V ≤ V ≤ V .  
REF CC  
CC  
2
or leave it floating to select an I C slave address for the  
V
(Pin 7): DAC Analog Voltage Output. The output  
OUT  
part (Table 1).  
range is 0V to V  
.
REF  
SDA (Pin 2): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in. Open-drain  
N-channel output during acknowledgment. SDA requires  
GND (Pin 8): Analog Ground.  
(Pin 9): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
V
CC  
CC  
LDAC (Pin 10): Asynchronous DAC Update. A falling edge  
on this input after four bytes have been written into the  
part immediately updates the DAC register with the con-  
tents of the input register. A low on this input without a  
complete 32-bit (four bytes including the slave address)  
data write transfer to the part does not update the DAC  
output. Software power-down is disabled when LDAC is  
low.  
a pull-up resistor or current source to V .  
CC  
SCL (Pin 3): Serial Clock Input Pin. Data is shifted into the  
SDA pin at the rising edges of the clock. This high imped-  
ance pin requires a pull-up resistor or current source to  
V .  
CC  
CA0 (Pin 4): Chip Address Bit 0. Tie this pin to V , GND  
CC  
2
or leave it floating to select an I C slave address for the  
Exposed Pad (Pin 11): Ground. Must be soldered to PCB  
ground.  
part (Table 1).  
CA1 (Pin 5): Chip Address Bit 1. Tie this pin to V , GND  
CC  
2
or leave it floating to select an I C slave address for the  
part (Table 1).  
26061626fc  
10  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
block DiagraM  
9
6
V
CC  
REF  
SCL  
3
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
16-BIT DAC  
7
2
I C  
INTERFACE  
SDA  
2
CONTROL  
LOGIC  
CA0  
4
2
I C  
CA1  
5
ADDRESS  
DECODE  
CA2  
1
LDAC  
GND  
8
10  
2606 BD  
TesT circuiTs  
Test Circuit 1  
Test Circuit 2  
V
DD  
R
/R /R  
INH INL INF  
100Ω  
CAn  
CAn  
V
/V  
IH(CAn) IL(CAn)  
GND  
2606 TC  
26061626fc  
11  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
TiMing DiagraMs  
26061626fc  
12  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
operaTion  
Power-On Reset  
pull-up resistors or current sources are required on these  
lines. The value of these pull-up resistors is dependent  
The LTC2606/LTC2616/LTC2626 clear the outputs to  
zero-scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2606-1/  
LTC2616-1/LTC2626-1 set the voltage outputs to mid-  
scale when power is first applied.  
2
on the power supply and can be obtained from the I C  
specifications. For an I2C bus operating in the fast mode,  
an active pull-up will be necessary if the bus capacitance  
is greater than 200pF. The V power should not be  
CC  
removed from the LTC2606/LTC2616/LTC2626 when  
2
2
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2606/  
LTC2616/LTC2626 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground (typ) during power-on. See Power-On Reset Glitch  
in the Typical Performance Characteristics section.  
the I C bus is active to avoid loading the I C bus lines  
through the internal ESD protection diodes.  
The LTC2606/LTC2616/LTC2626 are receive-only (slave)  
devices. The master can write to the LTC2606/LTC2616/  
LTC2626. The LTC2606/LTC2616/LTC2626 do not  
respond to a read from the master.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
Power Supply Sequencing  
The voltage at REF (Pin 6) should be kept within the  
range 0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum  
REF  
CC  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
Ratings). Particular care should be taken to observe  
these limits during power supply turn-on and turn-off  
sequences, when the voltage at V (Pin 9) is in transition.  
CC  
2
Transfer Function  
another I C device.  
The digital-to-analog transfer function is:  
Acknowledge  
k
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the lat-  
est byte of information was received. The Acknowledge  
related clock pulse is generated by the master. The mas-  
ter releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
bus line during the Acknowledge clock pulse so that it  
remains a stable LOW during the HIGH period of this clock  
pulse. The LTC2606/LTC2616/LTC2626 respond to a  
write by a master in this manner. The LTC2606/LTC2616/  
LTC2626 do not acknowledge a read (retains SDA HIGH  
during the period of the Acknowledge clock pulse).  
VOUT(IDEAL) ⎜  
=
V
N REF  
2
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and V  
(Pin 6).  
is the voltage at REF  
REF  
Serial Digital Interface  
The LTC2606/LTC2616/LTC2626 communicate with a  
host using the standard 2-wire I2C interface. The Timing  
Diagrams (Figures 1 and 2) show the timing relationship  
of the signals on the bus. The two bus lines, SDA and  
SCL, must be high when the bus is not in use. External  
26061626fc  
13  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
operaTion  
Chip Address  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF, as these pins are driven  
during address detection to determine if they are floating.  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set  
to any one of three states: V , GND or float. This results  
CC  
in 27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
Write Word Protocol  
Table 1. Slave Address Map  
The master initiates communication with the LTC2606/  
LTC2616/LTC2626 with a START condition and a 7-bit  
slave address followed by the Write bit (W) = 0. The  
LTC2606/LTC2616/LTC2626 acknowledges by pulling  
the SDA pin low at the 9th clock if the 7-bit slave address  
matches the address of the parts (set by CA0, CA1 and  
CA2) or the global address. The master then transmits  
three bytes of data. The LTC2606/LTC2616/LTC2626  
acknowledges each byte of data by pulling the SDA line  
low at the 9th clock of each data byte transmission. After  
receiving three complete bytes of data, the LTC2606/  
LTC2616/LTC2626 executes the command specified in  
the 24-bit input word.  
CA2  
GND  
CA1  
GND  
CA0  
GND  
A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
GND  
GND  
V
CC  
GND  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
FLOAT  
GND  
V
CC  
GND  
V
CC  
V
CC  
V
CC  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2606/LTC2616/LTC2626 do  
not acknowledge the extra bytes of data (SDA is high  
during the 9th clock).  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
The format of the three data bytes is shown in Figure 3.  
The first byte of the input word consists of the 4-bit com-  
mand and four don’t care bits. The next two bytes consist  
of the 16-bit data word. The 16-bit data word consists  
of the 16-, 14- or 12-bit input code, MSB to LSB, fol-  
lowed by 0, 2 or 4 don’t care bits (LTC2606, LTC2616 and  
LTC2626 respectively). A typical LTC2606 write transac-  
tion is shown in Figure 4.  
V
CC  
V
V
V
V
V
V
V
V
V
GND  
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
FLOAT  
V
CC  
V
GND  
CC  
V
V
FLOAT  
CC  
CC  
The command assignments (C3-C0) are shown in Table 2.  
The first four commands in the table consist of write and  
update operations. A write operation loads a 16-bit data  
word from the 32-bit shift register into the input register.  
In an update operation, the data word is copied from the  
input register to the DAC register and converted to an ana-  
log voltage at the DAC output. The update operation also  
powers up the DAC if it had been in power-down mode. The  
data path and registers are shown in the Block Diagram.  
V
CC  
GLOBAL ADDRESS  
In addition to the address selected by the address pins,  
the parts also respond to a global address. This address  
allows a common write to all LTC2606, LTC2616 and  
LTC2626 parts to be accomplished with one 3-byte write  
2
transaction on the I C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
26061626fc  
14  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
operaTion  
Write Word Protocol for LTC2606/LTC2616/LTC1626  
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
A
3RD DATA BYTE  
A
P
S
SLAVE ADDRESS  
INPUT WORD  
Input Word (LTC2606)  
C3  
C1  
X
X
X
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
C2  
C0  
X
X
X
1ST DATA BYTE  
Input Word (LTC2616)  
C3  
C1  
X
X
X
X
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
X
X
X
C2  
C0  
1ST DATA BYTE  
Input Word (LTC2626)  
C3  
C1  
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
2606 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3  
Power-Down Mode  
performing an asynchronous update (LDAC) as described  
in the next section. The DAC is powered up as its voltage  
output is updated. When the DAC in powered-down state  
is powered up and updated, normal settling is delayed.  
The main bias generation circuit block has been auto-  
matically shut down in addition to the DAC amplifier and  
reference input and so the power-up delay time is:  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever the  
DAC output is not needed. When in power-down, the buffer  
amplifier, bias circuit and reference input is disabled and  
draws essentially zero current. The DAC output is put into  
a high impedance state, and the output pin is passively  
pulled to ground through 90k resistors. Input- and DAC-  
register contents are not disturbed during power-down.  
12µs (for V = 5V) or 30µs (for V = 3V)  
CC  
CC  
Asynchronous DAC Update Using LDAC  
Table 2  
In addition to the update commands shown in Table 2,  
the LDAC pin asynchronously updates the DAC register  
with the contents of the input register. Asynchronous  
update is disabled when the input word is being clocked  
into the part.  
COMMAND*  
C3 C2 C1 C0  
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
1
1
0
1
Write to Input Register  
Update (Power Up) DAC Register  
Write to and Update (Power Up)  
Power Down  
If a complete input word has been written to the part,  
a low on the LDAC pin causes the DAC register to be  
updated with the contents of the input register.  
No Operation  
*Command codes not shown are reserved and should not be used.  
The DAC channel can be put into power-down mode by  
If the input word is being written to the part, a low going  
pulse on the LDAC pin before the completion of three  
bytes of data powers up the DAC but does not cause the  
output to be updated. If LDAC remains low after a com-  
plete input word has been written to the part, then LDAC is  
recognized, the command specified in the 24-bit word just  
transferred is executed and the DAC output is updated.  
using command 0100 . The 16-bit data word is ignored.  
b
The supply and reference currents are reduced to almost  
zero when the DAC is powered down; the effective resis-  
tance at REF becomes a high impedance input (typically  
>1GΩ).  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 2 or  
26061626fc  
15  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
operaTion  
The DAC is powered up when LDAC is taken low, inde-  
pendent of any activity on the I C bus.  
The PC board should have separate areas for the analog  
and digital sections of the circuit. This keeps digital sig-  
nals away from sensitive analog signals and facilitates the  
use of separate digital and analog ground planes which  
have minimal capacitive and resistive interaction with  
each other.  
2
If LDAC is low at the falling edge of the 9th clock of the  
3rd byte of data, it inhibits any software power-down com-  
mand that was specified in the input word.  
Voltage Output  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
The rail-to-rail amplifier has guaranteed load regulation  
when sourcing or sinking up to 15mA at 5V (7.5mA at 3V).  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range  
of load conditions. The measured change in output volt-  
age per milliampere of forced load current change is  
expressed in LSB/mA.  
The GND pin of the part should be connected to ana-  
log ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here  
will add directly to the effective DC output impedance  
of the device (typically 0.050Ω). Note that the LTC2606/  
LTC2616/LTC2626 are no more susceptible to these  
effects than other parts of their type; on the contrary, they  
allow layout-based performance improvements to shine  
rather than limiting attainable performance with excessive  
internal resistance.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.050Ω when driving a load well away from  
the rails.  
When drawing a load current from either rail, the out-  
put voltage headroom with respect to that rail is lim  
-
ited by the 25Ω typical channel resistance of the output  
devices; e.g., when sinking 1mA, the minimum output  
voltage = 25Ω 1mA = 25mV. See the graph Headroom  
at Rails vs Output Current in the Typical Performance  
Characteristics section.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage output device, the output is lim-  
ited to voltages within the supply range.  
The amplifier is stable driving capacitive loads of up to  
1000pF.  
Since the analog output of the device cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure 5b. Similarly, limiting can occur near full-scale  
Board Layout  
when the REF pin is tied to V . If V  
= V and the  
The excellent load regulation performance is achieved in  
part by keeping “signal” and “power” grounds separated  
internally and by reducing shared internal resistance.  
CC  
REF  
CC  
DAC full-scale error (FSE) is positive, the output for the  
highest codes limits at V as shown in Figure 5c. No  
CC  
full-scale limiting can occur if V is less than V – FSE.  
REF  
CC  
The GND pin functions both as the node to which the  
reference and output voltages are referred and as a return  
path for power currents in the device. Because of this,  
careful thought should be given to the grounding scheme  
and board layout in order to ensure rated performance.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
26061626fc  
16  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
operaTion  
26061626fc  
17  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2606#packaging for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ±0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
26061626fc  
18  
For more information www.linear.com/LTC2606  
LTC2606/LTC2616/LTC2626  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
11/09 Insert Text in Serial Digital Interface Section  
6/17 Corrected Order Information for LTC2616-1  
DESCRIPTION  
PAGE NUMBER  
B
13  
2
C
26061626fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2606/LTC2616/LTC2626  
Typical applicaTion  
Demo Circuit Schematic. Onboard 20-Bit ADC Measures Key Performance Parameters  
5V  
5V  
V
REF  
0.1μF  
1V TO 5V  
0.1μF  
9
6
2
1
V
CC  
10  
4
2
3
5
LDAC  
CA0  
SDA  
SCL  
CA1  
CA2  
V
V
FS  
CC  
REF  
SET  
9
8
7
10  
CA0  
I C BUS  
CA1  
SCK  
SDO  
CS  
100Ω  
7.5k  
100pF  
7
3
SPI BUS  
2
LTC2606  
V
LTC2421  
V
OUT  
IN  
F
O
1
ZS  
GND  
6
GND  
8
CA2  
SET  
5
DAC  
OUTPUT  
2606 TA01  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
OUT  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
CC  
OUT  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610  
LTC2620  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2601/LTC2611  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
DACs in 16-Lead SSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2604/LTC2614  
LTC2624  
Quad 16-/14-/12-Bit V  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
26061626fc  
LT 0617 REV C • PRINTED IN USA  
www.linear.com/LTC2606  
20  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC2626IDD-1

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2626IDD-1#PBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2626IDD-1#TR

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC2626_15

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2627

Dual 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2627CDE

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2627CDE#PBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2627CDE#TRPBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2627CDE-1

16-/14-/12-Bit Dual Rail-to-Rail DACs with I2C Interface
Linear

LTC2627CDE-1#PBF

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2627CDE-1#TR

LTC2627 - 12-Bit Dual Rail-to-Rail with I<sup>2</sup>C Interface; Package: DFN; Pins: 12; Temperature Range: 0&deg;C to 70&deg;C
Linear