LTC2629CGN-1#PBF [Linear]

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C;
LTC2629CGN-1#PBF
型号: LTC2629CGN-1#PBF
厂家: Linear    Linear
描述:

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C

光电二极管 转换器
文件: 总22页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2609/LTC2619/LTC2629  
Quad 16-/14-/12-Bit  
Rail-to-Rail DACs with  
2
I C Interface  
Features  
Description  
TheLTC®2609/LTC2619/LTC2629arequad16-,14-and12-  
bit,2.7Vto5.5Vrail-to-railvoltageoutputDACsina16-lead  
SSOPpackage.Theyhavebuilt-inhighperformanceoutput  
buffers and are guaranteed monotonic.  
n
Smallest Pin-Compatible Quad DACs:  
LTC2609: 16 Bits  
LTC2619: 14 Bits  
LTC2629: 12 Bits  
n
Guaranteed Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply, volt-  
age-output DACs.  
n
Separate Reference Inputs  
n
27 Selectable Addresses  
2
n
400kHz I C Interface  
n
n
n
n
n
n
Wide 2.7V to 5.5V Supply Range  
2
Thepartsusea2-wire, I Ccompatibleserialinterface. The  
Low Power Operation: 250µA per DAC at 3V  
Individual Channel Power Down to 1µA (Max)  
High Rail-to-Rail Output Drive ( 15mA, Min)  
Ultralow Crosstalk Between DACs (5µV)  
LTC2609/LTC2619/LTC2629: Power-On Reset to  
Zero-Scale  
LTC2609/LTC2619/LTC2629 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock  
rate of 400kHz).  
The LTC2609/LTC2619/LTC2629 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than 10mV above zero-scale; after power-up, they stay at  
zero-scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2609-1/LTC2619-1/  
LTC2629-1 to mid-scale. The voltage outputs stay at mid-  
scale until a valid write and update take place.  
n
n
LTC2609-1/LTC2619-1/LTC2629-1: Power-On Reset  
to Mid-Scale  
Tiny 16-Lead Narrow SSOP Package  
applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 5396245. Patent pending.  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Automatic Test Equipment and Instrumentation  
Block Diagram  
2
1
16  
REFLO  
GND  
V
CC  
REFA  
REFD  
15  
3
4
V
V
OUTD  
OUTA  
Differential Nonlinearity  
DAC A  
DAC D  
DAC C  
14  
(LTC2609)  
1.0  
V
V
V
= 5V  
REF  
OUTB  
CC  
V
OUTC  
13  
REFC  
12  
0.8  
0.6  
= 4.096V  
DAC B  
5
6
REFB  
0.4  
0.2  
CONTROL  
LOGIC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32-BIT SHIFT REGISTER  
CA0  
11  
CA1  
10  
CA2  
SCL  
SDA  
8
9
ADDRESS  
DECODE  
LOGIC  
2
I C  
0
16384  
32768  
CODE  
49152  
65535  
INTERFACE  
2609 G02  
7
2609 BD  
26091929fb  
LTC2609/LTC2619/LTC2629  
aBsolute maximum ratings (Note 1)  
Any Pin to GND............................................0.3V to 6V  
TOP VIEW  
Any Pin to V ............................................6V to 0.3V  
CC  
GND  
REFLO  
REFA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
Maximum Junction Temperature........................... 125°C  
Storage Temperature Range.................. –65°C to 125°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
Operating Temperature Range:  
REFD  
V
OUTD  
V
OUTA  
V
OUTC  
V
REFC  
CA0  
CA1  
SDA  
OUTB  
LTC2609C/LTC2619C/LTC2629C  
REFB  
CA2  
LTC2609C-1/LTC2619C-1/LTC2629C-1 .... 0°C to 70°C  
LTC2609I/LTC2619I/LTC2629I  
SCL  
LTC2609I-1/LTC2619I-1/LTC2629I-1....–40°C to 85°C  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
T
= 135°C, θ = 150°C/W  
JA  
JMAX  
orDer inFormation  
LEAD FREE FINISH  
LTC2609CGN#PBF  
LTC2609CGN-1#PBF  
LTC2609IGN#PBF  
LTC2609IGN-1#PBF  
LTC2619CGN#PBF  
LTC2619CGN-1#PBF  
LTC2619IGN#PBF  
LTC2619IGN-1#PBF  
LTC2629CGN#PBF  
LTC2629CGN-1#PBF  
LTC2629IGN#PBF  
LTC2629IGN-1#PBF  
TAPE AND REEL  
PART MARKING*  
2609  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
TEMPERATURE RANGE  
LTC2609CGN#TRPBF  
LTC2609CGN-1#TRPBF  
LTC2609IGN#TRPBF  
LTC2609IGN-1#TRPBF  
LTC2619CGN#TRPBF  
LTC2619CGN-1#TRPBF  
LTC2619IGN#TRPBF  
LTC2619IGN-1#TRPBF  
LTC2629CGN#TRPBF  
LTC2629CGN-1#TRPBF  
LTC2629IGN#TRPBF  
LTC2629IGN-1#TRPBF  
0°C to 70°C  
26091  
2609I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2619I1  
2619  
26191  
2619I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2619I1  
2629  
26291  
2629I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
2629I1  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
26091929fb  
LTC2609/LTC2619/LTC2629  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB =  
REFC = REFD = 2.048V (VCC = 2.7V). REFLO = 0V, VOUT = unloaded, unless otherwise noted.  
LTC2629/LTC2629-1 LTC2619/LTC2619-1 LTC2609/LTC2609-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
Integral Nonlinearity  
Load Regulation  
0.5  
4
1
16  
1
64  
1
4
16  
V
= V = 5V, Mid-Scale  
OUT  
OUT  
REF  
I
I
CC  
l
l
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.02 0.125  
0.1  
0.1  
0.5  
0.5  
0.3  
0.4  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Mid-Scale  
OUT  
OUT  
REF  
I
I
CC  
l
l
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.05 0.25  
0.2  
0.2  
1
1
0.7  
0.8  
4
4
LSB/mA  
LSB/mA  
l
l
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 4)  
1.5  
1
9
9
1.5  
1
9
9
1.5  
1
9
9
mV  
mV  
V
OS  
V
OS  
Temperature  
6
6
6
µV/°C  
Coefficient  
Gain Error  
Gain Temperature  
Coefficient  
l
GE  
0.1  
3
0.7  
0.1  
3
0.7  
0.1  
3
0.7  
%FSR  
ppm/°C  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB = REFC = REFD = 2.048V (VCC = 2.7V). REFLO = 0V, VOUT = unloaded,  
unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
10%  
–80  
dB  
l
l
R
OUT  
DC Output Impedance  
V
REF  
V
REF  
= V = 5V, Mid-Scale; –15mA ≤ I ≤ 15mA  
OUT  
0.030  
0.035  
0.15  
0.15  
Ω
Ω
CC  
= V = 2.7V, Mid-Scale; –7.5mA ≤ I  
≤ 7.5mA  
CC  
OUT  
DC Crosstalk (Note 10)  
Due to Full-Scale Output Change (Note 11)  
Due to Load Current Change  
Due to Powering Down (Per Channel)  
5
4
4
µV  
µV/mA  
µV  
ISC  
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
l
l
Code: Zero-Scale; Forcing Output to V  
15  
15  
36  
36  
60  
60  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
V
CC  
= 2.7V, V = 2.7V  
REF  
l
l
Code: Zero-Scale; Forcing Output to V  
7.5  
7.5  
22  
30  
50  
50  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
l
l
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
125  
14  
160  
Capacitance  
l
l
I
Reference Current, Power Down Mode DAC Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
1.25  
1
0.35  
0.15  
2
1.6  
1
mA  
mA  
µA  
CC  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
1
µA  
26091929fb  
LTC2609/LTC2619/LTC2629  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB =  
REFC = REFD = 2.048V (VCC = 2.7V). REFLO = 0V, VOUT = unloaded, unless otherwise noted. (Note 9)  
Digital I/O (Note 9)  
l
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
0.3V  
V
V
IL  
CC  
l
l
l
l
l
l
High Level Input Voltage  
(SDA and SCL)  
0.7V  
CC  
IH  
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
IL(CAn)  
IH(CAn)  
CC  
High Level Input Voltage on CAn  
(n = 0, 1, 2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1, 2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1, 2)  
2
0
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 7)  
l
Pulse Width of Spikes Suppressed by  
Input Filter  
0
50  
ns  
SP  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
µA  
pF  
pF  
pF  
IN  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 12)  
10  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
CAX  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
REFA = REFB = REFC = REFD = 4.096V (VCC = 5V), REFA = REFB = REFC = REFD = 2.048V (VCC = 2.7V). REFLO = 0V, VOUT = unloaded,  
unless otherwise noted.  
LTC2629/LTC2629-1 LTC2619/LTC2619-1 LTC2609/LTC2609-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
t
Settling Time (Note 5)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 6)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
Multiplying Bandwidth  
Output Voltage Noise Density  
0.7  
1000  
12  
180  
120  
100  
0.7  
1000  
12  
180  
120  
100  
0.7  
1000  
12  
180  
120  
100  
V/µs  
pF  
nV • s  
kHz  
nV/√Hz  
nV/√Hz  
At Mid-Scale Transition  
e
At f = 1kHz  
At f = 10kHz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
26091929fb  
LTC2609/LTC2619/LTC2629  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 8, 9)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 2.7V to 5.5V  
CC  
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 7)  
(Note 7)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
B
f
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte to  
LDAC High or Low Transition  
400  
1
l
t
LDAC Low Pulse Width  
20  
ns  
2
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: V = 5V, V = 4.096V. DAC is stepped 1LSB between half scale  
CC REF  
and half scale – 1. Load is 2k in parallel with 200pF to GND.  
Note 7: C = capacitance of one bus line in pF.  
B
Note 8: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 9: These specifications apply to LTC2609/LTC2609-1,  
LTC2619/LTC2619-1, LTC2629/LTC2629-1.  
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
REF  
L
Note 10: DC crosstalk is measured with V = 5V, REFA = REFB = REFC  
CC  
256 and linearity is defined from code 256 to code 65,535.  
= REFD = 4.096V, with the measured DAC at mid-scale, unless otherwise  
noted.  
Note 3: SDA, SCL at 0V or V , CA0, CA1 and CA2 floating.  
CC  
Note 4: Inferred from measurement at code kL (see Note 2) and at full-Scale.  
Note 5: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale and  
Note 11: R = 2kΩ to GND or V  
.
CC  
L
CC  
REF  
Note 12: Guaranteed by design and not production tested.  
3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
26091929fb  
LTC2609/LTC2619/LTC2629  
typical perFormance characteristics  
LTC2609  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
32  
24  
1.0  
0.8  
32  
24  
V
V
= 5V  
REF  
V
= 5V  
CC  
= 4.096V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
V
= 4.096V  
0.6  
16  
16  
0.4  
8
INL (POS)  
INL (NEG)  
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2609 G01  
2609 G02  
2609 G03  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
CC  
= 5.5V  
V
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
0.2  
DNL (POS)  
DNL (NEG)  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
2609 G04  
2609 G05  
2609 G06  
Settling to 1LSB  
Settling of Full-Scale Step  
V
V
OUT  
100µV/DIV  
OUT  
100µV/DIV  
12.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
9TH CLOCK OF  
3RD DATA ꢀYTE  
SCL  
2V/DIV  
SCR  
2V/DIV  
2609 G07  
2609 G08  
2µs/DIV  
5µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
SETTLING TO 1LSꢀ  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
V
= 5V, V  
= 4.096V  
CC  
REF  
R
= 2k, C = 200pF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
L
L
AVERAGE OF 2048 EVENTS  
26091929fb  
LTC2609/LTC2619/LTC2629  
typical perFormance characteristics  
LTC2619  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100µV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2609 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
R
= 2k, C = 200pF  
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
L
L
AVERAGE OF 2048 EVENTS  
2609 G09  
2609 G10  
LTC2629  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2609 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4 SCALE TO 3/4 SCALE STEP  
= 2k, C = 200pF  
R
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
2609 G12  
2609 G13  
26091929fb  
LTC2609/LTC2619/LTC2629  
typical perFormance characteristics  
LTC2609/LTC2619/LTC2629  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
3
2
CODE = MID-SCALE  
CODE = MID-SCALE  
V
= V = 5V  
CC  
REF  
0.6  
V
= V = 3V  
CC  
REF  
0.4  
1
0.2  
0
0
V
= V = 5V  
CC  
REF  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
= V = 5V  
CC  
V
= V = 3V  
REF CC  
REF  
–40 –30 –20 –10  
0
10 20 30 40  
–35 –25 –15 –5  
5
15  
25  
35  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2609 G15  
2609 G16  
2609 G17  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
2609 G18  
2609 G19  
2609 G20  
Gain Error vs VCC  
ICC Shutdown vs VCC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2609 G22  
2609 G21  
26091929fb  
LTC2609/LTC2619/LTC2629  
typical perFormance characteristics  
LTC2609/LTC2619/LTC2629  
Large-Signal Response  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
V
OUT  
V
CC  
10mV/DIV  
V
1V/DIV  
OUT  
0.5V/DIV  
4mV PEAK  
SCL  
2V/DIV  
V
= V = 5V  
CC  
V
REF  
OUT  
1/4 SCALE TO 3/4 SCALE  
10mV/DIV  
2609 G24  
2609 G23  
2609 G25  
2.5µs/DIV  
250µs/DIV  
2.5µs/DIV  
Headroom at Rails  
vs Output Current  
Power-On Reset to Mid-Scale  
Supply Current vs Logic Voltage  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
V
= V  
CC  
CC  
REF  
5V SOURCING  
SWEEP SCL  
AND SDA  
0V TO V  
AND V TO 0V  
CC  
CC  
3V SOURCING  
1V/DIV  
V
CC  
5V SINKING  
V
OUT  
3V SINKING  
2606 G27  
0
1
2
3
4
I
5
(mA)  
6
7
8
9
10  
500µs/DIV  
0
0.5  
1
1.5  
2
2.5  
5
3
3.5 4 4.5  
LOGIC VOLTAGE (V)  
OUT  
2609 G26  
2609 G28  
26091929fb  
LTC2609/LTC2619/LTC2629  
typical perFormance characteristics  
LTC2609/LTC2619/LTC2629  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
V
OUT  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
10µV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
SECONDS  
CODE = FULL SCALE  
2609 G30  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2609 G29  
Short-Circuit Output Current  
vs VOUT (Sinking)  
Short-Circuit Output Current  
vs VOUT (Sourcing)  
50  
40  
30  
20  
0
V = 5.5V  
CC  
V = 5.6V  
REF  
V = 5.5V  
CC  
V = 5.6V  
REF  
CODE = 0  
SWEPT 0V TO V  
CODE = FULL-SCALE  
SWEPT V TO 0V  
–10  
–20  
–30  
V
V
OUT  
CC  
OUT  
CC  
10  
0
–40  
–50  
0
2
3
4
5
6
1
0
2
3
4
5
6
1
1V/DIV  
1V/DIV  
2609 G31  
2609 G32  
26091929fb  
ꢀ0  
LTC2609/LTC2619/LTC2629  
pin Functions  
GND (Pin 1): Analog Ground.  
SDA (Pin 9): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance pin while data is shifted in and is an  
open-drainN-channeloutputduringacknowledgment.SDA  
REFLO (Pin 2): Reference Low. The voltage at this pin  
sets the zero-scale (ZS) voltage of all DACs. This pin can  
be raised up to 1V above ground at V = 5V or 100mV  
CC  
requires a pull-up resistor or current source to V .  
CC  
above ground at V = 3V.  
CC  
CA1 (Pin 10): Chip Address Bit 1. Tie this pin to V , GND  
CC  
REFA to REFD (Pins 3, 6, 12, 15): Reference Voltage  
2
or leave it floating to select an I C slave address for the  
Inputs for each DAC. REFx sets the full-scale voltage of  
part (Table 1).  
the DACs. REFLO ≤ REFx ≤ V .  
CC  
CA0 (Pin 11): Chip Address Bit 0. Tie this pin to V , GND  
CC  
V
to V  
(Pins 4, 5, 13, 14): DAC Analog Voltage  
OUTA  
OUTD  
2
or leave it floating to select an I C slave address for the  
Outputs. The output range is from REFLO to REFx.  
part (Table 1).  
CA2 (Pin 7): Chip Address Bit 2. Tie this pin to V , GND  
CC  
V
(Pin 16): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
2
CC  
CC  
or leave it floating to select an I C slave address for the  
part (Table 1).  
SCL (Pin 8): Serial Clock Input Pin. Data is shifted into  
the SDA pin at the rising edges of the clock. This high  
impedance pin requires a pull-up resistor or current  
source to V .  
CC  
26091929fb  
ꢀꢀ  
LTC2609/LTC2619/LTC2629  
Block Diagram  
2
1
16  
REFLO  
GND  
V
CC  
REFA  
REFD  
15  
3
4
V
V
OUTD  
OUTA  
DAC A  
DAC B  
DAC D  
DAC C  
14  
V
OUTB  
V
OUTC  
5
6
13  
REFC  
12  
REFB  
CONTROL  
LOGIC  
32-BIT SHIFT REGISTER  
CA0  
11  
CA1  
10  
CA2  
SCL  
SDA  
8
9
ADDRESS  
DECODE  
LOGIC  
2
I C  
INTERFACE  
7
2609 BD  
26091929fb  
ꢀꢁ  
LTC2609/LTC2619/LTC2629  
test circuits  
Test Circuit 1  
Test Circuit 2  
V
DD  
R /R /R  
INH INL INF  
100Ω  
/V  
CAn  
CAn  
V
IH(CAn) IL(CAn)  
GND  
2609 TC  
timing Diagram  
SDA  
t
f
t
SU(DAT)  
t
t
t
r
t
t
t
t
BUF  
f
LOW  
HD(STA)  
SP  
r
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
S
S
P
S
HD(DAT)  
2609 F01  
ALL VOLTAGE LEVELS REFER TO V  
AND V  
LEVELS  
IH(MIN)  
IL(MAX)  
Figure 1  
26091929fb  
ꢀꢂ  
LTC2609/LTC2619/LTC2629  
operation  
Power-On Reset  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and REFx is the voltage at REFA,  
REFB, REFC and REFD (Pins 3, 6, 12 and 15).  
The LTC2609/LTC2619/LTC2629 clear the outputs to  
zero-scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2609-1/  
LTC2619-1/LTC2629-1setthevoltageoutputstomid-scale  
when power is first applied.  
Serial Digital Interface  
The LTC2609/LTC2619/LTC2629 communicate with a host  
2
usingthestandard2-wireI Cinterface.TheTimingDiagram  
Forsomeapplications,downstreamcircuitsareactivedur-  
ingDACpower-upandmaybesensitivetononzerooutputs  
from the DAC during this time. The LTC2609/LTC2619/  
LTC2629 contain circuitry to reduce the power-on glitch;  
furthermore, the glitch amplitude can be made arbitrarily  
small by reducing the ramp rate of the power supply. For  
example, if the power supply is ramped to 5V in 1ms, the  
analog outputs rise less than 10mV above ground (typ)  
duringpower-on. SeePower-OnResetGlitchintheTypical  
Performance Characteristics section.  
(Figure 1) shows the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines. The value of  
thesepull-upresistorsisdependentonthepowersupplyand  
2
2
can be obtained from the I C specifications. For an I C bus  
operatinginthefastmode,anactivepull-upwillbenecessary  
if the bus capacitance is greater than 200pF. The V power  
CC  
shouldnotberemovedfromtheLTC2609/LTC2619/LTC2629  
2
2
when the I C bus is active to avoid loading the I C bus lines  
through the internal ESD protection diodes.  
Power Supply Sequencing  
The LTC2609/LTC2619/LTC2629 are receive-only (slave)  
devices. The master can write to the LTC2609/LTC2619/  
LTC2629.TheLTC2609/LTC2619/LTC2629donotrespond  
to a read from the master.  
The voltage at REFx (Pins 3, 6, 12 and 15) should be kept  
within the range –0.3V ≤ REFx ≤ V + 0.3V (see Absolute  
CC  
Maximum Ratings). Particular care should be taken to  
observe these limits during power supply turn-on and  
turn-off sequences, when the voltage at V (Pin 16) is  
CC  
The START (S) and STOP (P) Conditions  
in transition. The REFx pins can be clamped to stay below  
the maximum voltage by using Schottky diodes as shown  
in Figure 2, thereby easing sequencing constraints.  
Whenthebusisnotinuse,bothSCLandSDAmustbehigh.  
A bus master signals the beginning of a communication  
to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
V
CC  
16  
V
CC  
LTC2609/  
LTC2619/  
LTC2629  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
3
REFA  
REFB  
REFC  
REFD  
REFA  
REFB  
REFC  
REFD  
6
12  
15  
2609 F02  
2
another I C device.  
Figure 2. Use of Schottky Diodes for Power Supply Sequencing  
Acknowledge  
Transfer Function  
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the  
latest byte of information was received. The Acknowledge  
related clock pulse is generated by the master. The master  
releasestheSDAline(HIGH)duringtheAcknowledgeclock  
The digital-to-analog transfer function is:  
k
N   
VOUT(IDEAL)  
=
[REFx – REFLO] + REFLO  
2
pulse. The slave-receiver must pull down the SDA bus line  
26091929fb  
ꢀꢃ  
LTC2609/LTC2619/LTC2629  
operation  
during the Acknowledge clock pulse so that it remains a  
stable LOW during the HIGH period of this clock pulse.  
The LTC2609/LTC2619/LTC2629 respond to a write by a  
master in this manner. The LTC2609/LTC2619/LTC2629  
do not acknowledge a read (retains SDA HIGH during the  
period of the Acknowledge clock pulse).  
In addition to the address selected by the address pins,  
the parts also respond to a global address. This address  
allows a common write to all LTC2609, LTC2619 and  
LTC2629 parts to be accomplished with one 3-byte write  
2
transaction on the I C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
Chip Address  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximumcapacitiveloadallowedontheaddresspins(CA0,  
CA1 and CA2) is 10pF, as these pins are driven during  
address detection to determine if they are floating.  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set  
to any one of three states: V , GND or float. This results  
CC  
in 27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
Write Word Protocol  
Table 1. Slave Address Map  
CA2  
GND  
CA1  
GND  
CA0  
GND  
SA6 SA5 SA4 SA3 SA2 SA1 SA0  
The master initiates communication with the LTC2609/  
LTC2619/LTC2629withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2609/  
LTC2619/LTC2629 acknowledges by pulling the SDA pin  
low at the 9th clock if the 7-bit slave address matches the  
address of the parts (set by CA0, CA1 and CA2) or the  
global address. The master then transmits three bytes of  
data.TheLTC2609/LTC2619/LTC2629acknowledgeseach  
byte of data by pulling the SDA line low at the 9th clock of  
eachdatabytetransmission.Afterreceivingthreecomplete  
bytesofdata,theLTC2609/LTC2619/LTC2629executesthe  
command specified in the 24-bit input word.  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
GND  
GND  
V
CC  
GND  
FLOAT  
GND  
GND  
FLOAT FLOAT  
FLOAT  
GND  
V
CC  
GND  
V
V
V
GND  
CC  
CC  
CC  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
GND  
FLOAT  
V
CC  
If more than three data bytes are transmitted after a valid  
7-bitslaveaddress,theLTC2609/LTC2619/LTC2629donot  
acknowledge the extra bytes of data (SDA is high during  
the 9th clock).  
FLOAT FLOAT  
GND  
FLOAT FLOAT FLOAT  
FLOAT FLOAT  
V
CC  
FLOAT  
FLOAT  
FLOAT  
V
CC  
V
CC  
V
CC  
GND  
The format of the three data bytes is shown in Figure 3.  
The first byte of the input word consists of the 4-bit com-  
mand and 4-bit DAC address. The next two bytes consist  
of the 16-bit data word. The 16-bit data word consists of  
the 16-, 14- or 12-bit input code, MSB to LSB, followed by  
0, 2 or 4 don’t care bits (LTC2609, LTC2619 and LTC2629  
respectively).AtypicalLTC2609writetransactionisshown  
in Figure 4.  
FLOAT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
GND  
FLOAT FLOAT  
FLOAT  
V
CC  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 2. The first four commands in the table  
consist of write and update operations. A write operation  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
GLOBAL ADDRESS  
26091929fb  
ꢀꢄ  
LTC2609/LTC2619/LTC2629  
operation  
Write Word Protocol for LTC2609/LTC2619/LTC1629  
W
A
1STDATABYTE  
A
2NDDATABYTE  
A
3RDDATABYTE  
A
P
S
SLAVEADDRESS  
INPUT WORD  
Input Word (LTC2609)  
C3  
C1  
A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
C2  
C0  
1ST DATA BYTE 2ND DATA BYTE 3RD DATA BYTE  
Input Word (LTC2619)  
C3  
C1  
A3 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2629)  
C3  
C1  
D11 D10 D9 D8 D7 D6 D5 D4  
2ND DATA BYTE  
D2 D1 D0  
D3  
X
X
X
C2  
C0 A3 A2 A1 A0  
2609 F03  
1ST DATA BYTE  
3RD DATA BYTE  
Figure 3  
Power-Down Mode  
Table 2  
COMMAND*  
C3 C2 C1 C0  
Forpower-constrainedapplications,power-downmodecan  
be used to reduce the supply current whenever less than  
four outputs are needed. When in power-down, the buffer  
amplifiers, bias circuits and reference inputs are disabled,  
and draw essentially zero current. The DAC outputs are  
put into a high impedance state, and the output pins are  
passively pulled to REFLO through individual 90k resis-  
tors. Input- and DAC-register contents are not disturbed  
during power down.  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
ADDRESS (n)*  
A3 A2 A1 A0  
Any channel or combination of channels can be put into  
power-down mode by using command 0100b in combi-  
nation with the appropriate DAC address, (n). The 16-bit  
data word is ignored. The supply current is reduced by  
approximately1/4foreachDACpowereddown. Theeffec-  
tive resistance at REFx (Pins 3, 6, 12 and 15) are at high  
impedance(typically>1)whenthecorrespondingDACs  
are powered down. Normal operation can be resumed by  
executing any command which includes a DAC update,  
as shown in Table 2.  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
All DACs  
*Command and address codes not shown are reserved and should not be used.  
loads a 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
The selected DAC is powered up as its voltage output is  
updated. When a DAC which is in a powered-down state  
is powered up and updated, normal settling is delayed. If  
less than four DACs are in a powered-down state prior to  
theupdatecommand, thepower-updelaytimeis5µs. Ifon  
the other hand, all four DACs are powered down, then the  
26091929fb  
ꢀꢅ  
LTC2609/LTC2619/LTC2629  
operation  
main bias generation circuit block has been automatically  
shut down in addition to the individual DAC amplifiers and  
reference inputs. In this case, the power-up delay time is  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the use  
of separate digital and analog ground planes which have  
minimal capacitive and resistive interaction with each  
other.  
12µs (for V = 5V) or 30µs (for V = 3V).  
CC  
CC  
Voltage Output  
The rail-to-rail amplifier has guaranteed load regulation  
when sourcing or sinking up to 15mA at 5V (7.5mA at  
2.7V).  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shielditfromnoise.Analoggroundshouldbeacontinuous  
and uninterrupted plane, except for necessary lead pads  
and vias, with signal traces on another layer.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
permilliampereofforcedloadcurrentchangeisexpressed  
in LSB/mA.  
The GND pin functions as a return path for power supply  
currents in the device and should be connected to analog  
ground.ResistancefromtheGNDpintosystemstarground  
should be as low as possible. When a zero-scale DAC  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifier’s DC output  
impedance is 0.035Ω when driving a load well away from  
the rails.  
voltage of zero is desired, REFLO (Pin 2) should  
output  
be connected to system star ground.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30Ω typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30Ω • 1mA = 30mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteristics  
section.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
Since the analog output of the device cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure4b.Similarly,limitingcanoccurnearfull-scalewhen  
The amplifier is stable driving capacitive loads of up to  
1000pF.  
the REF pins are tied to V . If REFx = V and the DAC  
CC  
CC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at V as shown in Figure 4c. No full-scale  
CC  
Board Layout  
limiting can occur if REFx is less than V – FSE.  
CC  
TheexcellentloadregulationandDCcrosstalkperformance  
of these devices is achieved in part by keeping “signal”  
and “power” grounds separate.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
26091929fb  
ꢀꢆ  
LTC2609/LTC2619/LTC2629  
operation  
26091929fb  
ꢀꢇ  
LTC2609/LTC2619/LTC2629  
operation  
26091929fb  
ꢀꢈ  
LTC2609/LTC2619/LTC2629  
typical application  
Demo Board Schematic—Onboard 20-Bit ADC Measures Key Performance Parameters  
V
REF  
REFA  
JP3  
REFB  
JP4  
REFC  
JP5  
REFD  
JP6  
ADC REF  
JP7  
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
1
3
5
A
B
2
4
6
C1  
0.1µF  
V
C
C
C
C
C
CC  
V
CC  
5V  
REF  
16  
4.096V  
2.048V  
REF  
REF  
V
CC  
LTC2609CGN  
11  
10  
7
4
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
CA0  
CA1  
CA2  
V
V
OUTA  
OUTA  
3
REFA  
REFA  
5
V
V
OUTB  
OUTB  
6
REFB  
REFB  
13  
12  
14  
15  
V
V
OUTC  
OUTC  
REFC  
REFC  
9
8
SDA  
SCL  
V
V
OUTD  
OUTD  
2
I C  
REFD  
REFD  
E10  
E11  
REFLO GND  
V
V
GND  
GND  
REF  
CC  
C5  
0.1µF  
2
1
C4  
0.1µF  
JP1 REFLO  
C3  
100pF  
R5  
7.5k  
EXT  
EXT REFLO  
REFLO  
R8  
22Ω  
3
JP2  
ON/OFF  
GND  
V
CC  
7
4
2
8
DISABLE  
ADC  
MUXOUT ADCIN FSSET  
V
V
LTC2428CG  
CH0  
CC CC  
V
V
V
5V  
REF  
IN  
IN  
IN  
9
LT1790ACS6-5  
6
5
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
4
3
R6  
23  
V
V
OUT  
IN  
C7  
C6  
CSADC  
7.5k  
20  
25  
19  
21  
24  
CS  
1µF  
0.1µF  
NC  
NC  
CSMUX  
SCK  
CLK  
DIN  
SD0  
F0  
6.3V  
8-CHANNEL  
MUX  
20-BIT  
ADC  
+
GND GND  
SCK  
MOSI  
MISO  
SPI  
BUS  
1
2
26  
4.096V  
5
ZSSET  
REF  
LT1790ACS6-4.096  
R7  
7.5k  
6
4
GND GND GND GND GND GND GND  
16 18 22 27 28  
V
V
OUT  
IN  
C9  
1µF  
6.3V  
C8  
0.1µF  
1
6
3
5
2609 TA02  
NC  
NC  
GND GND  
1
2
2.048V  
REF  
LT1790ACS6-2.048  
6
4
V
V
OUT  
IN  
C11  
1µF  
6.3V  
C10  
0.1µF  
3
5
NC  
NC  
GND GND  
1
2
26091929fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁ0  
LTC2609/LTC2619/LTC2629  
revision history  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/09 Update Manufacturer’s Information on Typical Application  
Revise Receiver Input Hysteresis Conditions  
Revise Block Diagram  
1
3
7
Revise Figure 1.  
8
Update Manufacturer’s Information on Figure 10  
Update Tables 1 and 3  
10  
12  
B
3/10  
Revised C- and I-Grade Temperature Ranges in Order Information Section  
2
26091929fb  
ꢁꢀ  
LTC2609/LTC2619/LTC2629  
package Description  
GN Package  
16-Lead Plastic SSOP  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 p.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 p .004  
(0.38 p 0.10)  
s 45o  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0o – 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.096V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
OUT  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610  
LTC2620  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2601/LTC2611  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2604/LTC2614  
LTC2624  
Quad 16-/14-/12-Bit V  
Octal 16-/14-/12-Bit V  
DACs in 16-Lead SSOP  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
OUT  
2
LTC2605/LTC2615  
LTC2625  
DACs with I C Interface in 16-Lead SSOP 250µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
Output  
2
LTC2606/LTC2616  
LTC2626  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN with I C Interface 270µA per DAC, 2.7V to 5.5V Supply Range, Rail-to-Rail  
Output  
OUT  
26091929fb  
LT 0310 REV B • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢁ  
LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2629CGN-1#TRPBF

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2629CGN-1PBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGN-1TRPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGNPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629CGNTRPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629IGN

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629IGN#TR

暂无描述
Linear

LTC2629IGN-1

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629IGN-1#PBF

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2629IGN-1#TRPBF

LTC2629 - Quad 16-/14-/12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2629IGN-1PBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2629IGN-1TRPBF

Quad 16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear