LTC2630AHSC6-HM10#TRPBF [Linear]

IC SERIAL INPUT LOADING, 4.4 us SETTLING TIME, 10-BIT DAC, PDSO6, LEAD FREE, PLASTIC, EIAJ, MO-203AB, SC-70, 6 PIN, Digital to Analog Converter;
LTC2630AHSC6-HM10#TRPBF
型号: LTC2630AHSC6-HM10#TRPBF
厂家: Linear    Linear
描述:

IC SERIAL INPUT LOADING, 4.4 us SETTLING TIME, 10-BIT DAC, PDSO6, LEAD FREE, PLASTIC, EIAJ, MO-203AB, SC-70, 6 PIN, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总22页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2630  
Single 12-/10-/8-Bit  
Rail-to- Rail DACs with 10ppm/°C  
Reference in SC70  
Features  
Description  
The LTC®2630 is a family of 12-, 10-, and 8-bit voltage-  
output DACs with an integrated, high-accuracy, low-drift  
reference in a 6-lead SC70 package. It has a rail-to-rail  
output buffer and is guaranteed monotonic.  
n
Integrated Precision Reference  
2.5V Full Scale 10ppm/°C (LTC2630-L)  
4.096V Full Scale 10ppm/°C (LTC2630-H)  
n
Maximum INL Error: 1 LSB (LTC2630A-12)  
n
Low Noise: 0.7mV , 0.1Hz to 200kHz  
P-P  
The LTC2630-L has a full-scale output of 2.5V, and  
operates from a single 2.7V to 5.5V supply. The  
LTC2630-Hhasafull-scaleoutputof4.096V,andoperates  
from a 4.5V to 5.5V supply. Each DAC can also operate in  
supply asreferencemode, which sets the full-scale output  
to the supply voltage.  
n
n
n
n
n
n
n
n
n
Guaranteed Monotonic over Temperature  
Selectable Internal Reference or Supply as Reference  
2.7V to 5.5V Supply Range (LTC2630-L)  
Low Power Operation: 180µA at 3V  
Power Down to 1.8µA Maximum (C and I Grades)  
Power-on Reset to Zero or Mid-Scale Options  
SPI Serial Interface  
The parts use a simple SPI/MICROWIRE™ compatible  
3-wire serial interface which operates at clock rates up  
to 50MHz.  
Double-Buffered Data Latches  
Tiny 6-Lead SC70 Package  
The LTC2630 incorporates a power-on reset circuit. Op-  
tions are available for reset to zero or reset to mid-scale  
after power-up.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5396245, 5859606, 6891433, 6937178 and 7414561.  
applications  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Automatic Test Equipment  
Portable Equipment  
n
n
Automotive  
Block Diagram  
Integral Nonlinearity (LTC2630A-LZ12)  
V
CC  
INTERNAL  
REFERENCE  
1.0  
V
CC  
V
FS  
= 3V  
= 2.5V  
SDI  
0.5  
0
CONTROL  
DECODE LOGIC  
RESISTOR  
DIVIDER  
24-BIT  
SCK  
SHIFT  
REGISTER  
DACREF  
DAC  
–0.5  
–1.0  
CS/LD  
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
2048  
3072  
0
4095  
1024  
CODE  
GND  
2630 TA03  
2630 BD  
2630ff  
1
LTC2630  
aBsolute maximum ratings  
pin conFiguration  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V ) ...................................0.3V to 6V  
CC  
CS/LD 1  
SCK 2  
SDI 3  
6 V  
OUT  
CS/LD, SCK, SDI ..........................................0.3V to 6V  
5 GND  
V
OUT  
..................................0.3V to min(V + 0.3V, 6V)  
CC  
4 V  
CC  
Operating Temperature Range  
LTC2630C................................................ 0°C to 70°C  
LTC2630I.............................................40°C to 85°C  
LTC2630H (Note 3)............................40°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
SC6 PACKAGE  
6-LEAD PLASTIC SC70  
T
= 150°C (Note 6), θ = 300°C/W  
JA  
JMAX  
orDer inFormation  
LTC2630  
A
C
SC6 –L  
M
12  
#TRM PBF  
LEAD FREE DESIGNATOR  
TAPE AND REEL  
TR = 2,500-Piece Tape and Reel  
TRM = 500-Piece Tape and Reel  
RESOLUTION  
12 = 12-Bit  
10 = 10-Bit  
8 = 8-Bit  
POWER-ON RESET  
M = Reset to Mid-Scale  
Z = Reset to Zero-Scale  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
SC6 = 6-Lead SC70  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
ELECTRICAL GRADE (OPTIONAL)  
A = 1 LSB Maximum INL (12-Bit)  
PRODUCT PART NUMBER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2630ff  
2
LTC2630  
proDuct selection guiDe  
PART NUMBER  
LTC2630A-LM12  
LTC2630A-LZ12  
LTC2630A-HM12  
LTC2630A-HZ12  
LTC2630-LM12  
LTC2630-LM10  
LTC2630-LM8  
LTC2630-LZ12  
LTC2630-LZ10  
LTC2630-LZ8  
PART MARKING*  
LCZB  
V
WITH INTERNAL REFERENCE POWER-ON RESET TO CODE RESOLUTION  
V
MAXIMUM INL  
1LSB  
FS  
CC  
2.5V • (4095/4096)  
2.5V • (4095/4096)  
4.096V • (4095/4096)  
4.096V • (4095/4096)  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Zero  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
10-Bit  
8-Bit  
2.7V–5.5V  
2.7V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
2.7V–5.5V  
2.7V–5.5V  
2.7V–5.5V  
2.7V–5.5V  
2.7V–5.5V  
2.7V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
LCSB  
1LSB  
LCWR  
LCZC  
Mid-Scale  
Zero  
1LSB  
1LSB  
LCZB  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero  
2LSB  
LCZF  
1LSB  
LCYW  
LCSB  
0.5LSB  
2LSB  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
12-Bit  
10-Bit  
8-Bit  
LCZD  
Zero  
1LSB  
LCYV  
Zero  
0.5LSB  
2LSB  
LTC2630-HM12  
LTC2630-HM10  
LTC2630-HM8  
LTC2630-HZ12  
LTC2630-HZ10  
LTC2630-HZ8  
LCWR  
LCZH  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero  
12-Bit  
10-Bit  
8-Bit  
1LSB  
LCYY  
0.5LSB  
2LSB  
LCZC  
12-Bit  
10-Bit  
8-Bit  
LCZG  
Zero  
1LSB  
LCYX  
Zero  
0.5LSB  
*The temperature grade is identified by a label on the shipping container.  
2630ff  
3
LTC2630  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2630-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2630A-LM12/-LZ12 (VFS = 2.5V)  
LTC2630-8  
LTC2630-10  
LTC2630-12  
LTC2630A-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
Monotonicity  
VCC = 3V, Internal Ref. (Note 4)  
DNL  
INL  
Differential Nonlinearity VCC = 3V, Internal Ref. (Note 4)  
0.5  
0.5  
1
1
2
1
1
LSB  
LSB  
mV  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
VCC = 3V, Internal Ref. (Note 4)  
VCC = 3V, Internal Ref., Code = 0  
VCC = 3V, Internal Ref. (Note 5)  
VCC = 3V, Internal Ref. (Note 5)  
0.05 0.5  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
0.5  
0.5  
0.5  
10  
ZSE  
VOS  
0.5  
0.5  
10  
5
5
5
5
5
5
5
5
mV  
VOSTC VOS Temperature  
Coefficient  
µV/°C  
l
FSE  
Full Scale Error  
VCC = 3V, Internal Ref.  
0.2 0.8  
0.2 0.8  
0.2 0.8  
0.2 0.8  
%FSR  
VFSTC  
Full Scale Voltage  
Temperature  
Coefficient  
VCC = 3V, Internal Ref. (Note 10)  
C-Grade  
I-Grade  
H-Grade  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
Load Regulation  
Internal Ref., Mid-Scale,  
l
l
V
CC = 3V 10%, –5mA ≤ IOUT ≤ 5mA  
0.008 0.016  
0.008 0.016  
0.03 0.064  
0.03 0.064  
0.13 0.256  
0.13 0.256  
0.13 0.256 LSB/mA  
0.13 0.256 LSB/mA  
V
CC = 5V 10%, –10mA ≤ IOUT ≤ 10mA  
DC Output Impedance Internal Ref., Mid-Scale,  
CC = 3V 10%, –5mA ≤ IOUT ≤ 5mA  
CC = 5V 10%, –10mA ≤ IOUT ≤ 10mA  
ROUT  
l
l
V
V
0.08 0.156  
0.08 0.156  
0.08 0.156  
0.08 0.156  
0.08 0.156  
0.08 0.156  
0.08 0.156  
0.08 0.156  
Ω
Ω
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOUT  
DAC Output Span  
Supply as Reference  
Internal Reference  
0V to VCC  
0V to 2.5  
V
V
PSR  
ISC  
Power Supply Rejection  
VCC = 3V 10% or 5V 10%  
–80  
dB  
Short Circuit Output Current (Note 6)  
Sinking  
Sourcing  
VFS = VCC = 5.5V  
Zero Scale; VOUT Shorted to VCC  
Full Scale; VOUT Shorted to GND  
l
l
27  
–28  
50  
–50  
mA  
mA  
Power Supply  
l
VCC  
ICC  
Power Supply Voltage  
For Specified Performance  
2.7  
5.5  
V
l
l
l
l
Supply Current (Note 7)  
VCC = 3V, Supply as Reference  
160  
180  
180  
190  
220  
240  
250  
260  
µA  
µA  
µA  
µA  
V
V
V
CC = 3V, Internal Reference  
CC = 5V, Supply as Reference  
CC = 5V, Internal Reference  
l
l
ISD  
Supply Current in Power-Down Mode  
(Note 7)  
VCC = 5V, C-Grade, I-Grade  
CC = 5V, H-Grade  
0.36  
0.36  
1.8  
5
µA  
µA  
V
Digital I/O  
l
l
VIH  
Digital Input High Voltage  
VCC = 3.6V to 5.5V  
CC = 2.7V to 3.6V  
2.4  
2.0  
V
V
V
l
l
VIL  
Digital Input Low Voltage  
VCC = 4.5V to 5.5V  
CC = 2.7V to 4.5V  
0.8  
0.6  
V
V
V
l
l
ILK  
Digital Input Leakage  
VIN = GND to VCC  
(Note 8)  
1
µA  
pF  
CIN  
Digital Input Capacitance  
2.5  
2630ff  
4
LTC2630  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2630-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2630A-LM12/-LZ12 (VFS = 2.5V)  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
tS  
Settling Time  
VCC = 3V (Note 9)  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.2  
3.9  
4.4  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
2
V/µs  
pF  
At Mid-Scale Transition  
nVs  
en  
Output Voltage Noise Density  
At f = 1kHz, Supply as Reference  
At f = 10kHz, Supply as Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
140  
130  
160  
150  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, Supply as Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, Supply as Reference  
0.1Hz to 200kHz, Internal Reference  
20  
20  
650  
700  
µVP-P  
µVP-P  
µVP-P  
µVP-P  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V. (See Figure 1) (Note 8).  
LTC2630-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2630A-LM12/-LZ12 (VFS = 2.5V)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t10  
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
4
ns  
9
ns  
SCK Low Time  
9
ns  
CS/LD Pulse width  
10  
7
ns  
SCK High to CS/LD High  
CS/LD Low to SCK High  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
7
ns  
7
ns  
50% Duty Cycle  
50  
MHz  
2630ff  
5
LTC2630  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2630-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2630A-HM12/-HZ12 (VFS = 4.096V)  
LTC2630-8  
LTC2630-10  
LTC2630-12  
LTC2630A-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
l
l
l
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
Monotonicity  
VCC = 5V, Internal Ref. (Note 4)  
DNL  
INL  
Differential Nonlinearity VCC = 5V, Internal Ref. (Note 4)  
0.5  
0.5  
1
1
2
1
1
LSB  
LSB  
mV  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
VCC = 5V, Internal Ref. (Note 4)  
VCC = 5V, Internal Ref., Code = 0  
VCC = 5V, Internal Ref. (Note 5)  
VCC = 5V, Internal Ref. (Note 5)  
0.05 0.5  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
0.5  
0.5  
0.5  
10  
ZSE  
VOS  
0.5  
0.5  
10  
5
5
5
5
5
5
5
5
mV  
VOSTC VOS Temperature  
Coefficient  
µV/°C  
l
FSE  
Full Scale Error  
VCC = 5V, Internal Ref.  
0.2 0.8  
0.2 0.8  
0.2 0.8  
0.2  
0.8 %FSR  
VFSTC  
Full Scale Voltage  
Temperature  
Coefficient  
VCC = 5V, Internal Ref. (Note 10)  
C-Grade  
I-Grade  
H-Grade  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
l
l
Load Regulation  
V
CC = 5V 10%, Internal Ref.,  
0.006 0.01  
0.025 0.04  
0.10 0.16  
0.10 0.16  
LSB/  
mA  
Mid-Scale, –10mA ≤ IOUT ≤ 10mA  
ROUT  
DC Output Impedance VCC = 5V 10%, Internal Ref.,  
Mid-Scale, –10mA ≤ IOUT ≤ 10mA  
0.1 0.156  
0.1 0.156  
0.1 0.156  
0.1 0.156  
Ω
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOUT  
DAC Output Span  
Supply as Reference  
Internal Reference  
0V to VCC  
0V to 4.096  
V
V
PSR  
ISC  
Power Supply Rejection  
VCC = 5V 10%  
–80  
dB  
Short Circuit Output Current (Note 6)  
Sinking  
Sourcing  
VFS = VCC = 5.5V  
Zero Scale; VOUT Shorted to VCC  
Full Scale; VOUT Shorted to GND  
l
l
27  
–28  
50  
–50  
mA  
mA  
Power Supply  
l
VCC  
ICC  
Power Supply Voltage  
For Specified Performance  
4.5  
2.4  
5.5  
V
l
l
Supply Current (Note 7)  
VCC = 5V, Supply as Reference  
180  
200  
260  
280  
µA  
µA  
V
CC = 5V, Internal Reference  
l
l
ISD  
Supply Current in Power-Down Mode  
(Note 7)  
VCC = 5V, C-Grade, I-Grade  
CC = 5V, H-Grade  
0.36  
0.36  
1.8  
5
µA  
µA  
V
Digital I/O  
l
l
l
l
VIH  
VIL  
ILK  
CIN  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Leakage  
V
V
0.8  
1
VIN = GND to VCC  
(Note 8)  
µA  
pF  
Digital Input Capacitance  
2.5  
2630ff  
6
LTC2630  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2630-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2630A-HM12/-HZ12 (VFS = 4.096V)  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
tS  
Settling Time  
VCC = 5V (Note 9)  
0.39% ( 1LSB at 8 Bits)  
0.098% ( 1LSB at 10 Bits)  
0.024% ( 1LSB at 12 Bits)  
3.7  
4.4  
4.8  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
1.0  
500  
2.4  
V/µs  
pF  
At Mid-Scale Transition  
nVs  
en  
Output Voltage Noise Density  
At f = 1kHz, Supply as Reference  
At f = 10kHz, Supply as Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
140  
130  
210  
200  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, Supply as Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, Supply as Reference  
0.1Hz to 200kHz, Internal Reference  
20  
20  
650  
750  
µVP-P  
µVP-P  
µVP-P  
µVP-P  
timing characteristics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V. (See Figure 1) (Note 8).  
LTC2630-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2630A-HM12/-HZ12 (VFS = 4.096V)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t10  
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
4
ns  
9
ns  
SCK Low Time  
9
ns  
CS/LD Pulse width  
10  
7
ns  
SCK High to CS/LD High  
CS/LD Low to SCK High  
CS/LD High to SCK Positive Edge  
SCK Frequency  
ns  
7
ns  
7
ns  
50% Duty Cycle  
50  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltages are with respect to GND.  
Note 3: High temperatures degrade operating lifetimes. Operating lifetime  
Note 6: This IC includes current limiting that is intended to protect the  
device during momentary overload conditions. Junction temperature can  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
Note 7: Digital inputs at 0V or V  
.
CC  
is derated at temperatures greater than 105°C.  
Note 8: Guaranteed by design and not production tested.  
Note 9: Internal Reference mode. DAC is stepped 1/4 scale to 3/4 scale  
and 3/4 scale to 1/4 scale. Load is 2kW in parallel with 100pF to GND.  
Note 10: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
N
Note 4: Linearity and monotonicity are defined from code k to code 2 –1,  
L
N
where N is the resolution and k is given by k = 0.016 • (2 / V ), rounded  
L
L
FS  
to the nearest whole code. For V = 2.5V and N = 12, k = 26 and linearity  
FS  
L
is defined from code 26 to code 4,095. For V = 4.096V and  
FS  
N = 12, k = 16 and linearity is defined from code 16 to code 4,095.  
L
Note 5: Inferred from measurement at code 16 (LTC2630-12), code 4  
(LTC2630-10) or code 1 (LTC2630-8).  
2630ff  
7
LTC2630  
typical perFormance characteristics  
LTC2630-LM12/-LZ12 (VFS = 2.5V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
V
CC  
= 3V  
V
= 3V  
CC  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
2048  
3072  
2048  
3072  
0
4095  
0
4095  
1024  
1024  
CODE  
CODE  
2630 G01  
2630 G02  
Full-Scale Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
1.0  
0.5  
1.0  
0.5  
2.52  
2.51  
2.50  
2.49  
2.48  
V
= 3V  
V
= 3V  
V
= 3V  
CC  
CC  
CC  
INL (POS)  
DNL (POS)  
DNL (NEG)  
0
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
50  
100  
50  
100  
50  
100  
125 150  
–50 –25  
25  
75  
125 150  
–50 –25  
25  
75  
125 150  
–50 –25  
25  
75  
0
0
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2630 G03  
2630 G04  
2630 G05  
Settling to 1LSB  
Settling to 1LSB  
3/4 SCALE TO 1/4 SCALE STEP  
= 3V, V = 2.5V  
V
CC  
L
FS  
R
= 2k, C = 100pF  
L
AVERAGE OF 256 EVENTS  
CS/LD  
2V/DIV  
V
OUT  
1LSB/DIV  
4.4µs  
3.6µs  
V
OUT  
1LSB/DIV  
1/4 SCALE TO 3/4 SCALE STEP  
= 3V, V = 2.5V  
V
CC  
FS  
CS/LD  
2V/DIV  
R
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2µs/DIV  
2µs/DIV  
2630 G07  
2630 G06  
2630ff  
8
LTC2630  
typical perFormance characteristics  
LTC2630-HM12/-HZ12 (VFS = 4.096V)  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
V
CC  
= 5V  
V
CC  
= 5V  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
2048  
3072  
2048  
3072  
0
4095  
0
4095  
1024  
1024  
CODE  
CODE  
2630 G08  
2630 G09  
Full-Scale Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
4.115  
4.105  
4.095  
4.085  
4.075  
1.0  
0.5  
1.0  
0.5  
V
= 5V  
V
= 5V  
V
= 5V  
CC  
CC  
CC  
INL (POS)  
DNL (POS)  
DNL (NEG)  
0
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
50  
100  
125 150  
–50 –25  
25  
75  
50  
100  
50  
100  
0
–50 –25  
25  
75  
125 150  
–50 –25  
25  
75  
125 150  
0
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2630 G12  
2630 G10  
2630 G11  
Settling to 1LSB  
Settling to 1LSB  
CS/LD  
2V/DIV  
V
OUT  
1LSB/DIV  
4.8µs  
4.0µs  
V
OUT  
1LSB/DIV  
1/4 SCALE TO 3/4 SCALE STEP  
= 5V, V = 4.096V  
1/4 SCALE TO 3/4 SCALE STEP  
V
CC  
FS  
V
= 5V, V = 4.096V  
CS/LD  
2V/DIV  
CC  
FS  
R
= 2k, C = 100pF  
L
L
R
L
= 2k, C = 100pF  
L
AVERAGE OF 256 EVENTS  
AVERAGE OF 256 EVENTS  
2µs/DIV  
2µs/DIV  
2630 G14  
2630 G13  
2630ff  
9
LTC2630  
typical perFormance characteristics  
LTC2630-10  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
V
CC  
V
FS  
= 5V  
= 4.096V  
V
CC  
V
FS  
= 5V  
= 4.096V  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
512  
768  
0
1023  
256  
512  
768  
0
1023  
256  
CODE  
CODE  
2630 G15  
2630 G16  
LTC2630-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
0.50  
0.25  
0
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
0
–0.5  
–1.0  
–0.25  
–0.50  
128  
192  
128  
192  
0
255  
0
255  
64  
64  
CODE  
CODE  
2630 G17  
2630 G18  
LTC2630  
Load Regulation  
Current Limiting  
Offset Error vs Temperature  
3
2
1
0
10  
8
0.20  
0.15  
0.10  
0.05  
0
V
CC  
V
CC  
V
CC  
= 5V (LTC2630-H)  
= 5V (LTC2630-L)  
= 3V (LTC2630-L)  
V
CC  
V
CC  
V
CC  
= 5V (LTC2630-H)  
= 5V (LTC2630-L)  
= 3V (LTC2630-L)  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
–1  
–2  
–3  
INTERNAL REF.  
INTERNAL REF.  
CODE = MIDSCALE  
CODE = MIDSCALE  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
2630 G21  
–30  
–20  
–10  
0
10  
20  
30  
–30  
–20  
–10  
0
10 20  
30  
I
(mA)  
I
(mA)  
OUT  
OUT  
2630 G19  
2630 G20  
2630ff  
10  
LTC2630  
typical perFormance characteristics  
LTC2630  
Power-On Reset Glitch  
Mid-Scale-Glitch Impulse  
Large-Signal Response  
LTC2630-L  
INTERNAL REF  
V
CC  
CS/LD  
5V/DIV  
2V/DIV  
LTC2630-H12, V = 5V:  
CC  
2.4nV-s TYP  
0.5V/DIV  
V
OUT  
ZERO-SCALE  
5mV/DIV  
V
OUT  
LTC2630-L12, V = 3V:  
CC  
2.0nV-s TYP  
2mV/DIV  
V
= V = 5V  
CC  
FS  
1/4 SCALE TO 3/4 SCALE  
200µs/DIV  
2µs/DIV  
2µs/DIV  
2630 G24  
2630 G23  
2630 G22  
Headroom at Rails  
vs Output Current  
Noise Voltage vs Frequency  
0.1Hz to 10Hz Voltage Noise  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
500  
400  
300  
200  
100  
0
CODE = MIDSCALE  
5V SOURCING  
V
= 4V, V = 2.5V  
CC FS  
CODE = MIDSCALE  
3V (LTC2630-L) SOURCING  
LTC2630-H  
10µV/DIV  
(V = 5V)  
CC  
LTC2630-L  
5V SINKING  
3V (LTC2630-L) SINKING  
(V = 4V)  
CC  
1k  
10k  
100k  
1s/DIV  
100  
1M  
0
1
2
3
4
5
6
7
8
9
10  
2630 G27  
FREQUENCY (Hz)  
I
(mA)  
OUT  
2630 G26  
2630 G25  
Exiting Power-Down to Mid-Scale  
Supply Current vs Logic Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
SWEEP SCK, SDI, CS/LD  
BETWEEN 0V AND V  
CC  
CS/LD  
2V/DIV  
V
= 5V  
CC  
V
OUT  
0.5V/DIV  
V
= 3V  
CC  
(LTC2630-L)  
LTC2630-H  
0
4µs/DIV  
0
1
2
3
4
5
2630 G28  
LOGIC VOLTAGE (V)  
2630 G29  
2630ff  
11  
LTC2630  
pin Functions  
CS/LD (Pin 1): Serial Interface Chip Select/Load Input.  
When CS/LD is low, SCK is enabled for shifting data on  
SDI into the register. When CS/LD is taken high, SCK  
is disabled and the specified command (see Table 1) is  
executed.  
V
(Pin 4): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V  
CC CC  
(LTC2630-L) or 4.5V ≤ V ≤ 5.5V (LTC2630-H). Also  
CC  
used as the reference input when the part is programmed  
to operate in supply as reference mode. Bypass to GND  
with a 0.1µF capacitor.  
SCK (Pin 2): Serial Interface Clock Input. CMOS and TTL  
compatible.  
GND (Pin 5): Ground.  
V
OUT  
(Pin 6): DAC Analog Voltage Output.  
SDI (Pin 3): Serial Interface Data Input. Data on SDI  
is clocked into the DAC on the rising edge of SCK. The  
LTC2630acceptsinputwordlengthsofeither24or32bits.  
Block Diagram  
V
CC  
INTERNAL  
REFERENCE  
SDI  
CONTROL  
DECODE LOGIC  
RESISTOR  
DIVIDER  
24-BIT  
SHIFT  
REGISTER  
SCK  
DACREF  
DAC  
CS/LD  
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
GND  
2630 BD  
2630ff  
12  
LTC2630  
timing Diagram  
t
1
t
6
t
t
t
4
2
3
SCK  
SDI  
1
2
3
23  
24  
t
10  
t
t
7
5
CS/LD  
2630 F01  
Figure 1. Serial Interface Timing  
operation  
The LTC2630 is a family of single voltage output DACs in  
6-lead SC70 packages. Each DAC can operate rail-to-rail  
referencedtotheinputsupply, orwithitsfull-scalevoltage  
set by an integrated reference. Twelve combinations of  
accuracy (12-, 10-, and 8-bit), power-on reset value (zero  
or mid-scale), and full-scale voltage (2.5V or 4.096V) are  
available. The LTC2630 is controlled using a 3-wire SPI/  
MICROWIRE compatible interface.  
Transfer Function  
The digital-to-analog transfer function is  
k   
VOUT(IDEAL)   
=
V
REF  
N   
2
where k is the decimal equivalent of the binary DAC  
input code, N is the resolution, and V is either 2.5V  
(LTC2630-L) or 4.096V (LTC2630-H) in internal refer-  
ence mode, and V in Supply as reference mode.  
REF  
Power-On Reset  
CC  
The LTC2630-HZ/-LZ clear the output to zero scale when  
power is first applied, making system initialization con-  
sistent and repeatable.  
Table 1. Command Codes  
Command*  
C3 C2 C1 C0  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2630  
contains circuitry to reduce the power-on glitch: the  
analog output typically rises less than 5mV above zero  
scale during power on if the power supply is ramped  
to 5V in 1ms or more. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See “Power-On Reset Glitch” in the Typical Performance  
Characteristics section.  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
1
0
1
1
0
0
1
Write to Input Register  
Update (Power up) DAC Register  
Write to and Update (Power up) DAC Register  
Power down  
Select Internal Reference (Power-on Reset Default)  
Select Supply as Reference (V  
= V )  
CC  
REF  
*Command codes not shown are reserved and should not be used.  
The LTC2630-HM/-LM provide an alternative reset, set-  
ting the output to mid-scale when power is first applied.  
2630ff  
13  
LTC2630  
operation  
INPUT WORD (LTC2630-12)  
COMMAND  
4 DON'T-CARE BITS  
DATA (12 BITS + 4 DON'T-CARE BITS)  
C3 C2 C1 C0  
X
X
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
X
X
X
MSB  
LSB  
INPUT WORD (LTC2630-10)  
COMMAND  
4 DON'T-CARE BITS  
DATA (10 BITS + 6 DON'T-CARE BITS)  
C3 C2 C1 C0  
X
X
X
X
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
INPUT WORD (LTC2630-8)  
COMMAND  
4 DON'T-CARE BITS  
DATA (8 BITS + 8 DON'T-CARE BITS)  
C3 C2 C1 C0  
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
MSB LSB  
X
X
X
X
X
2630 F02  
Figure 2. Command and Data Input Format  
Serial Interface  
The command (C3-C0) assignments are shown in Table 1.  
The first three commands in the table consist of write and  
update operations. A Write operation loads a 16-bit data  
word from the 24-bit shift register into the input register.  
In an Update operation, the input register is copied to the  
DAC register and converted to an analog voltage at the  
DAC output. Write to and Update combines the first two  
commands. The Update operation also powers up the  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
TheCS/LDinputisleveltriggered. Whenthisinputistaken  
low, it acts as a chip-select signal, enabling the SDI and  
SCK buffers and the input shift register. Data (SDI input)  
is transferred at the next 24 rising SCK edges. The 4-bit  
command, C3-C0, is loaded first; then 4 don’t-care bits;  
and finally the 16-bit data word. The data word comprises  
the 12-, 10- or 8-bit input code, ordered MSB-to-LSB, fol-  
lowed by 4, 6 or 8 don’t-care bits (LTC2630-12, -10 and  
-8 respectively; see Figure 2). Data can only be transferred  
to the device when the CS/LD signal is low, beginning on  
the first rising edge of SCK. SCK may be high or low at  
the falling edge of CS/LD. The rising edge of CS/LD ends  
the data transfer and causes the device to execute the  
command specified in the 24-bit input sequence. The  
complete sequence is shown in Figure 3a.  
While the minimum input sequence is 24-bits, it may  
optionally be extended to 32-bits to accommodate micro-  
processors that have a minimum word width of 16-bits  
(2 bytes). To use the 32-bit width, 8 don’t-care bits are  
transferred to the device first, followed by the 24-bit se-  
quence described. Figure 3b shows the 32-bit sequence.  
2630ff  
14  
LTC2630  
operation  
The 16-bit data word is ignored for all commands that do  
The DAC can also operate in supply as reference mode  
not include a Write operation.  
using command 0111. In this mode, V supplies the  
CC  
DAC’sreferencevoltageandthesupplycurrentisreduced.  
Power-Down Mode  
Voltage Output  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever the  
DACoutputisnotneeded.Wheninpower-down,thebuffer  
amplifier, bias circuit, and reference circuit are disabled  
and draw essentially zero current. The DAC output is put  
intoahigh-impedancestate,andtheoutputpinispassively  
pulled to ground through a 200kΩresistor. Input and DAC  
register contents are not disturbed during power-down.  
The LTC2630’s integrated rail-to-rail amplifier has guar-  
anteed load regulation when sourcing or sinking up to  
10mA at 5V, and 5mA at 3V.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSB/mA.  
The DAC can be put into power-down mode by using  
command 0100. The supply current is reduced to 1.8µA  
maximum when the DAC is powered down.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to ohms. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
Normal operation resumes after executing any command  
that includes a DAC update, as shown in Table 1. The DAC  
is powered up and its voltage output is updated. Normal  
settling is delayed while the bias, reference, and amplifier  
circuits are re-enabled. The power-up delay time is 18µs  
for settling to 12-bits.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 50Ω typical channel resistance of the output devices  
(e.g., when sinking 1mA, the minimum output voltage is  
50Ω • 1mA, or 50mV). See the graph “Headroom at Rails  
vs. Output Current” in the Typical Performance Charac-  
teristics section.  
Reference Modes  
Forapplicationswhereanaccurateexternalreferenceisnot  
available, the LTC2630 has a user-selectable, integrated  
reference. The LTC2630-LM and LTC2630-LZ provide a  
full-scale output of 2.5V. The LTC2630-HM and LTC2630-  
HZ provide a full-scale output of 4.096V.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
The internal reference can be useful in applications where  
the supply voltage is poorly regulated. Internal Reference  
mode can be selected by using command 0110, and is  
the power-on default.  
2630ff  
15  
LTC2630  
operation  
Rail-to-Rail Output Considerations  
the LTC2630 GND pin to the ground plane should be as  
low as possible. Resistance here will add directly to the  
effective DC output impedance of the device (typically  
0.1Ω). Note that the LTC2630 is no more susceptible to  
this effect than any other parts of this type; on the con-  
trary, it allows layout-based performance improvements  
to shine rather than limiting attainable performance with  
excessive internal resistance.  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
SincetheanalogoutputoftheDACcannotgobelowground,  
it may limit for the lowest codes as shown in Figure 4b.  
Similarly, limiting can occur near full scale when using the  
supply as reference. If V = V and the DAC full-scale  
FS  
CC  
error (FSE) is positive, the output for the highest codes  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
analog ground, digital ground, and power ground. When  
the LTC2630 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
limits at V , as shown in Figure 4. No full-scale limiting  
CC  
can occur if V is less than V –FSE.  
FS  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Board Layout  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane. The resistance from  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion of  
the plane. When doing this, make the gap in the plane only  
as long as it needs to be to serve its purpose and ensure  
that no traces cross over the gap.  
2630ff  
16  
LTC2630  
operation  
Optoisolated 4mA to 20mA Process Controller  
additional current through Q1. Note that at the maximum  
loop voltage of 80V, Q1 will dissipate 1.6W when I  
20mA and must have an appropriate heat sink.  
=
OUT  
Figure 5 shows how to use an LTC2630HZ to make an  
optoisolated, digitally-controlled 4mA to 20mA transmit-  
ter. The transmitter circuitry, including optoisolation, is  
powered by the loop voltage which has a wide range of  
5.4V to 80V. The 5V output of the LT®3010-5 is used to  
set the 4mA offset current and V  
control the 0mA to 16mA signal current. The supply cur-  
rent for the regulator, DAC, and op amp is well below  
R
and R  
are the closest 0.1% values to ideal  
OFFSET  
GAIN  
for controlling a 4mA to 20mA output as the digital input  
varies from zero scale to full scale. Alternatively, R  
OFFSET  
is used to digitally  
can be a 365k, 1% resistor in series with a 20k trim pot  
OUT  
and R  
can be a 75.0k, 1% resistor in series with a 5k  
GAIN  
trim pot. The optoisolators shown will limit the speed of  
the serial bus; the 6N139 is an alternative that will allow  
higher data rates.  
the 4mA budget at zero scale. R senses the total loop  
current, which includes the quiescent supply current and  
S
CS/LD  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
D8  
13  
D7  
14  
D6  
15  
D5  
16  
D4  
17  
D3  
18  
D2  
19  
D1  
20  
D0  
21  
22  
23  
24  
C3  
C2  
C1  
C0  
X
X
X
X
D11 D10 D9  
X
X
X
X
2630 F03a  
COMMAND WORD  
4 DONT-CARE BITS  
DATA WORD  
24-BIT INPUT WORD  
Figure 3a. 24-Bit Load Sequence (Minimum Input Word)  
LTC2630-12 SDI Data Word: 12-Bit Input Code + 4 Don’t-Care Bits (Shown);  
LTC2630-10 SDI Data Word: 10-Bit Input Code + 6 Don’t-Care Bits;  
LTC2630-8 SDI Data Word: 8-Bit Input Code + 8 Don’t-Care Bits  
CS/LD  
SCK  
1
2
3
4
5
6
7
8
9
10  
C2  
11  
C1  
12  
C0  
13  
14  
15  
16  
17  
18  
19  
20  
D8  
21  
D7  
22  
D6  
23  
D5  
24  
D4  
25  
D3  
26  
D2  
27  
D1  
28  
D0  
29  
30  
31  
32  
SDI  
X
X
X
X
X
X
X
X
C3  
X
X
X
X
D11 D10 D9  
X
X
X
X
8 DONT-CARE BITS  
COMMAND WORD  
4 DONT-CARE BITS  
DATA WORD  
2630 F03b  
32-BIT INPUT WORD  
Figure 3b. 32-Bit Load Sequence  
LTC2630-12 SDI Data Word: 12-Bit Input Code + 4 Don’t-Care Bits (Shown);  
LTC2630-10 SDI Data Word: 10-Bit Input Code + 6 Don’t-Care Bits;  
LTC2630-8 SDI Data Word: 8-Bit Input Code + 8 Don’t-Care Bits  
2630ff  
17  
LTC2630  
operation  
2630ff  
18  
LTC2630  
typical application  
12-Bit, 2.7V to 5.5V Single Supply, Voltage Output DAC  
2.7V TO 5.5V  
0.1µF  
V
CC  
SDI  
OUTPUT  
µP  
LTC2630-LZ12  
GND  
SCK  
V
0V TO 2.5V OR  
OUT  
0V TO V  
CC  
CS/LD  
2630 TA01  
2630ff  
19  
LTC2630  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
SC6 Package  
6-Lead Plastic SC70  
(Reference LTC DWG # 05-08-1638 Rev B)  
0.47  
MAX  
0.65  
REF  
1.80 – 2.20  
(NOTE 4)  
1.00 REF  
INDEX AREA  
(NOTE 6)  
1.15 – 1.35  
(NOTE 4)  
1.80 – 2.40  
2.8 BSC 1.8 REF  
PIN 1  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.15 – 0.30  
6 PLCS (NOTE 3)  
0.65 BSC  
0.10 – 0.40  
0.80 – 1.00  
0.00 – 0.10  
REF  
1.00 MAX  
GAUGE PLANE  
0.15 BSC  
0.26 – 0.46  
SC6 SC70 1205 REV B  
0.10 – 0.18  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. DETAILS OF THE PIN 1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE INDEX AREA  
7. EIAJ PACKAGE REFERENCE IS EIAJ SC-70  
8. JEDEC PACKAGE REFERENCE IS MO-203 VARIATION AB  
2630ff  
20  
LTC2630  
revision history (Revision history begins at Rev F)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
F
06/12 Corrected units on parameter V  
from mV/°C to µV/°C  
6
OSTC  
2630ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC2630  
typical application  
V
LOOP  
5.4V TO 80V  
R
OFFSET  
374k  
LT3010-5  
0.1%  
IN  
OUT  
+
SHDN SENSE  
GND  
1µF  
1µF  
R
76.8k  
0.1%  
GAIN  
V
CC  
SDI  
FROM  
OPTO-  
ISOLATED  
INPUTS  
LTC2630-HZ  
V
OUT  
SCK  
+
1k  
Q1  
2N3440  
LTC2054  
CS/LD  
3.01k  
1000 F  
P
10k  
R
S
5V  
10Ω  
I
OPTO-ISOLATORS  
500Ω  
OUT  
10k  
SDI  
2630 TA02  
SCK  
CS/LD  
4N28  
SDI  
SCK  
CS/LD  
Figure 5. An Optoisolated 4mA to 20mA Process Controller  
relateD parts  
PART NUMBER  
LTC1660/LTC1665  
LTC1663  
DESCRIPTION  
Octal 10-/8-Bit V  
COMMENTS  
DACs in 16-Pin Narrow SSOP  
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
= 2.7V to 5.5V, 60µA, Internal reference, SMBus Interface  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Single 10-Bit V  
DAC in SOT-23  
OUT  
LTC1664  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
OUT  
2
LTC1669  
Single 10-Bit V  
DAC in SOT-23  
= 2.7V to 5.5V, 60µA, Internal reference, I C Interface  
OUT  
LTC1821  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610/LTC2620  
DACs in 16-Lead SSOP 250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2601/LTC2611/LTC2621  
LTC2602/LTC2612/LTC2622  
LTC2604/LTC2614/LTC2624  
LTC2631  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
Quad 16-/14-/12-Bit V  
DACs in 16-Lead SSOP 250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
2
Single 12-/10-/8-Bit I C V  
DACs with  
180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
OUT  
2
10ppm/°C Reference in ThinSOT  
Selectable External Ref. Mode, Rail-to-Rail Output, I C Interface  
LTC2640  
Single 12-/10-/8-Bit SPI V DACs with  
180µA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Selectable External Ref. Mode, Rail-to-Rail Output, SPI Interface  
OUT  
10ppm/°C Reference in ThinSOT  
2630ff  
LT 0612 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2630AHSC6-HM10TRMPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HM10TRPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HM12

D/A Converter, 12-Bit, 1 Func, CMOS, PDSO6
Linear

LTC2630AHSC6-HM12#TR

IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,6PIN
Linear

LTC2630AHSC6-HM12#TRM

IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,6PIN
Linear

LTC2630AHSC6-HM12TRMPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HM12TRPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HM8#TRMPBF

IC SERIAL INPUT LOADING, 3.7 us SETTLING TIME, 8-BIT DAC, PDSO6, LEAD FREE, PLASTIC, EIAJ, MO-203AB, SC-70, 6 PIN, Digital to Analog Converter
Linear

LTC2630AHSC6-HM8#TRPBF

D/A Converter, 1 Func, Serial Input Loading, 3.7us Settling Time, PDSO6
Linear

LTC2630AHSC6-HM8TRMPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HM8TRPBF

Single 12-/10-/8-Bit Rail-to-Rail DACs with Integrated Reference in SC70
Linear

LTC2630AHSC6-HZ10#TRMPBF

IC SERIAL INPUT LOADING, 4.4 us SETTLING TIME, 10-BIT DAC, PDSO6, LEAD FREE, PLASTIC, EIAJ, MO-203AB, SC-70, 6 PIN, Digital to Analog Converter
Linear