LTC2631AHTS8-HM12#TRMPBF [Linear]

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C;
LTC2631AHTS8-HM12#TRMPBF
型号: LTC2631AHTS8-HM12#TRMPBF
厂家: Linear    Linear
描述:

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C

文件: 总28页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2631  
2
Single 12-/10-/8-Bit I C  
V DACs with  
OUT  
10ppm/°C Reference  
FEATURES  
DESCRIPTION  
n
Integrated Precision Reference  
The LTC®2631 is a family of 12-, 10-, and 8-bit voltage-  
output DACs with an integrated, high accuracy, low-drift  
referenceinan8-leadTSOT-23package.Ithasarail-to-rail  
output buffer that is guaranteed monotonic.  
2.5V Full-Scale 10ppm/°C (LTC2631-L)  
4.096V Full-Scale 10ppm/°C (LTC2631-H)  
n
Maximum INL Error: 1LSB (LTC2631A-12)  
n
Bidirectional Reference: Input or 10ppm/°C Output  
The LTC2631-L has a full-scale output of 2.5V, and oper-  
ates from a single 2.7V to 5.5V supply. The LTC2631-H  
hasafull-scaleoutputof4.096V, andoperatesfroma4.5V  
to 5.5V supply. A 10ppm/°C reference output is available  
at the REF pin.  
2
n
400kHz I CInterface  
n
Nine Selectable Addresses (LTC2631-Z)  
n
Low Noise (0.7mV , 0.1Hz to 200kHz)  
P-P  
n
n
n
n
n
n
n
n
Guaranteed Monotonic Over Temperature  
2.7V to 5.5V Supply Range (LTC2631-L)  
Low Power Operation: 180μA at 3V  
Power Down to 1.8μA Maximum (C and I Grades)  
Power-On Reset to Zero or Mid-Scale Options  
Double-Buffered Data Latches  
Each DAC can also operate in External Reference mode,  
in which a voltage supplied to the REF pin sets the full-  
scale output.  
2
The LTC2631 DACs use a 2-wire, I C-compatible serial  
Guaranteed Operation From –40°C to 125°C (H-Grade)  
8-Lead TSOT-23 (ThinSOT™) Package  
interface. The LTC2631 operates in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock  
rate of 400kHz).  
APPLICATIONS  
The LTC2631 incorporates a power-on reset circuit. Op-  
tions are available for reset to zero-scale or reset to mid-  
scale after power-up.  
n
Mobile Communications  
n
Process Control and Industrial Automation  
n
Automatic Test Equipment  
2
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. I C and  
n
Portable Equipment  
ThinSOT are trademarks of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 5396245, 5859606,  
6891433, 6937178 and 7414561.  
n
Automotive  
n
Optical Networking  
(LTC2631-M)  
BLOCK DIAGRAM  
V
REF  
CC  
2
Integral Nonlinearity (LTC2631A-LM12)  
I C  
CA0  
ADDRESS  
DECODE  
INTERNAL  
REFERENCE  
1.0  
REF_SEL  
V
V
= 3V  
SWITCH  
CC  
FS  
= 2.5V  
0.5  
CONTROL  
DECODE LOGIC  
RESISTOR  
DIVIDER  
SCL  
SDA  
0
2
I C  
INTERFACE  
DACREF  
DAC  
–0.5  
–1.0  
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
0
2048  
3072  
4095  
1024  
GND  
CODE  
2631 TA01b  
2631 TA01  
2631fb  
1
LTC2631  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Supply Voltage (V ) ...................................0.3V to 6V  
Maximum Junction Temperature........................... 150°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
CC  
REF_SEL, SCL, SDA.....................................0.3V to 6V  
V
, CA0, CA1, REF.........0.3V to Min(V + 0.3V, 6V)  
OUT  
CC  
Operating Temperature Range  
LTC2631C ................................................ 0°C to 70°C  
LTC2631I..............................................–40°C to 85°C  
LTC2631H (Note 3) ............................–40°C to 125°C  
PIN CONFIGURATION  
LTC2631-Z  
LTC2631-M  
TOP VIEW  
TOP VIEW  
CA0 1  
SCL 2  
SDA 3  
GND 4  
8 CA1  
7 V  
6 REF  
CA0 1  
SCL 2  
SDA 3  
GND 4  
8 REF_SEL  
7 V  
OUT  
OUT  
6 REF  
5 V  
CC  
5 V  
CC  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
T
= 150°C (NOTE 6), θ = 195°C/W  
T
JMAX  
= 150°C (NOTE 6), θ = 195°C/W  
JMAX  
JA  
JA  
2631fb  
2
LTC2631  
ORDER INFORMATION  
LTC2631  
A
C
TS8 –L  
M
12  
#TRM PBF  
LEAD FREE DESIGNATOR  
TAPE AND REEL  
TR = 2,500-Piece Tape and Reel  
TRM = 500-Piece Tape and Reel  
RESOLUTION  
12 = 12-Bit  
10 = 10-Bit  
8 = 8-Bit  
POWER-ON RESET  
M = Reset to Mid-Scale  
Z = Reset to Zero-Scale  
FULL-SCALE VOLTAGE, INTERNAL REFERENCE MODE  
L = 2.5V  
H = 4.096V  
PACKAGE TYPE  
TS8 = 8-Lead Plastic TSOT-23  
TEMPERATURE GRADE  
C = Commercial Temperature Range (0°C to 70°C)  
I = Industrial Temperature Range (–40°C to 85°C)  
H = Automotive Temperature Range (–40°C to 125°C)  
ELECTRICAL GRADE (OPTIONAL)  
A = 1LSB Maximum INL (12-Bit)  
PRODUCT PART NUMBER  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2631fb  
3
LTC2631  
PRODUCT SELECTION GUIDE  
V
WITH INTERNAL  
POWER-ON RESET  
TO CODE  
FS  
PART NUMBER  
LTC2631A-LM12 LTDHF  
LTC2631A-LZ12 LTDHG  
PART MARKING* REFERENCE  
PIN 8  
RESOLUTION  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
12-Bit  
10-Bit  
8-Bit  
V
MAXIMUM INL  
1LSB  
CC  
2.5V • (4095/4096)  
2.5V • (4095/4096)  
4.096V • (4095/4096)  
4.096V • (4095/4096)  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
Mid-Scale  
Zero  
REF_SEL  
CA1  
2.7V – 5.5V  
2.7V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
2.7V – 5.5V  
2.7V – 5.5V  
2.7V – 5.5V  
2.7V – 5.5V  
2.7V – 5.5V  
2.7V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
4.5V – 5.5V  
1LSB  
LTC2631A-HM12 LTDHH  
LTC2631A-HZ12 LTDHJ  
Mid-Scale  
Zero  
REF_SEL  
CA1  
1LSB  
1LSB  
LTC2631-LM12  
LTC2631-LM10  
LTC2631-LM8  
LTC2631-LZ12  
LTC2631-LZ10  
LTC2631-LZ8  
LTDHF  
LTDHK  
LTDHQ  
LTDHG  
LTDHM  
LTDHR  
LTDHH  
LTDHN  
LTDHS  
LTDHJ  
LTDHP  
LTDHT  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero  
REF_SEL  
REF_SEL  
REF_SEL  
CA1  
2.5LSB  
1LSB  
0.5LSB  
2.5LSB  
1LSB  
2.5V • (4095/4096)  
2.5V • (1023/1024)  
2.5V • (255/256)  
12-Bit  
10-Bit  
8-Bit  
Zero  
CA1  
Zero  
CA1  
0.5LSB  
2.5LSB  
1LSB  
LTC2631-HM12  
LTC2631-HM10  
LTC2631-HM8  
LTC2631-HZ12  
LTC2631-HZ10  
LTC2631-HZ8  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
4.096V • (4095/4096)  
4.096V • (1023/1024)  
4.096V • (255/256)  
Mid-Scale  
Mid-Scale  
Mid-Scale  
Zero  
REF_SEL  
REF_SEL  
REF_SEL  
CA1  
12-Bit  
10-Bit  
8-Bit  
0.5LSB  
2.5LSB  
1LSB  
12-Bit  
10-Bit  
8-Bit  
Zero  
CA1  
Zero  
CA1  
0.5LSB  
*The temperature grade is identified by a label on the shipping container.  
2631fb  
4
LTC2631  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2631A-LM12/-LZ12 (VFS = 2.5V)  
LTC2631-8  
LTC2631-10  
LTC2631-12  
LTC2631A-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
LSB  
Monotonicity  
V
V
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref. (Note 4)  
CC  
CC  
DNL  
INL  
Differential  
0.5  
0.5  
5
0.5  
1
1
2.5  
5
1
1
Nonlinearity  
l
l
l
Integral  
Nonlinearity  
V
V
= 3V, Internal Ref. (Note 4)  
= 3V, Internal Ref.,  
0.05  
0.5  
0.2  
0.5  
0.5  
10  
1
0.5  
0.5  
10  
0.5  
0.5  
0.5  
10  
LSB  
mV  
CC  
CC  
ZSE  
Zero-Scale Error  
Offset Error  
5
5
Code = 0  
V
V
= 3V, Internal Ref.  
0.5  
5
5
5
5
mV  
OS  
CC  
(Note 5)  
V
OSTC  
V
Temperature V = 3V, Internal Ref.  
10  
μV/°C  
OS  
CC  
(Note 5)  
Coefficient  
l
FSE  
Full-Scale Error  
V
= 3V, Internal Ref.  
0.08  
0.4  
0.08 0.4  
0.08 0.4  
0.08 0.4 %FSR  
CC  
(Note 15)  
V = 3V, Internal Ref. (Note 10)  
CC  
C-Grade  
I-Grade  
H-Grade  
V
Full-Scale  
Voltage  
Temperature  
Coefficient  
FSTC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
Load Regulation Internal Ref., Mid-Scale,  
= 3V 10%,  
l
l
V
0.009 0.016  
0.009 0.016  
0.035 0.064  
0.035 0.064  
0.14 0.256  
0.14 0.256  
0.14 0.256 LSB/mA  
0.14 0.256 LSB/mA  
CC  
–5mA ≤ I  
≤ 5mA,  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
R
DC Output  
Impedance  
Internal Ref., Mid-Scale,  
= 3V 10%,  
OUT  
l
l
V
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
Ω
CC  
–5mA ≤ I  
≤ 5mA,  
OUT  
V
= 5V 10%,  
CC  
–10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
DAC Output Span  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OUT  
External Reference  
Internal Reference  
0 to V  
V
V
REF  
0 to 2.5  
PSR  
Power Supply Rejection  
V
CC  
= 3V 10% or 5V 10%  
–80  
dB  
I
SC  
Short-Circuit Output Current (Note 6)  
V
= V = 5.5V  
CC  
FS  
l
Sinking  
Zero-Scale; V  
shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
l
Sourcing  
Full-Scale; V  
shorted to GND  
OUT  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 3V, V = 2.5V, External Reference  
150  
180  
160  
190  
200  
240  
210  
260  
μA  
μA  
μA  
μA  
REF  
= 3V, Internal Reference  
= 5V, V = 2.5V, External Reference  
REF  
= 5V, Internal Reference  
l
l
I
SD  
Supply Current in Power-Down Mode  
(Note 7)  
V
V
= 5V, C-Grade, I-Grade  
= 5V, H-Grade  
0.6  
0.6  
1.8  
4
μA  
μA  
CC  
CC  
2631fb  
5
LTC2631  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2631A-LM12/-LZ12 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
0
V
V
kΩ  
pF  
CC  
160  
190  
7.5  
220  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
0.1  
μA  
REF  
Reference Output  
Output Voltage  
1.240  
1.250  
10  
1.260  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short-Circuit Current  
μF  
V
CC  
= 5.5V; REF Shorted to GND  
2.5  
mA  
Digital I/O  
l
l
l
V
V
V
Low Level Input Voltage (SDA and SCL) (Note 14)  
High Level Input Voltage (SDA and SCL) (Note 11)  
–0.5  
0.7V  
0.3V  
V
V
V
IL  
CC  
IH  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1)  
See Test Circuit 1  
0.15V  
IL(CAn)  
CC  
l
l
l
l
V
High Level Input Voltage on CAn  
(n = 0, 1)  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.85V  
V
kΩ  
IH(CAn)  
CC  
R
R
R
Resistance from CAn (n = 0, 1)  
10  
10  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1)  
to GND to Set CAn = GND  
kΩ  
Resistance from CAn (n = 0, 1)  
2
0
MΩ  
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed by  
Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
10  
μA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pin CAn (n = 0, 1)  
CAn  
2631fb  
6
LTC2631  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2631A-LM12/-LZ12 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
S
Settling Time  
V
= 3V (Note 9)  
CC  
0.39% ( 1LSB at 8-Bits)  
0.098% ( 1LSB at 10-Bits)  
0.024% ( 1LSB at 12-Bits)  
3.2  
3.8  
4.1  
μs  
μs  
μs  
Voltage-Output Slew Rate  
Capacitance Load Driving  
Glitch Impulse  
1
V/μs  
pF  
500  
2.1  
300  
At Mid-Scale Transition  
External Reference  
nV•s  
kHz  
Multiplying Bandwidth  
Output Voltage Noise Density  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
140  
130  
160  
150  
nV√Hz  
nV√Hz  
nV√Hz  
nV√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference,  
20  
20  
650  
670  
μV  
P-P  
μV  
P-P  
μV  
P-P  
μV  
P-P  
C
= 0.33μF  
REF  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V. (See Figure 1) (Note 13).  
LTC2631-LM12/-LM10/-LM8/-LZ12/-LZ10/-LZ8, LTC2631A-LM12/-LZ12 (VFS = 2.5V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
μs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
μs  
0.6  
μs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
μs  
0
0.9  
μs  
Data Set-Up Time  
100  
ns  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
B
B
ns  
f
μs  
SU(STO)  
BUF  
1.3  
μs  
2631fb  
7
LTC2631  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2631A-HM12/-HZ12 (VFS = 4.096V)  
LTC2631-8  
LTC2631-10  
LTC2631-12  
LTC2631A-12  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
l
l
l
8
8
10  
10  
12  
12  
12  
12  
Bits  
Bits  
LSB  
Monotonicity  
V
V
= 5V, Internal Ref. (Note 4)  
= 5V, Internal Ref. (Note 4)  
CC  
DNL  
INL  
Differential  
0.5  
0.5  
1
1
1
1
CC  
Nonlinearity  
l
Integral  
Nonlinearity  
V
= 5V, Internal Ref. (Note 4)  
0.05 0.5  
0.2  
1
2.5  
0.5  
LSB  
CC  
l
l
ZSE  
Zero-Scale Error  
Offset Error  
V
CC  
V
CC  
V
CC  
= 5V, Internal Ref., Code = 0  
= 5V, Internal Ref. (Note 5)  
= 5V, Internal Ref. (Note 5)  
0.5  
0.5  
10  
5
0.5  
0.5  
10  
5
5
0.5  
0.5  
10  
5
5
0.5  
0.5  
10  
5
mV  
mV  
V
OS  
5
5
V
V
OS  
Temperature  
μV/°C  
OSTC  
Coefficient  
l
FSE  
Full-Scale Error  
V
V
= 5V, Internal Ref. (Note 15)  
= 5V, Internal Ref. (Note 10)  
C-Grade  
I-Grade  
H-Grade  
0.08 0.4  
0.08 0.4  
0.08 0.4  
0.08 0.4 %FSR  
CC  
CC  
V
FSTC  
Full-Scale  
Voltage  
Temperature  
Coefficient  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ppm/°C  
ppm/°C  
ppm/°C  
l
l
Load Regulation  
V
= 5V 10%, Internal Ref.  
0.006 0.01  
0.022 0.04  
0.09 0.16  
0.09 0.16 LSB/mA  
CC  
Mid-Scale, –10mA ≤ I  
≤ 10mA  
OUT  
R
OUT  
DC Output  
Impedance  
V
= 5V 10%, Internal Ref.  
0.09 0.156  
0.09 0.156  
0.09 0.156  
0.09 0.156  
Ω
CC  
Mid-Scale, –10mA ≤ I  
≤ 10mA  
OUT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OUT  
DAC Output Span  
External Reference  
Internal Reference  
0 to V  
V
V
REF  
0 to 4.096  
PSR  
Power Supply Rejection  
V
CC  
= 5V 10%  
–80  
dB  
I
Short-Circuit Output Current (Note 6)  
V
FS  
= V = 5.5V  
CC  
SC  
l
l
Sinking  
Zero-Scale; V  
shorted to V  
27  
–28  
48  
–48  
mA  
mA  
OUT  
CC  
Sourcing  
Full-Scale; V  
shorted to GND  
OUT  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current (Note 7)  
For Specified Performance  
4.5  
5.5  
V
CC  
l
l
I
CC  
V
CC  
V
CC  
= 5V, V = 4.096V, External Reference  
160  
200  
220  
270  
μA  
μA  
REF  
= 5V, Internal Reference  
l
l
I
Supply Current in Power-Down Mode  
(Note 7)  
V
CC  
V
CC  
= 5V, C-Grade, I-Grade  
= 5V, H-Grade  
0.6  
0.6  
1.8  
4
μA  
μA  
SD  
2631fb  
8
LTC2631  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2631A-HM12/-HZ12 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input  
l
l
Input Voltage Range  
Resistance  
0
V
V
kΩ  
pF  
CC  
160  
190  
7.5  
220  
Capacitance  
l
l
I
Reference Current, Power-Down Mode  
DAC Powered Down  
0.005  
0.1  
μA  
REF  
Reference Output  
Output Voltage  
2.032  
2.048  
10  
2.064  
V
ppm/°C  
kΩ  
Reference Temperature Coefficient  
Output Impedance  
0.5  
10  
Capacitive Load Driving  
Short-Circuit Current  
μF  
V
CC  
= 5.5V; REF Shorted to GND  
4.3  
mA  
Digital I/O  
l
l
l
V
V
V
Low Level Input Voltage (SDA and SCL) (Note 14)  
High Level Input Voltage (SDA and SCL) (Note 11)  
–0.5  
0.7V  
0.3V  
V
V
V
IL  
CC  
IH  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1)  
See Test Circuit 1  
0.15V  
IL(CAn)  
CC  
l
l
l
l
V
High Level Input Voltage on CAn  
(n = 0, 1)  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.85V  
V
kΩ  
IH(CAn)  
CC  
R
R
R
Resistance from CAn (n = 0, 1)  
10  
10  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1)  
to GND to Set CAn = GND  
kΩ  
Resistance from CAn (n = 0, 1)  
2
0
MΩ  
to V or GND to Set CAn = Float  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
B
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 12)  
l
Pulse Width of Spikes Suppressed by  
Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
10  
μA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 8)  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pin CAn (n = 0, 1)  
CAn  
2631fb  
9
LTC2631  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded unless otherwise specified.  
LTC2631-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2631A-HM12/-HZ12 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Performance  
t
S
Settling Time  
V
= 5V (Note 9)  
CC  
0.39% ( 1LSB at 8-Bits)  
0.098% ( 1LSB at 10-Bits)  
0.024% ( 1LSB at 12-Bits)  
3.7  
4.2  
4.6  
μs  
μs  
μs  
Voltage-Output Slew Rate  
Capacitance Load Driving  
Glitch Impulse  
1
V/μs  
pF  
500  
3.0  
300  
At Mid-Scale Transition  
External Reference  
nV•s  
kHz  
Multiplying Bandwidth  
Output Voltage Noise Density  
e
n
At f = 1kHz, External Reference  
At f = 10kHz, External Reference  
At f = 1kHz, Internal Reference  
At f = 10kHz, Internal Reference  
140  
130  
210  
200  
nV√Hz  
nV√Hz  
nV√Hz  
nV√Hz  
Output Voltage Noise  
0.1Hz to 10Hz, External Reference  
0.1Hz to 10Hz, Internal Reference  
0.1Hz to 200kHz, External Reference  
0.1Hz to 200kHz, Internal Reference,  
20  
20  
650  
670  
μV  
P-P  
μV  
P-P  
μV  
P-P  
μV  
P-P  
C
= 0.33μF  
REF  
2631fb  
10  
LTC2631  
TIMING CHARACTERISTICS  
The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V. (See Figure 1) (Note 13).  
LTC2631-HM12/-HM10/-HM8/-HZ12/-HZ10/-HZ8, LTC2631A-HM12/-HZ12 (VFS = 4.096V)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
μs  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
400  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
μs  
0.6  
μs  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
μs  
0
0.9  
μs  
Data Set-Up Time  
100  
ns  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 12)  
(Note 12)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
ns  
B
B
ns  
f
μs  
SU(STO)  
BUF  
1.3  
μs  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltages are with respect to GND.  
Note 3: High temperatures degrade operating lifetimes. Operating lifetime  
Note 7: Digital inputs at 0V or V  
Note 8: Guaranteed by design and not production tested.  
Note 9: Internal Reference mode. DAC is stepped 1/4 scale to 3/4 scale  
and 3/4 scale to 1/4 scale. Load is 2kΩ in parallel with 100pF to GND.  
Note 10: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
.
CC  
is derated at temperatures greater than 105°C.  
Note 11: Maximum V = V  
+ 0.5V  
CC(MAX)  
IH  
Note 4: Linearity and monotonicity are defined from code k to code  
L
Note 12: C = capacitance of one bus line in pF  
B
N
N
2 – 1, where N is the resolution and k is given by k = 0.016 • (2 / V ),  
L
L
FS  
Note 13: All values refer to V = V  
and V = V  
levels.  
IL(MAX)  
IH  
IH(MIN)  
IL  
rounded to the nearest whole code. For V = 2.5V and N = 12, k = 26 and  
FS  
L
Note 14: Minimum V exceeds the Absolute Maximum rating. This  
IL  
linearity is defined from code 26 to code 4,095. For V = 4.096V and  
FS  
condition won’t damage the IC, but could degrade performance.  
Note 15: Full-scale error is determined using the reference voltage  
measured at the REF pin.  
N = 12, k = 16 and linearity is defined from code 16 to code 4,095.  
L
Note 5: Inferred from measurement at code 16 (LTC2631-12), code 4  
(LTC2631-10) or code 1 (LTC2631-8), and at full-scale.  
Note 6: This IC includes current limiting that is intended to protect the  
device during momentary overload conditions. Junction temperature can  
exceed the rated maximum during current limiting. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
2631fb  
11  
LTC2631  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2631-L12 (Internal Reference, VFS = 2.5V)  
Reference Output Voltage  
vs Temperature  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
1.260  
1.255  
1.250  
1.245  
1.240  
V
CC  
= 3V  
V
CC  
= 3V  
V
CC  
= 3V  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
2048  
3072  
2048  
3072  
50  
100  
125 150  
0
4095  
0
4095  
–50 –25  
25  
75  
1024  
1024  
0
CODE  
CODE  
TEMPERATURE (°C)  
2631 G01  
2631 G02  
2631 G03  
Full-Scale Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
2.52  
2.51  
2.50  
2.49  
2.48  
1.0  
0.5  
1.0  
0.5  
V
CC  
= 3V  
V
CC  
= 3V  
V
CC  
= 3V  
INL (POS)  
DNL (POS)  
DNL (NEG)  
0
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
50  
100  
125 150  
–50 –25  
25  
75  
50  
100  
50  
100  
0
–50 –25  
25  
75  
125 150  
–50 –25  
25  
75  
125 150  
0
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2631 G06  
2631 G04  
2631 G05  
Settling to 1LSB  
Settling to 1LSB  
3/4 SCALE TO 1/4 SCALE STEP  
= 3V, V = 2.5V  
V
CC  
FS  
9th CLOCK OF  
3rd DATA BYTE  
R
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
SCL  
2V/DIV  
V
OUT  
1LSB/DIV  
4.1μs  
3.6μs  
V
OUT  
1LSB/DIV  
9th CLOCK OF  
3rd DATA BYTE  
1/4 SCALE TO 3/4 SCALE STEP  
= 3V, V = 2.5V  
V
CC  
FS  
SCL  
2V/DIV  
R
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2μs/DIV  
2μs/DIV  
2631 G08  
2631 G07  
2631fb  
12  
LTC2631  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2631-H12 (Internal Reference, VFS = 4.096V)  
Reference Output Voltage  
vs Temperature  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
1.0  
0.5  
2.068  
2.058  
2.048  
2.038  
2.028  
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
2048  
3072  
2048  
3072  
50  
100  
125 150  
0
4095  
0
4095  
–50 –25  
25  
75  
1024  
1024  
0
CODE  
CODE  
TEMPERATURE (°C)  
2631 G09  
2631 G10  
2631 G11  
Full-Scale Output Voltage  
vs Temperature  
INL vs Temperature  
DNL vs Temperature  
1.0  
0.5  
4.115  
4.105  
4.095  
4.085  
4.075  
1.0  
0.5  
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
INL (POS)  
DNL (POS)  
DNL (NEG)  
0
0
INL (NEG)  
–0.5  
–0.5  
–1.0  
–1.0  
50  
100  
50  
–50 –25  
25  
75  
125 150  
–50 –25  
25  
75 100 125 150  
50  
100  
0
0
–50 –25  
25  
75  
125 150  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2631 G13  
2631 G14  
2631 G12  
Settling to 1LSB  
Settling to 1LSB  
3/4 SCALE TO 1/4 SCALE STEP  
= 5V, V = 4.095V  
V
CC  
FS  
9th CLOCK OF  
3rd DATA BYTE  
R
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
SCL  
5V/DIV  
V
OUT  
1LSB/DIV  
4.6μs  
V
OUT  
1LSB/DIV  
3.9μs  
9th CLOCK OF  
3rd DATA BYTE  
1/4 SCALE TO 3/4 SCALE STEP  
= 5V, V = 4.095V  
V
CC  
FS  
SCL  
5V/DIV  
R
= 2k, C = 100pF  
L
L
AVERAGE OF 256 EVENTS  
2μs/DIV  
2μs/DIV  
2631 G16  
2631 G15  
2631fb  
13  
LTC2631  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2631-10  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
1.0  
0.5  
V
CC  
V
FS  
= 5V  
= 4.096V  
V
CC  
V
FS  
= 5V  
= 4.096V  
INTERNAL REF.  
INTERNAL REF.  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
512  
768  
512  
768  
0
1023  
0
1023  
256  
256  
CODE  
CODE  
2631 G17  
2631 G18  
LTC2631-8  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.5  
0.50  
0.25  
0
V
CC  
V
FS  
= 3V  
= 2.5V  
V
CC  
V
FS  
= 3V  
= 2.5V  
INTERNAL REF.  
INTERNAL REF.  
0
–0.5  
–1.0  
–0.25  
–0.50  
128  
192  
128  
192  
0
255  
0
255  
64  
64  
CODE  
CODE  
2631 G19  
2631 G20  
LTC2631  
Load Regulation  
Current Limiting  
10  
8
0.20  
0.15  
0.10  
0.05  
0
V
CC  
V
CC  
V
CC  
= 5V (LTC2631-H)  
= 5V (LTC2631-L)  
= 3V (LTC2631-L)  
V
CC  
V
CC  
V
CC  
= 5V (LTC2631-H)  
= 5V (LTC2631-L)  
= 3V (LTC2631-L)  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
INTERNAL REF.  
INTERNAL REF.  
CODE = MIDSCALE  
CODE = MIDSCALE  
–30  
–20  
–10  
0
10  
20  
30  
–30  
–20  
–10  
0
10  
20  
30  
I
(mA)  
I
(mA)  
OUT  
OUT  
2631 G21  
2631 G22  
2631fb  
14  
LTC2631  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2631  
Offset Error vs Temperature  
Gain Error vs VCC  
Gain Error vs Temperature  
3
2
0.4  
0.3  
0.4  
0.3  
EXTERNAL REF.  
= 2.5V  
EXTERNAL REF.  
= 2.5V  
V
V
REF  
REF  
0.2  
0.2  
1
0.1  
0.1  
0
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
2631 G23  
2.5  
3
3.5  
4
4.5  
5
5.5  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
2631 G25  
V
(V)  
CC  
2631 G24  
Large-Signal Response  
Mid-Scale-Glitch Impulse  
Power-On Reset Glitch  
LTC2631-L  
9th CLOCK OF  
3rd DATA BYTE  
V
CC  
SCL  
5V/DIV  
2V/DIV  
V
OUT  
LTC2631-H12, V = 5V:  
CC  
3.0nV-s TYP  
0.5V/DIV  
V
OUT  
ZERO-SCALE  
5mV/DIV  
V
OUT  
LTC2631-L12, V = 3V:  
CC  
2.1nV-s TYP  
2mV/DIV  
V
= V = 5V  
FS  
CC  
1/4 SCALE TO 3/4 SCALE  
2μs/DIV  
2μs/DIV  
200μs/DIV  
2631 G26  
2631 G27  
2631 G28  
Headroom at Rails  
vs Output Current  
Exiting Power-Down to Mid-Scale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
CS/LD  
2V/DIV  
3V (LTC2631-L) SOURCING  
V
OUT  
0.5V/DIV  
5V SINKING  
3V (LTC2631-L) SINKING  
LTC2631-H  
4μs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
2631 G30  
I
(mA)  
OUT  
2631 G29  
2631fb  
15  
LTC2631  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2631  
Supply Current  
vs REF_SEL Voltage  
Supply Current vs Logic Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
SWEEP REF_SEL  
BETWEEN 0V AND V  
SWEEP SCL AND SDA  
BETWEEN 0V AND V  
CC  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
V
= 3V  
(LTC2631-L)  
CC  
V
= 3V  
(LTC2631-L)  
CC  
0
1
2
3
4
5
0
1
2
3
4
5
REF_SEL VOLTAGE (V)  
LOGIC VOLTAGE (V)  
2631 G32  
2631 G31  
Multiplying Bandwidth  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
V
V
V
= 5V  
REF(DC)  
REF(AC)  
CC  
= 2V  
= 0.2V  
P-P  
CODE = FULL SCALE  
1k  
10k  
100k  
1000k  
FREQUENCY (Hz)  
2631 G33  
0.1Hz to 10Hz Voltage Noise  
Noise Voltage vs Frequency  
500  
400  
300  
200  
100  
0
INTERNAL REF.  
CODE = MIDSCALE  
LTC2631-L, V = 4V  
CC  
INTERNAL REF.  
CODE = MIDSCALE  
LTC2631-H  
10μV/DIV  
(V = 5V)  
CC  
LTC2631-L  
(V = 4V)  
CC  
1s/DIV  
1k  
10k  
100k  
100  
1M  
2631 G35  
FREQUENCY (Hz)  
2631 G34  
2631fb  
16  
LTC2631  
PIN FUNCTIONS  
CA0 (Pin 1): Chip Address Bit 0. Tie this pin to V , GND  
REF (Pin 6): Reference Voltage Input or Output. When  
CC  
2
or leave it floating to select an I C slave address for the  
External Reference mode is selected, REF is an input (0V  
part (see Tables 1 and 2).  
≤ V ≤ V ) where the voltage supplied sets the full-  
REF CC  
scale voltage. When Internal Reference is selected, the  
10ppm/°C 1.25V (LTC2631-L) or 2.048V (LTC2631-H)  
internal reference is available at the pin. This output may  
be bypassed to GND with up to 10μF (0.33μF is recom-  
mended), and must be buffered when driving external DC  
load current.  
SCL (Pin 2): Serial Clock Input Pin. Data is shifted into  
the SDA pin at the rising edges of the clock. This high  
impedance pin requires a pull-up resistor or current  
source to V .  
CC  
SDA (Pin 3): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in. Open-drain  
N-channel output during acknowledgment. SDA requires  
V
OUT  
(Pin 7): DAC Analog Voltage Output.  
CA1 (Pin 8, LTC2631-Z): Chip Address Bit 1. Tie this pin  
2
a pull-up resistor or current source to V .  
to V , GND or leave it floating to select an I C slave ad-  
CC  
CC  
dress for the part (see Table 1).  
GND (Pin 4): Ground.  
REF_SEL (Pin 8, LTC2631-M): Selects default Reference  
V
(Pin 5): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V  
CC  
CC  
at power up. Tie to V to select the Internal Reference,  
CC  
(LTC2631-L) or 4.5V ≤ V ≤ 5.5V (LTC2631-H). Bypass  
CC  
or GND to select an External Reference. After power-up,  
the logic state at this pin is ignored and the reference may  
be changed only by software command.  
to GND with a 0.1μF capacitor.  
2631fb  
17  
LTC2631  
BLOCK DIAGRAMS  
LTC2631-Z  
V
CC  
REF  
CA1  
CA0  
2
I C  
INTERNAL  
REFERENCE  
ADDRESS  
DECODE  
SWITCH  
CONTROL  
DECODE LOGIC  
RESISTOR  
DIVIDER  
SCL  
SDA  
2
I C  
INTERFACE  
DACREF  
DAC  
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
GND  
LTC2631-M  
V
CC  
REF  
2
I C  
CA0  
ADDRESS  
DECODE  
INTERNAL  
REFERENCE  
REF_SEL  
SWITCH  
CONTROL  
DECODE LOGIC  
RESISTOR  
DIVIDER  
SCL  
SDA  
2
I C  
INTERFACE  
DACREF  
DAC  
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
GND  
2631 BD  
2631fb  
18  
LTC2631  
TEST CIRCUITS  
Test Circuits for I2C Digital I/O (See Electrical Characteristics)  
Test Circuit 1 Test Circuit 2  
V
CC  
R /R /R  
INH INL INF  
100ꢀ  
/V  
CAn  
CAn  
V
IH(CAn) IL(CAn)  
GND  
2631 TC  
2631fb  
19  
LTC2631  
TIMING DIAGRAMS  
2631fb  
20  
LTC2631  
OPERATION  
The LTC2631 is a family of single voltage-output DACs in  
8-leadThinSOTpackages.EachDACcanoperaterail-to-rail  
using an external reference, or with its full-scale voltage  
set by an integrated reference. Twelve combinations of  
accuracy (12-, 10-, and 8-bit), power-on reset value (zero  
or mid-scale), and full-scale voltage (2.5V or 4.096V) are  
code,Nistheresolution,andV iseither2.5V(LTC2631-  
REF  
LM/LTC2631-LZ) or 4.096V (LTC2631-HM/LTC2631-HZ)  
when in Internal Reference mode, and the voltage at REF  
(Pin 6) when in External Reference mode.  
2
I C Serial Interface  
2
available. The LTC2631 is controlled using a 2-wire I C  
interface.  
The LTC2631 communicates with a host using the stan-  
2
dard 2-wire I C interface. The Timing Diagrams (Figures 1  
and 2) show the timing relationship of the signals on the  
bus. The two bus lines, SDA and SCL, must be high when  
the bus is not in use. External pull-up resistors or current  
sources are required on these lines. The value of these  
pull-up resistors is dependent on the power supply and  
can be obtained from the I C specifications. For an I C  
bus operating in the fast mode, an active pull-up will be  
necessary if the bus capacitance is greater than 200pF.  
Power-On Reset  
TheLTC2631-HZ/LTC2631-LZcleartheoutputtozero-scale  
when power is first applied, making system initialization  
consistent and repeatable.  
2
2
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2631  
containscircuitrytoreducethepower-onglitch:theanalog  
output typically rises less than 5mV above zero-scale  
during power on if the power supply is ramped to 5V in  
1msormore.Ingeneral,theglitchamplitudedecreasesas  
the power supply ramp time is increased. See “Power-On  
Reset Glitch” in the Typical Performance Characteristics  
section.  
The LTC2631 is a receive-only (slave) device. The master  
can write to the LTC2631. The LTC2631 does not respond  
to a read from the master.  
START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communi-  
cationtoaslavedevicebytransmittingaSTARTcondition.  
A START conditionis generated by transitioningSDA from  
high to low while SCL is high.  
The LTC2631-HM/LTC2631-LM provide an alternative  
reset, setting the output to mid-scale when power is first  
applied.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
Default reference mode selection is described in the Ref-  
erence Modes section.  
Power Supply Sequencing  
2
another I C device.  
The voltage at REF (Pin 6) should be kept within the range  
– 0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum Rat-  
REF  
CC  
Acknowledge  
ings). Particular care should be taken to observe these  
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the  
latest byte of information was properly received. The  
Acknowledge related clock pulse is generated by the  
master. The master releases the SDA line (HIGH) during  
theAcknowledgeclockpulse.Theslave-receivermustpull  
downtheSDAbuslineduringtheAcknowledgeclockpulse  
so that it remains a stable LOW during the HIGH period  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at V (Pin 5) is in transition.  
CC  
Transfer Function  
The digital-to-analog transfer function is  
k
VOUT(IDEAL) ⎜  
=
V
N REF  
2
where k is the decimal equivalent of the binary DAC input  
of this clock pulse. The LTC2631 responds to a write by a  
2631fb  
21  
LTC2631  
OPERATION  
master in this manner but does not acknowledge a read  
operation; in that case, SDA is retained HIGH during the  
period of the Acknowledge clock pulse.  
The maximum capacitive load allowed on the CA0/CA1  
address pins is 10pF, as these pins are driven during ad-  
dress detection to determine if they are floating.  
Chip Address  
Write Word Protocol  
The state of pins CA0 and CA1 (LTC2631-HZ/LTC2631-  
LZ) determines the slave address of the part. These pins  
The master initiates communication with the LTC2631  
with a START condition and a 7-bit slave address followed  
by the Write bit (W) = 0. The LTC2631 acknowledges by  
pulling the SDA pin low at the ninth clock if the 7-bit slave  
address matches the address of the part (set by CA0/CA1)  
or the global address. The master then transmits 3-bytes  
of data. The LTC2631 acknowledges each byte of data by  
pulling the SDA line low at the ninth clock of each data  
byte transmission. After receiving three complete bytes  
of data, the LTC2631 executes the command specified in  
the 24-bit input word.  
can each be set to any one of three states: V , GND or  
CC  
float. This results in nine (LTC2631-HZ/LTC2631-LZ) or  
three (LTC2631-HM/LTC2631-LM) selectable addresses  
for the part. The slave address assignments are shown  
in Tables 1 and 2.  
Table 1. Slave Address Map (LTC2631-Z)  
CA1  
GND  
CA0  
GND  
A6  
0
A5  
0
A4  
1
A3  
0
A2  
0
A1  
0
A0  
0
GND  
FLOAT  
0
0
1
0
0
0
1
If more than three data bytes are transmitted after a valid  
7-bitslaveaddress,theLTC2631doesnotacknowledgethe  
extra bytes of data (SDA is high during the 9th clock).  
GND  
V
0
0
1
0
0
1
0
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
0
0
1
0
0
1
1
FLOAT  
0
1
0
0
0
0
0
TheformatofthethreedatabytesisshowninFigure3.The  
first byte of the input word consists of the 4-bit command,  
followed by four don’t-cares bits. The next two bytes  
contain the 16-bit data word, which consists of the 12-,  
10- or 8-bit input code, MSB to LSB, followed by 4, 6 or 8  
don’t-caresbits(LTC2631-12,LTC2631-10andLTC2631-8  
respectively). A typical LTC2631 write transaction is  
shown in Figure 4.  
V
0
1
0
0
0
0
1
CC  
V
CC  
V
CC  
V
CC  
GND  
0
1
0
0
0
1
0
FLOAT  
0
1
0
0
0
1
1
V
0
1
1
0
0
0
0
CC  
GLOBAL ADDRESS  
1
1
1
0
0
1
1
Table 2. Slave Address Map (LTC2631-M)  
CA0  
GND  
A6  
0
A5  
0
A4  
1
A3  
0
A2  
0
A1  
0
A0  
0
The command bit assignments (C3-C0) are shown in  
Table 3. The first four commands in the table consist of  
write and update operations. A write operation loads a  
16-bit data word from the 32-bit shift register into the  
input register. In an update operation, the data word is  
copied from the input register to the DAC register and  
converted to an analog voltage at the DAC output. The  
update operation also powers up the DAC if it had been in  
power-down mode. The data path and registers are shown  
in the Block Diagram.  
FLOAT  
0
0
1
0
0
0
1
V
CC  
0
0
1
0
0
1
0
GLOBAL ADDRESS  
1
1
1
0
0
1
1
Inadditiontotheaddressselectedbytheaddresspins, the  
partalsorespondstoaglobaladdress.Thisaddressallows  
a common write to all LTC2631 parts to be accomplished  
2
using one 3-byte write transaction on the I C bus. The  
global address, listed at the end of Tables 1 and 2, is a 7-bit  
hardwired address not selectable by CA0/CA1. If another  
address is required, please consult the factory.  
2631fb  
22  
LTC2631  
OPERATION  
Write Word Protocol for LTC2631  
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
INPUT WORD  
A
3RD DATA BYTE  
A
P
S
SLAVE ADDRESS  
Input Word (LTC2631-12)  
C3  
C1  
X
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
C2  
C0  
X
X
X
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2631-10)  
C3  
C1  
X
X
X
X
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE  
X
X
X
X
C2  
C0  
1ST DATA BYTE  
3RD DATA BYTE  
Input Word (LTC2631-8)  
C3  
C1  
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE  
X
X
X
X
X
X
X
C2  
C0  
2631 F03  
1ST DATA BYTE  
3RD DATA BYTE  
Figure 3. Command and Data Input Format  
Table 3. Command Codes  
COMMAND*  
to the REF pin will improve noise performance; 0.33μF  
is recommended, and up to 10μF can be driven without  
oscillation. This output must be buffered when driving  
external DC load current.  
C3  
0
C2  
0
C1 C0  
0
0
1
0
1
1
0
1
1
0
0
1
Write to Input Register  
0
0
Update (Power Up) DAC Register  
Write to and Update (Power Up) DAC Register  
Power Down  
Alternatively, the DAC can operate in External Reference  
modeusingcommand0111.Inthismode,aninputvoltage  
supplied externally to the REF pin provides the reference  
0
0
0
1
0
1
Select Internal Reference  
(0V ≤ V  
≤ V ) and the supply current is reduced.  
REF  
CC  
0
1
Select External Reference  
External Reference mode is the power-on default for  
LTC2631-HM/LTC2631-LM when REF_SEL is tied low.  
*Command codes not shown are reserved and should not be used.  
The reference mode of LTC2631-HZ/LTC2631-LZ can be  
changed only by software command. The same is true for  
LTC2631-HM/LTC2631-LMafterpower-on,afterwhichthe  
logic state on REF_SEL is ignored.  
Reference Modes  
For applications where an accurate external reference is  
notavailable,theLTC2631hasauser-selectable,integrated  
reference. The LTC2631-LM/LTC2631-LZ provide a full-  
scaleoutputof2.5V.TheLTC2631-HM/LTC2631-HZprovide  
a full-scale output of 4.096V. The internal reference can be  
useful in applications where the supply voltage is poorly  
regulated.InternalReferencemodecanbeselectedbyusing  
command 0110, and is the power-on default for LTC2631-  
HZ/LTC2631-LZ, as well as for LTC2631-HM/LTC2631-LM  
when REF_SEL is tied high.  
Power-Down Mode  
Forpower-constrainedapplications,theLTC2631’spower-  
down mode can be used to reduce the supply current  
whenever the DAC output is not needed. When in power  
down, the buffer amplifier, bias circuit, and reference  
circuit are disabled and draw essentially zero current. The  
DAC output is put into a high-impedance state, and the  
output pin is passively pulled to ground through a 200kΩ  
resistor.InputandDACregistercontentsarenotdisturbed  
during power down.  
The 10ppm/°C, 1.25V (LTC2631-LM/LTC2631-LZ) or  
2.048V (LTC2631-HM/LTC2631-HZ) internal reference  
is available at the REF pin. Adding bypass capacitance  
2631fb  
23  
LTC2631  
OPERATION  
The DAC can be put into power-down mode by using  
command 0100. The supply current is reduced to 1.8μA  
maximum (C and I grades) and the REF pin becomes high  
impedance (typically > 1GΩ).  
Similarly, limiting can occur near full-scale when the REF  
pin is tied to V . If V = V and the DAC full-scale error  
CC  
REF  
CC  
(FSE) is positive, the output for the highest codes limits  
at V , as shown in Figure 5c. No full-scale limiting can  
CC  
occur if V is less than V – FSE.  
REF  
CC  
Normal operation resumes after executing any command  
that includes a DAC update, as shown in Table 3. The  
DAC is powered up and its voltage output is updated.  
Normal settling is delayed while the bias, reference, and  
amplifier circuits are re-enabled. When the REF pin output  
is bypassed to GND with 1nF or less, the power-up delay  
time is 20μs for settling to 12-bits. This delay increases  
to 200μs for 0.33μF, and 10ms for 10μF.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Board Layout  
ThePCboardshouldhaveseparateareasfortheanalogand  
digital sections of the circuit. A single, solid ground plane  
should be used, with analog and digital signals carefully  
routed over separate areas of the plane. This keeps digital  
signals away from sensitive analog signals and minimizes  
the interaction between digital ground currents and the  
analog section of the ground plane. The resistance from  
the LTC2631 GND pin to the ground plane should be as  
low as possible. Resistance here will add directly to the  
effective DC output impedance of the device (typically  
0.1Ω).NotethattheLTC2631isnomoresusceptibletothis  
effect than any other parts of this type; on the contrary, it  
allows layout-based performance improvements to shine  
ratherthanlimitingattainableperformancewithexcessive  
internal resistance.  
Voltage Output  
The LTC2631’s integrated rail-to-rail amplifier has guar-  
anteed load regulation when sourcing or sinking up to  
10mA at 5V, and 5mA at 3V.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load current. The measured change in output voltage per  
change in forced load current is expressed in LSB/mA.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to ohms. The amplifier’s DC output  
impedance is 0.1Ω when driving a load well away from  
the rails.  
Another technique for minimizing errors is to use a sepa-  
rate power ground return trace on another board layer.  
The trace should run between the point where the power  
supply is connected to the board and the DAC ground pin.  
Thus the DAC ground pin becomes the common point for  
analog ground, digital ground, and power ground. When  
the LTC2631 is sinking large currents, this current flows  
out the ground pin and directly to the power ground trace  
without affecting the analog ground plane voltage.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 50Ω typical channel resistance of the output devices  
(e.g., when sinking 1mA, the minimum output voltage is  
50Ω • 1mA, or 50mV). See the graph “Headroom at Rails  
vs. Output Current” in the Typical Performance Charac-  
teristics section.  
The amplifier is stable driving capacitive loads of up to  
500pF.  
It is sometimes necessary to interrupt the ground plane  
to confine digital ground currents to the digital portion of  
the plane. When doing this, make the gap in the plane only  
as long as it needs to be to serve its purpose and ensure  
that no traces cross over the gap.  
Rail-to-Rail Output Considerations  
In any rail-to-rail voltage-output device, the output is lim-  
ited to voltages within the supply range.  
SincetheanalogoutputoftheDACcannotgobelowground,  
it may limit the lowest codes, as shown in Figure 5b.  
2631fb  
24  
LTC2631  
OPERATION  
2631fb  
25  
LTC2631  
OPERATION  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2631 F05  
(c)  
OUTPUT  
VOLTAGE  
0V  
0
2,048  
4,095  
INPUT CODE  
(a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
Figure 5. Effects of Rail-to-Rail Operation on a DAC Transfer Curve (Shown for 12-Bits)  
(a) Overall Transfer Function  
(b) Effect of Negative Offset for Codes Near Zero  
(c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
2631fb  
26  
LTC2631  
PACKAGE DESCRIPTION  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
2631fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2631  
TYPICAL APPLICATION  
Programmable 5V Output  
5V  
0.1μF  
5V  
5
4
10V  
7
1
0.1μF  
LTC2054  
2
3
8
9
10  
+
0.1μF  
6
M9  
M3  
M1  
5
6
V
CC  
V
CC  
REF  
1.7k  
1.7k  
8
3
REF_SEL  
LT1991  
V
= 5V  
OUT  
OUT  
SDA  
7
1
2
3
LTC2631A  
-LM12  
V
OUT  
2
P1  
P3  
P9  
REF  
I C BUS  
2
1
5
V
SCL  
CA0  
EE  
4
CA0  
GND  
4
0.1μF  
–10V  
2631 TA03  
RELATED PARTS  
PART NUMBER  
LTC1663  
DESCRIPTION  
Single 10-Bit V  
Single 10-Bit V  
COMMENTS  
DAC in SOT-23  
DAC in SOT-23  
V
CC  
CC  
= 2.7V to 5.5V, 60μA, Internal Reference, SMBus Interface  
OUT  
OUT  
2
LTC1669  
V
= 2.7V to 5.5V, 60μA, Internal Reference, I C Interface  
LTC2360-LT2362/  
LTC2365-LTC2366  
12-Bit SAR ADCs in TSOT23-6/TSOT23-8 Packages 100ksps/250ksps/500ksps/1Msps/3Msps Output Rates  
LTC2450/LTC2452  
LTC2451/LTC2453  
16-Bit Single-Ended/Differential Delta Sigma ADCs  
16-Bit Single-Ended/Differential Delta Sigma ADCs  
SPI Interface, Tiny DFN Packages, 60Hz Output Rate  
2
I C Interface, Tiny DFN and TSOT23-8 Packages, 60Hz Output Rate  
LTC2600/LTC2610/LTC2620 Octal 16-/14-/12-Bit V  
DACs in 16-Lead SSOP  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2601/LTC2611/LTC2621 Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2602/LTC2612/LTC2622 Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
DACs in 16-Lead SSOP  
300μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
LTC2604/LTC2614/LTC2624 Quad 16-/14-/12-Bit V  
LTC2605/LTC2615/LTC2625 Octal 16-/14-/12-Bit V  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
SPI Serial Interface  
OUT  
2
DACs with I C Interface  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
OUT  
2
I C Interface  
2
LTC2606/LTC2616/LTC2626 Single 16-/14-/12-Bit V  
DACs with I C Interface 270μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output,  
OUT  
2
I C Interface  
2
LTC2609/LTC2619/LTC2629 Quad 16-/14-/12-Bit V  
DACs with I C Interface  
250μA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail Output with  
OUT  
OUT  
Separate V Pins for Each DAC  
REF  
LTC2630  
LTC2640  
Single 12-/10-/8-Bit V  
Reference in SC70  
DACs with 10ppm/°C  
180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Rail-to-Rail Output, SPI Interface  
Single 12-/10-/8-Bit SPI V  
Reference in ThinSOT  
DACs with 10ppm/°C 180μA per DAC, 2.7V to 5.5V Supply Range, 10ppm/°C Reference,  
Selectable External Reference Mode, Rail-to-Rail Output, SPI Interface  
OUT  
2631fb  
LT 1108 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

Linear

LTC2631AHTS8-HM8

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-HZ10

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-HZ12

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-HZ12#PBF

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2631AHTS8-HZ12#TRPBF

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2631AHTS8-HZ8

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-LM10

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-LM12

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear

LTC2631AHTS8-LM12#TRMPBF

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2631AHTS8-LM12#TRPBF

LTC2631 - Single 12-/10-/8-Bit I<sup>2</sup>C VOUT DACs with 10ppm/&deg;C Reference; Package: SOT; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2631AHTS8-LM8

Single 12-/10-/8-Bit I2C VOUT DACs with 10ppm/°C Reference
Linear