LTC2752ACLX-PBF [Linear]

Dual16-Bit SoftSpan IOUT DACs; Dual16位的SoftSpan IOUT DAC的
LTC2752ACLX-PBF
型号: LTC2752ACLX-PBF
厂家: Linear    Linear
描述:

Dual16-Bit SoftSpan IOUT DACs
Dual16位的SoftSpan IOUT DAC的

文件: 总24页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2752  
Dual16-Bit  
SoftSpan I DACs  
OUT  
FeaTures  
DescripTion  
The LTC®2752 is a dual 16-bit multiplying serial-input,  
current-outputdigital-to-analogconverter.Itoperatesfrom  
a single 3V to 5V supply and is guaranteed monotonic  
over temperature. The LTC2752A provides full 16-bit  
performance( 1LSBINLandDNL,max)overtemperature  
without any adjustments. This SoftSpan™ DAC offers  
six output ranges (up to 1ꢀV) that can be programmed  
through the 3-wire SPI serial interface, or pinstrapped for  
operation in a single range.  
n
Program or Pin-Strap Six Output Ranges  
0V to 5V, 0V to 10V, 2.5V to 7.5V, 2.5V, 5V, 10V  
n
Maximum 16-Bit INL Error: 1 LSB oꢀer  
Temperature  
n
Guaranteed Monotonic oꢀer Temperature  
n
Glitch Impulse 0.6nV•s (3V), 2.2nV•s (5V)  
n
Serial Readback of All On-Chip Registers  
n
1μA Maximum Supply Current  
n
2.7V to 5.5V Single-Supply Operation  
n
16-Bit Settling Time: 2µs  
Any on-chip register (including DAC output-range set-  
tings) can be read for verification in just one instruction  
cycle; and if you change register content, the altered  
register will be automatically read back during the next  
instruction cycle.  
n
Voltage-Controlled Offset and Gain Trims  
n
Clear and Power-On-Reset to ꢀV Regardless of  
Output Range  
48-Pin 7mm × 7mm LQFP Package  
n
Voltage-controlled offset and gain adjustments are also  
provided; and the power-on reset circuit and CLR pin both  
reset the DAC outputs to ꢀV regardless of output range.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 5481178.  
applicaTions  
n
High Resolution Offset and Gain Adjustment  
n
Process Control and Industrial Automation  
n
Automatic Test Equipment  
n
Data Acquisition Systems  
Typical applicaTion  
Dual 16-Bit VOUT DAC with Software-Selectable Ranges  
REFERENCE  
5V  
+
Integral Nonlinearity (INL)  
1.0  
R
10ꢀ ꢁANꢂE  
0.8  
FBA  
I
+
OUT1A  
OUT2A  
0.6  
I
V
OUTA  
DAC A  
0.4  
0.2  
V
DD  
V
OSADJA  
SPI with READBACK  
GND  
0
LTC2752  
R
I
FBB  
–0.2  
–0.4  
+
OUT1B  
OUT2B  
I
V
OUTB  
DAC B  
–0.6  
–0.8  
–1.0  
V
OSADJB  
0
16384  
32768  
CODE  
49152  
65535  
+
2752 TA01b  
ALL AMPLIFIERS 1/2 LT1469  
REFERENCE  
5V  
2752 TA01  
2752f  
LTC2752  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
I
, I  
to GND............................................ ꢀ.3V  
OUT1X OUT2X  
R
, R  
, REFX, R , R  
, V  
,
INX COMX  
FBX OFSX OSADJX  
GE  
to GND ....................................................... 18V  
ADJX  
V
to GND...................................................3V to 7V  
DD  
Digital Inputs to GND................................... –ꢀ.3V to 7V  
REFA  
REFA  
COMA  
1
2
3
4
5
6
7
8
9
36 REFB  
35 REFB  
Digital Outputs to GND ..... –ꢀ.3V to V +ꢀ.3V (max 7V)  
Operating Temperature Range  
DD  
R
34 R  
33 GE  
32 R  
31 R  
INB  
30 GND  
COMB  
ADJB  
INB  
GE  
ADJA  
R
LTC2752C ................................................ ꢀ°C to 7ꢀ°C  
LTC2752I .............................................–4ꢀ°C to 85°C  
Maximum Junction Temperature .......................... 15ꢀ°C  
Storage Temperature Range ..................–65°C to 15ꢀ°C  
Lead Temperature (Soldering, 1ꢀ sec)...................3ꢀꢀ°C  
INA  
R
INA  
GND  
I
I
29 I  
28 I  
OUT2AS  
OUT2AF  
OUT2BS  
OUT2BF  
GND 10  
CS/LD 11  
SDI 12  
27 GND  
26 LDAC  
25 S2  
LX PACKAGE  
48-LEAD (7mm s 7mm) PLASTIC LQFP  
T
JMAX  
= 15ꢀ°C, θ = 58°C/W  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2752BCLX#PBF  
LTC2752BILX#PBF  
LTC2752ACLX#PBF  
LTC2752AILX#PBF  
PART MARKING*  
LTC2752LX  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
ꢀ°C to 7ꢀ°C  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
48-Lead (7mm × 7mm) Plastic LQFP  
LTC2752LX  
–4ꢀ°C to 85°C  
ꢀ°C to 7ꢀ°C  
LTC2752LX  
LTC2752LX  
–4ꢀ°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
2752f  
LTC2752  
elecTrical characTerisTics VDD = 5V, VRINX = 5V unless otherwise specified. The l denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
LTC2752B  
TYP  
LTC2752A  
SYMBOL  
Static Performance  
Resolution  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
16  
16  
16  
16  
Bits  
Bits  
Monotonicity  
DNL  
INL  
GE  
Differential Nonlinearity  
Integral Nonlinearity  
Gain Error  
1
2
ꢀ.2  
ꢀ.4  
2
1
1
LSB  
LSB  
All Output Ranges  
∆Gain/∆Temp  
2ꢀ  
12  
LSB  
Gain Error Temperature  
Coefficient  
ꢀ.25  
ꢀ.25  
ppm/°C  
l
l
BZE  
Bipolar Zero Error  
All Bipolar Ranges  
12  
1
1
8
1
LSB  
Bipolar Zero Temperature  
Coefficient  
ꢀ.15  
ꢀ.ꢀ1  
ꢀ.15  
ppm/°C  
Unipolar Zero-Scale Error  
Power Supply Rejection  
Unipolar Ranges (Note 3)  
ꢀ.ꢀ1  
LSB  
l
l
PSR  
V
V
= 5V, 1ꢀ0  
= 3V, 1ꢀ0  
ꢀ.4  
1
ꢀ.ꢀ3  
ꢀ.1  
ꢀ.2  
ꢀ.5  
LSB/V  
LSB/V  
DD  
DD  
I
I
Leakage Current  
T = 25°C  
MIN  
ꢀ.ꢀ5  
2
5
ꢀ.ꢀ5  
2
5
nA  
nA  
LKG  
OUT1  
A
l
T
to T  
MAX  
VDD = 5V, VRINX = 5V unless otherwise specified. The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Pins  
l
l
l
l
l
l
Reference Inverting Resistors  
DAC Input Resistance  
Feedback Resistors  
(Note 4)  
16  
8
2ꢀ  
1ꢀ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
R
R
R
(Notes 5, 6)  
(Note 6)  
REF  
FB  
8
1ꢀ  
Bipolar Offset Resistors  
Offset Adjust Resistors  
Gain Adjust Resistors  
Output Capacitance  
(Note 6)  
16  
2ꢀ  
OFS  
R
1ꢀ24  
2ꢀ48  
128ꢀ  
256ꢀ  
VOSADJ  
R
GEADJ  
IOUT1  
C
Full-Scale  
Zero-Scale  
9ꢀ  
4ꢀ  
Dynamic Performance  
Output Settling Time  
Span Code = ꢀꢀꢀꢀ, 1ꢀV Step. To ꢀ.ꢀꢀ150 FS  
(Note 7)  
2
μs  
Glitch Impulse  
V
DD  
V
DD  
= 5V (Note 8)  
= 3V (Note 8)  
2.2  
ꢀ.6  
nV•s  
nV•s  
Digital-to-Analog Glitch Impulse  
Reference Multiplying BW  
(Note 9)  
ꢀV to 5V Range, V = 3V  
2
1
nV•s  
MHz  
,
RMS  
REF  
Code = Full Scale, –3dB BW  
Multiplying Feedthrough Error  
ꢀV to 5V Range, V  
Sine Wave  
=
1ꢀV, 1ꢀkHz  
ꢀ.4  
mV  
REF  
Analog Crosstalk  
(Note 1ꢀ)  
–1ꢀ9  
–1ꢀ8  
13  
dB  
dB  
THD  
Total Harmonic Distortion  
Output Noise Voltage Density  
(Note 11) Multiplying  
(Note 12) at I  
nV/√Hz  
OUT1  
2752f  
LTC2752  
elecTrical characTerisTics VDD = 5V, VRINX = 5V unless otherwise specified. The l denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
l
l
V
Supply Voltage  
2.7  
5.5  
1
V
DD  
I
V
Supply Current  
Digital Inputs = ꢀV or V  
DD  
ꢀ.5  
μA  
DD  
DD  
Digital Inputs  
l
l
V
Digital Input High Voltage  
Digital Input Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
IH  
DD  
2.7V ≤ V < 3.3V  
DD  
l
l
V
4.5V < V ≤ 5.5V  
ꢀ.8  
ꢀ.6  
V
V
IL  
DD  
2.7V ≤ V ≤ 4.5V  
DD  
Hysteresis Voltage  
ꢀ.1  
V
µA  
pF  
l
l
I
IN  
Digital Input Current  
Digital Input Capacitance  
V
V
= GND to V  
DD  
1
6
IN  
C
IN  
= ꢀV (Note 13)  
IN  
Digital Outputs  
l
l
V
OH  
V
OL  
Digital Output High Voltage  
Digital Output Low Voltage  
I
I
= 2ꢀꢀµA, 2.7V ≤ V ≤ 5.5V  
V – ꢀ.4  
DD  
V
V
OH  
DD  
= 2ꢀꢀµA, 2.7V ≤ V ≤ 5.5V  
ꢀ.4  
OL  
DD  
TiMing characTerisTics  
The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
= 4.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
t
t
SDI Valid to SCK Set-Up  
SDI Valid to SCK Hold  
SCK High Time  
7
7
ns  
ns  
1
2
11  
11  
9
ns  
3
SCK Low Time  
ns  
4
CS/LD Pulse Width  
ns  
5
LSB SCK High to CS/LD High  
CS/LD Low to SCK Positive Edge  
CS/LD High to SCK Positive Edge  
SRO Propagation Delay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/LD High to RFLAG High  
SCK Frequency  
4
ns  
6
4
ns  
7
4
ns  
8
C
= 1ꢀpF  
18  
ns  
9
LOAD  
36  
15  
ns  
1ꢀ  
11  
12  
13  
ns  
C
C
= 1ꢀpF (Note 13)  
= 1ꢀpF (Note 13)  
5ꢀ  
4ꢀ  
4ꢀ  
ns  
LOAD  
ns  
LOAD  
5ꢀ0 Duty Cycle (Note 14)  
MHz  
V
DD  
= 2.7V to 3.3V  
l
l
l
l
l
l
l
t
t
t
t
t
t
t
SDI Valid to SCK Set-Up  
SDI Valid to SCK Hold  
SCK High Time  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
15  
15  
12  
5
SCK Low Time  
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK Positive Edge  
5
2752f  
LTC2752  
TiMing characTerisTics The l denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
t
t
t
t
t
t
CS/LD High to SCK Positive Edge  
SRO Propagation Delay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/LD High to RFLAG high  
SCK Frequency  
5
8
C
LOAD  
= 1ꢀpF  
26  
ns  
9
6ꢀ  
2ꢀ  
ns  
1ꢀ  
11  
12  
13  
ns  
C
C
= 1ꢀpF (Note 13)  
= 1ꢀpF (Note 13)  
7ꢀ  
6ꢀ  
25  
ns  
LOAD  
ns  
LOAD  
5ꢀ0 Duty Cycle (Note 14)  
MHz  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 8: Measured at the major carry transition, ꢀV to 5V range. Output  
amplifier: LT1468; C = 5ꢀpF.  
FB  
Note 9. Full-scale transition; REF = ꢀV.  
Note 10. Analog Crosstalk is defined as the AC voltage ratio V  
/V  
,
OUTB REFA  
expressed in dB. REFB is grounded, and DAC B is set to ꢀV-5V span and  
zero-, mid- or full- scale code. V is a 3V , 1kHz sine wave.  
REFA  
RMS  
Note 3: Calculation from feedback resistance and I  
specifications; not production tested. In most applications, unipolar zero-  
scale error is dominated by contributions from the output amplifier.  
leakage current  
OUT1  
Note 11. REF = 6V  
amplifier = LT1469.  
Note 12. Calculation from V = √4kTRB, where k = 1.38E-23 J/°K  
(Boltzmann constant), R = resistance (Ω), T = temperature (°K), and  
B = bandwidth (Hz). ꢀV to 5V Range; zero-, mid-, or full- scale.  
at 1kHz. ꢀV to 5V range. DAC code = FS. Output  
RMS  
n
Note 4: Input resistors measured from R to R  
; feedback resistors  
INX  
COMX  
measured from R  
to REFX.  
COMX  
Note 5: DAC input resistance is independent of code.  
Note 6: Parallel combination of the resistances from the specified pin to  
and from the specified pin to I  
Note 13. Guaranteed by design, not subject to test.  
Note 14. When using SRO, maximum SCK frequency f  
is limited by  
MAX  
I
.
OUT2X  
OUT1X  
SRO propagation delay t as follows:  
9
Note 7: Using LT1468 with C  
= 27pF. A ꢀ.ꢀꢀ150 settling time  
FEEDBACK  
1
of 1.7μs can be achieved by optimizing the time constant on an individual  
basis. See Application Note 74, Component and Measurement Advances  
Ensure 16-Bit DAC Settling Time.  
fMAX  
=
, where t is the setup time of the receiving device.  
S
2 t + t  
(
)
9
S
2752f  
LTC2752  
Typical perForMance characTerisTics  
VDD = 5V, VRINX = 5V, TA = 25°C, unless otherwise noted.  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL ꢀs Temperature  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
10ꢀ RANGE  
10ꢀ ꢁRNGE  
10ꢀ ꢁRNGE  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
+INL  
–INL  
0.2  
0.2  
0.2  
0
0
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
20  
TEMPERATURE (°C)  
40  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–40  
–20  
0
60  
80  
2752 G02  
2752 G03  
2752 G01  
DNL ꢀs Temperature  
Gain Error ꢀs Temperature  
Bipolar Zero Error ꢀs Temperature  
1.0  
0.8  
8
6
4
2
8
6
4
2
0ꢀ.5ꢁꢁpm°C TꢂP  
±0ꢀ25ꢁꢁpm°C TꢂP  
10ꢀ RANGE  
0.6  
0.4  
+DNL  
–DNL  
0.2  
0.0  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–2  
±2ꢀ5ꢃ  
±5ꢃ  
–4  
–6  
–8  
–4  
–6  
–8  
2ꢀ5ꢃ  
±±0ꢃ  
5ꢃ  
0ꢃ TO 5ꢃ  
.0ꢃ  
0ꢃ TO ±0ꢃ  
–2ꢀ5ꢃ TO 7ꢀ5ꢃ  
–2ꢀ5ꢃ TO 7ꢀ5ꢃ  
–40  
–20  
0
20  
TEMPERATURE (°C)  
40  
60  
80  
–40  
–20  
0
40  
60  
80  
–20  
0
40  
20  
–40  
60  
80  
20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2752 G04  
2752 G06  
2752 G05  
2752f  
LTC2752  
Typical perForMance characTerisTics  
VDD = 5V, VRINX = 5V, TA = 25°C, unless otherwise noted.  
INL ꢀs Reference Voltage  
DNL ꢀs Reference Voltage  
1.0  
1.0  
0.8  
5V RꢀNGꢁ  
5V RꢀNGꢁ  
0.8  
0.6  
0.4  
0.6  
0.4  
+DNL  
+DNL  
–DNL  
+INL  
–INL  
+INL  
–INL  
0.2  
0.0  
0.2  
0.0  
–DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
V(R ) (V)  
V(R ) (V)  
IN  
IN  
2752 G08  
2752 G07  
Multiplying Frequency Response  
ꢀs Digital Code  
INL ꢀs VDD  
DNL ꢀs VDD  
1.0  
0.8  
1.0  
ALL BITS ON  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
0
–20  
10V ꢀRNGꢁ  
10V ꢀRNGꢁ  
0.8  
0.6  
0.6  
0.4  
0.4  
–40  
D8  
+INL  
–INL  
+INL  
–INL  
D7  
0.2  
0.2  
D6  
–60  
D5  
0.0  
0.0  
D4  
D3  
–80  
D2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
D1  
D0  
–100  
–120  
–140  
0V TO 5V OUTPUT RANGE  
LT1468 OUTPUT AMPLIFIER  
FEEDBACK  
ALL BITS OFF  
C
= 15pF  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
100  
1k  
10k  
100k  
1M  
10M  
V
(V)  
V
(V)  
DD  
FREQUENCY (Hz)  
DD  
2752 G10  
2752 G09  
2752 G17  
2752f  
LTC2752  
Typical perForMance characTerisTics  
VDD = 5V, VRINX = 5V, TA = 25°C, unless otherwise noted.  
Supply Current  
ꢀs Logic Input Voltage  
Logic Threshold  
ꢀs Supply Voltage  
Supply Current  
ꢀs Clock Frequency  
5
4
3
2
1
0
100  
10  
2
1.75  
1.5  
ALTERNATING ZERO  
AND FULL-SCALE  
CLR, LDAC, SDI, SCK,  
CS/LD TIED TOGETHER  
1
RISING  
V
= 5V  
V
DD  
0.1  
1.25  
1
FALLING  
= 3V  
DD  
0.01  
0.001  
V
= 5V  
DD  
3
0.75  
0.5  
V
= 3V  
DD  
2
0.0001  
0
1
4
5
1
100  
10k  
1M  
100M  
2.5  
3.5  
4
4.5  
5
5.5  
3
DIGITAL INPUT VOLTAGE (V)  
V
(V)  
DD  
SCK FREQUENCY (Hz)  
2752 G11  
2752 G12  
2752 G13  
Settling Full-Scale Step  
Midscale Glitch (VDD = 3V)  
Midscale Glitch (VDD = 5V)  
2.2nV•s TYP  
0.6nV•s TYP  
CS/LD  
5V/DIV  
CS/LD  
5V/DIV  
UPD  
5V/DIV  
GATED  
SETTLING  
WAVEFORM  
100µV/DIV  
(AVERAGED)  
V
V
OUT  
OUT  
5mV/DIV  
5mV/DIV  
(AVERAGED)  
(AVERAGED)  
2752 G15  
2752 G16  
2752 G14  
500ns/DIV  
500ns/DIV  
500ns/DIV  
0V TO 5V RANGE  
0V TO 5V RANGE  
LT1468 OUTPUT AMPLIFIER  
LT1468 AMP; C  
= 20pF  
FEEDBACK  
LT1468 OUTPUT AMPLIFIER  
0V TO 10V STEP  
C
= 50pF  
C
= 50pF  
FEEDBACK  
FEEDBACK  
V
t
= –10V; SPAN CODE = 0000  
= 1.7µs to 0.0015% (16 BITS)  
REF  
FALLING MAJOR CARRY TRANSITION.  
RISING TRANSITION IS SIMILAR OR BETTER.  
FALLING MAJOR CARRY TRANSITION.  
SETTLE  
RISING TRANSITION IS SIMILAR OR BETTER.  
2752f  
LTC2752  
pin FuncTions  
REFA (Pins 1, 2): Feedback Resistor for the DAC A Refer-  
ence Inverting Amplifier, and Reference Input for DAC A.  
The 2ꢀk feedback resistor is connected internally from  
SRO (Pin 14): Serial Readback Output. Data is clocked out  
on the falling edge of SCK. Readback data begins clocking  
out after the last address bit Aꢀ is clocked in. SRO is an  
active output only when the chip is selected (i.e., when  
CS/LD is low). Otherwise SRO presents a high impedance  
output in order to allow other parts to control the bus.  
REFA to R . For normal operation tie this pin to the  
COMA  
output of the DAC A reference inverting amplifier (see  
Typical Applications). Typically –5V; accepts up to 15V.  
Pins 1 and 2 are internally shorted together.  
V
(Pin16):PositiveSupplyInput;2.7V≤V ≤5.5V. By-  
DD  
DD  
R
(Pin 3): Virtual Ground Point for the DAC A Ref-  
pass with a ꢀ.1μF low ESR ceramic capacitor to ground.  
COMA  
erence Amplifier Inverting Resistors. The 2ꢀk reference  
CLR (Pin 19): Asynchronous Clear Input. When this pin is  
low, all DAC registers (both code and span) are cleared to  
zero. All DAC outputs are cleared to zero volts.  
inverting resistors are connected internally from R to  
INA  
R
COMA  
and from R  
to REFA, respectively (see Block  
COMA  
Diagram). For normal operation tie R  
to the negative  
COMA  
RFLAG (Pin 20): Reset Flag Output. An active low output  
is asserted when there is a power-on reset or a clear event.  
Returns high when an Update command is executed.  
input of the external reference inverting amplifier (see  
Typical Applications).  
GE  
(Pin 4): Gain Adjust Pin for DAC A. This control  
ADJA  
DNC (Pin 21): Do not connect this pin.  
pin can be used to null gain error or to compensate for  
reference errors. The gain change expressed in LSB is  
the same for any output range. See System Offset and  
Gain Adjustments in the Operation section. Tie to ground  
if not used.  
M-SPAN (Pin 22): Manual Span Control Pin. M-SPAN is  
used in conjunction with pins S2, S1 and Sꢀ (Pins 25, 24  
and 23) to configure all DACs for operation in a single,  
fixed output range.  
R
(Pins 5, 6): Input Resistor for External Reference  
INA  
To configure the part for manual span use, tie M-SPAN  
Inverting Amplifier. The 2ꢀk input resistor is connected  
directly to V . The DAC output range is then set via  
DD  
internally from R to R . For normal operation tie  
INA  
COMA  
hardware pin strapping of pins S2, S1 and Sꢀ (rather than  
through the SPI port); and Write and Update commands  
have no effect on the active output span.  
R
to the external positive reference voltage (see Typical  
INA  
Applications). Either or both of these precision-matched  
resistor sets (each set comprising R , R and R  
)
EFX  
INX COMX  
ToconfigurethepartforSoftSpanuse,tieM-SPANdirectly  
to GND. The output ranges are then individually control-  
lable through the SPI port; and pins S2, S1 and Sꢀ have  
no effect.  
may be used to invert positive references to provide the  
negativevoltagesneededbytheDACs.Typically5V;accepts  
up to 15V. Pins 5 and 6 are internally shorted together.  
GND (Pins 7, 10, 15, 17, 18, 27, 30): Ground; tie to  
ground.  
See Manual Span Configuration in the Operation section.  
M-SPANmustbeconnectedeitherdirectlytoGND(SoftSpan  
I
, I  
(Pins 8, 9): DAC A Current Output  
OUT2AS OUT2AF  
configuration) or to V (manual span configuration).  
DD  
Complement Sense and Force Pins. Tie to ground via a  
clean, low-impedance path. These pins may be used with  
a precision ground buffer amp as a Kelvin sensing pair  
(see the Typical Applications section).  
S0 (Pin 23): Span Bit ꢀ Input. In Manual Span mode  
(M-SPANtiedtoV ),pinsS,S1andS2arepin-strapped  
DD  
to select a single fixed output range for all DACs. These  
pins should be tied to either GND or V even if they are  
DD  
CS/LD (Pin 11): Synchronous Chip Select and Load Input  
Pin.  
unused.  
S1(Pin24):SpanBit1Input.InManualSpanmode(M-SPAN  
SDI (Pin 12): Serial Data Input. Data is clocked in on the  
rising edge of the serial clock (SCK) when CS/LD is low.  
tied to V ), pins Sꢀ, S1 and S2 are pin-strapped to select  
DD  
a single fixed output range for all DACs. These pins should  
be tied to either GND or V even if they are unused.  
SCK (Pin 13): Serial Clock Input.  
DD  
2752f  
LTC2752  
pin FuncTions  
S2 (Pin 25): Span Bit 2 Input. In Manual Span mode (M-  
Typical Applications). Typically –5V; accepts up to 15V.  
Pins 35 and 36 are internally shorted together.  
SPAN tied to V ), pins Sꢀ, S1 and S2 are pin-strapped  
DD  
to select a single fixed output range for all DACs. These  
R
(Pins 37, 38): Bipolar Offset Resistor for DAC B.  
OFSB  
pins should be tied to either GND or V even if they are  
DD  
These pins provide the translation of the output voltage  
unused.  
range for bipolar spans. Accepts up to 15V; for normal  
LDAC (Pin 26): Asynchronous DAC Load Input. When  
LDAC is a logic low, all DACs are updated (CS/LD must  
be high).  
operation tieto the positive referencevoltage at R (Pins  
INB  
31, 32). Pins 37 and 38 are internally shorted together.  
R
(Pins 39, 40): DAC B Feedback Resistor. For normal  
FBB  
I
, I  
(Pins 28, 29): DAC B Current Output  
operation tieto the outputofthe I/V converter amplifier for  
OUT2BF OUT2BS  
Complement Force and Sense Pins. Tie to ground via a  
clean, low impedance path. These pins may be used with  
a precision ground buffer amp as a Kelvin sensing pair  
(see the Typical Applications section).  
DAC B (see Typical Applications). The DAC output current  
fromI  
flowsthroughthefeedbackresistortotheR  
FBB  
OUT1B  
pins. Pins 39 and 4ꢀ are internally shorted together.  
I
(Pin 41): DAC B Current Output. This pin is a virtual  
OUT1B  
R
(Pins31,32):InputResistorfortheExternalReference  
ground when the DAC is operating and should reside at  
V. For normal operation tie to the negative input of the I/V  
converter amplifier for DAC B (see Typical Applications).  
INB  
Inverting Amplifier. The 2ꢀk input resistor is connected  
internally from R to R . For normal operation tie  
INB  
COMB  
R
to the external positive reference voltage (see Typical  
INB  
V
(Pin 42): DAC B Offset Adjust Pin. This voltage  
OSADJB  
Applications). Either or both of these precision matched  
controlpincanbeusedtonullunipolaroffsetorbipolarzero  
error. The offset change expressed in LSB is the same for  
anyoutputrange.SeeSystemOffsetandGainAdjustments  
in the Operation section. Tie to ground if not used.  
resistor sets (each set comprising R , R and R  
)
EFX  
INX COMX  
may be used to invert positive references to provide the  
negative voltages needed by the DACs. Typically 5V; ac-  
cepts up to 15V. Pins 31 and 32 are internally shorted  
together.  
V
(Pin 43): DAC A Offset Adjust Pin. This voltage  
OSADJA  
controlpincanbeusedtonullunipolaroffsetorbipolarzero  
error. The offset change expressed in LSB is the same for  
anyoutputrange.SeeSystemOffsetandGainAdjustments  
in the Operation section. Tie to ground if not used.  
GE  
(Pin 33): Gain Adjust Pin for DAC B. This control  
ADJB  
pin can be used to null gain error or to compensate for  
reference errors. The gain change expressed in LSB is  
the same for any output range. See System Offset and  
Gain Adjustments in the Operation section. Tie to ground  
if not used.  
I
(Pin 44): DAC A Current Output. This pin is a virtual  
OUT1A  
ground when the DAC is operating and should reside at  
V. For normal operation tie to the negative input of the I/V  
converter amplifier for DAC A (see Typical Applications).  
R
(Pin 34): Virtual Ground Point for the DAC B Ref-  
COMB  
erence Amplifier Inverting Resistors. The 2ꢀk reference  
R
(Pins 45, 46): DAC A Feedback Resistor. For normal  
inverting resistors are connected internally from R to  
FBA  
INB  
operation tieto the outputofthe I/V converter amplifier for  
R
and from R  
to REFB, respectively (see Block  
COMB  
COMB  
DAC A (see Typical Applications). The DAC output current  
Diagram). For normal operation tie R  
to the negative  
COMB  
fromI  
flowsthroughthefeedbackresistortotheR  
FBA  
input of the external reference inverting amplifier (see  
OUT1A  
pins. Pins 45 and 46 are internally shorted together.  
Typical Applications).  
R
(Pins 47, 48): Bipolar Offset Resistor for DAC A.  
REFB (Pins 35, 36): Feedback Resistor for the DAC B  
Reference Inverting Amplifier, and Reference Input for  
DAC B. The 2ꢀk feedback resistor is connected internally  
OFSA  
This pin provides the translation of the output voltage  
range for bipolar spans. Accepts up to 15V; for normal  
operation tieto the positive referencevoltage at R (Pins  
from REFB to R  
. For normal operation tie this pin to  
INA  
COMB  
5, 6). Pins 47 and 48 are internally shorted together.  
the output of the DAC B reference inverting amplifier (see  
2752f  
ꢀ0  
LTC2752  
block DiagraM  
16  
V
DD  
R
INA  
(5, 6)  
(31, 32) R  
INB  
2.56M  
2.56M  
4
3
33  
20k  
20k  
20k  
20k  
GE  
R
GE  
R
ADJA  
ADJB  
34  
COMB  
COMA  
(35, 36) REFB  
REFA (1, 2)  
(37, 38) R  
OFSB  
R
R
I
(47, 48)  
OFSA  
CODE REGISTERS  
CODE REGISTERS  
16  
3
16  
3
(39, 40) R  
FBB  
(45, 46)  
FBA  
DAC REG INPUT REG  
INPUT REG DAC REG  
DAC A  
16-BIT WITH  
SPAN SELECT  
DAC B  
16-BIT WITH  
SPAN SELECT  
44  
41  
I
OUT1B  
OUT1A  
SPAN REGISTERS  
SPAN REGISTERS  
8
9
29  
28  
42  
DAC REG INPUT REG  
INPUT REG DAC REG  
I
I
I
OUT2BS  
OUT2AS  
OUT2AF  
I
OUT2BF  
43  
V
V
OSADJB  
OSADJA  
CONTROL AND READBACK LOGIC  
POWER-ON  
RESET  
GND (7, 10, 15, 17, 18, 27, 30)  
M-SPAN  
22  
S0  
23  
S1  
24  
S2  
25  
RFLAG  
CLR  
19  
CS/LD SDI  
11 12  
SCK  
13  
LDAC  
26  
SRO  
20  
14  
2752 BD  
2752f  
ꢀꢀ  
LTC2752  
TiMing DiagraM  
t
1
t
6
t
t
t
4
2
3
1
2
31  
32  
SCK  
SDI  
t
8
LSB  
t
t
7
5
CS/LD  
LDAC  
SRO  
t
11  
t
9
Hi-Z  
LSB  
2752 TD  
2752f  
ꢀꢁ  
LTC2752  
operaTion  
Output Ranges  
Tie the M-SPAN pin to ground for normal SoftSpan  
operation.  
TheLTC2752isadual,current-output,serial-inputprecision  
multiplying DAC with selectable output ranges. Ranges  
can either be programmed in software for maximum flex-  
ibility—each of the DACs can be programmed to any one  
ofsixoutputranges—orhardwiredthroughpin-strapping.  
Twounipolarrangesareavailable(Vto5VandVto1ꢀV),  
and four bipolar ranges ( 2.5V, 5V, 1ꢀV and –2.5V to  
7.5V). These ranges are obtained when an external pre-  
cision 5V reference is used. The output ranges for other  
reference voltages are easy to calculate by observing that  
each range is a multiple of the external reference voltage.  
Therangescanthenbeexpressed:to 1×,to 2×, ꢀ.5×,  
1×, 2×, and –ꢀ.5× to 1.5×.  
Input and DAC Registers  
The LTC2752 has 5 internal registers for each DAC, a total  
of 1ꢀ registers (see Block Diagram). Each DAC channel  
has two sets of double-buffered registers—one set for the  
code data, and one for the output range of the DAC—plus  
one readback register. Double buffering provides the ca-  
pability to simultaneously update the span (output range)  
and code, which allows smooth voltage transitions when  
changing output ranges. It also permits the simultaneous  
updating of multiple DACs.  
Each set of double-buffered registers comprises an Input  
register and a DAC register.  
Manual Span Configuration  
Input register: The Write operation shifts data from the  
SDI pin into a chosen Input register. The Input registers  
are holding buffers; Write operations do not affect the  
DAC outputs.  
Multiple output ranges are not needed in some applica-  
tions. To configure the LTC2752 to operate in a single span  
without additional operational overhead, tie the M-SPAN  
pin directly to V . The active output range for all DACs is  
DD  
DAC register: The Update operation copies the contents  
of an Input register to its associated DAC register. The  
contents of a DAC register directly updates the associated  
DAC output voltage or output range.  
then set via hardware pin strapping of pins S2, S1 and Sꢀ  
(rather than through the SPI port); and Write and Update  
commands have no effect on the active output span. See  
Figure 1 and Table 3.  
Note that updates always include both Code and Span  
register sets; but the values held in the DAC registers will  
only change if the associated Input register values have  
previously been changed via a Write operation.  
V
DD  
V
LTC2752  
DD  
+
DAC A  
DAC B  
10V  
10V  
Serial Interface  
M-SPAN  
S2  
When the CS/LD pin is taken low, the data on the SDI  
pin is loaded into the shift register on the rising edge of  
the clock (SCK pin). The minimum (24-bit wide) loading  
sequence required for the LTC2752 is a 4-bit command  
word (C3 C2 C1 Cꢀ), followed by a 4-bit address word  
(A3 A2 A1 Aꢀ) and 16 data (span or code) bits, MSB first.  
Figure 2 shows the SDI input word syntax to use when  
S1  
+
S0  
CS/LD SDI SCK  
2752 F01  
Figure 1. Using M-SPAN to Configure the LTC2752  
for Single-Span Operation ( 10V Range Shown)  
2752f  
ꢀꢂ  
LTC2752  
operaTion  
and Code) is copied into its Readback register and seri-  
ally shifted out through the SRO pin. Figure 3 shows the  
loading and readback sequences.  
writing code or span. If a 32-bit input sequence is used,  
the first eight bits must be zeros, followed by the same  
sequence as for a 24-bit wide input. Figure 3 shows the  
input and readback sequences for both 24-bit and 32-bit  
operations.  
Inthedataeld(D15-Dꢀ)ofanynon-readinstructioncycle,  
SROshiftsoutthecontentsofthebufferthatwasspecified  
intheprecedingcommand.Thisrollingreadbackdefault  
mode of operation can dramatically reduce the number  
of instruction cycles needed, since any command can be  
verified during succeeding commands with no additional  
overhead. SeeFigure4. Table1showsthestoragelocation  
(‘readback pointer’) of the data which will be output from  
SRO during the next instruction.  
When CS/LD is low, the SRO pin (Serial Readback Output)  
is an active output.The readback data begins after the  
command (C3-Cꢀ) and address (A3-Aꢀ) words have been  
shifted into SDI. SRO outputs a logic low (when CS/LD  
is low) until the readback data begins. For a 24-bit input  
sequence, the 16 readback bits are shifted out on the  
falling edges of clocks 8-23, suitable for shifting into a  
microprocessor on the rising edges of clocks 9-24. For a  
32-bit sequence, the bits are shifted out on clocks 16-31;  
see Figure 3b.  
ForReadcommands,thedataisshiftedoutduringtheRead  
instruction itself (on the 16 falling SCK edges immediately  
after the last address bit is shifted in on SDI). When check-  
ing the span of a DAC using SRO, the span bits are the last  
four bits shifted out, corresponding to their sequence and  
positions when writing a span. See Figure 3.  
When CS/LD is high, the SRO pin presents a high imped-  
ance (three-state) output.  
LDAC is an asynchronous update pin. When LDAC is  
taken low, all DACs are updated with code and span data  
(data in the Input buffers is copied into the DAC buffers).  
CS/LD must be high during this operation; otherwise  
LDAC is locked out and will have no effect. The use of  
LDAC is functionally identical to the “Update All DACs”  
serial input command.  
Span Readback in Manual Span Configuration  
If a Span DAC register is chosen for readback, SRO re-  
sponds by outputting the actual output span; this is true  
whethertheLTC2752isconfiguredforSoftSpan(M-SPAN  
tied to GND) or manual span (M-SPAN tied to V ) use.  
DD  
In SoftSpan configuration, SRO outputs the span code  
from the Span DAC register (programmed through the  
SPI port). In manual span configuration, the active span  
is controlled by pins S2, S1 and Sꢀ, so SRO outputs the  
logic values of these pins. The span code bits S2, S1 and  
Sꢀ always appear in the same order and positions in the  
SRO output sequence; see Figure 3.  
The codes for the command word (C3-Cꢀ) are defined in  
Table 1; Table 2 defines the codes for the address word  
(A3-Aꢀ).  
Readback  
In addition to the Input and DAC registers, each DAC has  
one Readback register associated with it. When a Read  
command is issued to a DAC, the contents of one of its  
four buffers (Input and DAC registers for each of Span  
2752f  
ꢀꢃ  
LTC2752  
operaTion  
2752f  
ꢀꢄ  
LTC2752  
operaTion  
2752f  
ꢀꢅ  
LTC2752  
operaTion  
WRITE CODE  
DAC A  
WRITE CODE  
DAC B  
WRITE SPAN  
DAC C  
WRITE SPAN  
DAC B  
UPDATE  
ALL DACs  
...  
SDI  
READ  
CODE INPUT  
REGISTER DAC A  
READ  
CODE INPUT  
REGISTER DAC B  
READ  
SPAN INPUT  
REGISTER DAC A  
READ  
SPAN INPUT  
REGISTER DAC B  
READ  
...  
SRO  
CODE DAC  
REGISTER DAC A  
2754 F04  
Figure 4. Rolling Readback  
Table 1. Command Codes  
CODE  
READBACK POINTER–  
CURRENT INPUT WORD W  
READBACK POINTER–  
NEXT INPUT WORD W  
C3  
C2  
C1  
C0  
COMMAND  
0
+1  
1
Write Span DAC n  
Write Code DAC n  
Update DAC n  
Set by Previous Command  
Set by Previous Command  
Set by Previous Command  
Set by Previous Command  
Set by Previous Command  
Input Span Register DAC n  
Input Code Register DAC n  
DAC Span Register DAC n  
DAC Code Register DAC n  
DAC Span Register DAC n  
1
1
1
1
1
Update All DACs  
1
1
Write Span DAC n  
Update DAC n  
1
1
1
1
1
1
Write Code DAC n  
Update DAC n  
Set by Previous Command  
Set by Previous Command  
Set by Previous Command  
DAC Code Register DAC n  
DAC Span Register DAC n  
DAC Code Register DAC n  
Write Span DAC n  
Update All DACs  
Write Code DAC n  
Update All DACs  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Read Input Span Register DAC n  
Read Input Code Register DAC n  
Read DAC Span Register DAC n  
Read DAC Code Register DAC n  
No Operation  
Input Span Register DAC n  
Input Code Register DAC n  
DAC Span Register DAC n  
DAC Code Register DAC n  
Set by Previous Command  
DAC Code Register DAC n  
DAC Span Register DAC A  
DAC Span Register DAC A  
System Clear  
Initial Power-Up or Power Interupt  
Codes not shown are reserved–do not use  
Table 2. Address Codes  
Table 3. Span Codes  
A3  
A2  
A1  
A0  
×
n
DAC A  
S3 S2 S1 S0 SPAN  
1
1
1
1
1
1
1
Unipolar ꢀV to 5V  
Unipolar ꢀV to 1ꢀV  
Bipolar –5V to 5V  
1
DAC B  
×
1
1
1
All DACs (Note 1)  
×
Bipolar –1ꢀV to 1ꢀV  
Bipolar –2.5V to 2.5V  
Bipolar –2.5V to 7.5V  
Codes not shown are reserved–do not use.  
Note 1. If readback is taken using the All DACs address, the LTC2752  
defaults to DAC A.  
× = Don’t Care.  
Codes not shown are reserved–do not use  
2752f  
ꢀꢆ  
LTC2752  
operaTion  
Examples  
a) CS/LD(Note that after power-on, the code in  
Input register is zero)  
1. Using a 24-bit instruction, load DAC A with the unipolar  
range of ꢀV to 1ꢀV, output at zero volts and DAC B with  
the bipolar range of 1ꢀV, outputs at zero volts. Note all  
DAC outputs should change at the same time.  
Clock SDI =  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀ11 ꢀꢀ1ꢀ 1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
b) CS/LD↑  
Code Input register- Code of DAC B set to  
midscale setting.  
a) CS/LD↓  
Clock SDI = ꢀꢀ1ꢀ 1111 ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀ11  
c) CS/LD↓  
b) CS/LD↑  
Clock SDI =  
Span Input register- Range of all DACs set to  
bipolar 1ꢀV.  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀ1ꢀ ꢀꢀ1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀ1ꢀꢀ  
Data out on SRO = 1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ Verifies  
that Code Input register- DAC B is at midscale  
setting.  
c) CS/LD↓  
Clock SDI = ꢀꢀ1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀ1  
d) CS/LD↑  
d) CS/LD↑  
Span Input register- Range of DAC A set to  
unipolar ꢀV to 1ꢀV.  
Span Input register- Range of DAC B set to  
Bipolar 2.5V range.  
e) CS/LD↓  
e) CS/LD↓  
Clock SDI = ꢀꢀ11 1111 1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
Clock SDI =  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ 1ꢀ1ꢀ ꢀꢀ1ꢀ XXXX XXXX XXXX XXXX  
Data Out on SRO = ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀ1ꢀꢀ  
Verifies that Span Input register- range of DAC B  
set to Bipolar 2.5V Range.  
CS/LD↑  
f) CS/LD↑  
Code Input register- Code of all DACs set to  
midscale.  
g) CS/LD↓  
Clock SDI = ꢀꢀ11 ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
f) CS/LD↓  
h) CS/LD↑  
Clock SDI =  
Code Input register- Code of DAC A set to  
zero code.  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀ1ꢀꢀ ꢀꢀ1ꢀ XXXX XXXX XXXX XXXX  
g) CS/LD↑  
i) CS/LD↓  
Update DAC B for both Code and Range  
Clock SDI = ꢀ1ꢀꢀ 1111 XXXX XXXX XXXX XXXX  
h) Alternatively steps f and g could be replaced with  
j) CS/LD↑  
LDAC  
.
Update all DACs for both Code and Range.  
System Offset and Reference Adjustments  
k) Alternatively steps i and j could be replaced with  
LDAC  
.
Many systems require compensation for overall system  
offset. This may be an order of magnitude or more greater  
than the offset of the LTC2752, which is so low as to be  
dominated by external output amplifier errors even when  
using the most precise op amps.  
2. Using a 32-bit load sequence, load DAC B with bipolar  
2.5V and its output at zero volts. Use readback to check  
Input register contents before updating the DAC output  
(i.e., before copying Input register contents into DAC  
register).  
2752f  
ꢀꢇ  
LTC2752  
operaTion  
The offset adjust pin V  
can be used to null unipolar  
The V  
pins have an input impedance of 1.28MΩ.  
OSADJX  
OSADJX  
offset or bipolar zero error. The offset change expressed  
in LSB is the same for any output range:  
These pins should be driven with a Thevenin-equivalent  
impedance of 1ꢀk or less to preserve the settling perfor-  
mance of the LTC2752. They should be shorted to GND  
if not used.  
VVOSADJX  
VOS LSB =  
512  
[
]
VRINX  
TheGE  
pinshaveaninputimpedanceof2.56MΩ, and  
ADJX  
are intended for use with fixed reference voltages only.  
They should be shorted to GND if not used.  
A 5V control voltage applied to V  
produces V  
=
OSADJX  
OS  
–512 LSB in any output range, assuming a 5V reference  
voltage at R  
.
INX  
Power-On Reset and Clear  
In voltage terms, the offset delta is attenuated by a factor  
of 32, 64 or 128, depending on the output range. (These  
functions hold regardless of reference voltage.)  
When power is first applied to the LTC2752, all DACs  
power-up in unipolar 5V mode (S3 S2 S1 Sꢀ = ꢀꢀꢀꢀ). All  
internal DAC registers are reset to ꢀ and the DAC outputs  
initialize to zero volts.  
1
V = –( / )V  
[ꢀV to 5V, 2.5V spansꢁ  
OS  
128 OSADJX  
1
V = –( / )V  
[ꢀV to 1ꢀV, 5V, 2.5V to  
7.5V spansꢁ  
OS  
64 OSADJX  
If the part is configured for manual span operation, all  
DACs will be set into the pin-strapped range at the first  
Update command. This allows the user to simultaneously  
update span and code for a smooth voltage transition into  
the chosen output range.  
1
V = –( / )V  
[ 1ꢀV spanꢁ  
OS  
32 OSADJX  
The gain error adjust pins GE  
can be used to null  
ADJX  
gain error or to compensate for reference errors. The  
gain error change expressed in LSB is the same for any  
output range:  
When the CLR pin is taken low, a system clear results.  
The DAC buffers are reset to ꢀ and the DAC outputs are  
all reset to zero volts. The Input buffers are left intact, so  
that any subsequent Update command (including the use  
of LDAC) restores the addressed DACs to their respective  
previous states.  
VGEADJX  
VRINX  
GE=  
512  
The gain-error delta is non-inverting for positive reference  
voltages.  
If CLR is asserted during an instruction, i.e., when CS/LD  
is low, the instruction is aborted. Integrity of the relevant  
Input buffers is not guaranteed under these conditions,  
therefore the contents should be checked using readback  
or replaced.  
Note that this pin compensates the gain by altering the  
invertedreferencevoltageV  
.Involtageterms,theV  
REFX  
REFX  
delta is inverted and attenuated by a factor of 128.  
1
V  
= –( / )GE  
REFX  
128  
ADJX  
The RFLAG pin is used as a flag to notify the system of a  
loss of data integrity. The RFLAG output is asserted low  
The nominal input range of these pins is 5V; other volt-  
ages of up to 15V may be used if needed. However, do  
not use voltages divided down from power supplies; ref-  
erence-quality, low-noise inputs are required to maintain  
the best DAC performance.  
at power-up, system clear, or if the supply V dips below  
DD  
approximately2V;andstaysasserteduntilanyvalidUpdate  
command is executed.  
2752f  
ꢀꢈ  
LTC2752  
applicaTions inForMaTion  
Op Amp Selection  
of op amps to meet the system’s specified error budget.  
Select the amplifier from Table 6 and insert the specified  
op amp parameters in Table 5. Add up all the errors for  
each category to determine the effect the op amp has on  
the accuracy of the part. Arithmetic summation gives an  
(unlikely) worst-case effect. A root-sum-square (RMS)  
summation produces a more realistic estimate.  
Because of the extremely high accuracy of the 16-bit  
LTC2752, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 4 and 5 contain equations for evaluating the ef-  
fects of op amp parameters on the LTC2752’s accuracy  
when programmed in a unipolar or bipolar output range.  
These are the changes the op amp can cause to the INL,  
DNL, unipolar offset, unipolar gain error, bipolar zero and  
bipolar gain error.  
Table 4. Coefficients for the Equations of Table 5  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
A2  
2
A3  
1
A4  
A5  
1
5V  
1ꢀV  
3
ꢀ.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
1ꢀV  
4
4
ꢀ.83  
1.4  
ꢀ.7  
2.5V  
1
1
1
Table 6 contains a partial list of Linear Technology preci-  
sion op amps recommended for use with the LTC2752.  
The easy-to-use design equations simplify the selection  
–2.5V to 7.5V  
1.9  
3
ꢀ.5  
1.5  
Table 5. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1). Subscript 1  
Refers to Output Amp, Subscript 2 Refers to Reference Inꢀerting Amp.  
UNIPOLAR  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
5V  
DNL (LSB)  
5V  
OFFSET (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
(nA)  
V
• 3 •  
V
• 0.78 •  
A3 • V  
• 13.1 •  
A3 • V  
• 19.6 •  
V
• 13.1 •  
V
I
• 13.1 •  
V  
V  
V  
V  
V  
V  
OS1  
OS1  
OS1  
OS1  
OS1  
OS1  
OS1  
REF  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
V  
I
I
• 0.0003 •  
I
• 0.00008 •  
I
• 0.13 •  
I
• 0.13 •  
0
I
• 0.0018 •  
• 0.0018 •  
V  
V  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
V  
V  
V  
REF  
16.5  
VOL1  
1.5  
VOL1  
131  
VOL1  
131  
VOL1  
A
A
(V/mV)  
(mV)  
A1 •  
A2 •  
0
0
0
0
A5 •  
A5 •  
VOL1  
A  
0
A  
0
A  
A  
5V  
REF  
5V  
REF  
5V  
REF  
V
A4 • V  
• 13.1 •  
V
• 26.2 •  
V
• 26.2 •  
• 0.26 •  
OS2  
OS2  
OS2  
OS2  
V  
ꢁꢁ  
V  
V  
5V  
5V  
REF  
5V  
I
B2  
(nA)  
0
0
0
0
A4 • I • 0.13 •  
I
B2  
• 0.26 •  
I
B2  
B2  
ꢁꢁ  
V  
REF  
V  
V  
REF  
66  
131  
A  
131  
A  
(V/mV)  
A4 •  
VOL2  
A  
VOL2  
VOL2  
VOL2  
Table 6. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC2752 with Releꢀant Specifications  
AMPLIFIER SPECIFICATIONS  
VOLTAGE CURRENT  
SLEW  
RATE  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
t
POWER  
SETTLING  
V
I
A
VOL  
NOISE  
NOISE  
with LTC2752 DISSIPATION  
OS  
B
AMPLIFIER  
LT1ꢀꢀ1  
µV  
nA  
V/mV  
nV/√Hz  
pA/√Hz  
µs  
12ꢀ  
12ꢀ  
115  
19  
mW  
46  
25  
2
8ꢀꢀ  
1ꢀ  
14  
14  
2.7  
5
ꢀ.12  
ꢀ.ꢀꢀ8  
ꢀ.ꢀꢀ8  
ꢀ.3  
ꢀ.25  
ꢀ.2  
ꢀ.16  
4.5  
22  
ꢀ.8  
ꢀ.7  
ꢀ.75  
12.5  
9ꢀ  
LT1ꢀ97  
5ꢀ  
ꢀ.35  
ꢀ.25  
2ꢀ  
1ꢀꢀꢀ  
15ꢀꢀ  
4ꢀꢀꢀ  
5ꢀꢀꢀ  
2ꢀꢀꢀ  
11  
LT1112 (Dual)  
LT1124 (Dual)  
LT1468  
6ꢀ  
1ꢀ.5/Op Amp  
69/Op Amp  
117  
7ꢀ  
75  
1ꢀ  
ꢀ.6  
2
LT1469 (Dual)  
125  
1ꢀ  
5
ꢀ.6  
22  
9ꢀ  
2
123/Op Amp  
2752f  
ꢁ0  
LTC2752  
applicaTions inForMaTion  
Op amp offset will contribute mostly to output offset and  
gain error, and has minimal effect on INL and DNL. For  
example,fortheLTC2752witha5Vreferencein5Vunipolar  
mode, a 25ꢀµV op amp offset will cause a 3.3LSB zero-  
scale error and a 3.3LSB gain error; but only ꢀ.75LSB of  
INL degradation and ꢀ.2LSB of DNL degradation.  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s apparent INL and DNL performance. If a refer-  
ence is chosen with a loose output voltage temperature  
coefficient, then the DAC output voltage along its transfer  
characteristicwillbeverydependentonambientconditions.  
Minimizing the error due to reference temperature coef-  
ficient can be achieved by choosing a precision reference  
with a low output voltage temperature coefficient and/or  
tightly controlling the ambient temperature of the circuit  
to minimize temperature gradients.  
While not directly addressed by the simple equations in  
Tables 4 and 5, temperature effects can be handled just  
as easily for unipolar and bipolar applications. First, con-  
sult an op amp’s data sheet to find the worst-case V  
OS  
and I over temperature. Then, plug these numbers into  
B
As precision DAC applications move to 16-bit and higher  
performance, referenceoutputvoltage noise may contrib-  
ute a dominant share of the system’s noise floor. This in  
turncandegradesystemdynamicrangeandsignal-to-noise  
ratio. Care should be exercised in selecting a voltage refer-  
encewithaslowanoutputnoisevoltageaspracticalforthe  
system resolution desired. Precision voltage references,  
like the LT1236 and LTC6655, produce low output noise in  
the ꢀ.1Hz to 1ꢀHz region, well below the 16-bit LSB level  
the V and I equations from Table 5 and calculate the  
temperature-induced effects.  
OS  
B
For applications where fast settling time is important, Ap-  
plicationNote74,ComponentandMeasurementAdvances  
Ensure16-BitDACSettlingTime,offersathoroughdiscus-  
sion of 16-bit DAC settling time and op amp selection.  
Precision Voltage Reference Considerations  
Much in the same way selecting an operational amplifier  
for use with the LTC2752 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. The output voltage of the LTC2752  
is directly affected by the voltage reference; thus, any  
voltage reference error will appear as a DAC output volt-  
age error.  
Table 7. Partial List of LTC Precision References Recommended  
for Use with the LTC2752 with Releꢀant Specifications  
INITIAL  
TOLERANCE  
TEMPERATURE 0.1Hz to 10Hz  
REFERENCE  
DRIFT  
NOISE  
LT1ꢀ19A-5,  
LT1ꢀ19A-1ꢀ  
ꢀ.ꢀ50 Max  
ꢀ.ꢀ50 Max  
ꢀ.ꢀ750 Max  
5ppm/°C Max  
12µV  
P-P  
LT1236A-5,  
LT1236A-1ꢀ  
5ppm/°C Max  
1ꢀppm/°C Max  
3µV  
P-P  
There are three primary error sources to consider  
when selecting a precision voltage reference for 16-bit  
applications:outputvoltageinitialtolerance,outputvoltage  
temperature coefficient and output voltage noise.  
LT146ꢀA-5,  
LT146ꢀA-1ꢀ  
2ꢀµV  
12µV  
P-P  
LT179ꢀA-2.5  
ꢀ.ꢀ50 Max  
ꢀ.ꢀ50 Max  
1ꢀppm/°C Max  
5ppm/°C Max  
P-P  
LTC6652A-2.ꢀ48  
LTC6652A-2.5  
LTC6652A-3  
2.1ppm  
2.1ppm  
2.1ppm  
2.2ppm  
2.3ppm  
2.8ppm  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( ꢀ.ꢀ50),minimizesthegainerrorcausedbythereference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
LTC6652A-3.3  
LTC6652A-4.ꢀ96  
LTC6652A-5  
LT6655A-25,  
LT6655A-5  
ꢀ.ꢀ250 Max  
2ppm/°C Max  
ꢀ.25ppm  
P-P  
2752f  
ꢁꢀ  
LTC2752  
applicaTions inForMaTion  
in 5V or 1ꢀV full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimize output noise.  
The best strategy here is to tie the pins to the star ground  
planebymultipleviaslocateddirectlyunderneaththepart.  
Alternatively, the pins may be routed to the star ground  
point if necessary; join the force and sense pins together  
at the part and route one trace for each channel of no more  
than 12ꢀ squares of 1oz. copper.  
Grounding  
As with any high resolution converter, clean grounding  
is important. A low impedance analog ground plane is  
necessary, as are star grounding techniques. Keep the  
board layer used for star ground continuous to minimize  
ground resistances; that is, use the star-ground concept  
In the rare case in which neither of these alternatives is  
practicable, a force/sense amplifier should be used as a  
ground buffer (see Typical Applications). Note, however,  
that the voltage offset of the ground buffer amp directly  
contributes to the effects on accuracy specified in Table  
without using separate star traces. The I  
pins are  
OUT2  
of particular concern; INL will be degraded by the code  
dependent currents carried by the I and I  
5 under V . The combined effects of the offsets can be  
OS1  
OUT2XF  
OUT2XS  
calculated by substituting the total offset from I  
to  
OUT1X  
pins if voltage drops to ground are allowed to develop.  
I
for V  
in the equations.  
OUT2XS  
OS1  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
8
8
I
OUT2AS  
I
OUT2AS  
200Ω  
200Ω  
2
2
9
6
9
6
I
I
1000pF  
LT1012  
OUT2AF  
LT1468  
OUT2AF  
1
2
3
+
+ 3  
ZETEX  
1
BAT54S  
ZETEX*  
BAT54S  
3
2
3
*SCHOTTKY BARRIER DIODE  
LTC2752  
V
REF  
5V  
47, 48 R  
5, 6 R  
OFSA  
INA  
R
45, 46  
FBA  
15pF  
+ 3  
1
2
1/2 LT1469  
4 GE  
3 R  
ADJA  
I
I
44  
OUT1A  
1
2
V
DAC A  
1/2 LT1469  
3 +  
OUTA  
COMA  
8, 9  
43  
150pF  
OUT2A  
V
1, 2 REFA  
OSADJA  
+
DAC B  
2752 F05  
Figure 5. Optional Circuits for Driꢀing IOUT2 from GND with a Force/Sense Amplifier  
2752f  
ꢁꢁ  
LTC2752  
package DescripTion  
LX Package  
48-Lead Plastic LQFP (7mm × 7mm)  
(Reference LTC DWG # ꢀ5-ꢀ8-176ꢀ Rev Ø)  
7.15 – 7.25  
5.50 REF  
9.00 BSC  
7.00 BSC  
48  
48  
1
2
SEE NOTE: 4  
1
2
0.50 BSC  
9.00 BSC  
7.00 BSC  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
A
A
PACKAGE OUTLINE  
C0.30 – 0.50  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
1.60  
11° – 13°  
1.35 – 1.45 MAX  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
0.05 – 0.15  
LX48 LQFP 0907 REVØ  
0.45 – 0.75  
SECTION A – A  
NOTE:  
1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE  
2. DIMENSIONS ARE IN MILLIMETERS  
4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
5. DRAWING IS NOT TO SCALE  
3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
2752f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢂ  
LTC2752  
Typical applicaTion  
Digitally Controlled Offset and Gain Trim Circuit. Powering VDD from LT1236 Ensures Quiet Supply  
15V  
7
LT1012A  
6
+
3
2
4
5V REFERENCE  
2
6
–15V  
C1  
IN  
OUT  
15V  
100pF  
C6  
10µF  
C7  
10µF  
C2  
0.1µF  
15V  
LT1236-5  
4
10k  
26  
10k  
19  
7
LT1991  
16  
47, 48  
5, 6  
3
1, 2  
450k  
1
7
V
LDAC CLR  
R
R
INA  
R
COMA  
REFA  
DD  
OFSA  
450k  
+
10  
1
45, 46  
V
REF  
4
43  
33  
42  
CC  
6
R
FBA  
GE  
V
ADJA  
C3  
27pF  
2
3
8
9
4
V
OUTA  
OUTB  
OUTC  
CS2  
CS/LD  
SDI  
450k  
15V  
7
OSADJA  
6
5
V
V
V
+
2
3
44  
SPI BUS SDI  
SCK  
4
I
I
GE  
OUT1A  
6
ADJB  
V
V
DACA  
DACB  
SCK  
OUT  
8, 9  
–15V  
OUTD  
V
OUT2A  
OSADJB  
LT1468  
4
10  
1
GND  
10, 11  
6
6
6
–15V  
LT1991  
LTC2634-MSELMX12  
39, 40  
R
FBB  
LTC2752  
C4  
27pF  
10  
1
15V  
22  
23  
24  
25  
LT1991  
LT1991  
+
2
3
41  
M-SPAN  
S0  
7
4
I
I
OUT1B  
6
OUT  
28, 29  
OUT2B  
LT1468  
10  
1
S1  
–15V  
7, 10, 15, 17, 18, 27, 30  
S2  
GND  
R
R
R
COMB  
OFSB  
INB  
CS/LD SDI SCK SRO  
11 12 13 14  
REFB  
2752 TA02  
37, 38 31, 32 34  
35, 36  
C5  
100pF  
15V  
7
CS1  
SDI SCK SRO  
SPI BUS  
+
3
2
6
LT1012A  
4
–15V  
relaTeD parTs  
PART NUMBER  
LTC2757  
LTC2754  
LTC2751  
LTC2753  
LTC2755  
LTC159ꢀ  
LTC1592  
DESCRIPTION  
Single Parallel 18-Bit I  
COMMENTS  
SoftSpan DAC  
1LSB INL/DNL, Software-Selectable Ranges, 7mm × 7mm LQFP-48 Package  
1LSB INL/DNL, Software-Selectable Ranges, 7mm × 8mm QFN-52 Package  
1LSB INL/DNL, Software-Selectable Ranges, 5mm × 7mm QFN-38 Package  
1LSB INL/DNL, Software-Selectable Ranges, 7mm × 7mm QFN-48 Package  
1LSB INL/DNL, Software-Selectable Ranges, 9mm × 9mm QFN-64 Package  
ꢀ.5LSB INL/DNL 2-Quadrant, 16-Pin Narrow SO and PDIP Packages  
1LSB INL/DNL, Software-Selectable Ranges, 16-Lead SSOP Package  
1LSB INL/DNL, Integrated 4-Quadrant Resistors, 28-Lead SSOP Package  
1LSB INL/DNL, Software-Selectable Ranges, Integrated Amplifiers  
OUT  
Quad Serial 16-Bit/12-Bit I  
SoftSpan DACs  
OUT  
Single Parallel 16-Bit/14-Bit/12-Bit I  
Dual Parallel 16-Bit/14-Bit/12-Bit I  
SoftSpan DAC  
OUT  
SoftSpan DACs  
SoftSpan DACs  
OUT  
Quad Parallel 16-Bit/14-Bit/12-Bit I  
OUT  
Dual Serial 12-Bit Multiplying I  
DAC  
OUT  
Single Serial 16-Bit/14-Bit/12-Bit I  
SoftSpan DAC  
OUT  
LTC1591/LTC1597 Single Parallel 16-Bit/14-Bit I  
DACs  
OUT  
LTC27ꢀ4  
References  
LTC6655  
LT1ꢀ27  
Quad Serial 16-Bit/14-Bit/12-Bit V  
SoftSpan DACs  
OUT  
Precision Reference  
Precision Reference  
Precision Reference  
ꢀ.ꢀ250 Maximum Tolerance, ꢀ.25ppm ꢀ.1Hz to 1ꢀHz Noise  
P-P  
2ppm/°C Maximum Drift  
LT1236A-5  
Amplifiers  
LT1ꢀ12  
ꢀ.ꢀ50 Maximum Tolerance, 1ppm ꢀ.1Hz to 1ꢀHz Noise  
P-P  
Precision Operational Amplifier  
Precision Operational Amplifier  
25µV Max Offset, 1ꢀꢀpA Max Bias Current, ꢀ.5µV Noise, 38ꢀµA Supply  
Current  
P-P  
LT1ꢀꢀ1  
25µV Max Offset, ꢀ.3µV Noise, High Output Drive  
P-P  
LT1468/LT1469  
Single/Dual 16-Bit Accurate Op-Amp  
9ꢀMHz GBW, 22V/μs Slew Rate, ꢀ.3µV Noise  
P-P  
2752f  
LT 0510 • PRINTED IN USA  
Linear Technology Corporation  
163ꢀ McCarthy Blvd., Milpitas, CA 95ꢀ35-7417  
ꢁꢃ  
LINEAR TECHNOLOGY CORPORATION 2010  
(4ꢀ8) 432-19ꢀꢀ FAX: (4ꢀ8) 434-ꢀ5ꢀ7 www.linear.com  

相关型号:

LTC2752AILX-PBF

Dual16-Bit SoftSpan IOUT DACs
Linear

LTC2752BCLX#PBF

LTC2752 - Dual 16-Bit SoftSpan IOUT DACs; Package: LQFP; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2752BCLX-PBF

Dual16-Bit SoftSpan IOUT DACs
Linear

LTC2752BILX-PBF

Dual16-Bit SoftSpan IOUT DACs
Linear

LTC2753

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753ACUK-16#PBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2753ACUK-16#TRPBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2753ACUK-16PBF

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753AIUK-16#PBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2753AIUK-16#TRPBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2753AIUK-16PBF

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753BCUK-16#PBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear