LTC2753CUK-14#TRPBF [Linear]

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C;
LTC2753CUK-14#TRPBF
型号: LTC2753CUK-14#TRPBF
厂家: Linear    Linear
描述:

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C

文件: 总24页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2753  
Dual Current Output  
12-/14-/16-Bit SoftSpan  
DACs with Parallel I/O  
FEATURES  
DESCRIPTION  
The LTC®2753 is a family of dual 12-, 14-, and 16-bit  
multiplying parallel-input, current-output DACs. These  
DACs operate from a single 2.7V to 5.5V supply and are all  
guaranteedmonotonicovertemperature.TheLTC2753A-16  
provides 16-bit performance ( 1LꢀS ꢁIL and DILꢂ over  
temperature without any adjustments. These ꢀoftꢀpan™  
DACs offer six output ranges—two unipolar and four  
bipolar—that can be programmed through the parallel  
interface, or pinstrapped for operation in a single range.  
Six Programmable Output Ranges  
Unipolar: 0V to 5V, 0V to 10V  
Bipolar: ±5V, ±10V, ±±25V, ±25V to 725V  
Maximum 16-Bit INL Error: ±1 LSB oꢀer Temperature  
Low 1μA (Maximum) Supply Current  
Guaranteed Monotonic oꢀer Temperature  
Low Glitch Impulse 1nV•s  
2.7V to 5.5V ꢀingle ꢀupply Operation  
2μs ꢀettling Time to 1 LꢀS  
Parallel ꢁnterface with Readback of All Registers  
TheLTC2753DACsuseabidirectionalinput/outputparallel  
interface that allows readback of any on-chip register. A  
power-on reset circuit resets the DAC outputs to 0V when  
power is initially applied. A logic low on the CLR pin asyn-  
chronously clears the DACs to 0V in any output range.  
Asynchronous CLR Pin Clears DAC Outputs to 0V in  
Any Output Range  
Power-On Reset to 0V  
48-Pin 7mm × 7mm QFI Package  
The parts are specified over commercial and industrial  
temperature ranges.  
APPLICATIONS  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ꢀoftꢀpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
High Resolution Offset and Gain Adjustment  
Process Control and ꢁndustrial Automation  
Automatic Test Equipment  
Data Acquisition ꢀystems  
TYPICAL APPLICATION  
Dual 16-Bit VOUT DAC with Software-Selectable Ranges  
LTC±753-16 Integral Nonlinearity (INL)  
LTC2753-16  
R
47  
2
V
REF  
5V  
OFꢀA  
1.0  
R
V
V
= 5V  
REF  
±10V RANGE  
ꢁI  
DD  
46  
R
FSA  
15pF  
0.8  
0.6  
= 5V  
+
45  
4
OUT1A  
R1  
R2  
1/2 LT1469  
0.4  
R
1
COM  
V
1/2 LT1469  
+
DAC A  
OUTA  
0.2  
OUT2A  
150pF  
0.0  
REFA 48  
REFS 39  
44  
43  
R
R
VOꢀA  
VOꢀS  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32  
+
OUT2S  
25°C  
90°C  
–45°C  
V
1/2 LT1469  
DAC S  
OUTS  
42  
41  
OUT1S  
15pF  
R
40  
OFꢀS  
R
0
16384  
32768  
CODE  
49152  
65535  
FSS  
3
2753 TA01  
ꢀPAI ꢁ/O  
DATA ꢁ/O  
ꢁ/O PORT  
ꢁ/O PORT  
16  
2753 TA01b  
2753f  
1
LTC2753  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, ±)  
Operating Temperature Range  
, ꢁ  
, R  
to GID ................................. 0.3V  
OUT1X OUT2X COM  
LTC2753C..................................................... 0°C to 70°C  
LTC2753ꢁ.................................................. –40°C to 85°C  
Maximum Junction Temperature........................... 125°C  
ꢀtorage Temperature Range................... –65°C to 150°C  
R
, R , R  
, R , REF to GID ................... 15V  
VOꢀX FSX OFꢀX ꢁI X  
V
to GID.................................................. –0.3V to 7V  
DD  
Digital ꢁnputs and Digital ꢁ/O  
to GID ..........................–0.3V to V +0.3V (max 7Vꢂ  
DD  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
48 47 46 45 44 43 42 41 40 39 38 37  
48 47 46 45 44 43 42 41 40 39 38 37  
R
UPD  
READ  
D/ꢀ  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
R
UPD  
READ  
D/ꢀ  
R
UPD  
READ  
D/ꢀ  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
COM  
COM  
COM  
R
ꢁI  
R
R
ꢁI  
ꢁI  
ꢀ2  
ꢀ2  
ꢀ2  
ꢀ0  
ꢀ0  
ꢀ0  
OUT2A  
GID  
OUT2A  
GID  
OUT2A  
GID  
OUT2S  
OUT2S  
OUT2S  
D11  
D10  
D9  
D8  
D7  
GID  
IC  
IC  
IC  
IC  
IC  
IC  
D13  
D12  
D11  
D10  
D9  
GID  
IC  
IC  
IC  
IC  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
GID  
IC  
IC  
D0  
D1  
D2  
49  
49  
49  
10  
11  
12  
10  
11  
12  
10  
11  
12  
D6  
D5  
D8  
D7  
D1  
D3  
13 14 15 16 17 18 19 20 21 22 23 24  
13 14 15 16 17 18 19 20 21 22 23 24  
13 14 15 16 17 18 19 20 21 22 23 24  
LTC2753-12 UK PACKAGE  
48-LEAD (7mm × 7mmꢂ PLAꢀTꢁC QFI  
LTC2753-14 UK PACKAGE  
48-LEAD (7mm × 7mmꢂ PLAꢀTꢁC QFI  
LTC2753-16 UK PACKAGE  
48-LEAD (7mm × 7mmꢂ PLAꢀTꢁC QFI  
T
= 125°C, θ = 29°C/W  
JA  
T
= 125°C, θ = 29°C/W  
T
= 125°C, θ = 29°C/W  
JMAX JA  
JMAX  
JMAX  
JA  
EXPOꢀED PAD (PꢁI 49ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
EXPOꢀED PAD (PꢁI 49ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
EXPOꢀED PAD (PꢁI 49ꢂ ꢁꢀ GID, MUꢀT SE ꢀOLDERED TO PCS  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2753CUK-12#PSF  
LTC2753ꢁUK-12#PSF  
LTC2753CUK-14#PSF  
LTC2753ꢁUK-14#PSF  
TAPE AND REEL  
PART MARKING*  
LTC2753UK-12  
LTC2753UK-12  
LTC2753UK-14  
LTC2753UK-14  
LTC2753UK-16  
LTC2753UK-16  
LTC2753UK-16  
LTC2753UK-16  
PACKAGE DESCRIPTION  
48-Lead (7mm × 7mmꢂ Plastic QFI  
TEMPERATURE RANGE  
LTC2753CUK-12#TRPSF  
LTC2753ꢁUK-12#TRPSF  
LTC2753CUK-14#TRPSF  
LTC2753ꢁUK-14#TRPSF  
0°C to 70°C  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
48-Lead (7mm × 7mmꢂ Plastic QFI  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTC2753SCUK-16#PSF LTC2753SCUK-16#TRPSF  
LTC2753SꢁUK-16#PSF LTC2753SꢁUK-16#TRPSF  
LTC2753ACUK-16#PSF LTC2753ACUK-16#TRPSF  
LTC2753AꢁUK-16#PSF LTC2753AꢁUK-16#TRPSF  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2753f  
2
LTC2753  
ELECTRICAL CHARACTERISTICS VDD = 5V, VREF = 5V unless otherwise specified2 The denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = ±5°C2  
LTC±753-1± LTC±753-14 LTC±753B-16  
MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
LTC±753A-16  
SYMBOL PARAMETER  
Static Performance  
Resolution  
CONDITIONS  
MIN TYP  
12  
12  
14  
14  
16  
16  
16  
16  
Sits  
Sits  
LꢀS  
Monotonicity  
DIL  
ꢁIL  
GE  
Differential  
1
1
2
1
1
5
1
2
0.2  
0.4  
4
1
1
Ionlinearity  
ꢁntegral  
Ionlinearity  
LꢀS  
LꢀS  
Gain Error  
All Output  
Ranges  
0.5  
0.6  
0.2  
0.5  
1.5  
0.6  
0.6  
0.5  
20  
14  
GE  
Gain Error Temp-  
erature Coefficient  
ΔGain/ΔTemp  
0.6  
0.5  
0.6  
2
ppm/°C  
LꢀS  
TC  
SZE  
SZꢀ  
Sipolar Zero Error All Sipolar  
Ranges  
1
3
12  
8
Sipolar Zero Temp-  
erature Coefficient  
0.5  
ppm/°C  
LꢀS/V  
nA  
TC  
PꢀR  
Power ꢀupply  
Rejection  
V
V
= 5V, 10ꢃ  
= 3V, 10ꢃ  
0.025  
0.06  
0.1  
0.25  
0.4  
1
0.03  
0.1  
0.2  
0.5  
DD  
DD  
Leakage  
T = 25°C  
0.05  
2
5
0.05  
2
5
0.05  
2
5
0.05  
2
5
LKG  
OUT1  
A
Current  
T
to T  
MꢁI MAX  
C
ꢁOUT1  
Output  
Capacitance  
Full-ꢀcale  
Zero ꢀcale  
75  
45  
75  
45  
75  
45  
75  
45  
pF  
pF  
VDD = 5V, VREF = 5V unless otherwise specified2 The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = ±5°C2  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resistances (Note 3)  
R1, R2  
Reference ꢁnverting Resistors  
DAC ꢁnput Resistance  
Feedback Resistor  
(Iote 4ꢂ  
16  
8
20  
10  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
R
R
R
REF  
FS  
(Iote 3ꢂ  
(Iote 3ꢂ  
8
10  
Sipolar Offset Resistor  
Offset Adjust Resistor  
16  
800  
20  
OFꢀ  
R
VOꢀ  
1000  
Dynamic Performance  
Output ꢀettling Time  
0V to 10V Range, 10V ꢀtep. To 0.0015ꢃ Fꢀ  
(Iote 5ꢂ  
2
ꢄs  
Glitch ꢁmpulse  
(Iote 6ꢂ  
(Iote 7ꢂ  
1
1
nV•s  
nV•s  
mV  
Digital-to-Analog Glitch ꢁmpulse  
Multiplying Feedthrough Error  
0V to 10V Range, V = 10V, 10kHz  
ꢀine Wave  
0.5  
REF  
THD  
Total Harmonic Distortion  
(Iote 8ꢂ Multiplying  
–110  
13  
dS  
Output Ioise Voltage Density  
(Iote 9ꢂ at ꢁ  
nV/√Hz  
OUT1  
2753f  
3
LTC2753  
ELECTRICAL CHARACTERISTICS VDD = 5V, VREF = 5V unless otherwise specified2 The denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = ±5°C2  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
V
ꢀupply Voltage  
2.7  
5.5  
1
V
DD  
DD  
ꢀupply Current, V  
Digital ꢁnputs = 0V or V  
DD  
0.5  
ꢄA  
DD  
Digital Inputs  
V
Digital ꢁnput High Voltage  
Digital ꢁnput Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
ꢁH  
DD  
2.7V ≤ V < 3.3V  
DD  
V
4.5V < V ≤ 5.5V  
0.8  
0.6  
V
V
ꢁL  
DD  
2.7V ≤ V ≤ 4.5V  
DD  
Digital ꢁnput Current  
V
= GID to V  
DD  
1
6
μA  
pF  
ꢁI  
ꢁI  
ꢁI  
C
Digital ꢁnput Capacitance  
V
= 0V (Iote 10ꢂ  
ꢁI  
Digital Outputs  
V
V
= 200μA  
= 200μA  
V – 0.4  
DD  
V
V
OH  
OL  
OH  
0.4  
OL  
TIMING CHARACTERISTICS  
The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = ±5°C2  
SYMBOL PARAMETER  
= 425V to 525V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
Write and Update Timing  
t
t
t
t
t
t
t
t
t
t
t
t
ꢁ/O Valid to WR Rising Edge ꢀet-Up  
ꢁ/O Valid to WR Rising Edge Hold  
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
WR Pulse Width Low  
15  
15  
0
3
UPD Pulse Width High  
4
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/ꢀ Valid to WR Falling Edge ꢀet-Up Time  
WR Rising Edge to D/ꢀ Valid Hold Time  
A1-A0 Valid to WR Falling Edge ꢀetup Time  
WR Rising Edge to A1-A0 Valid Hold Time  
A1-A0 Valid to UPD Rising Edge ꢀetup Time  
UPD Falling Edge to A1-A0 Valid Hold Time  
Io Data ꢀhoot-Through  
(Iote 10ꢂ  
5
0
6
7
7
7
8
5
9
0
10  
11  
12  
9
7
Readback Timing  
t
13  
t
14  
t
15  
t
26  
t
27  
WR Rising Edge to READ Rising Edge  
READ Falling Edge to WR Falling Edge  
READ Rising Edge to ꢁ/O Propagation Delay  
A1-A0 Valid to READ Rising Edge ꢀetup Time  
READ Falling to A1-A0 Valid Hold Time  
7
ns  
ns  
ns  
ns  
ns  
(Iote 10ꢂ  
20  
C = 10pF  
L
40  
20  
0
(Iote 10ꢂ  
2753f  
4
LTC2753  
TIMING CHARACTERISTICS The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = ±5°C2  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
t
t
t
t
t
t
t
UPD Valid to ꢁ/O Propagation Delay  
D/ꢀ Valid to READ Rising Edge  
READ Rising Edge to UPD Rising Edge  
UPD Falling Edge to READ Falling Edge  
READ Falling Edge to UPD Rising Edge  
ꢁ/O Sus Hi-Z to READ Rising Edge  
READ Falling Edge to ꢁ/O Sus Active  
C = 10pF  
L
26  
17  
18  
19  
20  
22  
23  
24  
(Iote 10ꢂ  
Io Update  
Io Update  
(Iote 10ꢂ  
(Iote 10ꢂ  
(Iote 10ꢂ  
7
0
ns  
ns  
0
ns  
7
ns  
0
ns  
20  
ns  
CLR Timing  
t
25  
CLR Pulse Width Low  
15  
ns  
V
DD  
= ±27V to 323V  
Write and Update Timing  
t
t
t
t
t
t
t
t
t
t
t
t
ꢁ/O Valid to WR Rising Edge ꢀet-Up  
ꢁ/O Valid to WR Rising Edge Hold  
15  
15  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
WR Pulse Width Low  
3
UPD Pulse Width High  
4
UPD Falling Edge to WR Falling Edge  
WR Rising Edge to UPD Rising Edge  
D/ꢀ Valid to WR Falling Edge ꢀet-Up Time  
WR Rising Edge to D/ꢀ Valid Hold Time  
A1-A0 Valid to WR Falling Edge ꢀetup Time  
WR Rising Edge to A1-A0 Valid Hold Time  
A1-A0 Valid to UPD Rising Edge ꢀetup Time  
UPD Falling Edge to A1-A0 Valid Hold Time  
Io Data ꢀhoot-Through  
(Iote 10ꢂ  
5
0
6
7
7
7
8
7
9
0
10  
11  
12  
15  
15  
Readback Timing  
t
13  
t
14  
t
15  
t
26  
t
27  
t
17  
t
18  
t
19  
t
20  
WR Rising Edge to Read Rising Edge  
Read Falling Edge to WR Falling Edge  
Read Rising Edge to ꢁ/O Propagation Delay  
A1-A0 Valid to READ Rising Edge ꢀetup Time  
READ Falling to A1-A0 Valid Hold Time  
UPD Valid to ꢁ/O Propagation Delay  
D/ꢀ Valid to Read Rising Edge  
10  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Iote 10ꢂ  
C = 10pF  
L
53  
43  
35  
0
(Iote 10ꢂ  
C = 10pF  
L
(Iote 10ꢂ  
Io Update  
Io Update  
12  
0
Read Rising Edge to UPD Rising Edge  
UPD Falling Edge to Read Falling Edge  
0
2753f  
5
LTC2753  
TIMING CHARACTERISTICS The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = ±5°C2  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= ±27V to 323V  
DD  
t
t
t
READ Falling Edge to UPD Rising Edge  
ꢁ/O Sus Hi-Z to Read Rising Edge  
Read Falling Edge to ꢁ/O Sus Active  
(Iote 10ꢂ  
(Iote 10ꢂ  
(Iote 10ꢂ  
10  
0
ns  
ns  
ns  
22  
23  
24  
35  
CLR Timing  
t
CLR Pulse Width Low  
20  
ns  
25  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
basis. ꢀee Application Iote 74, Component and Measurement Advances  
Ensure 16-Sit DAC ꢀettling Time.  
Note 6: Measured at the major carry transition, 0V to 5V range. Output  
amplifier: LT1469; C = 27pF.  
FS  
Note ±: Continuous operation above the specified maximum operating  
junction temperature may impair device reliability.  
Note 3: Secause of the proprietary ꢀoftꢀpan switching architecture, the  
measured resistance looking into each of the specified pins is constant for  
Note 72 Full-scale transition; REF = 0V.  
Note 82 REF = 6V  
at 1kHz. 0V to 5V range. DAC code = Fꢀ. Output  
RMꢀ  
amplifier = LT1469.  
Note 92 Calculation from V = √4kTRS, where k = 1.38E-23 J/°K  
n
all output ranges if the ꢁ  
and ꢁ  
pins are held at ground.  
OUT1X  
OUT2X  
(Soltzmann constantꢂ, R = resistance (Ωꢂ, T = temperature (°Kꢂ, and S =  
bandwidth (Hzꢂ.  
Note 102 Guaranteed by design. Iot production tested.  
Note 4: R1 is measured from R to R  
; R2 is measured from REFA to  
ꢁI  
COM  
R
.
COM  
Note 5: Using LT1469 with C  
= 15pF. A 0.0015ꢃ settling time  
FEEDSACK  
of 1.7ꢄs can be achieved by optimizing the time constant on an individual  
2753f  
6
LTC2753  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ±5°C, unless otherwise noted2  
LTC±753-16  
INL ꢀs Temperature  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V = 5V  
DD  
V = 5V  
REF  
V
V
= 5V  
= 5V  
DD  
DD  
REF  
= 5V  
±10V RANGE  
±10V RANGE  
10V RAIGE  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
+ꢁIL  
–ꢁIL  
0.2  
0.2  
0.2  
0.0  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
32768  
CODE  
65535  
–40  
–20  
0
20  
40  
80  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
49152  
60  
TEMPERATURE (°Cꢂ  
2753 G01  
2753 G02  
2753 G04  
Gain Error ꢀs Temperature  
DNL ꢀs Temperature  
Bipolar Zero ꢀs Temperature  
1.0  
0.8  
16  
12  
8
8
6
4
2
0
2
4
6
8
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
DD  
REF  
DD  
REF  
DD  
REF  
10V RAIGE  
10V RAIGE  
10V RAIGE  
0.6  
0.4  
0.5ppm/°C (TYPꢂ  
0.6ppm/°C (TYPꢂ  
4
0.2  
+DIL  
–DIL  
0.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–4  
–8  
–12  
–16  
20  
TEMPERATURE (°Cꢂ  
40  
80  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
60  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°Cꢂ  
TEMPERATURE (°Cꢂ  
2753 G07  
2753 G05  
2753 G06  
INL ꢀs VREF  
DNL ꢀs VREF  
1.0  
1.0  
0.8  
V
= 5V  
V
= 5V  
DD  
DD  
0.8  
0.6  
5V RAIGE  
5V RAIGE  
0.6  
0.4  
0.4  
+ꢁIL  
–ꢁIL  
+ꢁIL  
–ꢁIL  
0.2  
0.2  
+DIL  
–DIL  
+DIL  
–DIL  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–10 –8 –6  
4
2
0
2
4
6
8
10  
–10 –8 –6  
4
2
0
2
4
6
8
10  
V
(Vꢂ  
V
(Vꢂ  
REF  
REF  
2753 G08  
2751 G09  
2753f  
7
LTC2753  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ±5°C, unless otherwise noted2  
LTC±753-16  
Multiplying Frequency Response  
ꢀs Digital Code  
INL ꢀs VDD  
Settling 0V to 10V  
1.0  
0.8  
ALL SꢁTꢀ OI  
0
–20  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
UPD  
0.6  
5V/DꢁV  
0.4  
+ꢁIL  
–ꢁIL  
–40  
0.2  
D8  
D7  
D6  
D5  
D4  
D3  
GATED  
ꢀETTLꢁIG  
WAVEFORM  
250μV/DꢁV  
0.0  
–60  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
D2  
D1  
D0  
UIꢁPOLAR 5V OUTPUT RAIGE  
LT1469 OUTPUT AMPLꢁFꢁER  
FEEDSACK  
2753 G10  
–100  
–120  
500ns/DꢁV  
UꢀꢁIG LT1469 AMP  
C
= 15pF  
ALL SꢁTꢀ OFF  
C
= 12pF  
FEEDSACK  
100  
1k  
10k  
100k  
1M  
10M  
2.5  
3
3.5  
4
4.5  
5
5.5  
0V TO 10V ꢀTEP  
FREQUEICY (Hzꢂ  
V
(Vꢂ  
DD  
2751 G09b  
2753 G10a  
LTC±753-14  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
DD  
REF  
DD  
REF  
±10V RANGE  
±10V RANGE  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
4096  
8192  
12288  
16383  
0
4096  
8192  
12288  
16383  
CODE  
CODE  
2753 G12  
2753 G11  
LTC±753-1±  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
DD  
REF  
DD  
REF  
±10V RANGE  
10V RAIGE  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
1024  
2048  
3072  
4095  
2048  
4095  
0
1024  
3072  
CODE  
CODE  
2753 G13  
2753 G14  
2753f  
8
LTC2753  
TYPICAL PERFORMANCE CHARACTERISTICS TA = ±5°C, unless otherwise noted2  
LTC±753-1±, LTC±753-14, LTC±753-16  
Supply Current ꢀs  
Logic Input Voltage  
Midscale Glitch  
20  
15  
10  
5
UPD  
5V/DꢁV  
1nV•ꢀ (TYPꢂ  
V
= 5V  
DD  
V
OUT  
2mV/DꢁV  
2753 G15  
500ns/DꢁV  
UꢀꢁIG AI LT1469  
= 27pF  
V
= 3V  
DD  
V
V
= 5V  
REF  
0V TO 5V RAIGE  
DD  
0
= 5V  
C
FEEDSACK  
0
1
2
3
4
5
DꢁGꢁTAL ꢁIPUT VOLTAGE (Vꢂ  
2753 G16  
Logic Threshold  
ꢀs Supply Voltage  
Supply Current  
ꢀs Update Frequency  
2
1.75  
1.5  
10  
1
RꢁꢀꢁIG  
0.1  
1.25  
1
FALLꢁIG  
0.01  
0.001  
V
= 5V  
DD  
V
= 3V  
0.75  
0.5  
DD  
0.0001  
2.5  
3.5  
4
4.5  
5
5.5  
3
10  
100  
1k  
10k  
100k  
1M  
V
(Vꢂ  
DD  
UPDATE FREQUEICY (Hzꢂ  
2753 G18  
2753 G17  
2753f  
9
LTC2753  
PIN FUNCTIONS  
R
COM  
(Pin 1): Center Tap Point for the Reference ꢁnverting  
output range. When configured for single-span operation,  
the output range is set via hardware pin strapping. The  
inputandDACregistersofthespan/Oportaretransparent  
and do not respond to write or update commands.  
Resistors.The20kreferenceinvertingresistorsR1andR2  
are connected internally from R to R and from R  
to REFA, respectively (see Slock Diagramꢂ. For normal  
ꢁI  
COM  
COM  
operation tie R to the negative input of the external  
reference inverting amplifier (see Typical Applicationsꢂ.  
COM  
Toconfigurethepartforsingle-spanuse,tieMꢀPAIdirectly  
to V . ꢁf MꢀPAI is instead connected to GID (ꢀoftꢀpan  
DD  
configurationꢂ, the output ranges are set and verified by  
usingwrite, updateandreadoperations. ꢀeeManualpan  
Configuration in the Operation section. MꢀPAI must be  
connectedeitherdirectlytoGID(ꢀoftꢀpanconfigurationꢂ  
R (Pin ±): ꢁnput Resistor R1 of the Reference ꢁnverting  
Resistors.The20kresistorR1isconnectedinternallyfrom  
IN  
R to R  
ꢁI  
. For normal operation tie R to the external  
COM  
ꢁI  
reference voltage V . Typically 5V; accepts up to 15V.  
REF  
or V (single-span configurationꢂ.  
DD  
S± (Pin 3): ꢀpan ꢁ/O Sit 2. Pins ꢀ0, ꢀ1 and ꢀ2 are used  
to program and to read back the output ranges of the  
DACs.  
D0-D± (Pins ±±-±4): LTC±753-1± Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
I
(Pin 4): DAC A Current Output Complement. Tie  
to ground.  
OUT±A  
D0-D4 (Pins ±±-±6): LTC±753-14 Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
OUT2A  
GND(Pin5):ꢀhieldGround,providesnecessaryshielding  
for ꢁ . Tie to ground.  
OUT2A  
D0-D6 (Pins ±±-±8): LTC±753-16 Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D0 is the LꢀS.  
D3-D11 (Pins 6-14): LTC±753-1± Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D11 is the MꢀS.  
NC (Pins ±5-30): LTC±753-1± Only2 Io ꢁnternal Connection.  
NC (Pins ±7-30): LTC±753-14 Only2 Io ꢁnternal Connection.  
D5-D13 (Pins 6-14): LTC±753-14 Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D13 is the MꢀS.  
NC (Pins ±9, 30): LTC±753-16 Only2 Io ꢁnternal Con-  
nection.  
D7-D15 (Pins 6-14): LTC±753-16 Only2 DAC ꢁnput/Output  
Data Sits. These ꢁ/O pins set and read back the DAC code.  
D15 is the MꢀS.  
GND(Pin31):ꢀhieldGround,providesnecessaryshielding  
for ꢁ  
. Tie to ground.  
OUT2S  
I
(Pin 3±): DAC S Current Output Complement. Tie  
to ground.  
V
(Pin 15): Positive ꢀupply ꢁnput 2.7V ≤ V ≤ 5.5V.  
DD  
OUT±B  
DD  
Requires a 0.1μF bypass capacitor to GID.  
OUT2S  
S0 (Pin 33): ꢀpan ꢁ/O Sit 0. Pins ꢀ0, ꢀ1 and ꢀ2 are used to  
NC (Pin 16): Io ꢁnternal Connection.  
program and to read back the output range of the DACs.  
A1 (Pin 17): DAC Address Sit 1. ꢀee Table 3.  
A0 (Pin 18): DAC Address Sit 0. ꢀee Table 3.  
GND (Pin 19): Ground. Tie to ground.  
D/S (Pin 34): Data/ꢀpan ꢀelect. This pin is used to select  
the data ꢁ/O pins or the span ꢁ/O pins (D0 to D15 or ꢀ0  
to ꢀ2, respectivelyꢂ, along with their respective dedicated  
registers, for write or read operations. Update operations  
ignore D/ꢀ, since all updates affect both data and span  
registers. For single-span operation, tie D/ꢀ to ground.  
CLR (Pin ±0): Asynchronous Clear. When CLR is taken  
to a logic low, the data registers are reset to the zero-volt  
code for the present output range (V  
= 0Vꢂ.  
OUT  
READ (Pin 35): Read Pin. When READ is asserted high,  
the data ꢁ/O pins (D0-D15ꢂ or span ꢁ/O pins (ꢀ0-ꢀ2ꢂ  
MSPAN(Pin±1):ManualpanControlPin.MꢀPAIisused  
to configure the LTC2753 for operation in a single, fixed  
2753f  
10  
LTC2753  
PIN FUNCTIONS  
output the contents of the selected register (see Table  
1ꢂ. For single-span operation, readback of the span ꢁ/O  
pins is disabled.  
0V. For normal operation tie to the negative input of the ꢁ/V  
converter amplifier for DAC S (see Typical Applicationsꢂ.  
R
VOSB  
(Pin 43): DAC S Offset Adjust. Iominal input range  
UPD (Pin 36): Update and Suffer ꢀelect Pin. When READ  
is held low and UPD is asserted high, the contents of the  
addressed DAC’s input registers (both data and spanꢂ are  
copiedintotheirrespectiveDACregisters.Theoutputofthe  
DAC is updated, reflecting the new DAC register values.  
is 5V.Theimpedancelookingintothispinis1Mtoground.  
ꢁf not used, tie R to ground.  
VOꢀS  
R
(Pin 44): DAC A Offset Adjust. Iominal input range  
VOSA  
is 5V.Theimpedancelookingintothispinis1Mtoground.  
ꢁf not used, tie R to ground.  
VOꢀA  
When READ is held high, the update function is disabled  
and the UPD pin functions as a buffer selector—logic low  
to select the input register, high to select the DAC register.  
ꢀee Readback in the Operation section.  
I
(Pin 45): DAC A Current Output. This pin is a virtual  
OUT1A  
ground when the DAC is operating and should reside at  
0V. For normal operation tie to the negative input of the ꢁ/V  
converter amplifier for DAC A (see Typical Applicationsꢂ.  
WR(Pin37):ActiveLowWritePin. AWriteoperationcop-  
ies the data present on the data or span ꢁ/O pins (D0-D15  
or ꢀ0-ꢀ2, respectivelyꢂ into the associated input register.  
When READ is high, the Write function is disabled.  
R
(Pin 46): DAC A Feedback Resistor. For normal  
FBA  
operation tie to the output of the ꢁ/V converter amplifier  
for DAC A (see Typical Applicationsꢂ. The DAC output  
current from ꢁ  
to the RFSA pin. The impedance looking into this pin is  
10k to ground.  
flows through the feedback resistor  
OUT1A  
S1 (Pin 38): ꢀpan ꢁ/O Sit 1. Pins ꢀ0, ꢀ1 and ꢀ2 are used  
to program and to read back the output ranges of the  
DACs.  
R
(Pin 47): Sipolar Offset Ietwork for DAC A. This  
OFSA  
REFB(Pin39):ReferencenputforDACS.Theimpedance  
looking into this pin is 10k to ground. For normal opera-  
tion tie to the output of the reference inverting amplifier.  
Typically –5V; accepts up to 15V.  
pin provides the translation of the output voltage range for  
bipolar spans. Accepts up to 15V; for normal operation  
tie to the positive reference voltage at R (Pin 2ꢂ. The  
impedance looking into this pin is 20k to ground.  
ꢁI  
R
(Pin 40): Sipolar Offset Ietwork for DAC S. This  
OFSB  
REFA (Pin 48): Reference ꢁnput for DAC A, and connec-  
tion for internal reference inverting resistor R2. The 20k  
pinprovidesthetranslationoftheoutputvoltagerangefor  
bipolar spans. Accepts up to 15V; for normal operation  
resistorR2isconnectedinternallyfromR  
toREFA.For  
COM  
tie to the positive reference voltage at R (Pin 2ꢂ. The  
impedance looking into this pin is 20k to ground.  
ꢁI  
normal operation tie this pin to the output of the reference  
invertingamplifier(seeTypicalApplicationsꢂ.Typically5V;  
accepts up to 15V. The impedance looking into this pin  
R
FBB  
(Pin 41): DAC S Feedback Resistor. For normal  
operation tie to the output of the ꢁ/V converter amplifier  
for DAC S (see Typical Applicationsꢂ. The DAC output  
is 10k to ground (R and R  
floatingꢂ.  
ꢁI  
COM  
Exposed Pad (Pin 49): Ground. The Exposed Pad must  
be soldered to the PCS.  
current from ꢁ  
flows through the feedback resistor  
OUT1S  
to the R  
pin. The impedance looking into this pin is  
FSS  
10k to ground.  
I
(Pin 4±): DAC S Current Output. This pin is a virtual  
OUT1B  
ground when the DAC is operating and should reside at  
2753f  
11  
LTC2753  
BLOCK DIAGRAM  
R
ꢁI  
R
REFA R  
R
COM  
OFꢀA FSA  
2
1
48  
47  
46  
R1  
R2  
16  
16  
3
DATA ꢁ /O  
ꢁ/O  
6-14, 22-28  
PORT  
16  
3
DATA ꢁIPUT  
REGꢁꢀTER  
DATA DAC  
REGꢁꢀTER  
45  
OUT1A  
DAC A  
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
ꢀPAI ꢁ /O  
3, 38, 33  
ꢁ/O  
PORT  
4
OUT2A  
ꢀPAI ꢁIPUT  
REGꢁꢀTER  
ꢀPAI DAC  
REGꢁꢀTER  
3
16  
3
44  
17  
18  
R
R
VOꢀA  
VOꢀS  
A1  
DAC  
43  
42  
ADDREꢀꢀ  
16  
3
DATA ꢁIPUT  
REGꢁꢀTER  
DATA DAC  
REGꢁꢀTER  
A0  
OUT1S  
OUT2S  
DAC S  
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
32  
ꢀPAI ꢁIPUT  
REGꢁꢀTER  
ꢀPAI DAC  
REGꢁꢀTER  
COITROL LOGꢁC  
35  
37  
36  
34  
20  
21  
39  
40  
41  
2753 SD  
READ WR UPD D/ꢀ CLR  
MꢀPAI  
REFS R  
R
OFꢀS FSS  
2753f  
12  
LTC2753  
TIMING DIAGRAMS  
Write, Update and Clear Timing  
t
3
t
1
t
2
WR  
DATA/ꢀPAI ꢁ/O  
ꢁIPUT  
VALꢁD  
t
4
t
t
6
5
UPD  
t
t
t
8
7
9
D/ꢀ  
VALꢁD  
VALꢁD  
t
t
11  
t
12  
10  
ADDREꢀꢀ  
A1 - A0  
VALꢁD  
t
25  
CLR  
2753 TD01  
Readback Timing  
READ  
t
t
t
14  
24  
13  
t
WR  
23  
DATA/ꢀPAI ꢁ/O  
ꢁIPUT  
t
15  
DATA/ꢀPAI ꢁ/O  
OUTPUT  
VALꢁD  
VALꢁD  
VALꢁD  
t
t
t
27  
26  
17  
ADDREꢀꢀ  
A1-A0  
t
20  
t
19  
t
22  
UPD  
t
18  
D/ꢀ  
VALꢁD  
2753 TD02  
2753f  
13  
LTC2753  
OPERATION  
Output Ranges  
Loading the span input register is accomplished similarly,  
holding the D/ꢀ pin high and bringing the WR pin low. The  
span and data register structures are the same except for  
thenumberofparallelbits—thespanregistershave3bits,  
while the data registers have 12, 14, or 16.  
TheLTC2753isadualcurrent-output, parallel-inputpreci-  
sionmultiplyingDACwithsoftware-programmableoutput  
ranges. ꢀoftꢀpan provides two unipolar output ranges  
(0V to 5V and 0V to 10Vꢂ, and four bipolar ranges ( 2.5V,  
5V, 10V and –2.5V to 7.5Vꢂ. These ranges are obtained  
when an external precision 5V reference is used. When  
a reference voltage of 2V is used, the ꢀoftꢀpan ranges  
become: 0V to 2V, 0V to 4V, 1V, 2V, 4V and –1V to 3V.  
The output ranges are linearly scaled for references other  
than 2V and 5V.  
To make both registers transparent for flowthrough  
mode, tie WR low and UPD high. However, this defeats  
the deglitcher operation and output glitch impulse may  
increase. The deglitcher is activated on the rising edge  
of the UPD pin.  
The interface also allows the use of the input and DAC  
registers in a master-slave, or edge-triggered, configura-  
tion. This mode of operation occurs when WR and UPD  
are tied together and driven by a single clock signal. The  
data bits are loaded into the input register on the falling  
edge of the clock and then loaded into the DAC register  
on the rising edge.  
Digital Section  
The LTC2753 has 4 internal registers for each DAC, a total  
of 8 registers (see Slock Diagramꢂ. Each DAC channel has  
twosetsofdouble-bufferedregisters—onesetforthedata,  
and one set for the span (output rangeꢂ of the DAC. The  
double-bufferedfeatureprovidesthecapabilitytosimulta-  
neously update the span and code, which allows smooth  
voltage transitions when changing output ranges. ꢁt also  
permits the simultaneous updating of multiple DACs.  
ꢁt is possible to control both data and span on one 16-bit  
wide data bus by allowing span pins ꢀ2 to ꢀ0 to share  
bus lines with the data LꢀSs (D2 to D0ꢂ. Io write or read  
operation includes both span and data, so there cannot  
be a conflict.  
Each set of double-buffered registers comprises an input  
registerandaDACregister. Theinputregistersareholding  
buffers—when data is loaded into an input register via a  
write operation, the DAC outputs are not affected.  
The asynchronous clear pin resets both DACs to 0V in any  
output range. CLR resets all data registers, while leaving  
the span registers undisturbed.  
The contents of a DAC register, on the other hand, di-  
rectly control the DAC output voltage or output range.  
The contents of the DAC registers are changed by copying  
the contents of an input register into its associated DAC  
register via an update operation.  
V
DD  
LTC2753-16  
V
DD  
DAC A  
DAC S  
MꢀPAI  
ꢀ2  
Write and Update Operations  
ꢀ1  
The data input register of the addressed DAC is loaded  
directly from a 16-bit microprocessor bus by holding the  
D/ꢀ pin low and pulsing the WR pin low (write operationꢂ.  
The DAC register is loaded by pulsing the UPD pin high  
(update operationꢂ, which copies the data held in the input  
register into the DAC register. Iote that updates always  
include both data and span; but the DAC register values  
willnotchangeunlesstheinputregistervalueshaveprevi-  
ously been changed via a write operation.  
ꢀ0  
D/ꢀ  
WR  
UPD READ A1  
A0  
2753 F01  
16  
DATA ꢁ/O  
Figure 12 Using MSPAN to Configure the LTC±753 for Single-Span  
Operation (±10V Range)2  
2753f  
14  
LTC2753  
OPERATION  
These devices also have a power-on reset that initializes  
the D/ꢀ pin. The selected ꢁ/O port’s pins become logic  
outputs during readback, while the unselected ꢁ/O port’s  
pins remain high-impedance inputs.  
both DACs to V  
= 0V in any output range. The DACs  
OUT  
power up in the 0V-5V range if the part is in ꢀoftꢀpan  
configuration;formanualspan(seeManualpanConfigu-  
rationbelowꢂ,bothDACspowerupinthemanually-chosen  
range at the appropriate code.  
With the DAC channel and ꢁ/O port selected, assert READ  
high and select the desired input or DAC register using the  
UPD pin. Iote that UPD is a two function pin—the update  
function is only available when READ is low. When READ  
is high, the update function is disabled and the UPD pin  
instead selects the input or DAC register for readback.  
Table 1 shows the readback functions for the LTC2753.  
Manual Span Configuration  
Multipleoutputrangesarenotneededinsomeapplications.  
ToconfiguretheLTC2753forsingle-spanoperation,tiethe  
MꢀPAI pin to V and the D/ꢀ pin to GID. The desired  
DD  
Table 12 Write, Update and Read Functions  
output range is then specified by the span ꢁ/O pins (ꢀ0,  
READ D/S WR UPD  
SPAN I/O  
DATA I/O  
ꢀ1 and ꢀ2ꢂ as usual, but the pins are programmed by ty-  
0
0
0
0
0
0
0
1
-
-
Write to ꢁnput Register  
ing directly to GID or V (see Figure 1 and Table 2ꢂ. ꢁn  
DD  
Write/Update  
(Transparentꢂ  
this configuration, both DAC channels will initialize to the  
chosen output range at power-up, with V  
= 0V.  
OUT  
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
-
-
When configured for manual span operation, span pin  
readback is disabled.  
Update DAC Register Update DAC Register  
Write to ꢁnput Register  
-
-
Write/Update  
(Transparentꢂ  
Readback  
0
0
1
1
1
1
1
1
0
0
1
1
1
1
X
X
X
X
0
1
0
1
0
1
-
-
The contents of any one of the 8 interface registers can  
be read back from the ꢁ/O ports.  
Update DAC register Update DAC Register  
-
Read ꢁnput Register  
The/Opinsaregroupedintotwoports:dataandspan.The  
data ꢁ/O port comprises pins D0-D11, D0-D13 or D0-D15  
(LTC2753-12, LTC2753-14 or LTC2753-16, respectivelyꢂ.  
The span ꢁ/O port comprises pins ꢀ0, ꢀ1 and ꢀ2 for all  
parts.  
-
Read DAC Register  
Read ꢁnput Register  
Read DAC Register  
-
-
X = Don’t Care  
The most common readback task is to check the contents  
of an input register after writing to it, before updating the  
new data to the DAC register. To do this, hold UPD low  
and assert READ high. The contents of the selected port’s  
input register are output to its ꢁ/O pins.  
Each DAC channel has a set of data registers that are  
controlled and read back from the data ꢁ/O port; and a set  
of span registers that are controlled and read back from  
the span ꢁ/O port. The register structure is shown in the  
Slock Diagram.  
To read back the contents of a DAC register, hold UPD low  
and assert READ high, then bring UPD high to select the  
DACregister. ThecontentsoftheselectedDACregisterare  
output by the selected port’s ꢁ/O pins. Iote: if no update is  
desiredafterthereadbackoperation,UPDmustbereturned  
low before bringing READ low; otherwise the UPD pin will  
revert to its primary function and update the DAC.  
A readback operation is initiated by asserting READ to  
logic high after selecting the desired DAC channel and ꢁ/O  
port.The/Opins,whicharehigh-impedancedigitalinputs  
when READ is low, selectively change to low-impedance  
logic outputs during readback.  
ꢀelect the DAC channel with address pins A1 and A0, and  
select the ꢁ/O port (data or spanꢂ to be read back with  
2753f  
15  
LTC2753  
OPERATION  
System Offset Adjustment  
Table ±2 Span Codes  
S±  
0
S1  
0
S0  
0
SPAN  
Many systems require compensation for overall system  
Unipolar 0V to 5V  
Unipolar 0V to 10V  
Sipolar –5V to 5V  
Sipolar –10V to 10V  
Sipolar –2.5V to 2.5V  
Sipolar –2.5V to 7.5V  
offset. The R  
and R  
offset adjustment pins are  
VOꢀA  
VOꢀS  
0
0
1
provided for this purpose. For noise immunity and ease  
of adjustment, the control voltage is attenuated to the  
DAC output:  
0
1
0
0
1
1
1
0
0
V
V
= –0.01 • V(R  
ꢂ [0V to 5V, 2.5V spansꢅ  
Oꢀ  
VOꢀX  
1
0
1
= –0.02 • V(R  
spansꢅ  
ꢂ [0V to 10V, 5V, 2.5V to 7.5V  
Oꢀ  
VOꢀX  
Codes not shown are reserved and should not be used.  
Table 32 Address Codes  
V
= –0.04 • V(R ꢂ [ 10V spanꢅ  
VOꢀX  
Oꢀ  
DAC CHANNEL  
A1  
0
A0  
0
The nominal input range of this pin is 5V; other reference  
voltages of up to 15V may be used if needed. The R  
A
S
VOꢀX  
0
1
pins have an input impedance of 1MΩ. To preserve the  
settling performance of the LTC2753, drive this pin with a  
Thevenin-equivalent impedance of 10k or less. ꢀhort any  
ALL*  
1
1
Codes not shown are reserved and should not be used.  
*ꢁf readback is taken using the All DACs address, the LTC2753 defaults to  
DAC A.  
unused system offset adjustment pins to ꢁ  
.
OUT2  
2753f  
16  
LTC2753  
OPERATIONEXAMPLES  
1. Load 5V range with the output at 0V. Iote that since span and code are updated together, the output, if started at  
0V, will stay there. The 16-Sit DAC code is shown in hex for compactness.  
WR  
ꢀPAI ꢁ/O  
ꢁIPUT  
010  
DATA ꢁ/O  
ꢁIPUT  
8000  
H
UPD  
UPDATE  
( 5V RAIGE, V  
= 0Vꢂ  
OUT  
D/ꢀ  
READ = LOW  
2753 TD03  
2. Load 10V range with the output at 5V, changing to –5V.  
WR  
ꢀPAI ꢁ/O  
ꢁIPUT  
011  
DATA ꢁ/O  
ꢁIPUT  
C000  
4000  
H
H
UPD  
UPDATE (5Vꢂ  
UPDATE (–5Vꢂ  
D/ꢀ  
READ = LOW  
2753 TD04  
3. Write and update midscale code in 0V to 5V range (V  
and DAC registers before updating.  
= 2.5Vꢂ using readback to check the contents of the input  
OUT  
WR  
Hꢁ-Z  
DATA ꢁ/O  
ꢁIPUT  
8000  
H
Hꢁ-Z  
DATA ꢁ/O  
OUTPUT  
8000  
0000  
H
H
ꢁIPUT REGꢁꢀTER  
DAC REGꢁꢀTER  
UPD  
UPDATE (2.5Vꢂ  
D/ꢀ  
READ  
2753 TD05  
2753f  
17  
LTC2753  
APPLICATIONS INFORMATION  
Op Amp Selection  
programmed in a unipolar or bipolar output range. These  
are the changes the op amp can cause to the ꢁIL, DIL,  
unipolaroffset,unipolargainerror,bipolarzeroandbipolar  
gain error. Tables 4 and 5 can also be used to determine  
the effects of op amp parameters on the LTC2753-14  
and the LTC2753-12. However, the results obtained from  
Tables 4 and 5 are in 16-bit LꢀSs. Divide these results  
by 4 (LTC2753-14ꢂ and 16 (LTC2753-12ꢂ to obtain the  
correct LꢀS sizing.  
Secause of the extremely high accuracy of the 16-bit  
LTC2753-16, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
ꢁIL and DIL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 4 and 5 contain equations for evaluating the effects  
of op amp parameters on the LTC2753’s accuracy when  
Table 6 contains a partial list of LTC precision op amps  
recommended for use with the LTC2753. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
the system’s specified error budget. ꢀelect the amplifier  
from Table 6 and insert the specified op amp parameters  
in Table 5. Add up all the errors for each category to de-  
termine the effect the op amp has on the accuracy of the  
part.Arithmeticsummationgivesan(unlikelyworst-case  
effect. A root-sum-square (RMꢀꢂ summation produces a  
more realistic estimate.  
Table 42 Variables for Each Output Range That Adjust the  
Equations in Table 5  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
A±  
2
A3  
1
A4  
A5  
1
5V  
10V  
3
0.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
10V  
4
4
0.83  
1.4  
0.7  
2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
0.5  
1.5  
Table 52 Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1)2 Subscript 1  
Refers to Output Amp, Subscript ± Refers to Reference Inꢀerting Amp2  
UNIPOLAR  
OFFSET (LSB)  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
DNL (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mVꢂ  
V
• 3.2 •  
V
• 0.82 •  
A3 • V  
Oꢀ1  
• 13.2 •  
A3 • V  
• 19.8 •  
V
• 13.2 •  
V
• 13.2 •  
Oꢀ1  
)
)
)
)
)
)
)
)
(V  
(V  
(V  
(V  
(V  
(V  
Oꢀ1  
Oꢀ1  
Oꢀ1  
Oꢀ1  
Oꢀ1  
5V  
5V  
5V  
5V  
5V  
5V  
(nAꢂ  
• 0.0003 •  
• 0.00008 •  
S1  
• 0.13 •  
S1  
• 0.13 •  
S1  
• 0.0018 •  
• 0.0018 •  
(V  
(V  
S1  
S1  
S1  
S1  
)
(V  
(V  
(V  
(V  
)
)
)
REF  
REF  
REF  
REF  
REF  
REF  
( 16.5k)  
1.5k  
VOL1  
131k  
VOL1  
131k  
VOL1  
A
VOL1  
(V/Vꢂ  
(mVꢂ  
A1 •  
A2 •  
0
A5 •  
0
A5 •  
)
A
(A  
)
)
(A  
(A  
VOL1  
5V  
5V  
5V  
V
0
0
0
0
0
0
0
0
0
A4 • V  
• 13.1 •  
V
• 26.2 •  
V
• 26.2 •  
Oꢀ2  
Oꢀ2  
Oꢀ2  
Oꢀ2  
(V  
)
(V  
(V  
(
))  
))  
)
REF  
REF  
REF  
5V  
REF  
5V  
REF  
5V  
(V  
(mVꢂ  
A4 • ꢁ • 0.13 •  
• 0.26 •  
S2  
• 0.26 •  
131k  
S2  
S2  
S2  
(
(V  
)
)
(V  
REF  
66k  
VOL2  
131k  
(A  
A
(V/Vꢂ  
A4 •  
VOL2  
(A  
)
(A  
)
)
VOL2  
VOL2  
Table 62 Partial List of LTC Precision Amplifiers Recommended for Use with the LTC±753 with Releꢀant Specifications  
AMPLIFIER SPECIFICATIONS  
VOLTAGE CURRENT  
SLEW  
RATE  
V/μs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
t
POWER  
SETTLING  
V
I
A
VOL  
NOISE  
NOISE  
with LTC±753 DISSIPATION  
OS  
B
AMPLIFIER  
LT1001  
μV  
nA  
V/mV  
nV/Hz  
pA/Hz  
μs  
120  
120  
115  
19  
mW  
46  
25  
2
800  
10  
14  
14  
2.7  
5
0.12  
0.008  
0.008  
0.3  
0.25  
0.2  
0.16  
4.5  
22  
0.8  
0.7  
0.75  
12.5  
90  
LT1097  
50  
0.35  
0.25  
20  
1000  
1500  
4000  
5000  
2000  
11  
LT1112 (Dualꢂ  
LT1124 (Dualꢂ  
LT1468  
60  
10.5/Op Amp  
69/Op Amp  
117  
70  
75  
10  
0.6  
2
LT1469 (Dualꢂ  
125  
10  
5
0.6  
22  
90  
2
123/Op Amp  
2753f  
18  
LTC2753  
APPLICATIONS INFORMATION  
Op amp offset will contribute mostly to output offset and  
gain error, and has minimal effect on ꢁIL and DIL. For  
example, for the LTC2753-16 with a 5V reference in 5V  
unipolar mode, a 250μV op amp offset will cause a 3.3LꢀS  
zero-scale error and a 3.3LꢀS gain error; but only 0.8LꢀS  
of ꢁIL degradation and 0.2LꢀS of DIL degradation.  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s apparent ꢁIL and DIL performance. ꢁf a refer-  
ence is chosen with a loose output voltage temperature  
coefficient, then the DAC output voltage along its transfer  
characteristicwillbeverydependentonambientconditions.  
Minimizing the error due to reference temperature coef-  
ficient can be achieved by choosing a precision reference  
with a low output voltage temperature coefficient and/or  
tightly controlling the ambient temperature of the circuit  
to minimize temperature gradients.  
While not directly addressed by the simple equations in  
Tables 4 and 5, temperature effects can be handled just as  
easily for unipolar and bipolar applications. First, consult  
an op amp’s data sheet to find the worst-case V and ꢁ  
Oꢀ  
S
over temperature. Then, plug these numbers in the V  
Oꢀ  
As precision DAC applications move to 16-bit and higher  
performance, reference output voltage noise may con-  
tribute a dominant share of the system’s noise floor. This  
in turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practi-  
cal for the system resolution desired. Precision voltage  
references, like the LT1236, produce low output noise in  
the 0.1Hz to 10Hz region, well below the 16-bit LꢀS level  
in 5V or 10V full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimize output noise.  
and ꢁ equations from Table 5 and calculate the tempera-  
ture-induced effects.  
S
For applications where fast settling time is important, Ap-  
plicationIote74,ComponentandMeasurementAdvances  
Ensure16-SitDACettlingTime,offersathoroughdiscus-  
sion of 16-bit DAC settling time and op amp selection.  
Precision Voltage Reference Considerations  
Much in the same way selecting an operational amplifier  
for use with the LTC2753 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. The output voltage of the LTC2753  
is directly affected by the voltage reference; thus, any  
voltage reference error will appear as a DAC output volt-  
age error.  
Table 72 Partial List of LTC Precision References Recommended  
for Use with the LTC±753 with Releꢀant Specifications  
INITIAL  
TOLERANCE  
TEMPERATURE  
DRIFT  
021Hz to 10Hz  
NOISE  
REFERENCE  
LT1019A-5,  
LT1019A-10  
0.05ꢃ  
0.05ꢃ  
0.075ꢃ  
0.05ꢃ  
5ppm/°C  
5ppm/°C  
10ppm/°C  
10ppm/°C  
12μV  
P-P  
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit appli-  
cations: output voltage initial tolerance, output voltage  
temperature coefficient and output voltage noise.  
LT1236A-5,  
LT1236A-10  
3μV  
P-P  
LT1460A-5,  
LT1460A-10  
20μV  
P-P  
P-P  
ꢁnitial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( 0.05ꢃꢂ,minimizesthegainerrorcausedbythereference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
LT1790A-2.5  
12μV  
2753f  
19  
LTC2753  
APPLICATIONS INFORMATION  
Grounding  
pin to star ground. This minimizes the voltage drop from  
this pin to ground caused by the code dependent current  
flowing to ground. When the resistance of this circuit  
board trace becomes greater than 1Ω, a force/sense am-  
plifier configuration should be used to drive this pin (see  
Figure 2ꢂ. This preserves the excellent accuracy (1LꢀS  
ꢁIL and DILꢂ of the LTC2753-16.  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding techniques should be used. ꢁ  
must be tied  
OUT2  
to the star ground with as low a resistance as possible.  
When it is not possible to locate star ground close to  
, a low resistance trace should be used to route this  
OUT2  
2753f  
20  
LTC2753  
APPLICATIONS INFORMATION  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
4,32  
OUT2  
200Ω  
200Ω  
2
+
2
3
6
1000pF  
LT1468  
1
2
6
+ 3  
LT1001  
OUT2  
ZETEX  
SAT54ꢀ  
1
2
3
ZETEX*  
SAT54ꢀ  
3
*ꢀCHOTTKY SARRꢁER DꢁODE  
V
REF  
5V  
LTC2753-16  
46  
R
47  
2
OFꢀA  
R
FSA  
R
ꢁI  
15pF  
+ 3  
45  
1
OUT1A  
2
3
1/2 LT1469  
1
R
COM  
1
2
DAC A  
V
OUTA  
1/2 LT1469  
+
4
OUT2A  
150pF  
REFA 48  
44  
R
VOꢀA  
2753 F02  
Figure ±2 Optional Circuits for Driꢀing IOUT± from GND with a Force/Sense Amplifier2  
2753f  
21  
LTC2753  
TYPICAL APPLICATIONS  
Dual 16-Bit VOUT DAC with Software-Selectable Ranges  
V
REF  
5V  
LTC2753-16  
46  
R
47  
2
OFꢀA  
R
FSA  
R
ꢁI  
15pF  
C2  
+ 3  
45  
4
R1  
R2  
OUT1A  
2
3
1
1/2 LT1469  
1
R
1
2
COM  
DAC A  
V
OUTA  
1/2 LT1469  
+
OUT2A  
150pF  
C1*  
REFA 48  
REFS 39  
44  
43  
32  
R
R
VOꢀA  
VOꢀS  
+
5
6
OUT2S  
7
V
OUTS  
DAC S  
1/2 LT1469  
42  
41  
OUT1S  
15pF  
C3  
R
OFꢀS  
40  
R
FSS  
16  
2753 F03  
DATA ꢁ/O  
D15 - D0  
ꢁ/O PORT  
ꢁ/O PORT  
3
ꢀPAI ꢁ/O  
ꢀ2 - ꢀ0  
WR UPD READ D/ꢀ CLR MꢀPAI A1, A0  
37 36 35 34 20 21 17, 18  
WR UPD READ D/ꢀ CLR ADDREꢀꢀ  
*FOR MULTꢁPLYꢁIG APPLꢁCATꢁOIꢀ C1 = 15pF  
2753f  
22  
LTC2753  
PACKAGE DESCRIPTION  
UK Package  
48-Lead Plastic QFN (7mm × 7mm)  
(Reference LTC DWG # 05-08-1704 Rev C)  
0.70 ±0.05  
5.15 ± 0.05  
5.50 REF  
6.10 ±0.05 7.50 ±0.05  
(4 SIDES)  
5.15 ± 0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 ± 0.05  
R = 0.115  
TYP  
7.00 ± 0.10  
(4 SIDES)  
R = 0.10  
TYP  
47 48  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
5.15 ± 0.10  
5.50 REF  
(4-SIDES)  
5.15 ± 0.10  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
2753f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2753  
TYPICAL APPLICATION  
Offset and Gain Trim Circuits2 Powering VDD from LT10±7 Ensures Quiet Supply  
OFFꢀET  
TRꢁM A  
OFFꢀET  
TRꢁM S  
+
V
ꢁI  
OUT  
U3  
LT1027  
+
2
6
5
2
1
V
C13  
10μF  
8
2
3
2
R1  
10k  
1
2
R3  
10k  
TRꢁM  
R2  
10k  
3
3
C20  
10μF  
GID  
4
U2A  
1
LT®1469  
1
C23  
0.1μF  
+
C22  
0.001μF  
4
GAꢁI  
TRꢁM  
V
C1  
30pF  
15  
47  
40  
2
1
48  
39  
46  
6
7
8
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
V
R
OFꢀA  
R
OFꢀS  
R
ꢁI  
R
COM  
REFA REFS  
R
FSA  
DD  
45  
9
6
5
OUT1A  
10  
11  
12  
13  
14  
22  
23  
24  
25  
26  
27  
28  
U4S  
LT1469  
7
1
V
V
OUTA  
4
+
OUT2A  
44  
DATA ꢁ/O  
R
U1  
LTC2753-16  
VOꢀA  
VOꢀS  
43  
32  
R
+
8
V
+
3
2
D4  
D3  
D2  
D1  
OUT2S  
U4A  
OUTS  
LT1469  
42  
OUT1S  
D0  
4
V
3
38  
33  
ꢀ2  
ꢀ1  
ꢀ0  
ꢀPAI ꢁ/O  
C2  
30pF  
R
FSS  
D/ꢀ READ UPD WR CLR  
34 35 36 37 20  
MꢀPAI GID GID GID GID  
21 31 19 49  
5
41  
2753 TA03  
D/ꢀ READ UPD WR CLR  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
1ppm/°C Maximum Drift  
LT1027  
Precision Reference  
Precision Reference  
LT1236A-5  
LT1468  
0.05ꢃ Maximum Tolerance, 1ppm 0.1Hz to 10Hz Ioise  
90MHz GSW, 22V/μs ꢀlew Rate  
16-Sit Accurate Op-Amp  
Dual 16-Sit Accurate Op-Amp  
LT1469  
90MHz GSW, 22V/μs ꢀlew Rate  
LTC1588/LTC1589/ ꢀerial 12-/14-/16-Sit ꢁ  
LTC1592  
ꢀingle DAC  
ꢀoftware-ꢀelectable (ꢀoftꢀpanꢂ Ranges, 1LꢀS ꢁIL, DIL, 16-Lead ꢀꢀOP Package  
OUT  
LTC1591/LTC1597 Parallel 14-/16-Sit ꢁ  
ꢀingle DAC  
ꢁntegrated 4-Quadrant Resistors  
OUT  
LTC1821  
Parallel 16-Sit V  
ꢀingle DAC  
1LꢀS ꢁIL, DIL, 0V to 10V, 0V to –10V, 10V Output Ranges  
OUT  
LTC2601/LTC2611/ ꢀerial 12-/14-/16-Sit V  
LTC2621  
ꢀingle DACs  
ꢀingle DACs, ꢀPꢁ-Compatible, ꢀingle ꢀupply, 0V to 5V Outputs in 3mm × 3mm  
DFI-10 Package  
OUT  
2
LTC2606/LTC2616/ ꢀerial 12-/14-/16-Sit V  
LTC2626  
ꢀingle DACs  
ꢀingle DACs, ꢁ C-Compatible, ꢀingle ꢀupply, 0V to 5V Outputs in 3mm × 3mm  
OUT  
DFI-10 Package  
LTC2641/LTC2642 ꢀerial 12-/14-/16-Sit Unbuffered V  
DACs  
ꢀingle  
2LꢀS ꢁIL, 1LꢀS DIL, 1μs ꢀettling, Tiny MꢀOP-10, 3mm × 3mm DFI-10  
Packages  
OUT  
LTC2704  
LTC2751  
ꢀerial 12-/14-/16-Sit V  
Quad DACs  
ꢀoftware-ꢀelectable (ꢀoftꢀpanꢂ Ranges, ꢁntegrated Amplifiers, 2LꢀS ꢁIL  
OUT  
Parallel 12-/14-/16-Sit ꢁ  
ꢀingle DACs  
ꢀoftꢀpan  
1LꢀS ꢁIL, DIL, ꢀoftware-ꢀelectable (ꢀoftꢀpanꢂ Ranges, 5mm × 7mm  
QFI-38 Package  
OUT  
2753f  
LT 1007 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Slvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408ꢂ 432-1900 FAX: (408ꢂ 434-0507 www.linear.com  

相关型号:

LTC2753CUK-14PBF

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753IUK-12#TRPBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2753IUK-12PBF

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753IUK-14#PBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2753IUK-14#TRPBF

LTC2753 - Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O; Package: QFN; Pins: 48; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2753IUK-14PBF

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753UK-12

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753UK-14

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2753UK-16

Dual Current Output 12-/14-/16-Bit SoftSpan DACs with Parallel I/O
Linear

LTC2754

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754-12

Dual Serial 18-Bit SoftSpan IOUT DACs
Linear

LTC2754ACUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear